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Alexandroff One Point Compactification

Czes law Byliński
University of Bia lystok

Poland

Summary. In the article, I introduce the notions of the compactification

of topological spaces and the Alexandroff one point compactification. Some prop-

erties of the locally compact spaces and one point compactification are proved.

MML identifier: COMPACT1, version: 7.8.05 4.87.985

The articles [15], [5], [16], [17], [4], [18], [1], [8], [14], [13], [19], [7], [9], [10], [6],

[12], [2], [3], and [11] provide the notation and terminology for this paper.

Let X be a topological space and let P be a family of subsets of X. We say

that P is compact if and only if:

(Def. 1) For every subset U of X such that U ∈ P holds U is compact.

Let X be a topological space and let U be a subset of X. We say that U is

relatively-compact if and only if:

(Def. 2) U is compact.

Let X be a topological space. Note that ∅X is relatively-compact.

Let X be a topological space. Observe that there exists a subset of X which

is relatively-compact.

Let X be a topological space and let U be a relatively-compact subset of X.

Observe that U is compact.

Let X be a topological space and let U be a subset of X. We introduce U

is pre-compact as a synonym of U is relatively-compact.

Let X be a non empty topological space. We introduce X is liminally-

compact as a synonym of X is locally-compact.

Let X be a non empty topological space. Let us observe that X is liminally-

compact if and only if:

(Def. 3) For every point x of X holds there exists a generalized basis of x which

is compact.
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168 czes law byliński

Let X be a non empty topological space. We say that X is locally-relatively-

compact if and only if:

(Def. 4) For every point x of X holds there exists a neighbourhood of x which is

relatively-compact.

LetX be a non empty topological space. We say thatX is locally-closed/com-

pact if and only if:

(Def. 5) For every point x of X holds there exists a neighbourhood of x which is

closed and compact.

Let X be a non empty topological space. We say that X is locally-compact

if and only if:

(Def. 6) For every point x of X holds there exists a neighbourhood of x which is

compact.

Let us observe that every non empty topological space which is liminally-

compact is also locally-compact.

Let us note that every non empty T3 topological space which is locally-

compact is also liminally-compact.

One can verify that every non empty topological space which is locally-

relatively-compact is also locally-closed/compact.

Let us observe that every non empty topological space which is locally-

closed/compact is also locally-relatively-compact.

Let us observe that every non empty topological space which is locally-

relatively-compact is also locally-compact.

One can verify that every non empty Hausdorff topological space which is

locally-compact is also locally-relatively-compact.

One can check that every non empty topological space which is compact is

also locally-compact.

Let us observe that every non empty topological space which is discrete is

also locally-compact.

Let us mention that there exists a topological space which is discrete and

non empty.

Let X be a locally-compact non empty topological space and let C be a

closed non empty subset of X. Note that X�C is locally-compact.

Let X be a locally-compact non empty T3 topological space and let P be an

open non empty subset of X. Note that X�P is locally-compact.

One can prove the following two propositions:

(1) Let X be a Hausdorff non empty topological space and E be a non empty

subset of X. If X�E is dense and locally-compact, then X�E is open.

(2) For all topological spaces X, Y and for every subset A of X such that

ΩX ⊆ ΩY holds (incl(X,Y ))◦A = A.
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Let X, Y be topological spaces and let f be a function from X into Y . We

say that f is embedding if and only if:

(Def. 7) There exists a function h from X into Y � rng f such that h = f and h

is a homeomorphism.

The following proposition is true

(3) Let X, Y be topological spaces. Suppose ΩX ⊆ ΩY and there exists

a subset X1 of Y such that X1 = ΩX and the topology of Y �X1 = the

topology of X. Then incl(X,Y ) is embedding.

Let X be a topological space, let Y be a topological space, and let h be a

function from X into Y . We say that h is compactification if and only if:

(Def. 8) h is embedding and Y is compact and h◦(ΩX) is dense.

Let X be a topological space and let Y be a topological space. Note that

every function from X into Y which is compactification is also embedding.

Let X be a topological structure. The one-point compactification of X yields

a strict topological structure and is defined by the conditions (Def. 9).

(Def. 9)(i) The carrier of the one-point compactification of X = succ(ΩX), and

(ii) the topology of the one-point compactification of X = (the topology of

X)∪{U ∪{ΩX};U ranges over subsets of X: U is open ∧ U c is compact}.
Let X be a topological structure. Note that the one-point compactification

of X is non empty.

We now state the proposition

(4) For every topological structure X holds

ΩX ⊆ Ωthe one-point compactification of X .

Let X be a topological space. Note that the one-point compactification of

X is topological space-like.

Next we state the proposition

(5) Every topological structure X is a subspace of the one-point compacti-

fication of X.

Let X be a topological space. One can verify that the one-point compacti-

fication of X is compact.

One can prove the following propositions:

(6) Let X be a non empty topological space. Then X is Hausdorff and

locally-compact if and only if the one-point compactification of X is Haus-

dorff.

(7) Let X be a non empty topological space. Then X is non compact if

and only if there exists a subset X ′ of the one-point compactification of

X such that X ′ = ΩX and X ′ is dense.

(8) Let X be a non empty topological space. Suppose X is non compact.

Then incl(X, the one-point compactification of X) is compactification.
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Arrow’s Impossibility Theorem
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Summary. A formalization of the first proof from [6].

MML identifier: ARROW, version: 7.8.05 4.87.985

The terminology and notation used here are introduced in the following articles:

[11], [13], [12], [10], [9], [5], [2], [3], [1], [8], [4], and [7].

1. Preliminaries

Let A, B′ be non empty sets, let B be a non empty subset of B ′, let f be a

function from A into B, and let x be an element of A. Then f(x) is an element

of B.

Next we state two propositions:

(1) For every finite set A such that cardA ≥ 2 and for every element a of A

there exists an element b of A such that b 6= a.

(2) Let A be a finite set. Suppose cardA ≥ 3. Let a, b be elements of A.

Then there exists an element c of A such that c 6= a and c 6= b.

2. Linear Preorders and Linear Orders

In the sequel A denotes a non empty set and a, b, c denote elements of A.

Let us consider A. The functor LinPreordersA is defined by the condition

(Def. 1).
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(Def. 1) Let R be a set. Then R ∈ LinPreordersA if and only if the following

conditions are satisfied:

(i) R is a binary relation on A,

(ii) for all a, b holds 〈〈a, b〉〉 ∈ R or 〈〈b, a〉〉 ∈ R, and

(iii) for all a, b, c such that 〈〈a, b〉〉 ∈ R and 〈〈b, c〉〉 ∈ R holds 〈〈a, c〉〉 ∈ R.
Let us consider A. Note that LinPreordersA is non empty.

Let us consider A. The functor LinOrdersA yielding a subset of LinPreordersA

is defined by:

(Def. 2) For every element R of LinPreordersA holds R ∈ LinOrdersA iff for all

a, b such that 〈〈a, b〉〉 ∈ R and 〈〈b, a〉〉 ∈ R holds a = b.

Let A be a set. One can verify that there exists an order in A which is

connected.

Let us consider A. Then LinOrdersA can be characterized by the condition:

(Def. 3) For every set R holds R ∈ LinOrdersA iff R is a connected order in A.

Let us consider A. One can verify that LinOrdersA is non empty.

In the sequel o, o′ are elements of LinPreordersA and o′′ is an element of

LinOrdersA.

Let us consider A, o, a, b. The predicate a ≤o b is defined by:

(Def. 4) 〈〈a, b〉〉 ∈ o.
Let us consider A, o, a, b. We introduce b ≥o a as a synonym of a ≤o b. We

introduce b <o a as an antonym of a ≤o b. We introduce a >o b as an antonym

of a ≤o b.
We now state a number of propositions:

(3) a ≤o a.
(4) a ≤o b or b ≤o a.
(5) If a ≤o b or a <o b and if b ≤o c or b <o c, then a ≤o c.
(6) If a ≤o′′ b and b ≤o′′ a, then a = b.

(7) If a 6= b and b 6= c and a 6= c, then there exists o such that a <o b and

b <o c.

(8) There exists o such that for every a such that a 6= b holds b <o a.

(9) There exists o such that for every a such that a 6= b holds a <o b.

(10) If a 6= b and a 6= c, then there exists o such that a <o b and a <o c and

b <o c iff b <o′ c and c <o b iff c <o′ b.

(11) If a 6= b and a 6= c, then there exists o such that b <o a and c <o a and

b <o c iff b <o′ c and c <o b iff c <o′ b.

(12) Let o, o′ be elements of LinOrdersA. Then a <o b iff a <o′ b and b <o a

iff b <o′ a if and only if a <o b iff a <o′ b.

(13) Let o be an element of LinOrdersA and o′ be an element of

LinPreordersA. Then for all a, b such that a <o b holds a <o′ b if and only
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if for all a, b holds a <o b iff a <o′ b.

3. Arrow’s Theorem

For simplicity, we follow the rules: A, N are finite non empty sets, a, b are

elements of A, i, n are elements of N , p, p′ are elements of (LinPreordersA)N ,

and f is a function from (LinPreordersA)N into LinPreordersA.

We now state the proposition

(14) Suppose that

(i) for all p, a, b such that for every i holds a <p(i) b holds a <f(p) b,

(ii) for all p, p′, a, b such that for every i holds a <p(i) b iff a <p′(i) b and

b <p(i) a iff b <p′(i) a holds a <f(p) b iff a <f(p′) b, and

(iii) cardA ≥ 3.

Then there exists n such that for all p, a, b such that a <p(n) b holds

a <f(p) b.

In the sequel p, p′ denote elements of (LinOrdersA)N and f denotes a func-

tion from (LinOrdersA)N into LinPreordersA.

One can prove the following proposition

(15) Suppose that

(i) for all p, a, b such that for every i holds a <p(i) b holds a <f(p) b,

(ii) for all p, p′, a, b such that for every i holds a <p(i) b iff a <p′(i) b holds

a <f(p) b iff a <f(p′) b, and

(iii) cardA ≥ 3.

Then there exists n such that for all p, a, b holds a <p(n) b iff a <f(p) b.
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Summary. We have formalized the BCI-algebras closely following the

book [7] pp.16-19 and pp.58-65. Firstly, the article focuses on the properties

of the element and then the definition and properties of congruences and quo-

tient algebras are given. Quotient algebras are the basic tools for exploring the

structures of BCI-algebras.

MML identifier: BCIALG 2, version: 7.8.05 4.87.985

The articles [11], [5], [12], [10], [13], [2], [3], [1], [8], [14], [6], [15], [4], and [9]

provide the terminology and notation for this paper.

1. Basic Properties of the Element

For simplicity, we adopt the following convention: X is a BCI-algebra, I is

an ideal of X, a, x, y, z, u are elements of X, f is a function from N into the

carrier of X, and j, i, k, n, m are elements of N.

Let us consider X, x, y and let n be an element of N. The functor (x \ y)n

yielding an element of X is defined by:

(Def. 1) There exists f such that (x \ y)n = f(n) and f(0) = x and for every

element j of N such that j < n holds f(j + 1) = f(j) \ y.
One can prove the following propositions:

(1) (x \ y)0 = x.

(2) (x \ y)1 = x \ y.
(3) (x \ y)2 = x \ y \ y.

175
c© 2007 University of Bia lystok

ISSN 1426–2630
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(4) (x \ y)n+1 = ((x \ y)n) \ y.
(5) (x \ 0X)n+1 = x.

(6) (0X \ 0X)n = 0X .

(7) ((x \ y)n) \ z = ((x \ z) \ y)n.

(8) (x \ (x \ (x \ y)))n = (x \ y)n.

(9) ((0X \ x)n)c = (0X \ xc)n.

(10) ((x \ y)n \ y)m = (x \ y)n+m.

(11) ((x \ y)n \ z)m = ((x \ z)m \ y)n.

(12) (((0X \ x)n)c)c = (0X \ x)n.

(13) (0X \ x)n+m = ((0X \ x)n) \ ((0X \ x)m)c.

(14) ((0X \ x)m+n)c = ((0X \ x)m)c \ ((0X \ x)n).

(15) ((0X \ ((0X \ x)m))n)c = (0X \ x)m·n.

(16) If (0X \ x)m = 0X , then (0X \ x)m·n = 0X .

(17) If x \ y = x, then (x \ y)n = x.

(18) (0X \ (x \ y))n = ((0X \ x)n) \ ((0X \ y)n).

(19) If x ≤ y, then (x \ z)n ≤ (y \ z)n.
(20) If x ≤ y, then (z \ y)n ≤ (z \ x)n.

(21) ((x \ z)n) \ ((y \ z)n) ≤ x \ y.
(22) ((x \ (x \ y))n \ (y \ x))n ≤ x.

Let us consider X, a. We introduce a is minimal as a synonym of a is atom.

Let us consider X, a. We say that a is positive if and only if:

(Def. 2) 0X ≤ a.
We say that a is least if and only if:

(Def. 3) For every x holds a ≤ x.
We say that a is maximal if and only if:

(Def. 4) For every x such that a ≤ x holds x = a.

We say that a is greatest if and only if:

(Def. 5) For every x holds x ≤ a.
Let us consider X. Observe that there exists an element of X which is

positive.

Let us consider X. Note that 0X is positive and minimal.

Next we state several propositions:

(23) a is minimal iff for every x holds a \ x = xc \ ac.

(24) xc is minimal iff for every y such that y ≤ x holds xc = yc.

(25) xc is minimal iff for all y, z holds ((x \ z \ (y \ z))c)c = yc \ xc.

(26) If 0X is maximal, then every a is minimal.

(27) If there exists x which is greatest, then every a is positive.



congruences and quotient algebras . . . 177

(28) x \ (xc)c is a positive element of X.

(29) a is minimal iff (ac)c = a.

(30) a is minimal iff there exists x such that a = xc.

Let us consider X, x. We say that x is nilpotent if and only if:

(Def. 6) There exists a non empty element k of N such that (0X \ x)k = 0X .

Let us consider X. We say that X is nilpotent if and only if:

(Def. 7) Every element of X is nilpotent.

Let us consider X, x. Let us assume that x is nilpotent. The functor ord(x)

yielding a non empty element of N is defined by:

(Def. 8) (0X\x)ord(x) = 0X and for every element m of N such that (0X\x)m = 0X
and m 6= 0 holds ord(x) ≤ m.

Let us consider X. One can verify that 0X is nilpotent.

We now state four propositions:

(31) x is a positive element of X iff x is nilpotent and ord(x) = 1.

(32) X is a BCK-algebra iff for every x holds ord(x) = 1 and x is nilpotent.

(33) (0X \ xc)n is minimal.

(34) If x is nilpotent, then ord(x) = ord(xc).

2. Congruences and Quotient Algebras

Let X be a BCI-algebra. An equivalence relation of X is said to be a

congruence of X if:

(Def. 9) For all elements x, y, u, v of X such that 〈〈x, y〉〉 ∈ it and 〈〈u, v〉〉 ∈ it

holds 〈〈x \ u, y \ v〉〉 ∈ it.

Let X be a BCI-algebra. An equivalence relation of X is said to be an

L-congruence of X if:

(Def. 10) For all elements x, y of X such that 〈〈x, y〉〉 ∈ it and for every element u

of X holds 〈〈u \ x, u \ y〉〉 ∈ it.

Let X be a BCI-algebra. An equivalence relation of X is said to be an

R-congruence of X if:

(Def. 11) For all elements x, y of X such that 〈〈x, y〉〉 ∈ it and for every element u

of X holds 〈〈x \ u, y \ u〉〉 ∈ it.

Let X be a BCI-algebra and let A be an ideal of X. A binary relation on X

is said to be an I-congruence of X by A if:

(Def. 12) For all elements x, y of X holds 〈〈x, y〉〉 ∈ it iff x \ y ∈ A and y \ x ∈ A.
Let X be a BCI-algebra and let A be an ideal of X. Note that every I-

congruence of X by A is total, symmetric, and transitive.

Let X be a BCI-algebra. The functor IConSetX is defined as follows:
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(Def. 13) For every set A1 holds A1 ∈ IConSetX iff there exists an ideal I of X

such that A1 is an I-congruence of X by I.

Let X be a BCI-algebra. The functor ConSetX is defined as follows:

(Def. 14) ConSetX = {R : R ranges over congruences of X}.
The functor LConSetX is defined by:

(Def. 15) LConSetX = {R : R ranges over L-congruences of X}.
The functor RConSetX is defined as follows:

(Def. 16) RConSetX = {R : R ranges over R-congruences of X}.
For simplicity, we adopt the following rules: R is an equivalence relation

of X, R1 is an I-congruence of X by I, E is a congruence of X, R2 is an

R-congruence of X, and L1 is an L-congruence of X.

We now state three propositions:

(35) For all X, E holds [0X ]E is a closed ideal of X.

(36) R is a congruence ofX iff R is an R-congruence ofX and an L-congruence

of X.

(37) R1 is a congruence of X.

Let X be a BCI-algebra and let I be an ideal of X. We see that the I-

congruence of X by I is a congruence of X.

One can prove the following propositions:

(38) [0X ](R1) ⊆ I.
(39) I is closed iff I = [0X ](R1).

(40) If 〈〈x, y〉〉 ∈ E, then x \ y ∈ [0X ]E and y \ x ∈ [0X ]E.

(41) Let A, I be ideals of X, I1 be an I-congruence of X by A, and I2 be an

I-congruence of X by I. If [0X ](I1) = [0X ](I2), then I1 = I2.

(42) If 〈〈x, y〉〉 ∈ E and u ∈ [0X ]E, then 〈〈x, (y \ u)k〉〉 ∈ E.
(43) Suppose that for all X, x, y there exist i, j, m, n such that ((x \ (x \

y))i \ (y \ x))j = ((y \ (y \ x))m \ (x \ y))n. Let given E, I. If I = [0X ]E ,

then E is an I-congruence of X by I.

(44) IConSetX ⊆ ConSetX.

(45) ConSetX ⊆ LConSetX.

(46) ConSetX ⊆ RConSetX.

(47) ConSetX = LConSetX ∩RConSetX.

(48) If every L1 is an I-congruence of X by I, then E = R1.

(49) If every R2 is an I-congruence of X by I, then E = R1.

(50) [0X ](L1) is a closed ideal of X.

In the sequel E denotes a congruence of X and R1 denotes an I-congruence

of X by I.

