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Summary. In this article, we give several differentiation formulas of spe-

cial and composite functions including trigonometric, polynomial and logarithmic

functions.
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The articles [13], [15], [1], [16], [2], [4], [10], [11], [17], [5], [14], [12], [3], [7], [6],

[9], and [8] provide the notation and terminology for this paper.

The partial function sec from R to R is defined as follows:

(Def. 1) sec = 1
the function cos .

The partial function cosec from R to R is defined by:

(Def. 2) cosec = 1
the function sin .

For simplicity, we follow the rules: x, a, b, c are real numbers, n is a natural

number, Z is an open subset of R, and f , f1, f2 are partial functions from R to

R.

One can prove the following propositions:

(1) If (the function cos)(x) 6= 0, then sec is differentiable in x and (sec)′(x) =
(the function sin)(x)

(the function cos)(x)2
.

(2) If (the function sin)(x) 6= 0, then cosec is differentiable in x and

(cosec)′(x) = − (the function cos)(x)
(the function sin)(x)2 .

(3) ( 1
x)nZ = 1

xnZ
.

(4) Suppose Z ⊆ dom sec . Then sec is differentiable on Z and for every x

such that x ∈ Z holds (sec)′�Z(x) = (the function sin)(x)
(the function cos)(x)2

.
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74 peng wang and bo li

(5) Suppose Z ⊆ dom cosec . Then cosec is differentiable on Z and for every

x such that x ∈ Z holds (cosec)′�Z(x) = − (the function cos)(x)
(the function sin)(x)2

.

(6) Suppose Z ⊆ dom(sec ·f) and for every x such that x ∈ Z holds f(x) =

a · x+ b. Then

(i) sec ·f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (sec ·f)′�Z(x) = a·(the function sin)(a·x+b)
(the function cos)(a·x+b)2 .

(7) Suppose Z ⊆ dom(cosec ·f) and for every x such that x ∈ Z holds

f(x) = a · x+ b. Then

(i) cosec ·f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (cosec ·f)′�Z(x) =

−a·(the function cos)(a·x+b)
(the function sin)(a·x+b)2

.

(8) Suppose Z ⊆ dom(sec · 1f ) and for every x such that x ∈ Z holds f(x) =

x. Then

(i) sec · 1f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (sec · 1f )′�Z(x) =

− (the function sin)( 1
x

)

x2·(the function cos)( 1
x

)2
.

(9) Suppose Z ⊆ dom(cosec · 1f ) and for every x such that x ∈ Z holds

f(x) = x. Then

(i) cosec · 1f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (cosec · 1f )′�Z(x) =
(the function cos)( 1

x
)

x2·(the function sin)( 1
x

)2
.

(10) Suppose Z ⊆ dom(sec ·(f1 + c f2)) and f2 = 2
Z and for every x such that

x ∈ Z holds f1(x) = a+ b · x. Then

(i) sec ·(f1 + c f2) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (sec ·(f1 + c f2))′�Z(x) =
(b+2·c·x)·(the function sin)(a+b·x+c·x2)

(the function cos)(a+b·x+c·x2)2
.

(11) Suppose Z ⊆ dom(cosec ·(f1 + c f2)) and f2 = 2
Z and for every x such

that x ∈ Z holds f1(x) = a+ b · x. Then

(i) cosec ·(f1 + c f2) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (cosec ·(f1 + c f2))′�Z(x) =

− (b+2·c·x)·(the function cos)(a+b·x+c·x2)
(the function sin)(a+b·x+c·x2)2

.

(12) Suppose Z ⊆ dom(sec ·(the function exp)). Then

(i) sec ·(the function exp) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (sec ·(the function exp))′�Z(x) =
(the function exp)(x)·(the function sin)((the function exp)(x))

(the function cos)((the function exp)(x))2
.

(13) Suppose Z ⊆ dom(cosec ·(the function exp)). Then

(i) cosec ·(the function exp) is differentiable on Z, and
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(ii) for every x such that x ∈ Z holds (cosec ·(the function exp))′�Z(x) =

− (the function exp)(x)·(the function cos)((the function exp)(x))
(the function sin)((the function exp)(x))2

.

(14) Suppose Z ⊆ dom(sec ·(the function ln)). Then

(i) sec ·(the function ln) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (sec ·(the function ln))′�Z(x) =
(the function sin)((the function ln)(x))

x·(the function cos)((the function ln)(x))2 .

(15) Suppose Z ⊆ dom(cosec ·(the function ln)). Then

(i) cosec ·(the function ln) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (cosec ·(the function ln))′�Z(x) =

− (the function cos)((the function ln)(x))
x·(the function sin)((the function ln)(x))2

.

(16) Suppose Z ⊆ dom((the function exp) · sec). Then

(i) (the function exp) · sec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) · sec)′�Z(x) =
(the function exp)((sec)(x))·(the function sin)(x)

(the function cos)(x)2
.

(17) Suppose Z ⊆ dom((the function exp) · cosec). Then

(i) (the function exp) · cosec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) · cosec)′�Z(x) =

− (the function exp)((cosec)(x))·(the function cos)(x)
(the function sin)(x)2

.

(18) Suppose Z ⊆ dom((the function ln) · sec). Then

(i) (the function ln) · sec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) · sec)′�Z(x) =
(the function sin)(x)
(the function cos)(x) .

(19) Suppose Z ⊆ dom((the function ln) · cosec). Then

(i) (the function ln) · cosec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) · cosec)′�Z(x) =

− (the function cos)(x)
(the function sin)(x) .

(20) Suppose Z ⊆ dom((nZ) · sec) and 1 ≤ n. Then

(i) (nZ) · sec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((nZ)·sec)′�Z(x) = n·(the function sin)(x)

(the function cos)(x)n+1
Z

.

(21) Suppose Z ⊆ dom((nZ) · cosec) and 1 ≤ n. Then

(i) (nZ) · cosec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((nZ) · cosec)′�Z(x) =

− n·(the function cos)(x)

(the function sin)(x)n+1
Z

.

(22) Suppose Z ⊆ dom(sec−idZ). Then

(i) sec−idZ is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (sec−idZ)′�Z(x) =
(the function sin)(x)−(the function cos)(x)2

(the function cos)(x)2
.
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(23) Suppose Z ⊆ dom(−cosec − idZ). Then

(i) −cosec − idZ is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (−cosec − idZ)′�Z(x) =
(the function cos)(x)−(the function sin)(x)2

(the function sin)(x)2
.

(24) Suppose Z ⊆ dom((the function exp) sec). Then

(i) (the function exp) sec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) sec)′�Z(x) =
(the function exp)(x)
(the function cos)(x) + (the function exp)(x)·(the function sin)(x)

(the function cos)(x)2
.

(25) Suppose Z ⊆ dom((the function exp) cosec). Then

(i) (the function exp) cosec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) cosec)′�Z(x) =
(the function exp)(x)
(the function sin)(x) −

(the function exp)(x)·(the function cos)(x)
(the function sin)(x)2 .

(26) Suppose Z ⊆ dom( 1
a (sec ·f) − idZ) and for every x such that x ∈ Z

holds f(x) = a · x and a 6= 0. Then

(i) 1
a (sec ·f)− idZ is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
a (sec ·f) − idZ)′�Z(x) =

(the function sin)(a·x)−(the function cos)(a·x)2

(the function cos)(a·x)2
.

(27) Suppose Z ⊆ dom((− 1
a) (cosec ·f)− idZ) and for every x such that x ∈ Z

holds f(x) = a · x and a 6= 0. Then

(i) (− 1
a ) (cosec ·f)− idZ is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((− 1
a ) (cosec ·f) − idZ)′�Z(x) =

(the function cos)(a·x)−(the function sin)(a·x)2

(the function sin)(a·x)2
.

(28) Suppose Z ⊆ dom(f sec) and for every x such that x ∈ Z holds f(x) =

a · x+ b. Then

(i) f sec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (f sec)′�Z(x) = a
(the function cos)(x) +

(a·x+b)·(the function sin)(x)
(the function cos)(x)2

.

(29) Suppose Z ⊆ dom(f cosec) and for every x such that x ∈ Z holds

f(x) = a · x+ b. Then

(i) f cosec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (f cosec)′�Z(x) = a
(the function sin)(x) −

(a·x+b)·(the function cos)(x)
(the function sin)(x)2 .

(30) Suppose Z ⊆ dom((the function ln) sec). Then

(i) (the function ln) sec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) sec)′�Z(x) =
1

(the function cos)(x)

x + (the function ln)(x)·(the function sin)(x)
(the function cos)(x)2

.

(31) Suppose Z ⊆ dom((the function ln) cosec). Then
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(i) (the function ln) cosec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) cosec)′�Z(x) =
1

(the function sin)(x)

x − (the function ln)(x)·(the function cos)(x)
(the function sin)(x)2 .

(32) Suppose Z ⊆ dom( 1
f sec) and for every x such that x ∈ Z holds f(x) = x.

Then

(i) 1
f sec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
f sec)′�Z(x) = −

1
(the function cos)(x)

x2 +
(the function sin)(x)

x
(the function cos)(x)2

.

(33) Suppose Z ⊆ dom( 1
f cosec) and for every x such that x ∈ Z holds

f(x) = x. Then

(i) 1
f cosec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
f cosec)′�Z(x) = −

1
(the function sin)(x)

x2 −
(the function cos)(x)

x
(the function sin)(x)2

.

(34) Suppose Z ⊆ dom(sec ·(the function sin)). Then

(i) sec ·(the function sin) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (sec ·(the function sin))′�Z(x) =
(the function cos)(x)·(the function sin)((the function sin)(x))

(the function cos)((the function sin)(x))2
.

(35) Suppose Z ⊆ dom(sec ·(the function cos)). Then

(i) sec ·(the function cos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (sec ·(the function cos))′�Z(x) =

− (the function sin)(x)·(the function sin)((the function cos)(x))
(the function cos)((the function cos)(x))2 .

(36) Suppose Z ⊆ dom(cosec ·(the function sin)). Then

(i) cosec ·(the function sin) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (cosec ·(the function sin))′�Z(x) =

− (the function cos)(x)·(the function cos)((the function sin)(x))
(the function sin)((the function sin)(x))2 .

(37) Suppose Z ⊆ dom(cosec ·(the function cos)). Then

(i) cosec ·(the function cos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (cosec ·(the function cos))′�Z (x) =
(the function sin)(x)·(the function cos)((the function cos)(x))

(the function sin)((the function cos)(x))2
.

(38) Suppose Z ⊆ dom(sec ·(the function tan)). Then

(i) sec ·(the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (sec ·(the function tan))′�Z(x) =
(the function sin)((the function tan)(x))

(the function cos)(x)2

(the function cos)((the function tan)(x))2
.

(39) Suppose Z ⊆ dom(sec ·(the function cot)). Then

(i) sec ·(the function cot) is differentiable on Z, and
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(ii) for every x such that x ∈ Z holds (sec ·(the function cot))′�Z (x) =

−
(the function sin)((the function cot)(x))

(the function sin)(x)2

(the function cos)((the function cot)(x))2
.

(40) Suppose Z ⊆ dom(cosec ·(the function tan)). Then

(i) cosec ·(the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (cosec ·(the function tan))′�Z(x) =

−
(the function cos)((the function tan)(x))

(the function cos)(x)2

(the function sin)((the function tan)(x))2
.

(41) Suppose Z ⊆ dom(cosec ·(the function cot)). Then

(i) cosec ·(the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (cosec ·(the function cot))′�Z (x) =
(the function cos)((the function cot)(x))

(the function sin)(x)2

(the function sin)((the function cot)(x))2 .

(42) Suppose Z ⊆ dom((the function tan) sec). Then

(i) (the function tan) sec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan) sec)′�Z(x) =
1

(the function cos)(x)2

(the function cos)(x) + (the function tan)(x)·(the function sin)(x)
(the function cos)(x)2

.

(43) Suppose Z ⊆ dom((the function cot) sec). Then

(i) (the function cot) sec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cot) sec)′�Z(x) =

−
1

(the function sin)(x)2

(the function cos)(x) + (the function cot)(x)·(the function sin)(x)
(the function cos)(x)2

.

(44) Suppose Z ⊆ dom((the function tan) cosec). Then

(i) (the function tan) cosec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan) cosec)′�Z(x) =
1

(the function cos)(x)2

(the function sin)(x) −
(the function tan)(x)·(the function cos)(x)

(the function sin)(x)2
.

(45) Suppose Z ⊆ dom((the function cot) cosec). Then

(i) (the function cot) cosec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cot) cosec)′�Z(x) =

−
1

(the function sin)(x)2

(the function sin)(x) −
(the function cot)(x)·(the function cos)(x)

(the function sin)(x)2
.
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The terminology and notation used here are introduced in the following articles:

[20], [9], [22], [2], [1], [19], [5], [23], [7], [10], [8], [4], [13], [12], [21], [14], [3], [6],

[16], [11], [15], [17], and [18].

1. The Product Space of Real Linear Spaces

The following propositions are true:

(1) Let s, t be sequences of real numbers and g be a real number. Suppose

that for every element n of N holds t(n) = |s(n)− g|. Then s is convergent

and lim s = g if and only if t is convergent and lim t = 0.

(2) Let x, y be finite sequences of elements of R. Suppose lenx = len y

and for every element i of N such that i ∈ Seg lenx holds 0 ≤ x(i) and

x(i) ≤ y(i). Then |x| ≤ |y|.
(3) Let F be a finite sequence of elements of R. If for every element i of N

such that i ∈ domF holds F (i) = 0, then
∑
F = 0.