Let us consider X, E. Note that ClassesE is non empty.
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Let us consider X, E. The functor EqClaOpE yielding a binary operation

on ClassesE is defined by:

(Def. 17) For all elements W1, W2 of ClassesE and for all x, y such that W1 = [x]E
and W2 = [y]E holds (EqClaOpE)(W1, W2) = [x \ y]E .

Let us consider X, E. The functor zeroEqCE yields an element of ClassesE

and is defined as follows:

(Def. 18) zeroEqCE = [0X ]E.

Let us consider X, E. The functor X/E yielding a BCI structure with 0 is

defined by:

(Def. 19) X/E = 〈ClassesE,EqClaOpE, zeroEqCE〉.
Let us consider X and let E be a congruence of X. One can check that X/E

is non empty.

In the sequel W1, W2 denote elements of ClassesE.

Let us consider X, E, W1, W2. The functor W1 \W2 yielding an element of

ClassesE is defined by:

(Def. 20) W1 \W2 = (EqClaOpE)(W1, W2).

Next we state the proposition

(51) X/R1 is a BCI-algebra.

Let us consider X, I, R1. Note that X/R1 is strict, B, C, I, and BCI-4.

Next we state the proposition

(52) For all X, I such that I = BCK-partX and for every I-congruence R1

of X by I holds X/R1 is a p-semisimple BCI-algebra.
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For simplicity, we adopt the following convention: a, b, m, x, y, i1, i2, i3, i

denote integers, k, p, q, n denote natural numbers, c, c1, c2 denote elements of

N, and X denotes a set.

Next we state the proposition

(1) For every real-membered set X and for every real number a holds X ≈
a⊕X.

Let X be a finite real-membered set and let a be a real number. One can

verify that a⊕X is finite.

One can prove the following propositions:
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(2) For every finite real-membered set X and for every real number a holds

cardX = card(a⊕X).

(3) For every real-membered set X and for every real number a such that

a 6= 0 holds X ≈ a ◦X.
(4) Let X be a real-membered set and a be a real number. Then

(i) if a = 0 and X is non empty, then a ◦X = {0}, and

(ii) if a ◦X = {0}, then a = 0 or X = {0}.
Let X be a finite real-membered set and let a be a real number. One can

verify that a ◦X is finite.

The following propositions are true:

(5) For every finite real-membered set X and for every real number a such

that a 6= 0 holds cardX = card(a ◦X).

(6) If i | i1 and i1 6= 0, then |i| ≤ |i1|.
(7) For every i3 such that i3 6= 0 holds i1 | i2 iff i1 · i3 | i2 · i3.
(8) For all natural numbers a, b, m and for every element n of N such that

amodm = bmodm holds an modm = bn modm.

(9) If i1·i ≡ i2·i(mod i3) and i and i3 are relative prime, then i1 ≡ i2(mod i3).

(10) If i1 ≡ i2(mod i3), then i1 · k ≡ i2 · k(mod i3 · k).

(11) If i1 ≡ i2(mod i), then i1 · i3 ≡ i2 · i3(mod i).

(12) For every integer i holds 0 = 0 mod i.

(13) For every b such that b > 0 and for every a there exist integers q, r such

that a = b · q + r and r ≥ 0 and r < b.

(14) If i1 ≡ i2(mod i3), then i1 gcd i3 = i2 gcd i3.

(15) If a and m are relative prime, then there exists an integer x such that

(a · x− b) modm = 0.

(16) If m > 0 and a and m are relative prime, then there exists a natural

number n such that (a · n− b) modm = 0.

(17) If m 6= 0 and a gcdm - b, then it is not true that there exists an integer

x such that (a · x− b) modm = 0.

(18) If m 6= 0 and a gcdm | b, then there exists an integer x such that

(a · x− b) modm = 0.

Let x be an integer. Observe that x2 is natural.

We now state several propositions:

(19) If n > 0 and p > 0, then p · q mod pn = p · (q mod pn−
′1).

(20) p · q mod p · n = p · (q mod n).

(21) If n > 0 and p is prime and p and q are relative prime, then p - qmodpn.

(22) For all natural numbers p, q, n such that n > 0 holds (p− q) mod n = 0

iff pmod n = q mod n.
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(23) For all natural numbers a, b, m such that m > 0 holds a mod m =

b mod m iff m | a− b.
(24) If n > 0 and p is prime and p and q are relative prime, then it is not

true that there exists an integer x such that (p · x2 − q) mod pn = 0.

(25) If n > 0 and p is prime and p and q are relative prime, then it is not

true that there exists an integer x such that (p · x− q) mod pn = 0.

Let m be an integer. The functor Congm yielding a binary relation on Z is

defined as follows:

(Def. 1) 〈〈x, y〉〉 ∈ Congm iff x ≡ y(modm).

Let m be an integer. One can check that Congm is total.

Let m be an integer. One can check that Congm is reflexive, symmetric,

and transitive.

Next we state four propositions:

(26) Suppose m 6= 0 and (a · x− b) mod m = 0. Let y be an integer. Then

(i) if a andm are relative prime and (a·y−b) modm = 0, then y ∈ [x]Congm,

and

(ii) if y ∈ [x]Congm, then (a · y − b) modm = 0.

(27) Let a, b, m, x be integers. Suppose m 6= 0 and a and m are relative

prime and (a · x− b) modm = 0. Then there exists an integer s such that

〈〈x, b · s〉〉 ∈ Congm.

(28) Let a, m be elements of N. Suppose a 6= 0 and m > 1 and a and m are

relative prime. Let b, x be integers. If (a · x − b) mod m = 0, then 〈〈x,
b · aEulerm−′1〉〉 ∈ Congm.

(29) Suppose m 6= 0 and a gcdm | b. Then there exists a finite sequence f1

of elements of Z such that len f1 = a gcdm and for every c such that

c ∈ dom f1 holds (a · f1(c) − b) mod m = 0 and for all c1, c2 such that

c1 ∈ dom f1 and c2 ∈ dom f1 and c1 6= c2 holds f1(c1) 6≡ f1(c2)(modm).

We use the following convention: f1, f2 denote finite sequences of elements

of N and a, b, c, d, n denote elements of N.

Next we state a number of propositions:

(30) For all b, n such that b ∈ dom f1 and len f1 = n+ 1 holds (f1
a 〈d〉)�b =

((f1)�b) a 〈d〉.
(31) Suppose len f1 ≥ 2 and for all b, c such that b ∈ dom f1 and c ∈ dom f1

and b 6= c holds gcd(f1(b), f1(c)) = 1. Let given b. If b ∈ dom f1, then

gcd(
∏

((f1)�b), f1(b)) = 1.

(32) For every a such that a ∈ dom f1 holds f1(a) |∏ f1.

(33) If a ∈ dom f1 and p | f1(a), then p | ∏ f1.

(34) If len f1 = n+ 1 and a ≥ 1 and a ≤ n, then (f1)�a(n) = f1(len f1).



184 xiquan liang and li yan and junjie zhao

(35) For all a, b such that a ∈ dom f1 and b ∈ dom f1 and a 6= b and len f1 ≥ 1

holds f1(b) |∏((f1)�a).

(36) If for every b such that b ∈ dom f1 holds a | f1(b), then a |∑ f1.

(37) Suppose len f1 ≥ 2 and for all b, c such that b ∈ dom f1 and c ∈ dom f1

and b 6= c holds gcd(f1(b), f1(c)) = 1 and for every b such that b ∈ dom f1

holds f1(b) 6= 0. Let given f2. Suppose len f2 = len f1. Then there exists an

integer x such that for every b such that b ∈ dom f1 holds (x− f2(b)) mod

f1(b) = 0.

(38) If for all b, c such that b ∈ dom f1 and c ∈ dom f1 and b 6= c holds

gcd(f1(b), f1(c)) = 1 and for every b such that b ∈ dom f1 holds f1(b) | a,
then

∏
f1 | a.

(39) Suppose len f1 ≥ 2 and for all b, c such that b ∈ dom f1 and c ∈ dom f1

and b 6= c holds gcd(f1(b), f1(c)) = 1 and for every b such that b ∈ dom f1

holds f1(b) > 0. Let given f2. Suppose len f2 = len f1 and for every b such

that b ∈ dom f1 holds (x−f2(b))modf1(b) = 0 and (y−f2(b))modf1(b) = 0.

Then x ≡ y(mod
∏
f1).

We follow the rules: m1, m2, m3, r, s, a, b, c, c1, c2, x denote integers and

n1, n2, n3 denote natural numbers.

The following propositions are true:

(40) Suppose m1 6= 0 and m2 6= 0 and m1 and m2 are relative prime. Then

there exists an integer r such that for every x such that (x− c1)modm1 =

0 and (x − c2) mod m2 = 0 holds x ≡ c1 + m1 · r(modm1 · m2) and

(m1 · r − (c2 − c1)) modm2 = 0.

(41) If m1 6= 0 and m2 6= 0 and m1 gcdm2 - c1 − c2, then it is not true that

there exists x such that (x− c1) modm1 = 0 and (x− c2) modm2 = 0.

(42) Suppose m1 6= 0 and m2 6= 0 and m1 gcdm2 | c2−c1. Then there exists r

such that for every x such that (x−c1) modm1 = 0 and (x−c2) modm2 = 0

holds x ≡ c1 +m1 ·r(mod lcm(m1,m2)) and ((m1÷(m1 gcdm2)) ·r−((c2−
c1)÷ (m1 gcdm2))) mod (m2 ÷ (m1 gcdm2)) = 0.

(43) Suppose m1 6= 0 and m2 6= 0 and a gcdm1 | c1 and b gcdm2 | c2 and m1

and m2 are relative prime. Then there exist integers w, r, s such that

(i) for every x such that (a ·x− c1)modm1 = 0 and (b ·x− c2)modm2 = 0

holds x ≡ r+(m1÷(a gcdm1))·w(mod(m1÷(a gcdm1))·(m2÷(b gcdm2))),

(ii) ((a÷ (a gcdm1)) · r − (c1 ÷ (a gcdm1))) mod (m1 ÷ (a gcdm1)) = 0,

(iii) ((b÷ (b gcdm2)) · s− (c2÷ (b gcdm2))) mod (m2÷ (b gcdm2)) = 0, and

(iv) ((m1 ÷ (a gcdm1)) · w − (s− r)) mod (m2 ÷ (b gcdm2)) = 0.

(44) Suppose that

(i) m1 6= 0,

(ii) m2 6= 0,

(iii) m3 6= 0,
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(iv) m1 and m2 are relative prime,

(v) m1 and m3 are relative prime, and

(vi) m2 and m3 are relative prime.

Then there exist r, s such that for every x if (x − a) mod m1 = 0 and

(x − b) mod m2 = 0 and (x − c) mod m3 = 0, then x ≡ a + m1 · r +

m1 · m2 · s(modm1 · m2 · m3) and (m1 · r − (b − a)) mod m2 = 0 and

(m1 ·m2 · s− (c− a−m1 · r)) modm3 = 0.

(45) Suppose m1 6= 0 and m2 6= 0 and m3 6= 0 and m1 gcdm2 - a − b or

m1 gcdm3 - a − c or m2 gcdm3 - b − c. Then it is not true that there

exists x such that (x − a) mod m1 = 0 and (x − b) mod m2 = 0 and

(x− c) modm3 = 0.

(46) For all non zero natural numbers n1, n2, n3 holds

lcm(gcd(n1, n3), gcd(n2, n3)) = gcd(lcm(n1, n2), n3).

(47) Let n1, n2, n3 be non zero natural numbers. Suppose gcd(n1, n2) | a− b
and gcd(n1, n3) | a−c and gcd(n2, n3) | b−c. Then there exist r, s such that

for every x if (x−a) modn1 = 0 and (x−b) modn2 = 0 and (x−c) modn3 =

0, then x ≡ a + n1 · r + lcm(n1, n2) · s(mod lcm(lcm(n1, n2), n3)) and

((n1 ÷ gcd(n1, n2)) · r − ((b− a)÷ gcd(n1, n2))) mod (n2 ÷ gcd(n1, n2)) =

0 and ((lcm(n1, n2) ÷ gcd(lcm(n1, n2), n3)) · s − ((c − (a + n1 · r)) ÷
gcd(lcm(n1, n2), n3))) mod (n3 ÷ gcd(lcm(n1, n2), n3)) = 0.

In the sequel f1 denotes a finite sequence of elements of N and a, b, m denote

elements of N.

Let m be an element of N and let X be a set. We say that X is a complete

residue system modulo m if and only if:

(Def. 2) There exists a finite sequence f1 of elements of Z such that X = rng f1

and len f1 = m and for every b such that b ∈ dom f1 holds f1(b) ∈
[b−′ 1]Congm.

One can prove the following propositions:

(48) {a : a < m} is a complete residue system modulo m.

(49) Let X be a finite set. Suppose X is a complete residue system modulo

m. Then cardX = m and for all integers x, y such that x ∈ X and y ∈ X
and x 6= y holds 〈〈x, y〉〉 /∈ Congm.

(50) ∅ is a complete residue system modulo m iff m = 0.

(51) Let X be a finite set. Suppose cardX = m. Then there exists a finite

sequence f1 such that len f1 = m and for every a such that a ∈ dom f1

holds f1(a) ∈ X and f1 is one-to-one.

(52) Let X be a finite subset of Z. Suppose cardX = m and for all integers

x, y such that x ∈ X and y ∈ X and x 6= y holds 〈〈x, y〉〉 /∈ Congm. Then

X is a complete residue system modulo m.

In the sequel a is an integer.
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The following two propositions are true:

(53) Let X be a finite subset of Z. Suppose X is a complete residue system

modulo m. Then a⊕X is a complete residue system modulo m.

(54) Let X be a finite subset of Z. Suppose a and m are relative prime and X

is a complete residue system modulo m. Then a ◦X is a complete residue

system modulo m.
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1. Preliminaries

For simplicity, we adopt the following convention: f , f1, f2, g denote partial

functions from R to R, A denotes a closed-interval subset of R, r, x, x0 denote

real numbers, n denotes an element of N, and Z denotes an open subset of R.

The following propositions are true:

(1) sin(x+ 2 · n · π) = sinx.

(2) sin(x+ (2 · n+ 1) · π) = −sinx.

(3) cos(x+ 2 · n · π) = cos x.
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(4) cos(x+ (2 · n+ 1) · π) = −cos x.

(5) If sin(x2 ) ≥ 0, then sin(x2 ) =
√

1−cos x
2 .

(6) If sin(x2 ) < 0, then sin(x2 ) = −
√

1−cos x
2 .

(7) sin(π4 ) =
√

2
2 .

(8) sin(−π
4 ) = −

√
2

2 .

(9) [−
√

2
2 ,
√

2
2 ] ⊆ ]−1, 1[.

(10) arcsin(
√

2
2 ) = π

4 .

(11) arcsin(−
√

2
2 ) = −π

4 .

(12) If cos(x2 ) ≥ 0, then cos(x2 ) =
√

1+cos x
2 .

(13) cos(π4 ) =
√

2
2 .

(14) cos( 3·π
4 ) = −

√
2

2 .

(15) arccos(
√

2
2 ) = π

4 .

(16) arccos(−
√

2
2 ) = 3·π

4 .

(17) (The function sinh)(1) = e2−1
2·e .

(18) (The function cosh)(0) = 1.

(19) (The function cosh)(1) = e2+1
2·e .

(20) For every linear function L1 holds −L1 is a linear function.

(21) For every rest R1 holds −R1 is a rest.

(22) For all f1, x0 such that f1 is differentiable in x0 holds−f1 is differentiable

in x0 and (−f1)′(x0) = −f1
′(x0).

(23) Let given f1, Z. Suppose Z ⊆ dom(−f1) and f1 is differentiable on Z.

Then −f1 is differentiable on Z and for every x such that x ∈ Z holds

(−f1)′�Z(x) = −f1
′(x).

(24) −the function sin is differentiable on R.

(25) −the function cos is differentiable in x and (−the function cos)′(x) =

(the function sin)(x).

(26)(i) −the function cos is differentiable on R, and

(ii) for every x such that x ∈ R holds (−the function cos)′(x) = (the func-

tion sin)(x).

(27) (The function sin)′�R = the function cos.

(28) (The function cos)′�R = −the function sin.

(29) (−the function cos)′�R = the function sin.

(30) (The function sinh)′�R = the function cosh.

(31) (The function cosh)′�R = the function sinh.

(32) (The function exp)′�R = the function exp.
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(33) Suppose Z ⊆ dom (the function tan) and for every x such that x ∈ Z
holds f(x) = 1

(the function cos)(x)2
and (the function cos)(x) 6= 0. Then

(i) the function tan is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (the function tan)′�Z(x) =
1

(the function cos)(x)2 .

(34) Suppose that

(i) Z ⊆ dom (the function cot), and

(ii) for every x such that x ∈ Z holds f(x) = − 1
(the function sin)(x)2

and (the

function sin)(x) 6= 0.

Then

(iii) the function cot is differentiable on Z, and

(iv) for every x such that x ∈ Z holds (the function cot)′�Z (x) =

− 1
(the function sin)(x)2

.

(35) For every real number r holds dom(R 7−→ r) = R and rng(R 7−→ r) ⊆ R.
Let r be a real number. The functor Cst r yielding a function from R into

R is defined as follows:

(Def. 1) Cst r = R 7−→ r.

We now state two propositions:

(36) For all real numbers a, b and for every closed-interval subset A of R
holds χA,A = Cst 1�A.

(37) For all real numbers a, b and for every closed-interval subset A of R such

that A = [a, b] holds supA = b and inf A = a.

2. Several Integrability Formulas of Special Functions

The following propositions are true:

(38) For all real numbers a, b such that a ≤ b holds

b∫

a

Cst 1(x)dx = b− a.

(39)

∫

A

(the function cos)(x)dx = (the function sin)(supA) − (the function

sin)(inf A).

(40) If A = [0, π2 ], then

∫

A

(the function cos)(x)dx = 1.

(41) If A = [0, π], then

∫

A

(the function cos)(x)dx = 0.

(42) If A = [0, π·32 ], then

∫

A

(the function cos)(x)dx = −1.



192 cuiying peng and fuguo ge and xiquan liang

(43) If A = [0, π · 2], then

∫

A

(the function cos)(x)dx = 0.

(44) If A = [2 · n · π, (2 · n+ 1) · π], then

∫

A

(the function cos)(x)dx = 0.