81
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Let f be a function and let X be a set. A function is called a multi-operation

of X and f if:

(Def. 1) dom it = dom f and for every set i such that i ∈ dom f holds it(i) is a

function from [:X, f(i) :] into f(i).

Let F be a sequence of non empty sets and let X be a set. Observe that

every multi-operation of X and F is finite sequence-like.

We now state the proposition

(4) Let X be a set, F be a sequence of non empty sets, and p be a finite

sequence. Then p is a multi-operation of X and F if and only if len p =

lenF and for every set i such that i ∈ domF holds p(i) is a function from

[:X, F (i) :] into F (i).

Let F be a sequence of non empty sets, let X be a set, let p be a multi-

operation of X and F , and let i be an element of domF. Then p(i) is a function

from [:X, F (i) :] into F (i).

Next we state the proposition

(5) Let X be a non empty set, F be a sequence of non empty sets, and f ,

g be functions from [:X,
∏
F :] into

∏
F. Suppose that for every element

x of X and for every element d of
∏
F and for every element i of domF

holds f(x, d)(i) = g(x, d)(i). Then f = g.

Let F be a sequence of non empty sets, let X be a non empty set, and let

p be a multi-operation of X and F . The functor
∏◦ p yielding a function from

[:X,
∏
F :] into

∏
F is defined as follows:

(Def. 2) For every element x of X and for every element d of
∏
F and for every

element i of domF holds (
∏◦ p)(x, d)(i) = p(i)(x, d(i)).

Let R be a binary relation. We say that R is real-linear-space-yielding if and

only if:

(Def. 3) For every set S such that S ∈ rngR holds S is a real linear space.

Let us note that there exists a finite sequence which is non empty and real-

linear-space-yielding.

A real linear space-sequence is a non empty real-linear-space-yielding finite

sequence.

Let G be a real linear space-sequence and let j be an element of domG.

Then G(j) is a real linear space.

Let G be a real linear space-sequence. The functor G yielding a sequence of

non empty sets is defined by:

(Def. 4) lenG = lenG and for every element j of domG holds G(j) = the carrier

of G(j).

Let G be a real linear space-sequence and let j be an element of domG.

Then G(j) is a real linear space.
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Let G be a real linear space-sequence. The functor 〈+Gi〉i yielding a family

of binary operations of G is defined as follows:

(Def. 5) len(〈+Gi〉i) = lenG and for every element j of domG holds 〈+Gi〉i(j) =

the addition of G(j).

The functor 〈−Gi〉i yields a family of unary operations of G and is defined as

follows:

(Def. 6) len(〈−Gi〉i) = lenG and for every element j of domG holds 〈−Gi〉i(j) =

compG(j).

The functor 〈0Gi〉i yielding an element of
∏
G is defined by:

(Def. 7) For every element j of domG holds 〈0Gi〉i(j) = the zero of G(j).

The functor multopG yields a multi-operation of R and G and is defined by:

(Def. 8) len multopG = lenG and for every element j of domG holds

(multopG)(j) = the external multiplication of G(j).

Let G be a real linear space-sequence. The functor
∏
G yielding a strict non

empty RLS structure is defined by:

(Def. 9)
∏
G = 〈∏G, 〈0Gi〉i,

∏◦(〈+Gi〉i),
∏◦multopG〉.

Let G be a real linear space-sequence. One can check that
∏
G is Abelian,

add-associative, right zeroed, right complementable, and real linear space-like.

2. The Product Space of Real Normed Spaces

Let R be a binary relation. We say that R is real-norm-space-yielding if and

only if:

(Def. 10) For every set x such that x ∈ rngR holds x is a real normed space.

One can check that there exists a finite sequence which is non empty and

real-norm-space-yielding.

A real norm space-sequence is a non empty real-norm-space-yielding finite

sequence.

Let G be a real norm space-sequence and let j be an element of domG. Then

G(j) is a real normed space.

Let us note that every finite sequence which is real-norm-space-yielding is

also real-linear-space-yielding.

Let G be a real norm space-sequence and let x be an element of
∏
G. The

functor normsequence(G, x) yields an element of RlenG and is defined as follows:

(Def. 11) len normsequence(G, x) = lenG and for every element j of domG holds

(normsequence(G, x))(j) = (the norm of G(j))(x(j)).

Let G be a real norm space-sequence. The functor productnormG yields a

function from
∏

(G qua real linear space-sequence) into R and is defined by:

(Def. 12) For every element x of
∏
G holds

(productnormG)(x) = |normsequence(G, x)|.
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Let G be a real norm space-sequence. The functor
∏
G yielding a strict non

empty normed structure is defined as follows:

(Def. 13) The RLS structure of
∏
G =

∏
(G qua real linear space-sequence) and

the norm of
∏
G = productnormG.

In the sequel G is a real norm space-sequence.

We now state four propositions:

(6)
∏
G = 〈∏G, 〈0Gi〉i,

∏◦(〈+Gi〉i),
∏◦multopG,productnormG〉.

(7) For every vector x of
∏
G and for every element y of

∏
G such that

x = y holds ‖x‖ = |normsequence(G, y)|.
(8) For all elements x, y, z of

∏
G and for every element i of N such that

i ∈ domx and z = (
∏◦(〈+Gi〉i))(x, y) holds (normsequence(G, z))(i) ≤

(normsequence(G, x) + normsequence(G, y))(i).

(9) For every element x of
∏
G and for every element i of N such that

i ∈ domx holds 0 ≤ (normsequence(G, x))(i).

Let G be a real norm space-sequence. Observe that
∏
G is real normed

space-like, real linear space-like, Abelian, add-associative, right zeroed, and right

complementable.

One can prove the following propositions:

(10) Let G be a real norm space-sequence, i be an element of domG, x be a

point of
∏
G, y be an element of

∏
G, and x1 be a point of G(i). If y = x

and x1 = y(i), then ‖x1‖ ≤ ‖x‖.
(11) Let G be a real norm space-sequence, i be an element of domG, x, y be

points of
∏
G, x1, y1 be points of G(i), and z1, z2 be elements of

∏
G. If

x1 = z1(i) and z1 = x and y1 = z2(i) and z2 = y, then ‖y1−x1‖ ≤ ‖y−x‖.
(12) Let G be a real norm space-sequence, s1 be a sequence of

∏
G, x0 be

a point of
∏
G, and y0 be an element of

∏
G. Suppose x0 = y0 and s1

is convergent and lim s1 = x0. Let i be an element of domG. Then there

exists a sequence s2 of G(i) such that s2 is convergent and y0(i) = lim s2

and for every element m of N there exists an element s3 of
∏
G such that

s3 = s1(m) and s2(m) = s3(i).

(13) Let G be a real norm space-sequence, s1 be a sequence of
∏
G, x0 be a

point of
∏
G, and y0 be an element of

∏
G. Suppose that

(i) x0 = y0, and

(ii) for every element i of domG there exists a sequence s2 of G(i) such

that s2 is convergent and y0(i) = lim s2 and for every element m of N there

exists an element s3 of
∏
G such that s3 = s1(m) and s2(m) = s3(i).

Then s1 is convergent and lim s1 = x0.

(14) For every real norm space-sequence G such that for every element i of

domG holds G(i) is complete holds
∏
G is complete.
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1. Binary Operations, Orbits, and Iterations

(1) Let f , g, h be functions and A be a set. Suppose A ⊆ dom f and

A ⊆ dom g and rng h ⊆ A and for every set x such that x ∈ A holds

f(x) = g(x). Then f · h = g · h.
Let x, y be non empty sets. Observe that 〈x, y〉 is non-empty.

Let p, q be non-empty finite sequences. One can check that p a q is non-

empty.

Let f be a homogeneous function and let x be a set. We say that x is a

unity w.r.t. f if and only if:

(Def. 1) For all sets y, z such that 〈y, z〉 ∈ dom f or 〈z, y〉 ∈ dom f holds 〈x,
y〉 ∈ dom f and f(〈x, y〉) = y and 〈y, x〉 ∈ dom f and f(〈y, x〉) = y.

Let f be a homogeneous function. We say that f is associative if and only

if:

(Def. 2) For all sets x, y, z such that 〈x, y〉 ∈ dom f and 〈y, z〉 ∈ dom f and 〈f(〈x,
y〉), z〉 ∈ dom f and 〈x, f(〈y, z〉)〉 ∈ dom f holds f(〈f(〈x, y〉), z〉) = f(〈x,
f(〈y, z〉)〉).

We say that f is unital if and only if:

(Def. 3) There exists a set which is a unity w.r.t. f .

Let X be a set, let Y be a non empty set, let Z be a set of finite sequences

of X, and let y be an element of Y . Then Z 7−→ y is a partial function from X ∗

to Y .

Let X be a non empty set, let x be an element of X, and let n be a natural

number. Observe that Xn 7−→ x is non empty, quasi total, and homogeneous.

One can prove the following proposition

(2) For every non empty set X and for every element x of X and for every

natural number n holds arity(Xn 7−→ x) = n.

Let X be a non empty set and let x be an element of X. One can check the

following observations:

∗ X0 7−→ x is nullary,

∗ X1 7−→ x is unary,

∗ X2 7−→ x is binary, and

∗ X3 7−→ x is ternary.

Let X be a non empty set. One can check the following observations:

∗ there exists a non empty quasi total homogeneous partial function from

X∗ to X which is binary, associative, and unital,

∗ there exists a non empty quasi total homogeneous partial function from

X∗ to X which is nullary, and
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∗ there exists a non empty quasi total homogeneous partial function from

X∗ to X which is ternary.

Next we state the proposition

(3) Let X be a non empty set, p be a finite sequence of elements of

FinTrees(X), and x, t be sets. If t ∈ rng p, then t 6= x-tree(p).

Let f , g be functions and let X be a set. The functor f+·Xg yields a function

and is defined as follows:

(Def. 4) f+·Xg = g+·f�X.
We now state two propositions:

(4) For all functions f , g and for all sets x, X such that x ∈ X and X ⊆
dom f holds (f+·Xg)(x) = f(x).

(5) For all functions f , g and for all sets x, X such that x 6∈ X and x ∈ dom g

holds (f+·Xg)(x) = g(x).

Let X, Y be non empty sets, let f , g be elements of Y X , and let A be a set.

Then f+·Ag is an element of Y X .

Let X, Y , Z be non empty sets, let f be an element of Y X , and let g be an

element of ZY . Then g · f is an element of ZX .

Let f be a function and let x be a set. The functor f -orbit(x) is defined by:

(Def. 5) f -orbit(x) = {fn(x);n ranges over elements of N: x ∈ dom(f n)}.
We now state four propositions:

(6) For every function f and for every set x such that x ∈ dom f holds

x ∈ f -orbit(x).

(7) For every function f and for all sets x, y such that rng f ⊆ dom f and

y ∈ f -orbit(x) holds f(y) ∈ f -orbit(x).

(8) For every function f and for every set x such that x ∈ dom f holds

f(x) ∈ f -orbit(x).

(9) For every function f and for every set x such that x ∈ dom f and f(x) ∈
dom f holds f -orbit(f(x)) ⊆ f -orbit(x).

Let f be a function. Let us assume that rng f ⊆ dom f. Let A be a set and

let x be a set. The functor f ∗A→x yielding a function is defined by the conditions

(Def. 6).

(Def. 6)(i) dom(f ∗A→x) = dom f, and

(ii) for every set a such that a ∈ dom f holds if f -orbit(a) ⊆ A, then

f∗A→x(a) = x and for every natural number n such that f n(a) 6∈ A and for

every natural number i such that i < n holds f i(a) ∈ A holds f ∗A→x(a) =

fn(a).

Let f be a function. Let us assume that rng f ⊆ dom f. Let A be a set and

let g be a function. The functor f ∗A→g yields a function and is defined by the

conditions (Def. 7).
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(Def. 7)(i) dom(f ∗A→g) = dom f, and

(ii) for every set a such that a ∈ dom f holds if f -orbit(a) ⊆ A, then

f∗A→g(a) = g(a) and for every natural number n such that f n(a) 6∈ A

and for every natural number i such that i < n holds f i(a) ∈ A holds

f∗A→g(a) = fn(a).

The following propositions are true:

(10) Let f , g be functions and a, A be sets. Suppose rng f ⊆ dom f and

a ∈ dom f. Suppose f -orbit(a) 6⊆ A. Then there exists a natural number n

such that f ∗A→g(a) = fn(a) and fn(a) 6∈ A and for every natural number

i such that i < n holds f i(a) ∈ A.
(11) Let f , g be functions and a, A be sets. If rng f ⊆ dom f and a ∈ dom f

and g · f = g, then if a ∈ A, then f ∗A→g(a) = f∗A→g(f(a)).

(12) For all functions f , g and for all sets a, A such that rng f ⊆ dom f and

a ∈ dom f holds if a 6∈ A, then f ∗A→g(a) = a.

Let X be a non empty set, let f be an element of XX , let A be a set, and

let g be an element of XX . Then f ∗A→g is an element of XX .

2. Free Universal Algebras

We now state three propositions:

(13) Let X be a non empty set and S be a non empty finite sequence of

elements of N. Then there exists a universal algebra A such that the

carrier of A = X and signatureA = S.

(14) Let S be a non empty finite sequence of elements of N. Then there exists

a universal algebra A such that

(i) the carrier of A = N,
(ii) signatureA = S, and

(iii) for all natural numbers i, j such that i ∈ domS and j = S(i) holds

(the characteristic of A)(i) = Nj 7−→ i.