(45) If A = [x+ 2 · n · π, x+ (2 · n+ 1) · π], then

∫

A

(the function cos)(x)dx =

−2 · sinx.
(46)

∫

A

(−the function sin)(x)dx = (the function cos)(supA) − (the function

cos)(inf A).

(47) If A = [0, π2 ], then

∫

A

(−the function sin)(x)dx = −1.

(48) If A = [0, π], then

∫

A

(−the function sin)(x)dx = −2.

(49) If A = [0, π·32 ], then

∫

A

(−the function sin)(x)dx = −1.

(50) If A = [0, π · 2], then

∫

A

(−the function sin)(x)dx = 0.

(51) If A = [2 · n · π, (2 · n+ 1) · π], then

∫

A

(−the function sin)(x)dx = −2.

(52) If A = [x+ 2 ·n ·π, x+ (2 ·n+ 1) ·π], then

∫

A

(−the function sin)(x)dx =

−2 · cos x.

(53)

∫

A

(the function exp)(x)dx = (the function exp)(supA) − (the function

exp)(inf A).

(54) If A = [0, 1], then

∫

A

(the function exp)(x)dx = e − 1.

(55)

∫

A

(the function sinh)(x)dx = (the function cosh)(supA)− (the function

cosh)(inf A).

(56) If A = [0, 1], then

∫

A

(the function sinh)(x)dx =
(e − 1)2

2 · e .

(57)

∫

A

(the function cosh)(x)dx = (the function sinh)(supA)− (the function
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sinh)(inf A).

(58) If A = [0, 1], then

∫

A

(the function cosh)(x)dx =
e2 − 1

2 · e .

(59) Suppose that

(i) A ⊆ Z,
(ii) dom (the function tan) = Z,

(iii) dom (the function tan) = dom f2,

(iv) for every x such that x ∈ Z holds f2(x) = 1
(the function cos)(x)2

and (the

function cos)(x) 6= 0, and

(v) f2 is continuous on A.

Then

∫

A

f2(x)dx = (the function tan)(supA)− (the function tan)(inf A).

(60) Suppose that

(i) A ⊆ Z,
(ii) dom (the function cot) = Z,

(iii) dom (the function cot) = dom f2,

(iv) for every x such that x ∈ Z holds f2(x) = − 1
(the function sin)(x)2 and (the

function sin)(x) 6= 0, and

(v) f2 is continuous on A.

Then

∫

A

f2(x)dx = (the function cot)(supA)− (the function cot)(inf A).

(61) Suppose dom (the function tanh) = dom f2 and for every x such that

x ∈ R holds f2(x) = 1
(the function cosh)(x)2

and f2 is continuous on A. Then∫

A

f2(x)dx = (the function tanh)(supA)− (the function tanh)(inf A).

(62) Suppose A ⊆ ]−1, 1[ and dom((the function arcsin)′�]−1,1[) = dom f2 and

for every x holds x ∈ ]−1, 1[ and f2(x) = 1√
1−x2

and f2 is continuous

on A. Then

∫

A

f2(x)dx = (the function arcsin)(supA) − (the function

arcsin)(inf A).

(63) Suppose A ⊆ ]−1, 1[ and dom((the function arccos)′�]−1,1[) = dom f2 and

for every x holds x ∈ ]−1, 1[ and f2(x) = − 1√
1−x2

and f2 is continuous

on A. Then

∫

A

f2(x)dx = (the function arccos)(supA) − (the function

arccos)(inf A).

(64) Suppose that

(i) A = [−
√

2
2 ,
√

2
2 ],

(ii) dom((the function arcsin)′�]−1,1[) = dom f2,
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(iii) for every x holds x ∈ ]−1, 1[ and f2(x) = 1√
1−x2

, and

(iv) f2 is continuous on A.

Then

∫

A

f2(x)dx =
π

2
.

(65) Suppose that

(i) A = [−
√

2
2 ,
√

2
2 ],

(ii) dom((the function arccos)′�]−1,1[) = dom f2,

(iii) for every x holds x ∈ ]−1, 1[ and f2(x) = − 1√
1−x2

, and

(iv) f2 is continuous on A.

Then

∫

A

f2(x)dx = −π
2
.

(66) Suppose that f is differentiable on Z and g is differentiable on Z and

A ⊆ Z and f ′�Z is integrable on A and f ′�Z is bounded on A and g′�Z is

integrable on A and g′�Z is bounded on A. Then

∫

A

(f ′�Z + g′�Z)(x)dx =

((f(supA)− f(inf A)) + g(supA))− g(inf A).

(67) Suppose that f is differentiable on Z and g is differentiable on Z and

A ⊆ Z and f ′�Z is integrable on A and f ′�Z is bounded on A and g′�Z is

integrable on A and g′�Z is bounded on A. Then

∫

A

(f ′�Z − g′�Z)(x)dx =

f(supA)− f(inf A)− (g(supA)− g(inf A)).

(68) Suppose f is differentiable on Z and A ⊆ Z and f ′�Z is integrable on A

and f ′�Z is bounded on A. Then

∫

A

(r f ′�Z)(x)dx = r ·f(supA)−r ·f(inf A).

(69)

∫

A

((the function sin) + (the function cos))(x)dx = (((−the function cos)

(supA) − (−the function cos)(inf A)) + (the function sin)(supA)) − (the

function sin)(inf A).

(70) If A = [0, π2 ], then

∫

A

((the function sin) + (the function cos))(x)dx = 2.

(71) If A = [0, π], then

∫

A

((the function sin) + (the function cos))(x)dx = 2.

(72) If A = [0, π·32 ], then

∫

A

((the function sin) + (the function cos))(x)dx =

0.

(73) If A = [0, π · 2], then

∫

A

((the function sin) + (the function cos))(x)dx =
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0.

(74) If A = [2 · n · π, (2 · n+ 1) · π], then∫

A

((the function sin) + (the function cos))(x)dx = 2.

(75) If A = [x+ 2 · n · π, x+ (2 · n+ 1) · π], then∫

A

((the function sin) + (the function cos))(x)dx = 2 · cos x− 2 · sinx.

(76)

∫

A

((the function sinh) + (the function cosh))(x)dx = (((the function

cosh)(supA)− (the function cosh)(inf A)) + (the function sinh)(supA))−
(the function sinh)(inf A).

(77) If A = [0, 1], then

∫

A

((the function sinh) + (the function cosh))(x)dx =

e − 1.

(78)

∫

A

((the function sin)− (the function cos))(x)dx = (−the function cos)

(supA) − (−the function cos)(inf A) − ((the function sin)(supA) − (the

function sin)(inf A)).

(79) If A = [0, π2 ], then

∫

A

((the function sin)− (the function cos))(x)dx = 0.

(80) If A = [0, π], then

∫

A

((the function sin)− (the function cos))(x)dx = 2.

(81) If A = [0, π·32 ], then

∫

A

((the function sin)− (the function cos))(x)dx =

2.

(82) If A = [0, π · 2], then

∫

A

((the function sin)− (the function cos))(x)dx =

0.

(83) If A = [2 · n · π, (2 · n+ 1) · π], then∫

A

((the function sin)− (the function cos))(x)dx = 2.

(84) If A = [x+ 2 · n · π, x+ (2 · n+ 1) · π], then∫

A

((the function sin)− (the function cos))(x)dx = 2 · cos x+ 2 · sinx.

(85)

∫

A

(r (the function sin))(x)dx = r · (−the function cos)(supA) − r ·

(−the function cos)(inf A).
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(86)

∫

A

(r (the function cos))(x)dx = r · (the function sin)(supA) − r · (the

function sin)(inf A).

(87)

∫

A

(r (the function sinh))(x)dx = r · (the function cosh)(supA)− r · (the

function cosh)(inf A).

(88)

∫

A

(r (the function cosh))(x)dx = r · (the function sinh)(supA)− r · (the

function sinh)(inf A).

(89)

∫

A

(r (the function exp))(x)dx = r · (the function exp)(supA) − r · (the

function exp)(inf A).

(90)

∫

A

((the function sin) (the function cos))(x)dx =
1

2
· ((the function

cos)(inf A) · (the function cos)(inf A) − (the function cos)(supA) · (the

function cos)(supA)).

(91) If A = [0, π2 ], then

∫

A

((the function sin) (the function cos))(x)dx =
1

2
.

(92) If A = [0, π], then

∫

A

((the function sin) (the function cos))(x)dx = 0.

(93) If A = [0, π · 3
2 ], then

∫

A

((the function sin) (the function cos))(x)dx =
1

2
.

(94) If A = [0, π · 2], then

∫

A

((the function sin) (the function cos))(x)dx = 0.

(95) If A = [2 · n · π, (2 · n+ 1) · π], then∫

A

((the function sin) (the function cos))(x)dx = 0.

(96) If A = [x+ 2 · n · π, x+ (2 · n+ 1) · π], then∫

A

((the function sin) (the function cos))(x)dx = 0.

(97)

∫

A

((the function sin) (the function sin))(x)dx = ((the function cos)(inf A)·

(the function sin)(inf A) − (the function cos)(supA) · (the function

sin)(supA)) +

∫

A

((the function cos) (the function cos))(x)dx.
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(98)

∫

A

((the function sinh) (the function sinh))(x)dx = (the function cosh)

(supA) · (the function sinh)(supA)− (the function cosh)(inf A) · (the func-

tion sinh)(inf A)−
∫

A

((the function cosh) (the function cosh))(x)dx.

(99)

∫

A

((the function sinh) (the function cosh))(x)dx =
1

2
· ((the function

cosh)(supA) · (the function cosh)(supA)− (the function cosh)(inf A) · (the

function cosh)(inf A)).

(100)

∫

A

((the function exp) (the function exp))(x)dx =
1

2
· ((the function

exp)(supA)2 − (the function exp)(inf A)2).

(101)

∫

A

((the function exp) ((the function sin) + (the function cos)))(x)dx =

((the function exp) (the function sin))(supA) − ((the function exp) (the

function sin))(inf A).

(102)

∫

A

((the function exp) ((the function cos)− (the function sin)))(x)dx =

((the function exp) (the function cos))(supA)− ((the function exp) (the

function cos))(inf A).
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Summary. In this paper I present selected properties of triangular ma-

trices and basic properties of the rank of matrices over a field.

I define a submatrix as a matrix formed by selecting certain rows and columns

from a bigger matrix. That is in my considerations, as an array, it is cut down

to those entries constrained by row and column. Then I introduce the concept

of the rank of a m× n matrix A by the condition: A has the rank r if and only

if, there is a r × r submatrix of A with a non-zero determinant, and for every

k × k submatrix of A with a non-zero determinant we have k ≤ r.
At the end, I prove that the rank defined by the size of the biggest submatrix

with a non-zero determinant of a matrix A, is the same as the maximal number

of linearly independent rows of A.
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The articles [27], [10], [37], [23], [1], [2], [12], [38], [39], [7], [8], [3], [4], [24],

[36], [31], [15], [6], [13], [28], [14], [41], [30], [19], [34], [42], [9], [22], [16], [11],

[25], [40], [18], [20], [26], [33], [21], [17], [35], [32], [29], [43], and [5] provide the

terminology and notation for this paper.

1. Triangular Matrices

For simplicity, we use the following convention: x, X, Y are sets, D is a

non empty set, i, j, k, m, n, m′, n′ are elements of N, i0, j0, n0, m0 are non

zero elements of N, K is a field, a, b are elements of K, p is a finite sequence of

elements of K, and M is a matrix over K of dimension n.

Next we state a number of propositions:
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(1) For every matrix A over D of dimension n × m holds if n = 0, then

m = 0 iff lenA = n and widthA = m.

(2) The following statements are equivalent

(i) M is a lower triangular matrix over K of dimension n,

(ii) MT is an upper triangular matrix over K of dimension n.

(3) The diagonal of M = the diagonal of MT.

(4) Let p1 be an element of the permutations of n-element set. Suppose

p1 6= idseq(n). Then there exists i such that i ∈ Seg n and p1(i) > i and

there exists j such that j ∈ Seg n and p1(j) < j.

(5) Let M be a matrix over K of dimension n and p1 be an element of the

permutations of n-element set. Suppose that

(i) p1 6= idseq(n), and

(ii) M is a lower triangular matrix over K of dimension n or an upper

triangular matrix over K of dimension n.

Then (the product on paths of M)(p1) = 0K .

(6) Let M be a matrix over K of dimension n and I be an element of

the permutations of n-element set. If I = idseq(n), then the diagonal of

M = I -PathM.

(7) Let M be an upper triangular matrix over K of dimension n. Then

DetM = (the multiplication of K)~ (the diagonal of M).

(8) Let M be a lower triangular matrix over K of dimension n. Then

DetM = (the multiplication of K)~ (the diagonal of M).

(9) For every finite set X and for every n holds

{Y ;Y ranges over subsets of X: cardY = n} =
(

cardX
n

)
.

(10) 2Set Segn =
(n

2

)
.

(11) Let R be an element of the permutations of n-element set. If R =

Rev(idseq(n)), then R is even iff
(n

2

)
mod 2 = 0.

(12) Let M be a matrix over K of dimension n and R be a permutation of

Seg n. Suppose R = Rev(idseq(n)) and for all i, j such that i ∈ Seg n

and j ∈ Seg n and i + j ≤ n holds Mi,j = 0K . Then M · R is an upper

triangular matrix over K of dimension n.

(13) Let M be a matrix over K of dimension n and R be a permutation of

Seg n. Suppose R = Rev(idseq(n)) and for all i, j such that i ∈ Seg n

and j ∈ Seg n and i + j > n+ 1 holds Mi,j = 0K . Then M · R is a lower

triangular matrix over K of dimension n.

(14) Let M be a matrix over K of dimension n and R be an element of the

permutations of n-element set. Suppose that

(i) R = Rev(idseq(n)), and

(ii) for all i, j such that i ∈ Seg n and j ∈ Seg n and i + j ≤ n holds

Mi,j = 0K or for all i, j such that i ∈ Seg n and j ∈ Segn and i+j > n+1
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holds Mi,j = 0K .

Then DetM = (−1)sgn(R)(the multiplication of K � (R -PathM)).

(15) Let M be a matrix over K of dimension n and M1, M2 be upper trian-

gular matrices over K of dimension n. Suppose M = M1 ·M2. Then

(i) M is an upper triangular matrix over K of dimension n, and

(ii) the diagonal of M = (the diagonal of M1) • (the diagonal of M2).

(16) LetM be a matrix over K of dimension n andM1, M2 be lower triangular

matrices over K of dimension n. Suppose M = M1 ·M2. Then

(i) M is a lower triangular matrix over K of dimension n, and

(ii) the diagonal of M = (the diagonal of M1) • (the diagonal of M2).

2. The Rank of Matrices

Let D be a non empty set, let M be a matrix over D, let n, m be natural

numbers, let n1 be an element of Nn, and let m1 be an element of Nm. The

functor Segm(M,n1,m1) yielding a matrix over D of dimension n ×m is defined

as follows:

(Def. 1) For all natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of

Segm(M,n1,m1) holds (Segm(M,n1,m1))i,j = Mn1(i),m1(j).

For simplicity, we follow the rules: A denotes a matrix over D, A′ denotes a

matrix over D of dimension n′ × m′, M ′ denotes a matrix over K of dimension

n′ × m′, n1, n2, n3 denote elements of Nn, m1, m2 denote elements of Nm, and

M denotes a matrix over K.

Next we state a number of propositions:

(17) If [: rngn1, rngm1 :] ⊆ the indices of A, then 〈〈i, j〉〉 ∈ the indices of

Segm(A,n1,m1) iff 〈〈n1(i), m1(j)〉〉 ∈ the indices of A.

(18) If [: rngn1, rngm1 :] ⊆ the indices of A and n = 0 iff m = 0, then

(Segm(A,n1,m1))T = Segm(AT,m1, n1).

(19) If [: rngn1, rngm1 :] ⊆ the indices of A and if m = 0, then n = 0, then

Segm(A,n1,m1) = (Segm(AT,m1, n1))T.

(20) For every matrix A over D of dimension 1 holds A = 〈〈A1,1〉〉.
(21) If n = 1 and m = 1, then Segm(A,n1,m1) = 〈〈An1(1),m1(1)〉〉.

(22) For every matrix A over D of dimension 2 holds A =

(
A1,1 A1,2

A2,1 A2,2

)
.

(23) If n = 2 and m = 2, then Segm(A,n1,m1) =(
An1(1),m1(1) An1(1),m1(2)

An1(2),m1(1) An1(2),m1(2)

)
.

(24) If i ∈ Segn and rngm1 ⊆ Seg widthA, then Line(Segm(A,n1,m1), i) =

Line(A,n1(i)) ·m1.
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(25) If i ∈ Segn and j ∈ Seg n and n1(i) = n1(j), then

Line(Segm(A,n1,m1), i) = Line(Segm(A,n1,m1), j).

(26) If i ∈ Seg n and j ∈ Segn and n1(i) = n1(j) and i 6= j, then

Det Segm(M,n1, n2) = 0K .

(27) If n1 is not one-to-one, then Det Segm(M,n1, n2) = 0K .

(28) If j ∈ Segm and rngn1 ⊆ Seg lenA, then (Segm(A,n1,m1))�,j =

A�,m1(j) · n1.

(29) If i ∈ Segm and j ∈ Segm and m1(i) = m1(j), then

(Segm(A,n1,m1))�,i = (Segm(A,n1,m1))�,j .

(30) If i ∈ Segm and j ∈ Segm and m1(i) = m1(j) and i 6= j, then

Det Segm(M,m2,m1) = 0K .

(31) If m1 is not one-to-one, then Det Segm(M,m2,m1) = 0K .

(32) Let n1, n2 be elements of Nn. Suppose n1 is one-to-one and n2 is one-

to-one and rngn1 = rngn2. Then there exists a permutation p1 of Seg n

such that n2 = n1 · p1.

(33) For every function f from Seg n into Seg n such that n2 = n1 · f holds

Segm(A,n2,m1) = Segm(A,n1,m1) · f.
(34) For every function f from Segm into Segm such that m2 = m1 · f holds

(Segm(A,n1,m2))T = (Segm(A,n1,m1))T · f.
(35) Let p1 be an element of the permutations of n-element set. If n2 =

n3 · p1, then Det Segm(M,n2, n1) = (−1)sgn(p1) Det Segm(M,n3, n1) and

Det Segm(M,n1, n2) = (−1)sgn(p1) Det Segm(M,n1, n3).