(15) Let S be a non empty finite sequence of elements of N and i, j be natural

numbers. Suppose i ∈ domS and j = S(i). Let X be a non empty set and

f be a function from Xj into X. Then there exists a universal algebra A

such that the carrier of A = X and signatureA = S and (the characteristic

of A)(i) = f.

Let f be a non empty finite sequence of elements of N and let D be a non

empty missing N set. Observe that every element of FreeUnivAlgNSG(f,D) is

relation-like and function-like.

Let f be a non empty finite sequence of elements of N and let D be a non

empty missing N set. One can verify that every element of FreeUnivAlgNSG(f,D)
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is decorated tree-like and every finite sequence of elements of FreeUnivAlgNSG(f,

D) is decorated tree yielding.

We now state two propositions:

(16) Let G be a non empty tree construction structure and t be a set. Suppose

t ∈ TS(G). Then

(i) there exists a symbol d of G such that d ∈ the terminals of G and

t = the root tree of d, or

(ii) there exists a symbol o of G and there exists a finite sequence p of

elements of TS(G) such that o⇒ the roots of p and t = o-tree(p).

(17) Let X be a missing N non empty set, S be a non empty finite sequence

of elements of N, and i be a natural number. Suppose i ∈ domS. Let

p be a finite sequence of elements of FreeUnivAlgNSG(S,X). If len p =

S(i), then (Den(i(∈ dom (the characteristic of FreeUnivAlgNSG(S,X))),

FreeUnivAlgNSG(S,X)))(p) = i-tree(p).

Let A be a non-empty universal algebra structure, let B be a subset of A,

and let n be a natural number. The functor Bn yielding a subset of A is defined

by the condition (Def. 8).

(Def. 8) There exists a function F from N into 2the carrier of A such that

(i) Bn = F (n),

(ii) F (0) = B, and

(iii) for every natural number n holds F (n+1) = F (n)∪{(Den(o,A))(p); o

ranges over elements of dom (the characteristic of A), p ranges over ele-

ments of (the carrier of A)∗: p ∈ dom Den(o,A) ∧ rng p ⊆ F (n)}.
Next we state several propositions:

(18) For every universal algebra A and for every subset B of A holds B0 = B.

(19) Let A be a universal algebra, B be a subset of A, and n be a natural

number. Then Bn+1 = Bn ∪ {(Den(o,A))(p); o ranges over elements of

dom (the characteristic of A), p ranges over elements of (the carrier of A)∗:
p ∈ dom Den(o,A) ∧ rng p ⊆ Bn}.

(20) Let A be a universal algebra, B be a subset of A, n be a natural number,

and x be a set. Then x ∈ Bn+1 if and only if one of the following conditions

is satisfied:

(i) x ∈ Bn, or

(ii) there exists an element o of dom (the characteristic of A) and there

exists an element p of (the carrier of A)∗ such that x = (Den(o,A))(p)

and p ∈ dom Den(o,A) and rng p ⊆ Bn.

(21) Let A be a universal algebra, B be a subset of A, and n, m be natural

numbers. If n ≤ m, then Bn ⊆ Bm.

(22) Let A be a universal algebra and B1, B2 be subsets of A. If B1 ⊆ B2,

then for every natural number n holds B1
n ⊆ B2

n.
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(23) Let A be a universal algebra, B be a subset of A, n be a natural number,

and x be a set. Then x ∈ Bn+1 if and only if one of the following conditions

is satisfied:

(i) x ∈ B, or

(ii) there exists an element o of dom (the characteristic of A) and there

exists an element p of (the carrier of A)∗ such that x = (Den(o,A))(p)

and p ∈ dom Den(o,A) and rng p ⊆ Bn.

The scheme MaxVal deals with a non empty set A, a set B, and a binary

predicate P, and states that:

There exists a natural number n such that for every element x of

A such that x ∈ B holds P[x, n]

provided the following conditions are satisfied:

• B is finite,

• For every element x of A such that x ∈ B there exists a natural

number n such that P[x, n], and

• For every element x of A and for all natural numbers n, m such

that P[x, n] and n ≤ m holds P[x,m].

We now state two propositions:

(24) Let A be a universal algebra and B be a subset of A. Then there exists

a subset C of A such that C =
⋃{Bn : n ranges over elements of N} and

C is operations closed.

(25) Let A be a universal algebra and B, C be subsets of A. Suppose C is

operations closed and B ⊆ C. Then
⋃{Bn : n ranges over elements of

N} ⊆ C.
Let A be a universal algebra. The functor GeneratorsA yielding a subset of

A is defined by:

(Def. 9) GeneratorsA = (the carrier of A) \ ⋃{rng o : o ranges over elements of

Operations(A)}.
Next we state several propositions:

(26) Let A be a universal algebra and a be an element of A. Then a ∈
GeneratorsA if and only if it is not true that there exists an element o of

Operations(A) such that a ∈ rng o.

(27) For every universal algebra A and for every subset B of A such that B

is operations closed holds Constants(A) ⊆ B.
(28) For every universal algebra A such that Constants(A) = ∅ holds ∅A is

operations closed.

(29) For every universal algebra A such that Constants(A) = ∅ and for every

generator set G of A holds G 6= ∅.
(30) Let A be a universal algebra and G be a subset of A. Then G is a

generator set of A if and only if for every element I of A there exists a
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natural number n such that I ∈ Gn.

(31) Let A be a universal algebra, B be a subset of A, and G be a generator

set of A. If G ⊆ B, then B is a generator set of A.

(32) Let A be a universal algebra, G be a generator set of A, and a be an ele-

ment of A. If it is not true that there exists an element o of Operations(A)

such that a ∈ rng o, then a ∈ G.
(33) For every universal algebra A and for every generator set G of A holds

GeneratorsA ⊆ G.
(34) For every free universal algebra A and for every free generator set G of

A holds G = GeneratorsA.

Let A be a free universal algebra. Note that GeneratorsA is free.

Let A be a free universal algebra. Then GeneratorsA is a generator set of

A.

Let A, B be sets. Note that [:A, B :] is missing N.

One can prove the following propositions:

(35) Let A be a free universal algebra, G be a generator set of A, B be a

universal algebra, and h1, h2 be functions from A into B. Suppose h1 is a

homomorphism of A into B and h2 is a homomorphism of A into B and

h1�G = h2�G. Then h1 = h2.

(36) Let A be a free universal algebra, o1, o2 be operation symbols of A, and

p1, p2 be finite sequences. If p1 ∈ dom Den(o1, A) and p2 ∈ dom Den(o2,

A), then if (Den(o1, A))(p1) = (Den(o2, A))(p2), then o1 = o2 and p1 = p2.

(37) Let A be a free universal algebra, o1, o2 be elements of Operations(A),

and p1, p2 be finite sequences. If p1 ∈ dom o1 and p2 ∈ dom o2, then if

o1(p1) = o2(p2), then o1 = o2 and p1 = p2.

(38) Let A be a free universal algebra, o be an operation symbol of A, and p

be a finite sequence. If p ∈ dom Den(o,A), then for every set a such that

a ∈ rng p holds a 6= (Den(o,A))(p).

(39) Let A be a free universal algebra, G be a generator set of A, and o be

an operation symbol of A. Suppose that for every operation symbol o′

of A and for every finite sequence p such that p ∈ dom Den(o′, A) and

(Den(o′, A))(p) ∈ G holds o′ 6= o. Let p be a finite sequence. Suppose

p ∈ dom Den(o,A). Let n be a natural number. If (Den(o,A))(p) ∈ Gn+1,

then rng p ⊆ Gn.
(40) Let A be a free universal algebra, o be an operation symbol of A, and p be

a finite sequence. Suppose p ∈ dom Den(o,A). Let n be a natural number.

If (Den(o,A))(p) ∈ (GeneratorsA)n+1, then rng p ⊆ (GeneratorsA)n.
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3. If-while Algebra

Let S be a non empty universal algebra structure. We say that S has empty-

instruction if and only if the conditions (Def. 10) are satisfied.

(Def. 10)(i) 1 ∈ dom (the characteristic of S), and

(ii) (the characteristic of S)(1) is a nullary non empty homogeneous quasi

total partial function from (the carrier of S)∗ to the carrier of S.

We say that S has catenation if and only if the conditions (Def. 11) are satisfied.

(Def. 11)(i) 2 ∈ dom (the characteristic of S), and

(ii) (the characteristic of S)(2) is a binary non empty homogeneous quasi

total partial function from (the carrier of S)∗ to the carrier of S.

We say that S has if-instruction if and only if the conditions (Def. 12) are

satisfied.

(Def. 12)(i) 3 ∈ dom (the characteristic of S), and

(ii) (the characteristic of S)(3) is a ternary non empty homogeneous quasi

total partial function from (the carrier of S)∗ to the carrier of S.

We say that S has while-instruction if and only if the conditions (Def. 13) are

satisfied.

(Def. 13)(i) 4 ∈ dom (the characteristic of S), and

(ii) (the characteristic of S)(4) is a binary non empty homogeneous quasi

total partial function from (the carrier of S)∗ to the carrier of S.

We say that S is associative if and only if the condition (Def. 14) is satisfied.

(Def. 14) (The characteristic of S)(2) is a binary associative non empty homoge-

neous quasi total partial function from (the carrier of S)∗ to the carrier of

S.

Let S be a non-empty universal algebra structure. We say that S is unital

if and only if the condition (Def. 15) is satisfied.

(Def. 15) There exists a binary non empty homogeneous quasi total partial func-

tion f from (the carrier of S)∗ to the carrier of S such that f = (the

characteristic of S)(2) and (Den(1(∈ dom (the characteristic of S)), S))(∅)
is a unity w.r.t. f .

One can prove the following proposition

(41) Let X be a non empty set, x be an element of X, and c be a binary

associative unital non empty quasi total homogeneous partial function

from X∗ to X. Suppose x is a unity w.r.t. c. Let i be a ternary non

empty quasi total homogeneous partial function from X ∗ to X and w be

a binary non empty quasi total homogeneous partial function from X ∗ to

X. Then there exists a non-empty strict universal algebra structure S

such that

(i) the carrier of S = X,



mizar analysis of algorithms: preliminaries 95

(ii) the characteristic of S = 〈X0 7−→ x, c〉 a 〈i, w〉, and

(iii) S is unital, associative, quasi total, and partial and has empty-

instruction, catenation, if-instruction, and while-instruction.

Let us note that there exists a quasi total partial non-empty strict universal

algebra structure which is unital and associative and has empty-instruction,

catenation, if-instruction, and while-instruction.

A pre-if-while algebra is a universal algebra with empty-instruction, catena-

tion, if-instruction, and while-instruction.

For simplicity, we use the following convention: A is a pre-if-while algebra,

C, I, J are elements of A, S is a non empty set, T is a subset of S, and s is an

element of S.

Let A be a non empty universal algebra structure. An algorithm of A is an

element of A.

The following proposition is true

(42) Let A be a non-empty universal algebra structure with empty-

instruction. Then dom Den(1(∈ dom (the characteristic of A)), A) = {∅}.
Let A be a non-empty universal algebra structure with empty-instruction.

The functor EmptyInsA yielding an algorithm of A is defined as follows:

(Def. 16) EmptyInsA = (Den(1(∈ dom (the characteristic of A)), A))(∅).
The following two propositions are true:

(43) Let A be a universal algebra with empty-instruction and o be an element

of Operations(A). If o = Den(1(∈ dom (the characteristic of A)), A), then

arity o = 0 and EmptyInsA ∈ rng o.

(44) Let A be a non-empty universal algebra structure with catenation. Then

dom Den(2(∈ dom (the characteristic of A)), A) = (the carrier of A)2.

Let A be a non-empty universal algebra structure with catenation and let I1,

I2 be algorithms of A. The functor I1; I2 yielding an algorithm of A is defined

as follows:

(Def. 17) I1; I2 = (Den(2(∈ dom (the characteristic of A)), A))(〈I1, I2〉).
The following propositions are true:

(45) Let A be a unital non-empty universal algebra structure with

empty-instruction and catenation and I be an element of A. Then

EmptyInsA; I = I and I; EmptyInsA = I.

(46) Let A be an associative non-empty universal algebra structure with cate-

nation and I1, I2, I3 be elements of A. Then (I1; I2); I3 = I1; (I2; I3).

(47) Let A be a non-empty universal algebra structure with if-instruction.

Then dom Den(3(∈ dom (the characteristic of A)), A) = (the carrier of

A)3.

Let A be a non-empty universal algebra structure with if-instruction and let

C, I1, I2 be algorithms of A. The functor if C then I1 else I2 yields an algorithm
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of A and is defined as follows:

(Def. 18) if C then I1 else I2 = (Den(3(∈ dom (the characteristic of A)), A))(〈C, I1 ,

I2〉).
Let A be a non-empty universal algebra structure with empty-instruction

and if-instruction and let C, I be algorithms of A. The functor if C thenI yields

an algorithm of A and is defined as follows:

(Def. 19) if C then I = if C then I else (EmptyInsA).

We now state the proposition

(48) Let A be a non-empty universal algebra structure with while-instruction.

Then dom Den(4(∈ dom (the characteristic of A)), A) = (the carrier of

A)2.

Let A be a non-empty universal algebra structure with while-instruction and

let C, I be algorithms of A. The functor whileC do I yields an algorithm of A

and is defined as follows:

(Def. 20) whileC do I = (Den(4(∈ dom (the characteristic of A)), A))(〈C, I〉).
Let A be a pre-if-while algebra and let I0, C, I, J be elements of A. The

functor for I0 until C step J do I yields an element of A and is defined by:

(Def. 21) for I0 until C step J do I = I0; whileC do (I; J).