(36) For all elements n1, n2, n′1, n′2 of Nn such that rngn1 = rngn′1 and

rngn2 = rngn′2 holds Det Segm(M,n1, n2) = Det Segm(M,n′1, n
′
2) or

Det Segm(M,n1, n2) = −Det Segm(M,n′1, n
′
2).

(37) Let F , F1 be finite sequences of elements of D and given n1, m1. Suppose

lenF = widthA′ and F1 = F ·m1 and [: rngn1, rngm1 :] ⊆ the indices of A′.
Let given i, j. If n1

−1({j}) = {i}, then RLine(Segm(A′, n1,m1), i, F1) =

Segm(RLine(A′, j, F ), n1,m1).

(38) Let F be a finite sequence of elements of D and given i, n1. If i /∈
rngn1 and [: rngn1, rngm1 :] ⊆ the indices of A′, then Segm(A′, n1,m1) =

Segm(RLine(A′, i, F ), n1,m1).

(39) If i ∈ Seg n′ and i ∈ rngn1 and [: rngn1, rngm1 :] ⊆ the indices of

A′, then there exists n2 such that rngn2 = (rng n1 \ {i}) ∪ {j} and

Segm(RLine(A′, i,Line(A′, j)), n1,m1) = Segm(A′, n2,m1).

(40) For every finite sequence F of elements of D such that i /∈ Seg lenA′

holds RLine(A′, i, F ) = A′.

Let n, m be natural numbers, let K be a field, let M be a matrix over K of

dimension n × m, and let a be an element of K. Then a ·M is a matrix over



basic properties of the rank . . . 203

K of dimension n × m.

We now state two propositions:

(41) If [: rngn1, rngm1 :] ⊆ the indices of M , then a · Segm(M,n1,m1) =

Segm(a ·M,n1,m1).

(42) If n1 = idseq(lenA) and m1 = idseq(widthA), then Segm(A,n1,m1) =

A.

Let us observe that there exists a subset of N which is empty, without zero,

and finite and there exists a subset of N which is non empty, without zero, and

finite.

Let us consider n. Observe that Seg n is without zero.

Let X be a without zero set and let Y be a set. One can verify that X \ Y
is without zero and X ∩ Y is without zero.

One can prove the following proposition

(43) For every finite without zero subset N of N there exists k such that

N ⊆ Seg k.

Let N be a finite without zero subset of N. Then SgmN is an element of

NcardN .

Let D be a non empty set, let A be a matrix over D, and let P , Q be without

zero finite subsets of N. The functor Segm(A,P,Q) yields a matrix over D of

dimension cardP × cardQ and is defined by:

(Def. 2) Segm(A,P,Q) = Segm(A,SgmP,SgmQ).

Next we state two propositions:

(44) Segm(A, {i0}, {j0}) = 〈〈Ai0,j0〉〉.
(45) If i0 < j0 and n0 < m0, then Segm(A, {i0, j0}, {n0,m0}) =(

Ai0,n0 Ai0,m0

Aj0,n0 Aj0,m0

)
.

In the sequel P , P1, P2, Q, Q1, Q2 are without zero finite subsets of N.

The following propositions are true:

(46) Segm(A,Seg lenA,Seg widthA) = A.

(47) If i ∈ Seg cardP and Q ⊆ Seg widthA, then Line(Segm(A,P,Q), i) =

Line(A, (SgmP )(i)) · SgmQ.

(48) If i ∈ Seg cardP, then Line(Segm(A,P,Seg widthA), i) =

Line(A, (SgmP )(i)).

(49) If j ∈ Seg cardQ and P ⊆ Seg lenA, then (Segm(A,P,Q))�,j =

A�,(SgmQ)(j) · SgmP.

(50) If j ∈ Seg cardQ, then (Segm(A,Seg lenA,Q))�,j = A�,(SgmQ)(j).

(51) Segm(A,Seg lenA \ {i},Seg widthA) = A�i.
(52) Segm(M,Seg lenM,Seg widthM \ {i}) = the deleting of i-column in M .

(53) (SgmP )−1(X) is a without zero finite subset of N.
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(54) If X ⊆ P, then SgmX = SgmP · Sgm((SgmP )−1(X)).

(55) [: (SgmP )−1(X), (SgmQ)−1(Y ) :] ⊆ the indices of Segm(A,P,Q).

(56) If P ⊆ P1 and Q ⊆ Q1 and P2 = (SgmP1)−1(P ) and

Q2 = (SgmQ1)−1(Q), then [: rng SgmP2, rng SgmQ2 :] ⊆ the indices of

Segm(A,P1, Q1) and Segm(Segm(A,P1, Q1), P2, Q2) = Segm(A,P,Q).

(57) Suppose P = ∅ iff Q = ∅ and [:P, Q :] ⊆ the indices of Segm(A,P1, Q1).

Then there exist P2, Q2 such that P2 ⊆ P1 and Q2 ⊆ Q1 and P2 =

(SgmP1)◦P and Q2 = (SgmQ1)◦Q and cardP2 = cardP and cardQ2 =

cardQ and Segm(Segm(A,P1, Q1), P,Q) = Segm(A,P2, Q2).

(58) For every matrix M over K of dimension n holds Segm(M,Seg n \
{i},Seg n \ {j}) = the deleting of i-row and j-column in M .

(59) Let F , F2 be finite sequences of elements of D. Suppose lenF =

widthA′ and F2 = F · SgmQ and [:P, Q :] ⊆ the indices of A′. Then

RLine(Segm(A′, P,Q), i, F2) = Segm(RLine(A′, (SgmP )(i), F ), P,Q).

(60) Let F be a finite sequence of elements of D and given i, P . If

i /∈ P and [:P, Q :] ⊆ the indices of A′, then Segm(A′, P,Q) =

Segm(RLine(A′, i, F ), P,Q).

(61) If [:P, Q :] ⊆ the indices of A and cardP = 0 iff cardQ = 0, then

(Segm(A,P,Q))T = Segm(AT, Q, P ).

(62) If [:P, Q :] ⊆ the indices of A and if cardQ = 0, then cardP = 0, then

Segm(A,P,Q) = (Segm(AT, Q, P ))T.

(63) If [:P, Q :] ⊆ the indices ofM , then a·Segm(M,P,Q) = Segm(a·M,P,Q).

Let D be a non empty set, let A be a matrix over D, and let P , Q be

without zero finite subsets of N. Let us assume that cardP = cardQ. The

functor EqSegm(A,P,Q) yields a matrix over D of dimension cardP and is

defined by:

(Def. 3) EqSegm(A,P,Q) = Segm(A,P,Q).

Next we state several propositions:

(64) For all P , Q, i, j such that i ∈ Seg cardP and j ∈ Seg cardP and

cardP = cardQ holds Delete(EqSegm(M,P,Q), i, j) = EqSegm(M,P \
{(SgmP )(i)}, Q \ {(SgmQ)(j)}) and card(P \ {(SgmP )(i)}) = card(Q \
{(SgmQ)(j)}).

(65) For all M , P , P1, Q1 such that cardP1 = cardQ1 and P ⊆ P1 and

Det EqSegm(M,P1, Q1) 6= 0K there exists Q such that Q ⊆ Q1 and

cardP = cardQ and Det EqSegm(M,P,Q) 6= 0K .

(66) For all M , P1, Q, Q1 such that cardP1 = cardQ1 and Q ⊆ Q1 and

Det EqSegm(M,P1, Q1) 6= 0K there exists P such that P ⊆ P1 and

cardP = cardQ and Det EqSegm(M,P,Q) 6= 0K .

(67) If cardP = cardQ, then [:P, Q :] ⊆ the indices of A iff P ⊆ Seg lenA
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and Q ⊆ Seg widthA.

(68) Let given P , Q, i, j0. Suppose i ∈ Seg n′ and j0 ∈ Seg n′ and i ∈ P

and j0 /∈ P and cardP = cardQ and [:P, Q :] ⊆ the indices of M ′. Then

cardP = card((P \{i})∪{j0}) but [: (P \{i})∪{j0}, Q :] ⊆ the indices of M ′

but Det EqSegm(RLine(M ′, i,Line(M ′, j0)), P,Q) = Det EqSegm(M ′, (P \
{i}) ∪ {j0}, Q) or Det EqSegm(RLine(M ′, i,Line(M ′, j0)), P,Q) =

−Det EqSegm(M ′, (P \ {i}) ∪ {j0}, Q).

(69) If cardP = cardQ, then [:P, Q :] ⊆ the indices of A iff [:Q, P :] ⊆ the

indices of AT.

(70) If [:P, Q :] ⊆ the indices of M and cardP = cardQ, then

Det EqSegm(M,P,Q) = Det EqSegm(MT, Q, P ).

(71) For every matrix M over K of dimension n holds Det(a·M) = powerK(a,

n) ·DetM.

(72) If [:P, Q :] ⊆ the indices of M and cardP = cardQ, then Det EqSegm(a ·
M,P,Q) = powerK(a, cardP ) · Det EqSegm(M,P,Q).

Let K be a field and let M be a matrix over K. The functor rk(M) yielding

an element of N is defined by the conditions (Def. 4).

(Def. 4)(i) There exist P , Q such that [:P, Q :] ⊆ the indices of M and cardP =

cardQ and cardP = rk(M) and Det EqSegm(M,P,Q) 6= 0K , and

(ii) for all P1, Q1 such that [:P1, Q1 :] ⊆ the indices of M and cardP1 =

cardQ1 and Det EqSegm(M,P1, Q1) 6= 0K holds cardP1 ≤ rk(M).

The following propositions are true:

(73) For all P , Q such that [:P, Q :] ⊆ the indices of M and cardP = cardQ

holds cardP ≤ lenM and cardQ ≤ widthM.

(74) rk(M) ≤ lenM and rk(M) ≤ widthM.

(75) If [: rngn2, rngn3 :] ⊆ the indices of M and Det Segm(M,n2, n3) 6= 0K ,

then there exist P1, P2 such that P1 = rngn2 and P2 = rngn3 and

cardP1 = cardP2 and cardP1 = n and Det EqSegm(M,P1, P2) 6= 0K .

(76) Let R1 be an element of N. Then rk(M) = R1 if and only if the following

conditions are satisfied:

(i) there exist elements r1, r2 of NR1 such that [: rng r1, rng r2 :] ⊆ the

indices of M and Det Segm(M, r1, r2) 6= 0K , and

(ii) for all n, n2, n3 such that [: rngn2, rngn3 :] ⊆ the indices of M and

Det Segm(M,n2, n3) 6= 0K holds n ≤ R1.

(77) If n = 0 or m = 0, then rk(Segm(M,n1,m1)) = 0.

(78) If [: rngn1, rngm1 :] ⊆ the indices of M , then rk(M) ≥
rk(Segm(M,n1,m1)).

(79) If [:P, Q :] ⊆ the indices of M , then rk(M) ≥ rk(Segm(M,P,Q)).

(80) If P ⊆ P1 and Q ⊆ Q1, then rk(Segm(M,P,Q)) ≤ rk(Segm(M,P1, Q1)).



206 karol pa̧k

(81) For all functions f , g such that rng f ⊆ rng g there exists a function h

such that domh = dom f and rng h ⊆ dom g and f = g · h.
(82) If [: rngn1, rngm1 :] = the indices of M , then rk(M) =

rk(Segm(M,n1,m1)).

(83) For every matrix M over K of dimension n holds rk(M) = n iff DetM 6=
0K .

(84) rk(M) = rk(MT).

(85) For every matrix M over K of dimension n × m and for every permu-

tation F of Seg n holds rk(M) = rk(M · F ).

(86) If a 6= 0K , then rk(M) = rk(a ·M).

(87) Let p, p2 be finite sequences of elements of K and f be a function. If

p2 = p · f and rng f ⊆ dom p, then a · p · f = a · p2.

(88) Let p, p2, q, q1 be finite sequences of elements of K and f be a function.

If p2 = p · f and rng f ⊆ dom p and q1 = q · f and rng f ⊆ dom q, then

(p+ q) · f = p2 + q1.

(89) If a 6= 0K , then rk(M ′) = rk(RLine(M ′, i, a · Line(M ′, i))).

(90) If Line(M, i) = widthM 7→ 0K , then rk(the deleting of i-row in M) =

rk(M).

(91) For every p such that len p = widthM ′ holds rk(the deleting of i-row in

M ′) = rk(RLine(M ′, i, 0K · p)).
(92) If j ∈ Seg lenM ′ and if i = j, then a 6= −1K , then rk(M ′) =

rk(RLine(M ′, i,Line(M ′, i) + a · Line(M ′, j))).

(93) If j ∈ Seg lenM ′ and j 6= i, then rk(the deleting of i-row in M ′) =

rk(RLine(M ′, i, a · Line(M ′, j))).

(94) rk(M) > 0 iff there exist i, j such that 〈〈i, j〉〉 ∈ the indices of M and

Mi,j 6= 0K .

(95) rk(M) = 0 iff M =




0 . . . 0
...

. . .
...

0 . . . 0




(lenM)×(widthM)

K

.

(96) rk(M) = 1 if and only if the following conditions are satisfied:

(i) there exist i, j such that 〈〈i, j〉〉 ∈ the indices of M and Mi,j 6= 0K , and

(ii) for all i0, j0, n0, m0 such that i0 6= j0 and n0 6= m0 and [: {i0, j0},
{n0,m0} :] ⊆ the indices of M holds Det EqSegm(M, {i0, j0}, {n0,m0}) =

0K .

(97) rk(M) = 1 if and only if the following conditions are satisfied:

(i) there exist i, j such that 〈〈i, j〉〉 ∈ the indices of M and Mi,j 6= 0K , and

(ii) for all i, j, n, m such that [: {i, j}, {n,m} :] ⊆ the indices of M holds

Mi,n ·Mj,m = Mi,m ·Mj,n.
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(98) rk(M) = 1 if and only if there exists i such that i ∈ Seg lenM and there

exists j such that j ∈ Seg widthM and Mi,j 6= 0K and for every k such

that k ∈ Seg lenM there exists a such that Line(M,k) = a · Line(M, i).

Let us consider K. Observe that there exists a matrix over K which is

diagonal.

One can prove the following propositions:

(99) Let M be a diagonal matrix over K and N1 be a set. Suppose N1 = {i :

〈〈i, i〉〉 ∈ the indices of M ∧ Mi,i 6= 0K}. Let given P , Q. If [:P, Q :] ⊆ the

indices of M and cardP = cardQ and Det EqSegm(M,P,Q) 6= 0K , then

P ⊆ N1 and Q ⊆ N1.

(100) For every diagonal matrix M over K and for every P such that [:P,

P :] ⊆ the indices of M holds Segm(M,P, P ) is diagonal.

(101) Let M be a diagonal matrix over K and N1 be a set. If N1 = {i : 〈〈i,
i〉〉 ∈ the indices of M ∧ Mi,i 6= 0K}, then rk(M) = N1 .

For simplicity, we adopt the following rules: v, v1, v2, u denote vectors of

the n-dimension vector space over K, t, t1, t2 denote elements of (the carrier of

K)n, L denotes a linear combination of the n-dimension vector space over K,

and M , M1 denote matrices over K of dimension m × n.

We now state the proposition

(102)(i) The carrier of the n-dimension vector space over K = (the carrier of

K)n,

(ii) 0the n-dimension vector space over K = n 7→ 0K ,

(iii) if t1 = v1 and t2 = v2, then t1 + t2 = v1 + v2, and

(iv) if t = v, then a · t = a · v.
Let us consider K, n. Then the n-dimension vector space over K is a strict

vector space over K.

Let us consider K, n. One can verify that every vector of the n-dimension

vector space over K is function-like and relation-like.

Let us consider K, m, n and let M be a matrix over K of dimension m ×
n. We introduce lines(M) as a synonym of rngM. We introduce M is without

repeated line as a synonym of M is one-to-one.

Let K be a field, let us consider m, n, and let M be a matrix over K of

dimension m × n. Then lines(M) is a subset of the n-dimension vector space

over K.

Next we state two propositions:

(103) x ∈ lines(M) iff there exists i such that i ∈ Segm and x = Line(M, i).

(104) Let V be a finite subset of the n-dimension vector space over K. Then

there exists a matrix M over K of dimension cardV × n such that M is

without repeated line and lines(M) = V.
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Let us consider K, n and let F be a finite sequence of elements of the n-

dimension vector space over K. The functor FinS2MXF yielding a matrix over

K of dimension lenF × n is defined by:

(Def. 5) FinS2MXF = F.

Let us consider K, m, n and let M be a matrix over K of dimension m

× n. The functor MX2FinSM yielding a finite sequence of elements of the

n-dimension vector space over K is defined as follows:

(Def. 6) MX2FinSM = M.

One can prove the following propositions:

(105) If rk(M) = m, then M is without repeated line.

(106) If i ∈ Seg lenM and a = L(M(i)), then

Line(FinS2MX(L MX2FinSM), i) = a · Line(M, i).

(107) If M is without repeated line and the support of L ⊆ lines(M) and

i ∈ Segn, then (
∑
L)(i) =

∑
((FinS2MX(L MX2FinSM))�,i).

(108) Let given M , M1. Suppose M is without repeated line and for ev-

ery i such that i ∈ Segm there exists a such that Line(M1, i) =

a · Line(M, i). Then there exists a linear combination L of lines(M) such

that L MX2FinSM = M1.

(109) Let given M . Suppose M is without repeated line. Then for every i

such that i ∈ Segm holds Line(M, i) 6= n 7→ 0K and for every M1 such

that for every i such that i ∈ Segm there exists a such that Line(M1, i) =

a · Line(M, i) and for every j such that j ∈ Seg n holds
∑

((M1)�,j) =

0K holds M1 =




0 . . . 0
...

. . .
...

0 . . . 0




m×n

K

if and only if lines(M) is linearly

independent.

(110) If rk(M) = m, then lines(M) is linearly independent.

(111) Let M be a diagonal n-dimensional matrix over K. Suppose rk(M) = n.

Then lines(M) is a basis of the n-dimension vector space over K.

Let us consider K, n. Then the n-dimension vector space over K is a strict

finite dimensional vector space over K.

The following propositions are true:

(112) dim(the n-dimension vector space over K) = n.

(113) Let given M , i, a. Suppose that for every j such that j ∈ Segm

holds Mj,i = a. Then M is without repeated line if and only if

Segm(M,Seg lenM,Seg widthM \ {i}) is without repeated line.

(114) Let given M , i. Suppose M is without repeated line and lines(M) is

linearly independent and for every j such that j ∈ Segm holds Mj,i = 0K .

Then lines(Segm(M,Seg lenM,Seg widthM\{i})) is linearly independent.
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(115) Let V be a vector space over K and U be a finite subset of V . Suppose

U is linearly independent. Let u, v be vectors of V . If u ∈ U and v ∈ U
and u 6= v, then (U \ {u}) ∪ {u+ a · v} is linearly independent.

(116) Let V be a vector space over K and u, v be vectors of V . Then x ∈
Lin({u, v}) if and only if there exist a, b such that x = a · u+ b · v.

(117) Let given M . Suppose lines(M) is linearly independent and M is with-

out repeated line. Let given i, j. Suppose j ∈ Seg lenM and i 6= j.

Then RLine(M, i,Line(M, i) +a ·Line(M, j)) is without repeated line and

lines(RLine(M, i,Line(M, i) + a · Line(M, j))) is linearly independent.

(118) If P ⊆ Segm, then lines(Segm(M,P,Seg n)) ⊆ lines(M).

(119) If P ⊆ Segm and lines(M) is linearly independent, then

lines(Segm(M,P,Seg n)) is linearly independent.

(120) If P ⊆ Segm and M is without repeated line, then Segm(M,P,Seg n) is

without repeated line.

(121) Let M be a matrix over K of dimensionm × n. Then lines(M) is linearly

independent and M is without repeated line if and only if rk(M) = m.

(122) Let U be a subset of the n-dimension vector space over K. Sup-

pose U ⊆ lines(M). Then there exists P such that P ⊆ Segm and

lines(Segm(M,P,Seg n)) = U and Segm(M,P,Seg n) is without repeated

line.

(123) Let R1 be an element of N. Then rk(M) = R1 if and only if the following

conditions are satisfied:

(i) there exists a finite subset U of the n-dimension vector space over K

such that U is linearly independent and U ⊆ lines(M) and cardU = R1,

and

(ii) for every finite subset W of the n-dimension vector space over K such

that W is linearly independent and W ⊆ lines(M) holds cardW ≤ R1.
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Let R1, R2, S1, S2 be sets, let R be a relation between R1 and R2, and let

S be a relation between S1 and S2. Then R ∪ S is a relation between R1 ∪ S1

and R2 ∪ S2.

Let R1, S1 be sets, let R be a total binary relation on R1, and let S be a

total binary relation on S1. Note that R ∪ S is total.

Let R1, S1 be sets, let R be a reflexive binary relation on R1, and let S be

a reflexive binary relation on S1. Observe that R ∪ S is reflexive.

Let R1, S1 be sets, let R be a symmetric binary relation on R1, and let S

be a symmetric binary relation on S1. Observe that R ∪ S is symmetric.

One can prove the following proposition

(1) Let R1, S1 be sets, R be a transitive binary relation on R1, and S be a

transitive binary relation on S1. If R1 misses S1, then R∪ S is transitive.

Let A be an empty set and let B be a set. One can check that ∅A,B is total.

Let I be a non empty set and let C be a 1-sorted yielding many sorted set

indexed by I. Then the support of C can be characterized by the condition:

(Def. 1) For every element i of I holds (the support of C)(i) = the carrier of

C(i).

Let R1, R2, S1, S2 be sets, let R be a relation between R1 and R2, and let S

be a relation between S1 and S2. The functor [̂ R,S ]̂ yields a relation between

[:R1, S1 :] and [:R2, S2 :] and is defined by the condition (Def. 2).

(Def. 2) Let x, y be sets. Then 〈〈x, y〉〉 ∈ [̂ R,S ]̂ if and only if there exist sets r1,

s1, r2, s2 such that x = 〈〈r1, s1〉〉 and y = 〈〈r2, s2〉〉 and r1 ∈ R1 and s1 ∈ S1

and r2 ∈ R2 and s2 ∈ S2 and 〈〈r1, r2〉〉 ∈ R or 〈〈s1, s2〉〉 ∈ S.
Let R1, R2, S1, S2 be non empty sets, let R be a relation between R1 and R2,

and let S be a relation between S1 and S2. Then [̂ R,S ]̂ can be characterized

by the condition:

(Def. 3) Let r1 be an element of R1, r2 be an element of R2, s1 be an element of

S1, and s2 be an element of S2. Then 〈〈〈〈r1, s1〉〉, 〈〈r2, s2〉〉〉〉 ∈ [̂ R,S ]̂ if and

only if 〈〈r1, r2〉〉 ∈ R or 〈〈s1, s2〉〉 ∈ S.
Let R1, S1 be sets, let R be a total binary relation on R1, and let S be a

total binary relation on S1. Note that [̂ R,S ]̂ is total.

Let R1, S1 be sets, let R be a reflexive binary relation on R1, and let S be

a reflexive binary relation on S1. One can check that [̂ R,S ]̂ is reflexive.

Let R1, S1 be sets, let R be a binary relation on R1, and let S be a total

reflexive binary relation on S1. Observe that [̂ R,S ]̂ is reflexive.

Let R1, S1 be sets, let R be a total reflexive binary relation on R1, and let

S be a binary relation on S1. Observe that [̂ R,S ]̂ is reflexive.

Let R1, S1 be sets, let R be a symmetric binary relation on R1, and let S

be a symmetric binary relation on S1. Note that [̂ R,S ]̂ is symmetric.
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2. Relational Structures

Let us observe that every relational structure which is empty is also total.

Let R be a binary relation. We say that R is transitive-yielding if and only

if:

(Def. 4) For every relational structure S such that S ∈ rngR holds S is transitive.

Let us note that every binary relation which is poset-yielding is also

transitive-yielding.

Let us mention that there exists a function which is poset-yielding.

Let I be a set. Observe that there exists a many sorted set indexed by I

which is poset-yielding.

Let I be a set and let C be a relational structure yielding many sorted set

indexed by I. The functor pcs-InternalRelsC yields a many sorted set indexed

by I and is defined by the condition (Def. 5).

(Def. 5) Let i be a set. Suppose i ∈ I. Then there exists a relational structure P

such that P = C(i) and (pcs-InternalRelsC)(i) = the internal relation of

P .

Let I be a non empty set and let C be a relational structure yielding many

sorted set indexed by I. Then pcs-InternalRelsC can be characterized by the

condition:

(Def. 6) For every element i of I holds (pcs-InternalRelsC)(i) = the internal

relation of C(i).

Let I be a set and let C be a relational structure yielding many sorted set

indexed by I. One can check that pcs-InternalRelsC is binary relation yielding.

Let I be a non empty set, let C be a transitive-yielding relational structure

yielding many sorted set indexed by I, and let i be an element of I. Note that

C(i) is transitive.

3. Tolerance Structures

We introduce alternative relational structures which are extensions of 1-

sorted structure and are systems

〈 a carrier, an alternative relation 〉,
where the carrier is a set and the alternative relation is a binary relation on the

carrier.

Let P be an alternative relational structure and let p, q be elements of P .

The predicate p ∼ q is defined by:

(Def. 7) 〈〈p, q〉〉 ∈ the alternative relation of P .

Let P be an alternative relational structure. We say that P is β-total if and

only if:
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(Def. 8) The alternative relation of P is total.

We say that P is β-reflexive if and only if:

(Def. 9) The alternative relation of P is reflexive in the carrier of P .

We say that P is β-irreflexive if and only if:

(Def. 10) The alternative relation of P is irreflexive in the carrier of P .

We say that P is β-symmetric if and only if:

(Def. 11) The alternative relation of P is symmetric in the carrier of P .

The alternative relational structure emptyTolStr is defined as follows:

(Def. 12) emptyTolStr = 〈∅, ∅∅,∅〉.
One can check that emptyTolStr is empty and strict.

The following proposition is true

(2) Let P be an alternative relational structure. If P is empty, then the

alternative relational structure of P = emptyTolStr .

One can check that every alternative relational structure which is β-reflexive

is also β-total.

Let us note that every alternative relational structure which is empty is also

β-reflexive, β-irreflexive, and β-symmetric.

Let us note that there exists an alternative relational structure which is

empty.

Let P be a β-total alternative relational structure. Observe that the alter-

native relation of P is total.

Let P be a β-reflexive alternative relational structure. One can check that

the alternative relation of P is reflexive.

Let P be a β-irreflexive alternative relational structure. One can verify that

the alternative relation of P is irreflexive.

Let P be a β-symmetric alternative relational structure. One can verify that

the alternative relation of P is symmetric.

Let L be a β-total alternative relational structure. Note that the alternative

relational structure of L is β-total.

Let P be a β-symmetric alternative relational structure and let p, q be

elements of P . Let us note that the predicate p ∼ q is symmetric.

Let D be a set. Note that 〈D,∇D〉 is β-reflexive and β-symmetric.

Let D be a set. Note that 〈D, ∅D,D〉 is β-irreflexive and β-symmetric.

Let us note that there exists an alternative relational structure which is

strict, non empty, β-reflexive, and β-symmetric.

One can check that there exists an alternative relational structure which is

strict, non empty, β-irreflexive, and β-symmetric.

Let R be a binary relation. We say that R is alternative relational structure

yielding if and only if:
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(Def. 13) For every set P such that P ∈ rngR holds P is an alternative relational

structure.

Let f be a function. Let us observe that f is alternative relational structure

yielding if and only if:

(Def. 14) For every set x such that x ∈ dom f holds f(x) is an alternative relational

structure.

Let I be a set and let f be a many sorted set indexed by I. Let us observe

that f is alternative relational structure yielding if and only if:

(Def. 15) For every set x such that x ∈ I holds f(x) is an alternative relational

structure.

Let R be a binary relation. We say that R is β-reflexive yielding if and only

if:

(Def. 16) For every alternative relational structure S such that S ∈ rngR holds S

is β-reflexive.

We say that R is β-irreflexive yielding if and only if:

(Def. 17) For every alternative relational structure S such that S ∈ rngR holds S

is β-irreflexive.

We say that R is β-symmetric yielding if and only if:

(Def. 18) For every alternative relational structure S such that S ∈ rngR holds S

is β-symmetric.

One can check that every binary relation which is empty is also β-reflexive

yielding, β-irreflexive yielding, and β-symmetric yielding.

Let I be a set and let P be an alternative relational structure. Note that

I 7−→ P is alternative relational structure yielding.

Let I be a set and let P be a β-reflexive alternative relational structure.

Observe that I 7−→ P is β-reflexive yielding.

Let I be a set and let P be a β-irreflexive alternative relational structure.

One can check that I 7−→ P is β-irreflexive yielding.

Let I be a set and let P be a β-symmetric alternative relational structure.

One can verify that I 7−→ P is β-symmetric yielding.

Let us observe that every function which is alternative relational structure

yielding is also 1-sorted yielding.

Let I be a set. Observe that there exists a many sorted set indexed by I

which is β-reflexive yielding, β-symmetric yielding, and alternative relational

structure yielding.

Let I be a set. Note that there exists a many sorted set indexed by I which is

β-irreflexive yielding, β-symmetric yielding, and alternative relational structure

yielding.

Let I be a set. Observe that there exists a many sorted set indexed by I

which is alternative relational structure yielding.
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Let I be a non empty set, let C be an alternative relational structure yielding

many sorted set indexed by I, and let i be an element of I. Then C(i) is an

alternative relational structure.

Let I be a set and let C be an alternative relational structure yielding many

sorted set indexed by I. The functor pcs-ToleranceRelsC yields a many sorted

set indexed by I and is defined by the condition (Def. 19).

(Def. 19) Let i be a set. Suppose i ∈ I. Then there exists an alternative rela-

tional structure P such that P = C(i) and (pcs-ToleranceRelsC)(i) = the

alternative relation of P .

Let I be a non empty set and let C be an alternative relational structure

yielding many sorted set indexed by I. Then pcs-ToleranceRelsC can be char-

acterized by the condition:

(Def. 20) For every element i of I holds (pcs-ToleranceRelsC)(i) = the alternative

relation of C(i).

Let I be a set and let C be an alternative relational structure yielding

many sorted set indexed by I. Note that pcs-ToleranceRelsC is binary relation

yielding.

Let I be a non empty set, let C be a β-reflexive yielding alternative relational

structure yielding many sorted set indexed by I, and let i be an element of I.

One can verify that C(i) is β-reflexive.

Let I be a non empty set, let C be a β-irreflexive yielding alternative rela-

tional structure yielding many sorted set indexed by I, and let i be an element

of I. Note that C(i) is β-irreflexive.

Let I be a non empty set, let C be a β-symmetric yielding alternative rela-

tional structure yielding many sorted set indexed by I, and let i be an element

of I. Observe that C(i) is β-symmetric.

The following propositions are true:

(3) Let P , Q be alternative relational structures. Suppose that

(i) the alternative relational structure of P = the alternative relational

structure of Q, and

(ii) P is β-reflexive.

Then Q is β-reflexive.

(4) Let P , Q be alternative relational structures. Suppose that

(i) the alternative relational structure of P = the alternative relational

structure of Q, and

(ii) P is β-irreflexive.

Then Q is β-irreflexive.

(5) Let P , Q be alternative relational structures. Suppose that

(i) the alternative relational structure of P = the alternative relational

structure of Q, and

(ii) P is β-symmetric.
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Then Q is β-symmetric.

Let P , Q be alternative relational structures. The functor [̂ P,Q ]̂ yields an

alternative relational structure and is defined by the condition (Def. 21).

(Def. 21) [̂ P,Q ]̂ = 〈[: the carrier of P , the carrier of Q :], [̂ the alternative relation

of P , the alternative relation of Q ]̂〉.
Let P , Q be alternative relational structures, let p be an element of P , and

let q be an element of Q. We introduce [̂ p, q ]̂ as a synonym of 〈〈p, q〉〉.
Let P , Q be non empty alternative relational structures, let p be an element

of P , and let q be an element of Q. Then [̂ p, q ]̂ is an element of [̂ P,Q ]̂.

Let P , Q be alternative relational structures and let p be an element of

[̂ P,Q ]̂. We introduce p‘1 as a synonym of p1. We introduce p‘2 as a synonym

of p2.

Let P , Q be non empty alternative relational structures and let p be an

element of [̂ P,Q ]̂. Then p‘1 is an element of P . Then p‘2 is an element of Q.

We now state two propositions:

(6) Let S1, S2 be non empty alternative relational structures, a, c be ele-

ments of S1, and b, d be elements of S2. Then [̂ a, b̂ ] ∼ [̂ c, d̂ ] if and only

if a ∼ c or b ∼ d.
(7) Let S1, S2 be non empty alternative relational structures and x, y be

elements of [̂ S1, S2 ]̂. Then x ∼ y if and only if one of the following

conditions is satisfied:

(i) x‘1 ∼ y‘1, or

(ii) x‘2 ∼ y‘2.

Let P be an alternative relational structure and let Q be a β-reflexive alter-

native relational structure. Note that [̂ P,Q ]̂ is β-reflexive.

Let P be a β-reflexive alternative relational structure and let Q be an alter-

native relational structure. Observe that [̂ P,Q ]̂ is β-reflexive.

Let P , Q be β-symmetric alternative relational structures. One can check

that [̂ P,Q ]̂ is β-symmetric.

4. PCS’s

We introduce pcs structures which are extensions of relational structure and

alternative relational structure and are systems

〈 a carrier, an internal relation, an alternative relation 〉,
where the carrier is a set, the internal relation is a binary relation on the carrier,

and the alternative relation is a binary relation on the carrier.

Let P be a pcs structure. We say that P is compatible if and only if:

(Def. 22) For all elements p, p′, q, q′ of P such that p ∼ q and p′ ≤ p and q′ ≤ q

holds p′ ∼ q′.
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Let P be a pcs structure. We say that P is pcs-like if and only if:

(Def. 23) P is reflexive, transitive, β-reflexive, β-symmetric, and compatible.

We say that P is anti-pcs-like if and only if:

(Def. 24) P is reflexive, transitive, β-irreflexive, β-symmetric, and compatible.

One can verify the following observations:

∗ every pcs structure which is pcs-like is also reflexive, transitive, β-

reflexive, β-symmetric, and compatible,

∗ every pcs structure which is reflexive, transitive, β-reflexive, β-

symmetric, and compatible is also pcs-like,

∗ every pcs structure which is anti-pcs-like is also reflexive, transitive, β-

irreflexive, β-symmetric, and compatible, and

∗ every pcs structure which is reflexive, transitive, β-irreflexive, β-

symmetric, and compatible is also anti-pcs-like.

Let D be a set. The functor TotalPCSD yields a pcs structure and is defined

as follows:

(Def. 25) TotalPCSD = 〈D,∇D,∇D〉.
Let D be a set. Observe that TotalPCSD is strict.

Let D be a non empty set. One can verify that TotalPCSD is non empty.

Let D be a set. One can check that TotalPCSD is reflexive, transitive,

β-reflexive, and β-symmetric.

Let D be a set. Note that TotalPCSD is pcs-like.

Let D be a set. One can verify that 〈D,∇D, ∅D,D〉 is anti-pcs-like.

One can verify that there exists a pcs structure which is strict, non empty,

and pcs-like and there exists a pcs structure which is strict, non empty, and

anti-pcs-like.

A pcs is a pcs-like pcs structure. An anti-pcs is an anti-pcs-like pcs structure.

The pcs structure EmptyPCS is defined by:

(Def. 26) EmptyPCS = TotalPCS 0.

Let us mention that EmptyPCS is strict, empty, and pcs-like.

Let p be a set. The functor SingletonPCS p yielding a pcs structure is defined

by:

(Def. 27) SingletonPCS p = TotalPCS{p}.
Let p be a set. Observe that SingletonPCS p is strict, non empty, and pcs-

like.

Let R be a binary relation. We say that R is pcs structure yielding if and

only if:

(Def. 28) For every set P such that P ∈ rngR holds P is a pcs structure.

We say that R is pcs-yielding if and only if:

(Def. 29) For every set P such that P ∈ rngR holds P is a pcs.
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Let f be a function. Let us observe that f is pcs structure yielding if and

only if:

(Def. 30) For every set x such that x ∈ dom f holds f(x) is a pcs structure.

Let us observe that f is pcs-yielding if and only if:

(Def. 31) For every set x such that x ∈ dom f holds f(x) is a pcs.

Let I be a set and let f be a many sorted set indexed by I. Let us observe

that f is pcs structure yielding if and only if:

(Def. 32) For every set x such that x ∈ I holds f(x) is a pcs structure.