Let A be a pre-if-while algebra. The functor ElementaryInstructionsA yields

a subset of A and is defined by the condition (Def. 22).

(Def. 22) ElementaryInstructionsA = (the carrier of A) \ {EmptyInsA} \
rng Den(3(∈ dom (the characteristic of A)), A) \ rng Den(4(∈ dom (the

characteristic of A)), A) \ {I1; I2; I1 ranges over algorithms of A, I2 ranges

over algorithms of A: I1 6= I1; I2 ∧ I2 6= I1; I2}.
Next we state several propositions:

(49) For every pre-if-while algebra A holds

EmptyInsA 6∈ ElementaryInstructionsA .

(50) For every pre-if-while algebra A and for all elements I1, I2 of A such

that I1 6= I1; I2 and I2 6= I1; I2 holds I1; I2 6∈ ElementaryInstructionsA .

(51) For every pre-if-while algebra A and for all elements C, I1, I2 of A holds

if C then I1 else I2 6∈ ElementaryInstructionsA .

(52) For every pre-if-while algebra A and for all elements C, I of A holds

whileC do I 6∈ ElementaryInstructionsA .

(53) Let A be a pre-if-while algebra and I be an element of A. Suppose

I 6∈ ElementaryInstructionsA . Then

(i) I = EmptyInsA, or

(ii) there exist elements I1, I2 of A such that I = I1; I2 and I1 6= I1; I2 and

I2 6= I1; I2, or

(iii) there exist elements C, I1, I2 of A such that I = if C then I1 else I2, or
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(iv) there exist elements C, J of A such that I = whileC do J.

Let A be a pre-if-while algebra. We say that A is infinite if and only if:

(Def. 23) ElementaryInstructionsA is infinite.

We say that A is degenerated if and only if the conditions (Def. 24) are satisfied.

(Def. 24)(i) There exist elements I1, I2 of A such that I1 6= EmptyInsA and

I1; I2 = I2 or I2 6= EmptyInsA and I1; I2 = I1 or I1 6= EmptyInsA or

I2 6= EmptyInsA but I1; I2 = EmptyInsA, or

(ii) there exist elements C, I1, I2 of A such that if C then I1 else I2 =

EmptyInsA, or

(iii) there exist elements C, I of A such that whileC do I = EmptyInsA, or

(iv) there exist elements I1, I2, C, J1, J2 of A such that I1 6= EmptyInsA
and I2 6= EmptyInsA and I1; I2 = if C then J1 else J2, or

(v) there exist elements I1, I2, C, J of A such that I1 6= EmptyInsA and

I2 6= EmptyInsA and I1; I2 = whileC do J, or

(vi) there exist elements C1, I1, I2, C2, J of A such that if C1thenI1elseI2 =

whileC2 do J.

We say that A is well founded if and only if:

(Def. 25) ElementaryInstructionsA is a generator set of A.

The non empty finite sequence ECIW-signature of elements of N is defined

by:

(Def. 26) ECIW-signature = 〈0, 2〉 a 〈3, 2〉.
We now state the proposition

(54) len ECIW-signature = 4 and dom ECIW-signature = Seg 4 and

(ECIW-signature)(1) = 0 and (ECIW-signature)(2) = 2 and

(ECIW-signature)(3) = 3 and (ECIW-signature)(4) = 2.

Let A be a partial non-empty non empty universal algebra structure. We

say that A is E.C.I.W.-strict if and only if:

(Def. 27) signatureA = ECIW-signature .

Next we state the proposition

(55) Let A be a partial non-empty non empty universal algebra structure.

Suppose A is E.C.I.W.-strict. Let o be an operation symbol of A. Then

o = 1 or o = 2 or o = 3 or o = 4.

Let X be a missing N non empty set. One can verify that

FreeUnivAlgNSG(ECIW-signature, X) has empty-instruction, catenation, if-

instruction, and while-instruction.

We now state a number of propositions:

(56) Let X be a missing N non empty set and I be an element of

FreeUnivAlgNSG(ECIW-signature, X). Then

(i) there exists an element x of X such that I = the root tree of x, or
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(ii) there exists a natural number n and there exists a finite sequence p

of elements of FreeUnivAlgNSG(ECIW-signature, X) such that n ∈ Seg 4

and I = n-tree(p) and len p = (ECIW-signature)(n).

(57) For every missing N non empty set X holds

EmptyInsFreeUnivAlgNSG(ECIW-signature,X) = 1-tree(∅).
(58) Let X be a missing N non empty set and p be a finite sequence of elements

of FreeUnivAlgNSG(ECIW-signature, X). If 1-tree(p) is an element of

FreeUnivAlgNSG(ECIW-signature, X), then p = ∅.
(59) For every missing N non empty set X and for all elements I1, I2 of

FreeUnivAlgNSG(ECIW-signature, X) holds I1; I2 = 2-tree(I1, I2).

(60) Let X be a missing N non empty set and p be a finite sequence of elements

of FreeUnivAlgNSG(ECIW-signature, X). Suppose 2-tree(p) is an element

of FreeUnivAlgNSG(ECIW-signature, X). Then there exist elements I1,

I2 of FreeUnivAlgNSG(ECIW-signature, X) such that p = 〈I1, I2〉.
(61) For every missing N non empty set X and for all elements I1, I2 of

FreeUnivAlgNSG(ECIW-signature, X) holds I1; I2 6= I1 and I1; I2 6= I2.

(62) Let X be a missing N non empty set and I1, I2, J1, J2 be elements of

FreeUnivAlgNSG(ECIW-signature, X). If I1; I2 = J1; J2, then I1 = J1

and I2 = J2.

(63) For every missing N non empty set X and for all elements C, I1,

I2 of FreeUnivAlgNSG(ECIW-signature, X) holds if C then I1 else I2 =

3-tree(〈C, I1, I2〉).
(64) Let X be a missing N non empty set and p be a finite sequence of elements

of FreeUnivAlgNSG(ECIW-signature, X). Suppose 3-tree(p) is an element

of FreeUnivAlgNSG(ECIW-signature, X). Then there exist elements C,

I1, I2 of FreeUnivAlgNSG(ECIW-signature, X) such that p = 〈C, I1, I2〉.
(65) Let X be a missing N non empty set and C1, C2, I1, I2, J1, J2 be

elements of FreeUnivAlgNSG(ECIW-signature, X). If if C1thenI1elseI2 =

if C2 then J1 else J2, then C1 = C2 and I1 = J1 and I2 = J2.

(66) For every missing N non empty set X and for all elements C, I of

FreeUnivAlgNSG(ECIW-signature, X) holds whileC do I = 4-tree(C, I).

(67) Let X be a missing N non empty set and p be a finite sequence of

elements of FreeUnivAlgNSG(ECIW-signature, X). Suppose 4-tree(p) is

an element of FreeUnivAlgNSG(ECIW-signature, X).