Let us observe that f is pcs-yielding if and only if:

(Def. 33) For every set x such that x ∈ I holds f(x) is a pcs.

One can verify the following observations:

∗ every binary relation which is pcs structure yielding is also alternative

relational structure yielding and relational structure yielding,

∗ every binary relation which is pcs-yielding is also pcs structure yielding,

and

∗ every binary relation which is pcs-yielding is also reflexive-yielding,

transitive-yielding, β-reflexive yielding, and β-symmetric yielding.

Let I be a set and let P be a pcs. Note that I 7−→ P is pcs-yielding.

Let I be a set. Observe that there exists a many sorted set indexed by I

which is pcs-yielding.

Let I be a non empty set, let C be a pcs structure yielding many sorted set

indexed by I, and let i be an element of I. Then C(i) is a pcs structure.

Let I be a non empty set, let C be a pcs-yielding many sorted set indexed

by I, and let i be an element of I. Then C(i) is a pcs.

Let P , Q be pcs structures. The predicate P ⊆ Q is defined by the conditions

(Def. 34).

(Def. 34)(i) The carrier of P ⊆ the carrier of Q,

(ii) the internal relation of P ⊆ the internal relation of Q, and

(iii) the alternative relation of P ⊆ the alternative relation of Q.

Let us note that the predicate P ⊆ Q is reflexive.

Next we state two propositions:

(8) Let P , Q be relational structures, p, q be elements of P , and p1, q1 be

elements of Q. Suppose the internal relation of P ⊆ the internal relation

of Q and p = p1 and q = q1 and p ≤ q. Then p1 ≤ q1.

(9) Let P , Q be pcs structures, p, q be elements of P , and p1, q1 be elements

of Q. Suppose the alternative relation of P ⊆ the alternative relation of

Q and p = p1 and q = q1 and p ∼ q. Then p1 ∼ q1.

Let C be a binary relation. We say that C is chain-like if and only if:
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(Def. 35) For all pcs structures P , Q such that P ∈ rngC and Q ∈ rngC holds

P ⊆ Q or Q ⊆ P.
Let I be a set and let P be a pcs structure. Observe that I 7−→ P is

chain-like.

Let us note that there exists a function which is chain-like and pcs-yielding.

Let I be a set. Note that there exists a many sorted set indexed by I which

is chain-like and pcs-yielding.

Let I be a set. A pcs-chain of I is a chain-like pcs-yielding many sorted set

indexed by I.

Let I be a set and let C be a pcs structure yielding many sorted set indexed

by I. The functor
⋃
C yielding a strict pcs structure is defined by the conditions

(Def. 36).

(Def. 36)(i) The carrier of
⋃
C =

⋃
(the support of C),

(ii) the internal relation of
⋃
C =

⋃
pcs-InternalRelsC, and

(iii) the alternative relation of
⋃
C =

⋃
pcs-ToleranceRelsC.

We now state four propositions:

(10) Let I be a set, C be a pcs structure yielding many sorted set indexed

by I, and p, q be elements of
⋃
C. Then p ≤ q if and only if there exists a

set i and there exists a pcs structure P and there exist elements p′, q′ of

P such that i ∈ I and P = C(i) and p′ = p and q′ = q and p′ ≤ q′.
(11) Let I be a non empty set, C be a pcs structure yielding many sorted set

indexed by I, and p, q be elements of
⋃
C. Then p ≤ q if and only if there

exists an element i of I and there exist elements p′, q′ of C(i) such that

p′ = p and q′ = q and p′ ≤ q′.
(12) Let I be a set, C be a pcs structure yielding many sorted set indexed

by I, and p, q be elements of
⋃
C. Then p ∼ q if and only if there exists a

set i and there exists a pcs structure P and there exist elements p′, q′ of

P such that i ∈ I and P = C(i) and p′ = p and q′ = q and p′ ∼ q′.
(13) Let I be a non empty set, C be a pcs structure yielding many sorted set

indexed by I, and p, q be elements of
⋃
C. Then p ∼ q if and only if there

exists an element i of I and there exist elements p′, q′ of C(i) such that

p′ = p and q′ = q and p′ ∼ q′.
Let I be a set and let C be a reflexive-yielding pcs structure yielding many

sorted set indexed by I. Observe that
⋃
C is reflexive.

Let I be a set and let C be a β-reflexive yielding pcs structure yielding many

sorted set indexed by I. Observe that
⋃
C is β-reflexive.

Let I be a set and let C be a β-symmetric yielding pcs structure yielding

many sorted set indexed by I. Note that
⋃
C is β-symmetric.

Let I be a set and let C be a pcs-chain of I. One can check that
⋃
C is

transitive and compatible.
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Let p, q be sets. The functor MSSet(p, q) yielding a many sorted set indexed

by {0, 1} is defined by:

(Def. 37) MSSet(p, q) = [0 7−→ p, 1 7−→ q].

Let P , Q be 1-sorted structures. One can check that MSSet(P,Q) is 1-sorted

yielding.

Let P , Q be relational structures. Observe that MSSet(P,Q) is relational

structure yielding.

Let P , Q be alternative relational structures. Observe that MSSet(P,Q) is

alternative relational structure yielding.

Let P , Q be pcs structures. Note that MSSet(P,Q) is pcs structure yielding.

Let P , Q be reflexive pcs structures. Observe that MSSet(P,Q) is reflexive-

yielding.

Let P , Q be transitive pcs structures. One can check that MSSet(P,Q) is

transitive-yielding.

Let P , Q be β-reflexive pcs structures. Note that MSSet(P,Q) is β-reflexive

yielding.

Let P , Q be β-symmetric pcs structures. Observe that MSSet(P,Q) is β-

symmetric yielding.

Let P , Q be pcs’s. Observe that MSSet(P,Q) is pcs-yielding.

Let P , Q be pcs structures. The functor P ⊕Q yielding a pcs structure is

defined by:

(Def. 38) P ⊕Q =
⋃

MSSet(P,Q).

One can prove the following four propositions:

(14) Let P , Q be pcs structures. Then

(i) the carrier of P ⊕Q = (the carrier of P ) ∪ (the carrier of Q),

(ii) the internal relation of P ⊕ Q = (the internal relation of P ) ∪ (the

internal relation of Q), and

(iii) the alternative relation of P ⊕Q = (the alternative relation of P )∪(the

alternative relation of Q).

(15) Let P , Q be pcs structures. Then P ⊕ Q = 〈(the carrier of P ) ∪ (the

carrier of Q), (the internal relation of P ) ∪ (the internal relation of Q),

(the alternative relation of P ) ∪ (the alternative relation of Q)〉.
(16) Let P , Q be pcs structures and p, q be elements of P ⊕Q. Then p ≤ q

if and only if one of the following conditions is satisfied:

(i) there exist elements p′, q′ of P such that p′ = p and q′ = q and p′ ≤ q′,
or

(ii) there exist elements p′, q′ of Q such that p′ = p and q′ = q and p′ ≤ q′.
(17) Let P , Q be pcs structures and p, q be elements of P ⊕Q. Then p ∼ q

if and only if one of the following conditions is satisfied:

(i) there exist elements p′, q′ of P such that p′ = p and q′ = q and p′ ∼ q′,
or
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(ii) there exist elements p′, q′ of Q such that p′ = p and q′ = q and p′ ∼ q′.
Let P , Q be reflexive pcs structures. Observe that P ⊕Q is reflexive.

Let P , Q be β-reflexive pcs structures. One can verify that P ⊕ Q is β-

reflexive.

Let P , Q be β-symmetric pcs structures. Observe that P⊕Q is β-symmetric.

The following three propositions are true:

(18) For all pcs’s P , Q such that P misses Q holds the internal relation of

P ⊕Q is transitive.

(19) For all pcs’s P , Q such that P misses Q holds P ⊕Q is compatible.

(20) For all pcs’s P , Q such that P misses Q holds P ⊕Q is a pcs.

Let P be a pcs structure and let a be a set. The functor Pa yields a strict

pcs structure and is defined by the conditions (Def. 39).

(Def. 39)(i) The carrier of Pa = {a} ∪ the carrier of P ,

(ii) the internal relation of Pa = [: {a}, the carrier of Pa :] ∪ the internal

relation of P , and

(iii) the alternative relation of Pa = [: {a}, the carrier of Pa :] ∪ [: the carrier

of Pa, {a} :] ∪ the alternative relation of P .

Let P be a pcs structure and let a be a set. Observe that Pa is non empty.

The following propositions are true:

(21) Let P be a pcs structure and a be a set. Then

(i) the carrier of P ⊆ the carrier of Pa,

(ii) the internal relation of P ⊆ the internal relation of Pa, and

(iii) the alternative relation of P ⊆ the alternative relation of Pa.

(22) For every pcs structure P and for every set a and for all elements p, q

of Pa such that p = a holds p ≤ q.
(23) Let P be a pcs structure, a be a set, p, q be elements of P , and p1, q1

be elements of Pa. If p = p1 and q = q1 and p ≤ q, then p1 ≤ q1.

(24) Let P be a pcs structure, a be a set, p be an element of P , and p1, q1

be elements of Pa. Suppose p = p1 and p 6= a and p1 ≤ q1 and a /∈ the

carrier of P . Then q1 ∈ the carrier of P and q1 6= a.

(25) Let P be a pcs structure, a be a set, and p be an element of Pa. If p 6= a,

then p ∈ the carrier of P .

(26) Let P be a pcs structure, a be a set, p, q be elements of P , and p1, q1 be

elements of Pa. If p = p1 and q = q1 and p 6= a and p1 ≤ q1, then p ≤ q.
(27) For every pcs structure P and for every set a and for all elements p, q

of Pa such that p = a holds p ∼ q and q ∼ p.
(28) Let P be a pcs structure, a be a set, p, q be elements of P , and p1, q1

be elements of Pa. If p = p1 and q = q1 and p ∼ q, then p1 ∼ q1.
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(29) Let P be a pcs structure, a be a set, p, q be elements of P , and p1, q1

be elements of Pa. If p = p1 and q = q1 and p 6= a and q 6= a and p1 ∼ q1,

then p ∼ q.
Let P be a reflexive pcs structure and let a be a set. Observe that Pa is

reflexive.

The following proposition is true

(30) For every transitive pcs structure P and for every set a such that a /∈ the

carrier of P holds Pa is transitive.

Let P be a β-reflexive pcs structure and let a be a set. One can verify that

Pa is β-reflexive.

Let P be a β-symmetric pcs structure and let a be a set. One can check

that Pa is β-symmetric.

Next we state two propositions:

(31) For every compatible pcs structure P and for every set a such that

a /∈ the carrier of P holds Pa is compatible.

(32) For every pcs P and for every set a such that a /∈ the carrier of P holds

Pa is a pcs.

Let P be a pcs structure. The functor lP yields a strict pcs structure and

is defined by the conditions (Def. 40).

(Def. 40)(i) The carrier of lP = the carrier of P ,

(ii) the internal relation of lP = (the internal relation of P )`, and

(iii) the alternative relation of lP = (the alternative relation of P )c.

Let P be a non empty pcs structure. One can check that lP is non empty.

Next we state three propositions:

(33) Let P be a pcs structure, p, q be elements of P , and p′, q′ be elements

of lP. If p = p′ and q = q′, then p ≤ q iff q′ ≤ p′.
(34) Let P be a pcs structure, p, q be elements of P , and p′, q′ be elements

of lP. If p = p′ and q = q′, then if p ∼ q, then p′ 6∼ q′.
(35) Let P be a non empty pcs structure, p, q be elements of P , and p′, q′ be

elements of lP. If p = p′ and q = q′, then if p′ 6∼ q′, then p ∼ q.
Let P be a reflexive pcs structure. One can check that lP is reflexive.

Let P be a transitive pcs structure. Observe that lP is transitive.

Let P be a β-reflexive pcs structure. One can verify that lP is β-irreflexive.

Let P be a β-irreflexive pcs structure. One can check that lP is β-reflexive.

Let P be a β-symmetric pcs structure. One can verify that lP is β-

symmetric.

Let P be a compatible pcs structure. Note that lP is compatible.

Let P , Q be pcs structures. The functor P ⊗Q yielding a pcs structure is

defined by the condition (Def. 41).
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(Def. 41) P ⊗ Q = 〈[: the carrier of P , the carrier of Q :], (the internal relation

of P ) × (the internal relation of Q), [̂ the alternative relation of P , the

alternative relation of Q ]̂〉.
Let P , Q be pcs structures. One can check that P ⊗Q is strict.

Let P , Q be non empty pcs structures. Note that P ⊗Q is non empty.

One can prove the following propositions:

(36) Let P , Q be pcs structures, p, q be elements of P ⊗Q, p1, p2 be elements

of P , and q1, q2 be elements of Q. If p = 〈〈p1, q1〉〉 and q = 〈〈p2, q2〉〉, then

p ≤ q iff p1 ≤ p2 and q1 ≤ q2.

(37) Let P , Q be pcs structures, p, q be elements of P ⊗Q, p1, p2 be elements

of P , and q1, q2 be elements of Q. If p = 〈〈p1, q1〉〉 and q = 〈〈p2, q2〉〉, then if

p ∼ q, then p1 ∼ p2 or q1 ∼ q2.

(38) Let P , Q be non empty pcs structures, p, q be elements of P ⊗Q, p1, p2

be elements of P , and q1, q2 be elements of Q. If p = 〈〈p1, q1〉〉 and q = 〈〈p2,

q2〉〉, then if p1 ∼ p2 or q1 ∼ q2, then p ∼ q.
Let P , Q be reflexive pcs structures. Observe that P ⊗Q is reflexive.

Let P , Q be transitive pcs structures. One can check that P⊗Q is transitive.

Let P be a pcs structure and let Q be a β-reflexive pcs structure. One can

check that P ⊗Q is β-reflexive.

Let P be a β-reflexive pcs structure and let Q be a pcs structure. One can

check that P ⊗Q is β-reflexive.

Let P , Q be β-symmetric pcs structures. One can verify that P ⊗ Q is

β-symmetric.

Let P , Q be compatible pcs structures. Observe that P ⊗Q is compatible.

Let P , Q be pcs structures. The functor P 7−→ Q yielding a pcs structure

is defined as follows:

(Def. 42) P 7−→ Q = lP ⊗Q.
Let P , Q be pcs structures. One can check that P 7−→ Q is strict.

Let P , Q be non empty pcs structures. Note that P 7−→ Q is non empty.

Next we state three propositions:

(39) Let P , Q be pcs structures, p, q be elements of P 7−→ Q, p1, p2 be

elements of P , and q1, q2 be elements of Q. If p = 〈〈p1, q1〉〉 and q = 〈〈p2,

q2〉〉, then p ≤ q iff p2 ≤ p1 and q1 ≤ q2.

(40) Let P , Q be pcs structures, p, q be elements of P 7−→ Q, p1, p2 be

elements of P , and q1, q2 be elements of Q. If p = 〈〈p1, q1〉〉 and q = 〈〈p2,

q2〉〉, then if p ∼ q, then p1 6∼ p2 or q1 ∼ q2.

(41) Let P , Q be non empty pcs structures, p, q be elements of P 7−→ Q,

p1, p2 be elements of P , and q1, q2 be elements of Q. If p = 〈〈p1, q1〉〉 and

q = 〈〈p2, q2〉〉, then if p1 6∼ p2 or q1 ∼ q2, then p ∼ q.
Let P , Q be reflexive pcs structures. One can check that P 7−→ Q is reflexive.
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Let P , Q be transitive pcs structures. Observe that P 7−→ Q is transitive.

Let P be a pcs structure and let Q be a β-reflexive pcs structure. Note that

P 7−→ Q is β-reflexive.

Let P be a β-irreflexive pcs structure and let Q be a pcs structure. One can

verify that P 7−→ Q is β-reflexive.

Let P , Q be β-symmetric pcs structures. Note that P 7−→ Q is β-symmetric.

Let P , Q be compatible pcs structures. Note that P 7−→ Q is compatible.

Let P , Q be pcs’s. Note that P 7−→ Q is pcs-like.

Let P be a pcs structure and let S be a subset of P . We say that S is

self-coherent if and only if:

(Def. 43) For all elements x, y of P such that x ∈ S and y ∈ S holds x ∼ y.
Let P be a pcs structure. Observe that every subset of P which is empty is

also self-coherent.

Let P be a pcs structure. One can check that there exists a subset of P

which is empty.

Let P be a pcs structure and let F be a family of subsets of P . We say that

F is self-coherent-membered if and only if:

(Def. 44) For every subset S of P such that S ∈ F holds S is self-coherent.

Let P be a pcs structure. Observe that there exists a family of subsets of P

which is non empty and self-coherent-membered.

Let P be a pcs structure and let D be a set. The functor PIR(P,D) yields

a binary relation on D and is defined by the condition (Def. 45).

(Def. 45) Let A, B be sets. Then 〈〈A, B〉〉 ∈ PIR(P,D) if and only if the following

conditions are satisfied:

(i) A ∈ D,
(ii) B ∈ D, and

(iii) for every set a such that a ∈ A there exists a set b such that b ∈ B and

〈〈a, b〉〉 ∈ the internal relation of P .

The functor PTR(P,D) yielding a binary relation on D is defined by the condi-

tion (Def. 46).

(Def. 46) Let A, B be sets. Then 〈〈A, B〉〉 ∈ PTR(P,D) if and only if the following

conditions are satisfied:

(i) A ∈ D,
(ii) B ∈ D, and

(iii) for all sets a, b such that a ∈ A and b ∈ B holds 〈〈a, b〉〉 ∈ the alternative

relation of P .

Next we state two propositions:

(42) Let P be a pcs structure, D be a family of subsets of P , and A, B be

sets. Then 〈〈A, B〉〉 ∈ PIR(P,D) if and only if the following conditions are

satisfied:
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(i) A ∈ D,
(ii) B ∈ D, and

(iii) for every element a of P such that a ∈ A there exists an element b of

P such that b ∈ B and a ≤ b.
(43) Let P be a pcs structure, D be a family of subsets of P , and A, B be

sets. Then 〈〈A, B〉〉 ∈ PTR(P,D) if and only if the following conditions are

satisfied:

(i) A ∈ D,
(ii) B ∈ D, and

(iii) for all elements a, b of P such that a ∈ A and b ∈ B holds a ∼ b.
Let P be a pcs structure and let D be a set. The functor P(P,D) yielding

a pcs structure is defined by:

(Def. 47) P(P,D) = 〈D,PIR(P,D),PTR(P,D)〉.
Let P be a pcs structure and let D be a family of subsets of P . We introduce

P(D) as a synonym of P(P,D).

Let P be a pcs structure and let D be a non empty set. Observe that P(P,D)

is non empty.

Next we state four propositions:

(44) Let P be a pcs structure, D be a set, and p, q be elements of P(P,D).

Suppose p ≤ q. Let p′ be an element of P . If p′ ∈ p, then there exists an

element q′ of P such that q′ ∈ q and p′ ≤ q′.
(45) Let P be a pcs structure, D be a non empty family of subsets of P , and

p, q be elements of P(D). Suppose that for every element p′ of P such

that p′ ∈ p there exists an element q′ of P such that q′ ∈ q and p′ ≤ q′.
Then p ≤ q.

(46) Let P be a pcs structure, D be a set, and p, q be elements of P(P,D).

Suppose p ∼ q. Let p′, q′ be elements of P . If p′ ∈ p and q′ ∈ q, then

p′ ∼ q′.
(47) Let P be a pcs structure, D be a non empty family of subsets of P , and

p, q be elements of P(D). Suppose that for all elements p′, q′ of P such

that p′ ∈ p and q′ ∈ q holds p′ ∼ q′. Then p ∼ q.
Let P be a pcs structure and let D be a set. One can check that P(P,D) is

strict.

Let P be a reflexive pcs structure and let D be a family of subsets of P .

Note that P(D) is reflexive.

Let P be a transitive pcs structure and let D be a set. One can check that

P(P,D) is transitive.

Let P be a β-reflexive pcs structure and let D be a self-coherent-membered

family of subsets of P . One can check that P(D) is β-reflexive.
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Let P be a β-symmetric pcs structure and let D be a family of subsets of

P . Observe that P(D) is β-symmetric.

Let P be a compatible pcs structure and let D be a family of subsets of P .

Note that P(D) is compatible.

Let P be a pcs structure. The functor pcs-coherent-powerP yields a set and

is defined as follows:

(Def. 48) pcs-coherent-powerP = {X;X ranges over subsets of P : X is self-

coherent}.
We now state the proposition

(48) For every pcs structure P and for every set X such that X ∈
pcs-coherent-powerP holds X is a self-coherent subset of P .

Let P be a pcs structure. Note that pcs-coherent-powerP is non empty.

Let P be a pcs structure. Then pcs-coherent-powerP is a family of subsets

of P .

Let P be a pcs structure. Observe that pcs-coherent-powerP is self-coherent-

membered.

Let P be a pcs structure. The functor P(P ) yielding a pcs structure is

defined by:

(Def. 49) P(P ) = P(pcs-coherent-powerP ).

Let P be a pcs structure. Note that P(P ) is strict.

Let P be a pcs structure. Note that P(P ) is non empty.

Let P be a reflexive pcs structure. One can verify that P(P ) is reflexive.

Let P be a transitive pcs structure. One can check that P(P ) is transitive.

Let P be a β-reflexive pcs structure. Note that P(P ) is β-reflexive.

Let P be a β-symmetric pcs structure. Note that P(P ) is β-symmetric.

Let P be a compatible pcs structure. Note that P(P ) is compatible.

Let P be a pcs. Observe that P(P ) is pcs-like.
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The notation and terminology used in this paper are introduced in the following

articles: [18], [19], [1], [17], [20], [5], [21], [6], [7], [16], [2], [3], [8], [15], [13], [14],

[12], [11], [22], [4], [10], and [9].

We adopt the following convention: n, m, k are elements of N, X is a non

empty subset of R, and Y is a non empty subset of R.

Next we state four propositions:

(1) If X = Y and Y is upper bounded, then X is upper bounded and

supX = supY.

(2) If X = Y and X is upper bounded, then Y is upper bounded and

supX = supY.

(3) If X = Y and Y is lower bounded, then X is lower bounded and infX =

inf Y.

(4) If X = Y and X is lower bounded, then Y is lower bounded and infX =

inf Y.
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Let s1 be a sequence of extended reals. The functor sup s1 yields an element

of R and is defined by:

(Def. 1) sup s1 = sup rng s1.

The functor inf s1 yields an element of R and is defined as follows:

(Def. 2) inf s1 = inf rng s1.

Let s1 be a sequence of extended reals. We say that s1 is lower bounded if

and only if:

(Def. 3) rng s1 is lower bounded.

We say that s1 is upper bounded if and only if:

(Def. 4) rng s1 is upper bounded.

Let s1 be a sequence of extended reals. We say that s1 is bounded if and

only if:

(Def. 5) s1 is upper bounded and lower bounded.

In the sequel s1 is a sequence of extended reals.

One can prove the following proposition

(5) For all s1, n holds {s1(k); k ranges over elements of N: n ≤ k} is a non

empty subset of R.

Let s1 be a sequence of extended reals. The inferior realsequence s1 yields

a sequence of extended reals and is defined by the condition (Def. 6).

(Def. 6) Let n be an element of N. Then there exists a non empty subset Y of

R such that Y = {s1(k); k ranges over elements of N: n ≤ k} and (the

inferior realsequence s1)(n) = inf Y.

Let s1 be a sequence of extended reals. The superior realsequence s1 yields

a sequence of extended reals and is defined by the condition (Def. 7).

(Def. 7) Let n be an element of N. Then there exists a non empty subset Y of

R such that Y = {s1(k); k ranges over elements of N: n ≤ k} and (the

superior realsequence s1)(n) = supY.

We now state the proposition

(6) If s1 is finite, then s1 is a sequence of real numbers.

Let f be a partial function from N to R. We say that f is increasing if and

only if:

(Def. 8) For all m, n such that m ∈ dom f and n ∈ dom f and m < n holds

f(m) < f(n).

We say that f is decreasing if and only if:

(Def. 9) For all m, n such that m ∈ dom f and n ∈ dom f and m < n holds

f(m) > f(n).

We say that f is non-decreasing if and only if:
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(Def. 10) For all m, n such that m ∈ dom f and n ∈ dom f and m ≤ n holds

f(m) ≤ f(n).

We say that f is non-increasing if and only if:

(Def. 11) For all m, n such that m ∈ dom f and n ∈ dom f and m ≤ n holds

f(m) ≥ f(n).

One can prove the following two propositions:

(7)(i) s1 is increasing iff for all elements n, m of N such that m < n holds

s1(m) < s1(n),

(ii) s1 is decreasing iff for all elements n, m of N such that m < n holds

s1(n) < s1(m),

(iii) s1 is non-decreasing iff for all elements n, m of N such that m ≤ n

holds s1(m) ≤ s1(n), and

(iv) s1 is non-increasing iff for all elements n, m of N such that m ≤ n holds

s1(n) ≤ s1(m).

(8) (The inferior realsequence s1)(n) ≤ s1(n) and s1(n) ≤ (the superior

realsequence s1)(n).

Let us consider s1. Observe that the superior realsequence s1 is non-

increasing and the inferior realsequence s1 is non-decreasing.

Let s1 be a sequence of extended reals. The functor lim sup s1 yields an

element of R and is defined by:

(Def. 12) lim sup s1 = inf (the superior realsequence s1).

The functor lim inf s1 yields an element of R and is defined by:

(Def. 13) lim inf s1 = sup (the inferior realsequence s1).

In the sequel r1 is a sequence of real numbers.

The following propositions are true:

(9) If s1 = r1 and r1 is bounded, then the superior realsequence s1 = the

superior realsequence r1 and lim sup s1 = lim sup r1.

(10) If s1 = r1 and r1 is bounded, then the inferior realsequence s1 = the

inferior realsequence r1 and lim inf s1 = lim inf r1.

(11) If s1 is bounded, then s1 is a sequence of real numbers.

(12) If s1 = r1, then s1 is upper bounded iff r1 is upper bounded.

(13) If s1 = r1, then s1 is lower bounded iff r1 is lower bounded.

(14) If s1 = r1 and r1 is convergent, then s1 is convergent to finite number

and convergent and lim s1 = lim r1.

(15) If s1 = r1 and s1 is convergent to finite number, then r1 is convergent

and lim s1 = lim r1.

(16) If s1 ↑ k is convergent to finite number, then s1 is convergent to finite

number and convergent and lim s1 = lim(s1 ↑ k).

(17) If s1 ↑ k is convergent, then s1 is convergent and lim s1 = lim(s1 ↑ k).
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(18) If lim sup s1 = lim inf s1 and lim inf s1 ∈ R, then there exists k such that

s1 ↑ k is bounded.

(19) If s1 is convergent to finite number, then there exists k such that s1 ↑ k
is bounded.

(20) Suppose s1 is convergent to finite number. Then s1 ↑ k is convergent to

finite number and s1 ↑ k is convergent and lim s1 = lim(s1 ↑ k).

(21) If s1 is convergent, then s1 ↑ k is convergent and lim s1 = lim(s1 ↑ k).

(22) If s1 is upper bounded, then s1 ↑ k is upper bounded and if s1 is lower

bounded, then s1 ↑ k is lower bounded.

(23) inf s1 ≤ s1(n) and s1(n) ≤ sup s1.

(24) inf s1 ≤ sup s1.

(25) If s1 is non-increasing, then s1↑k is non-increasing and inf s1 = inf(s1↑k).

(26) If s1 is non-decreasing, then s1↑k is non-decreasing and sup s1 = sup(s1↑
k).

(27) (The superior realsequence s1)(n) = sup(s1 ↑ n) and (the inferior realse-

quence s1)(n) = inf(s1 ↑ n).

(28) Let s1 be a sequence of extended reals and j be an element of N. Then

the superior realsequence s1 ↑ j = (the superior realsequence s1) ↑ j and

lim sup(s1 ↑ j) = lim sup s1.

(29) Let s1 be a sequence of extended reals and j be an element of N. Then

the inferior realsequence s1 ↑ j = (the inferior realsequence s1) ↑ j and

lim inf(s1 ↑ j) = lim inf s1.

(30) Let s1 be a sequence of extended reals and k be an element of N. Suppose

s1 is non-increasing and −∞ < s1(k) and s1(k) < +∞. Then s1↑k is upper

bounded and sup(s1 ↑ k) = s1(k).

(31) Let s1 be a sequence of extended reals and k be an element of N. Suppose

s1 is non-decreasing and −∞ < s1(k) and s1(k) < +∞. Then s1↑k is lower

bounded and inf(s1 ↑ k) = s1(k).

(32) Let s1 be a sequence of extended reals. Suppose that for every element

n of N holds +∞ ≤ s1(n). Then s1 is convergent to +∞.

(33) Let s1 be a sequence of extended reals. Suppose that for every element

n of N holds s1(n) ≤ −∞. Then s1 is convergent to −∞.

(34) Let s1 be a sequence of extended reals. Suppose s1 is non-increasing and

−∞ = inf s1. Then s1 is convergent to −∞ and lim s1 = −∞.
(35) Let s1 be a sequence of extended reals. Suppose s1 is non-decreasing

and +∞ = sup s1. Then s1 is convergent to +∞ and lim s1 = +∞.
(36) For every sequence s1 of extended reals such that s1 is non-increasing

holds s1 is convergent and lim s1 = inf s1.
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(37) For every sequence s1 of extended reals such that s1 is non-decreasing

holds s1 is convergent and lim s1 = sup s1.

(38) Let s2, s3 be sequences of extended reals. Suppose s2 is convergent and

s3 is convergent and for every element n of N holds s2(n) ≤ s3(n). Then

lim s2 ≤ lim s3.

(39) For every sequence s1 of extended reals holds lim inf s1 ≤ lim sup s1.

(40) For every sequence s1 of extended reals holds s1 is convergent iff

lim inf s1 = lim sup s1.

(41) For every sequence s1 of extended reals such that s1 is convergent holds

lim s1 = lim inf s1 and lim s1 = lim sup s1.
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[2] Józef Bia las. Infimum and supremum of the set of real numbers. Measure theory. For-

malized Mathematics, 2(1):163–171, 1991.
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The articles [3] and [1] provide the notation and terminology for this paper.

1. The Basics of General Theory of Commutative BCK-algebras

Let I1 be a non empty BCI structure with 0. We say that I1 is commutative

if and only if:

(Def. 1) For all elements x, y of I1 holds x \ (x \ y) = y \ (y \ x).

Let us observe that BCI-EXAMPLE is commutative.

Let us note that there exists a BCK-algebra which is commutative.

In the sequel X denotes a BCK-algebra and I1 denotes a non empty subset

of X.

We now state a number of propositions:

(1) X is a commutative BCK-algebra iff for all elements x, y of X holds

x \ (x \ y) ≤ y \ (y \ x).
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(2) For every BCK-algebra X and for all elements x, y of X holds x\(x\y) ≤
y and x \ (x \ y) ≤ x.

(3) X is a commutative BCK-algebra iff for all elements x, y of X holds

x \ y = x \ (y \ (y \ x)).

(4) X is a commutative BCK-algebra iff for all elements x, y of X holds

x \ (x \ y) = y \ (y \ (x \ (x \ y))).

(5) X is a commutative BCK-algebra iff for all elements x, y of X such that

x ≤ y holds x = y \ (y \ x).

(6) Let X be a non empty BCI structure with 0. Then X is a commutative

BCK-algebra if and only if for all elements x, y, z ofX holds x\(0X\y) = x

and (x \ z) \ (x \ y) = y \ z \ (y \ x).

(7) If X is a commutative BCK-algebra, then for all elements x, y of X such

that x \ y = x holds y \ x = y.

(8) If X is a commutative BCK-algebra, then for all elements x, y, a of X

such that y ≤ a holds a \ x \ (a \ y) = y \ x.
(9) If X is a commutative BCK-algebra, then for all elements x, y of X

holds x \ y = x iff y \ (y \ x) = 0X .

(10) If X is a commutative BCK-algebra, then for all elements x, y of X

holds x \ (y \ (y \ x)) = x \ y and x \ y \ (x \ y \ x) = x \ y.
(11) Suppose X is a commutative BCK-algebra. Let x, y, a be elements of

X. If x ≤ a, then (a \ y) \ (a \ y \ (a \ x)) = a \ y \ (x \ y).

Let X be a BCI-algebra and let a be an element of X. We say that a is

greatest if and only if:

(Def. 2) For every element x of X holds x \ a = 0X .

We say that a is positive if and only if:

(Def. 3) 0X \ a = 0X .

2. The Basics of General Theory of Commutative BCI-algebras

Let I1 be a BCI-algebra. We say that I1 is BCI-commutative if and only if:

(Def. 4) For all elements x, y of I1 such that x \ y = 0(I1) holds x = y \ (y \ x).

We say that I1 is BCI-weakly-commutative if and only if:

(Def. 5) For all elements x, y of I1 holds (x\ (x\y))\ (0(I1 ) \ (x\y)) = y \ (y \x).

One can check that BCI-EXAMPLE is BCI-commutative and BCI-weakly-

commutative.

Let us note that there exists a BCI-algebra which is BCI-commutative and

BCI-weakly-commutative.

The following propositions are true:
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(12) For every BCI-algebra X such that there exists an element of X which

is greatest holds X is a BCK-algebra.

(13) Let X be a BCI-algebra. Suppose X is p-semisimple. Then X is BCI-

commutative and BCI-weakly-commutative.

(14) Every commutative BCK-algebra is a BCI-commutative BCI-algebra

and a BCI-weakly-commutative BCI-algebra.

(15) If X is a BCI-weakly-commutative BCI-algebra, then X is BCI-

commutative.

(16) Let X be a BCI-algebra. Then X is BCI-commutative if and only if for

all elements x, y of X holds x \ (x \ y) = y \ (y \ (x \ (x \ y))).

(17) Let X be a BCI-algebra. Then X is BCI-commutative if and only if for

all elements x, y of X holds (x \ (x \ y)) \ (y \ (y \ x)) = 0X \ (x \ y).

(18) Let X be a BCI-algebra. Then X is BCI-commutative if and only if

for every element a of AtomSetX and for all elements x, y of BranchV a

holds x \ (x \ y) = y \ (y \ x).

(19) Let X be a non empty BCI structure with 0. Then X is a BCI-

commutative BCI-algebra if and only if for all elements x, y, z of X holds

x\y\(x\z)\(z\y) = 0X and x\0X = x and x\(x\y) = y\(y\(x\(x\y))).

(20) Let X be a BCI-algebra. Then X is BCI-commutative if and only if for

all elements x, y, z of X such that x ≤ z and z \ y ≤ z \ x holds x ≤ y.
(21) Let X be a BCI-algebra. Then X is BCI-commutative if and only if for

all elements x, y, z of X such that x ≤ y and x ≤ z holds x ≤ y \ (y \ z).

3. Bounded BCK-algebras

Let I1 be a BCK-algebra. We say that I1 is bounded if and only if:

(Def. 6) There exists an element of I1 which is greatest.

Let us note that BCI-EXAMPLE is bounded.

One can verify that there exists a BCK-algebra which is bounded and com-

mutative.

Let I1 be a bounded BCK-algebra. We say that I1 is involutory if and only

if:

(Def. 7) For every element a of I1 such that a is greatest and for every element

x of I1 holds a \ (a \ x) = x.

Next we state three propositions:

(22) Let X be a bounded BCK-algebra. Then X is involutory if and only if

for every element a of X such that a is greatest and for all elements x, y

of X holds x \ y = a \ y \ (a \ x).
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(23) Let X be a bounded BCK-algebra. Then X is involutory if and only if

for every element a of X such that a is greatest and for all elements x, y

of X holds x \ (a \ y) = y \ (a \ x).

(24) Let X be a bounded BCK-algebra. Then X is involutory if and only if

for every element a of X such that a is greatest and for all elements x, y

of X such that x ≤ a \ y holds y ≤ a \ x.
Let I1 be a BCK-algebra and let a be an element of I1. We say that a is

Iseki if and only if:

(Def. 8) For every element x of I1 holds x \ a = 0(I1) and a \ x = a.

Let I1 be a BCK-algebra. We say that I1 is Iseki-extension if and only if:

(Def. 9) There exists an element of I1 which is Iseki.

Let us observe that BCI-EXAMPLE is Iseki-extension.

Let X be a BCK-algebra. A non empty subset of X is said to be a

commutative-ideal of X if:

(Def. 10) 0X ∈ it and for all elements x, y, z of X such that x \ y \ z ∈ it and

z ∈ it holds x \ (y \ (y \ x)) ∈ it.

The following three propositions are true:

(25) If I1 is a commutative-ideal of X, then for all elements x, y of X such

that x \ y ∈ I1 holds x \ (y \ (y \ x)) ∈ I1.

(26) For every BCK-algebra X such that I1 is a commutative-ideal of X holds

I1 is an ideal of X.

(27) If I1 is a commutative-ideal of X, then for all elements x, y of X such

that x \ (x \ y) ∈ I1 holds y \ (y \ x) \ (x \ y) ∈ I1.

4. Implicative and Positive-Implicative BCK-algebras

Let I1 be a BCK-algebra. We say that I1 is BCK-positive-implicative if and

only if:

(Def. 11) For all elements x, y, z of I1 holds (x \ y) \ z = x \ z \ (y \ z).
We say that I1 is BCK-implicative if and only if:

(Def. 12) For all elements x, y of I1 holds x \ (y \ x) = x.

Let us observe that BCI-EXAMPLE is BCK-positive-implicative and BCK-

implicative.

Let us mention that there exists a BCK-algebra which is Iseki-extension,

BCK-positive-implicative, BCK-implicative, bounded, and commutative.

The following propositions are true:

(28) X is a BCK-positive-implicative BCK-algebra iff for all elements x, y of

X holds x \ y = x \ y \ y.
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(29) X is a BCK-positive-implicative BCK-algebra if and only if for all ele-

ments x, y of X holds (x \ (x \ y)) \ (y \ x) = x \ (x \ (y \ (y \ x))).

(30) X is a BCK-positive-implicative BCK-algebra iff for all elements x, y of

X holds x \ y = x \ y \ (x \ (x \ y)).

(31) X is a BCK-positive-implicative BCK-algebra if and only if for all ele-

ments x, y, z of X holds x \ z \ (y \ z) ≤ (x \ y) \ z.
(32) X is a BCK-positive-implicative BCK-algebra iff for all elements x, y of

X holds x \ y ≤ x \ y \ y.
(33) X is a BCK-positive-implicative BCK-algebra if and only if for all ele-

ments x, y of X holds x \ (x \ (y \ (y \ x))) ≤ (x \ (x \ y)) \ (y \ x).

(34) X is a BCK-implicative BCK-algebra if and only if X is a commutative

BCK-algebra and a BCK-positive-implicative BCK-algebra.

(35) X is a BCK-implicative BCK-algebra iff for all elements x, y of X holds

(x \ (x \ y)) \ (x \ y) = y \ (y \ x).

(36) Let X be a non empty BCI structure with 0. Then X is a BCK-

implicative BCK-algebra if and only if for all elements x, y, z of X holds

x \ (0X \ y) = x and (x \ z) \ (x \ y) = y \ z \ (y \ x) \ (x \ y).

(37) Let X be a bounded BCK-algebra and a be an element of X. Suppose

a is greatest. Then X is BCK-implicative if and only if X is involutory

and BCK-positive-implicative.

(38) X is a BCK-implicative BCK-algebra iff for all elements x, y of X holds

x \ (x \ (y \ x)) = 0X .

(39) X is a BCK-implicative BCK-algebra iff for all elements x, y of X holds

(x \ (x \ y)) \ (x \ y) = y \ (y \ (x \ (x \ y))).

(40) X is a BCK-implicative BCK-algebra iff for all elements x, y, z of X

holds (x \ z) \ (x \ y) = y \ z \ (y \ x \ z).
(41) X is a BCK-implicative BCK-algebra iff for all elements x, y, z of X

holds x \ (x \ (y \ z)) = (y \ z) \ (y \ z \ (x \ z)).
(42) X is a BCK-implicative BCK-algebra iff for all elements x, y of X holds

x \ (x \ y) = (y \ (y \ x)) \ (x \ y).

(43) Let X be a bounded commutative BCK-algebra and a be an element of

X. Suppose a is greatest. Then X is BCK-implicative if and only if for

every element x of X holds a \ x \ (a \ x \ x) = 0X .

(44) Let X be a bounded commutative BCK-algebra and a be an element of

X. Suppose a is greatest. Then X is BCK-implicative if and only if for

every element x of X holds x \ (a \ x) = x.

(45) Let X be a bounded commutative BCK-algebra and a be an element of

X. Suppose a is greatest. Then X is BCK-implicative if and only if for

every element x of X holds a \ x \ x = a \ x.
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(46) Let X be a bounded commutative BCK-algebra and a be an element of

X. Suppose a is greatest. Then X is BCK-implicative if and only if for

all elements x, y of X holds a \ y \ (a \ y \ x) = x \ y.
(47) Let X be a bounded commutative BCK-algebra and a be an element of

X. Suppose a is greatest. Then X is BCK-implicative if and only if for

all elements x, y of X holds y \ (y \ x) = x \ (a \ y).

(48) Let X be a bounded commutative BCK-algebra and a be an element of

X. Suppose a is greatest. Then X is BCK-implicative if and only if for

all elements x, y, z of X holds (x \ (y \ z)) \ (x \ y) ≤ x \ (a \ z).
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The papers [11], [13], [1], [15], [2], [8], [9], [16], [5], [12], [10], [4], [6], [7], and [14]

provide the notation and terminology for this paper.

In this paper x denotes a real number and Z denotes an open subset of R.

One can prove the following propositions:

(1) Suppose Z ⊆ dom((the function tan) ·(the function cot)). Then

(i) (the function tan) ·(the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan) ·(the function

cot))′�Z (x) = 1
(the function cos)((the function cot)(x))2 · − 1

(the function sin)(x)2 .

(2) Suppose Z ⊆ dom((the function tan) ·(the function tan)). Then

(i) (the function tan) ·(the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan) ·(the function

tan))′�Z(x) = 1
(the function cos)((the function tan)(x))2 · 1

(the function cos)(x)2 .

(3) Suppose Z ⊆ dom((the function cot) ·(the function cot)). Then

(i) (the function cot) ·(the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cot) ·(the function

cot))′�Z (x) = 1
(the function sin)((the function cot)(x))2

· 1
(the function sin)(x)2

.

(4) Suppose Z ⊆ dom((the function cot) ·(the function tan)). Then

(i) (the function cot) ·(the function tan) is differentiable on Z, and
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(ii) for every x such that x ∈ Z holds ((the function cot) ·(the function

tan))′�Z(x) = (− 1
(the function sin)((the function tan)(x))2

) · 1
(the function cos)(x)2

.

(5) Suppose Z ⊆ dom((the function tan)−(the function cot)). Then

(i) (the function tan)−(the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan)−(the function

cot))′�Z (x) = 1
(the function cos)(x)2

+ 1
(the function sin)(x)2

.

(6) Suppose Z ⊆ dom((the function tan)+(the function cot)). Then

(i) (the function tan)+(the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan)+(the function

cot))′�Z (x) = 1
(the function cos)(x)2

− 1
(the function sin)(x)2

.

(7)(i) (The function sin) ·(the function sin) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ·(the func-

tion sin))′�Z(x) = (the function cos)((the function sin)(x)) · (the function

cos)(x).

(8)(i) (The function sin) ·(the function cos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ·(the function

cos))′�Z (x) = −(the function cos)((the function cos)(x)) · (the function sin)

(x).

(9)(i) (The function cos) ·(the function sin) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ·(the function

sin))′�Z(x) = −(the function sin)((the function sin)(x)) · (the function cos)

(x).

(10)(i) (The function cos) ·(the function cos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ·(the func-

tion cos))′�Z (x) = (the function sin)((the function cos)(x)) · (the function

sin)(x).

(11) Suppose Z ⊆ dom((the function cos) (the function cot)). Then

(i) (the function cos) (the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) (the function

cot))′�Z (x) = −(the function cos)(x)− (the function cos)(x)
(the function sin)(x)2

.

(12) Suppose Z ⊆ dom((the function sin) (the function tan)). Then

(i) (the function sin) (the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) (the function

tan))′�Z(x) = (the function sin)(x) + (the function sin)(x)
(the function cos)(x)2

.

(13) Suppose Z ⊆ dom((the function sin) (the function cot)). Then

(i) (the function sin) (the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) (the

function cot))′�Z (x) = (the function cos)(x) · (the function cot)(x) −
1

(the function sin)(x) .
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(14) Suppose Z ⊆ dom((the function cos) (the function tan)). Then

(i) (the function cos) (the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) (the function

tan))′�Z(x) = − (the function sin)(x)2

(the function cos)(x) + 1
(the function cos)(x) .

(15) Suppose Z ⊆ dom((the function sin) (the function cos)). Then

(i) (the function sin) (the function cos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) (the function

cos))′�Z(x) = (the function cos)(x)2 − (the function sin)(x)2.

(16) Suppose Z ⊆ dom((the function ln) (the function sin)). Then

(i) (the function ln) (the function sin) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) (the function

sin))′�Z(x) = (the function sin)(x)
x +(the function ln)(x)·(the function cos)(x).

(17) Suppose Z ⊆ dom((the function ln) (the function cos)). Then

(i) (the function ln) (the function cos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) (the function

cos))′�Z(x) = (the function cos)(x)
x −(the function ln)(x)·(the function sin)(x).

(18) Suppose Z ⊆ dom((the function ln) (the function exp)). Then

(i) (the function ln) (the function exp) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) (the func-

tion exp))′�Z(x) = (the function exp)(x)
x + (the function ln)(x) · (the function

exp)(x).

(19) Suppose Z ⊆ dom((the function ln) ·(the function ln)) and for every x

such that x ∈ Z holds x > 0. Then

(i) (the function ln) ·(the function ln) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) ·(the function

ln))′�Z(x) = 1
(the function ln)(x)·x .

(20) Suppose Z ⊆ dom((the function exp) ·(the function exp)). Then

(i) (the function exp) ·(the function exp) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ·(the func-

tion exp))′�Z(x) = (the function exp)((the function exp)(x)) · (the function

exp)(x).

(21) Suppose Z ⊆ dom((the function sin) ·(the function tan)). Then

(i) (the function sin) ·(the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ·(the function

tan))′�Z(x) = cos (the function tan)(x)
(the function cos)(x)2

.

(22) Suppose Z ⊆ dom((the function sin) ·(the function cot)). Then

(i) (the function sin) ·(the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ·(the function

cot))′�Z (x) = − cos (the function cot)(x)
(the function sin)(x)2

.
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(23) Suppose Z ⊆ dom((the function cos) ·(the function tan)). Then

(i) (the function cos) ·(the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ·(the function

tan))′�Z(x) = − sin (the function tan)(x)
(the function cos)(x)2

.

(24) Suppose Z ⊆ dom((the function cos) ·(the function cot)). Then

(i) (the function cos) ·(the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ·(the function

cot))′�Z (x) = sin (the function cot)(x)
(the function sin)(x)2

.

(25) Suppose Z ⊆ dom((the function sin) ((the function tan)+(the function

cot))). Then

(i) (the function sin) ((the function tan)+(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ((the func-

tion tan)+(the function cot)))′�Z (x) = (the function cos)(x) · ((the

function tan)(x) + (the function cot)(x)) + (the function sin)(x) ·
( 1

(the function cos)(x)2
− 1

(the function sin)(x)2
).

(26) Suppose Z ⊆ dom((the function cos) ((the function tan)+(the function

cot))). Then

(i) (the function cos) ((the function tan)+(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ((the function

tan)+(the function cot)))′�Z (x) = −(the function sin)(x) · ((the function

tan)(x) + (the function cot)(x))+(the function cos)(x)·( 1
(the function cos)(x)2

−
1

(the function sin)(x)2 ).

(27) Suppose Z ⊆ dom((the function sin) ((the function tan)−(the function

cot))). Then

(i) (the function sin) ((the function tan)−(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ((the func-

tion tan)−(the function cot)))′�Z (x) = (the function cos)(x) · ((the

function tan)(x) − (the function cot)(x)) + (the function sin)(x) ·
( 1

(the function cos)(x)2
+ 1

(the function sin)(x)2
).

(28) Suppose Z ⊆ dom((the function cos) ((the function tan)−(the function

cot))). Then

(i) (the function cos) ((the function tan)−(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ((the function

tan)−(the function cot)))′�Z (x) = −(the function sin)(x) · ((the function

tan)(x)− (the function cot)(x))+(the function cos)(x)·( 1
(the function cos)(x)2 +

1
(the function sin)(x)2

).
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(29) Suppose Z ⊆ dom((the function exp) ((the function tan)+(the function

cot))). Then

(i) (the function exp) ((the function tan)+(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ((the func-

tion tan)+(the function cot)))′�Z (x) = (the function exp)(x) · ((the

function tan)(x) + (the function cot)(x)) + (the function exp)(x) ·
( 1

(the function cos)(x)2
− 1

(the function sin)(x)2
).

(30) Suppose Z ⊆ dom((the function exp) ((the function tan)−(the function

cot))). Then

(i) (the function exp) ((the function tan)−(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ((the func-

tion tan)−(the function cot)))′�Z (x) = (the function exp)(x) · ((the

function tan)(x) − (the function cot)(x)) + (the function exp)(x) ·
( 1

(the function cos)(x)2
+ 1

(the function sin)(x)2
).

(31) Suppose Z ⊆ dom((the function sin) ((the function sin)+(the function

cos))). Then

(i) (the function sin) ((the function sin)+(the function cos)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ((the function

sin)+(the function cos)))′�Z (x) = ((the function cos)(x)2 +2 · (the function

sin)(x) · (the function cos)(x)) − (the function sin)(x)2.

(32) Suppose Z ⊆ dom((the function sin) ((the function sin)−(the function

cos))). Then

(i) (the function sin) ((the function sin)−(the function cos)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ((the function

sin)−(the function cos)))′�Z (x) = ((the function sin)(x)2 +2 · (the function

sin)(x) · (the function cos)(x)) − (the function cos)(x)2.

(33) Suppose Z ⊆ dom((the function cos) ((the function sin)−(the function

cos))). Then

(i) (the function cos) ((the function sin)−(the function cos)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ((the function

sin)−(the function cos)))′�Z (x) = ((the function cos)(x)2 +2 · (the function

sin)(x) · (the function cos)(x)) − (the function sin)(x)2.

(34) Suppose Z ⊆ dom((the function cos) ((the function sin)+(the function

cos))). Then

(i) (the function cos) ((the function sin)+(the function cos)) is differen-

tiable on Z, and
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(ii) for every x such that x ∈ Z holds ((the function cos) ((the function

sin)+(the function cos)))′�Z (x) = (the function cos)(x)2 − 2 · (the function

sin)(x) · (the function cos)(x) − (the function sin)(x)2.

(35) Suppose Z ⊆ dom((the function sin) ·((the function tan)+(the function

cot))). Then

(i) (the function sin) ·((the function tan)+(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ·((the func-

tion tan)+(the function cot)))′�Z (x) = (the function cos)((the function

tan)(x) + (the function cot)(x)) · ( 1
(the function cos)(x)2

− 1
(the function sin)(x)2

).

(36) Suppose Z ⊆ dom((the function sin) ·((the function tan)−(the function

cot))). Then

(i) (the function sin) ·((the function tan)−(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ·((the func-

tion tan)−(the function cot)))′�Z (x) = (the function cos)((the function

tan)(x)− (the function cot)(x)) · ( 1
(the function cos)(x)2

+ 1
(the function sin)(x)2

).

(37) Suppose Z ⊆ dom((the function cos) ·((the function tan)−(the function

cot))). Then

(i) (the function cos) ·((the function tan)−(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ·((the function

tan)−(the function cot)))′�Z (x) = −(the function sin)((the function

tan)(x)− (the function cot)(x)) · ( 1
(the function cos)(x)2

+ 1
(the function sin)(x)2

).

(38) Suppose Z ⊆ dom((the function cos) ·((the function tan)+(the function

cot))). Then

(i) (the function cos) ·((the function tan)+(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ·((the function

tan)+(the function cot)))′�Z (x) = −(the function sin)((the function tan)

(x) + (the function cot)(x)) · ( 1
(the function cos)(x)2

− 1
(the function sin)(x)2

).

(39) Suppose Z ⊆ dom((the function exp) ·((the function tan)+(the function

cot))). Then

(i) (the function exp) ·((the function tan)+(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ·((the func-

tion tan)+(the function cot)))′�Z (x) = (the function exp)((the function

tan)(x) + (the function cot)(x)) · ( 1
(the function cos)(x)2 − 1

(the function sin)(x)2 ).

(40) Suppose Z ⊆ dom((the function exp) ·((the function tan)−(the function

cot))). Then
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(i) (the function exp) ·((the function tan)−(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ·((the func-

tion tan)−(the function cot)))′�Z (x) = (the function exp)((the function

tan)(x)− (the function cot)(x)) · ( 1
(the function cos)(x)2

+ 1
(the function sin)(x)2

).

(41) Suppose Z ⊆ dom( (the function tan)−(the function cot)
the function exp ). Then

(i) (the function tan)−(the function cot)
the function exp is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( (the function tan)−(the function cot)
the function exp )′�Z(x) =

(( 1
(the function cos)(x)2

+ 1
(the function sin)(x)2

)−(the function tan)(x))+(the function cot)(x)

(the function exp)(x) .

(42) Suppose Z ⊆ dom( (the function tan)+(the function cot)
the function exp ). Then

(i) (the function tan)+(the function cot)
the function exp is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( (the function tan)+(the function cot)
the function exp )′�Z(x) =

1
(the function cos)(x)2

− 1
(the function sin)(x)2

−(the function tan)(x)−(the function cot)(x)

(the function exp)(x) .

(43) Suppose Z ⊆ dom((the function sin) · sec). Then

(i) (the function sin) · sec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) · sec)′�Z(x) =
(the function cos)((sec)(x))·(the function sin)(x)

(the function cos)(x)2 .

(44) Suppose Z ⊆ dom((the function cos) · sec). Then

(i) (the function cos) · sec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) · sec)′�Z(x) =

− (the function sin)((sec)(x))·(the function sin)(x)
(the function cos)(x)2

.

(45) Suppose Z ⊆ dom((the function sin) · cosec). Then

(i) (the function sin) · cosec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) · cosec)′�Z(x) =

− (the function cos)((cosec)(x))·(the function cos)(x)
(the function sin)(x)2

.

(46) Suppose Z ⊆ dom((the function cos) · cosec). Then

(i) (the function cos) · cosec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) · cosec)′�Z(x) =
(the function sin)((cosec)(x))·(the function cos)(x)

(the function sin)(x)2 .

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
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