Then there exist elements C, I of FreeUnivAlgNSG(ECIW-signature, X)

such that p = 〈C, I〉.
(68) Let X be a missing N non empty set and I be an element of

FreeUnivAlgNSG(ECIW-signature, X).

If I ∈ ElementaryInstructionsFreeUnivAlgNSG(ECIW-signature,X), then there

exists an element x of X such that I = x-tree(∅).
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(69) Let X be a missing N non empty set, p be a finite sequence of elements

of FreeUnivAlgNSG(ECIW-signature, X), and x be an element of X. If x-

-tree(p) is an element of FreeUnivAlgNSG(ECIW-signature, X), then p=∅.
(70) For every missing N non empty set X holds

ElementaryInstructionsFreeUnivAlgNSG(ECIW-signature,X) =

FreeGenSetNSG(ECIW-signature, X) and

X = FreeGenSetNSG(ECIW-signature, X) .

Let us observe that there exists a set which is infinite and missing N.

Let X be an infinite missing N set. One can check that

FreeUnivAlgNSG(ECIW-signature, X) is infinite.

Let X be a missing N non empty set. Note that FreeUnivAlgNSG

(ECIW-signature, X) is E.C.I.W.-strict.

The following propositions are true:

(71) For every pre-if-while algebra A holds

GeneratorsA ⊆ ElementaryInstructionsA .

(72) Let A be a pre-if-while algebra. Suppose A is free. Let C, I1, I2 be

elements of A. Then EmptyInsA 6= I1; I2 and EmptyInsA 6= if C then

I1 else I2 and EmptyInsA 6= whileC do I1.

(73) Let A be a pre-if-while algebra. Suppose A is free. Let I1, I2, C, J1, J2

be elements of A. Then I1; I2 6= I1 and I1; I2 6= I2 and if I1; I2 = J1; J2,

then I1 = J1 and I2 = J2 and I1; I2 6= if C then J1 else J2 and I1; I2 6=
whileC do J1.

(74) Let A be a pre-if-while algebra. Suppose A is free. Let C, I1, I2, D, J1,

J2 be elements of A. Then if CthenI1elseI2 6= C and if CthenI1elseI2 6= I1

and if C then I1 else I2 6= I2 and if C then I1 else I2 6= whileD do J1 and

if if C then I1 else I2 = if D then J1 else J2, then C = D and I1 = J1 and

I2 = J2.

(75) Let A be a pre-if-while algebra. Suppose A is free. Let C, I, D, J

be elements of A. Then whileC do I 6= C and whileC do I 6= I and if

whileC do I = whileD do J, then C = D and I = J.

Let us note that every pre-if-while algebra which is free is also well founded

and non degenerated.

Let us mention that there exists a pre-if-while algebra which is infinite, non

degenerated, well founded, E.C.I.W.-strict, free, and strict.

An if-while algebra is a non degenerated well founded E.C.I.W.-strict pre-

if-while algebra.

Let A be an infinite pre-if-while algebra.

Observe that ElementaryInstructionsA is infinite.

One can prove the following four propositions:
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(76) Let A be a pre-if-while algebra, B be a subset of A, and n be a natural

number. Then

(i) EmptyInsA ∈ Bn+1, and

(ii) for all elements C, I1, I2 of A such that C ∈ Bn and I1 ∈ Bn and

I2 ∈ Bn holds I1; I2 ∈ Bn+1 and if C then I1 else I2 ∈ Bn+1 and whileC do

I1 ∈ Bn+1.

(77) Let A be an E.C.I.W.-strict pre-if-while algebra, x be a set, and n be a

natural number. Suppose x ∈ ElementaryInstructionsA
n+1. Then

(i) x ∈ ElementaryInstructionsA
n, or

(ii) x = EmptyInsA, or

(iii) there exist elements I1, I2 of A such that x = I1; I2 and I1 ∈
ElementaryInstructionsA

n and I2 ∈ ElementaryInstructionsA
n, or

(iv) there exist elements C, I1, I2 of A such that x = if C then I1 else I2 and

C ∈ ElementaryInstructionsA
n and I1 ∈ ElementaryInstructionsA

n and

I2 ∈ ElementaryInstructionsA
n, or

(v) there exist elements C, I of A such that x = whileC do I and C ∈
ElementaryInstructionsA

n and I ∈ ElementaryInstructionsA
n.

(78) For every universal algebra A and for every subset B of A holds

Constants(A) ⊆ B1.

(79) Let A be a pre-if-while algebra. Then A is well founded if and only

if for every element I of A there exists a natural number n such that

I ∈ ElementaryInstructionsA
n.

The scheme StructInd deals with a well founded E.C.I.W.-strict pre-if-while

algebra A, an element B of A, and a unary predicate P, and states that:

P[B]

provided the following conditions are satisfied:

• For every element I of A such that I ∈ ElementaryInstructionsA
holds P[I],

• P[EmptyInsA],

• For all elements I1, I2 of A such that P[I1] and P[I2] holds

P[I1; I2],

• For all elements C, I1, I2 of A such that P[C] and P[I1] and P[I2]

holds P[if C then I1 else I2], and

• For all elements C, I of A such that P[C] and P[I] holds

P[whileC do I].

4. Execution Function

Let A be a pre-if-while algebra, let S be a non empty set, and let f be a

function from [:S, the carrier of A :] into S. We say that f is complying-with-

empty-instruction if and only if:



mizar analysis of algorithms: preliminaries 101

(Def. 28) For every element s of S holds f(s, EmptyInsA) = s.

We say that f is complying-with-catenation if and only if:

(Def. 29) For every element s of S and for all elements I1, I2 of A holds f(s,

I1; I2) = f(f(s, I1), I2).

Let A be a pre-if-while algebra, let S be a non empty set, let T be a subset

of S, and let f be a function from [:S, the carrier of A :] into S. We say that f

complies with if w.r.t. T if and only if the condition (Def. 30) is satisfied.

(Def. 30) Let s be an element of S and C, I1, I2 be elements of A. Then

(i) if f(s, C) ∈ T, then f(s, if C then I1 else I2) = f(f(s, C), I1), and

(ii) if f(s, C) 6∈ T, then f(s, if C then I1 else I2) = f(f(s, C), I2).

We say that f complies with while w.r.t. T if and only if the condition (Def. 31)

is satisfied.

(Def. 31) Let s be an element of S and C, I be elements of A. Then

(i) if f(s, C) ∈ T, then f(s, whileC doI) = f(f(f(s, C), I), whileC do I),

and

(ii) if f(s, C) 6∈ T, then f(s, whileC do I) = f(s, C).

One can prove the following two propositions:

(80) Let f be a function from [:S, the carrier of A :] into S. Suppose f is

complying-with-empty-instruction and f complies with if w.r.t. T . Let s

be an element of S. If f(s, C) 6∈ T, then f(s, if C then I) = f(s, C).

(81)(i) π1(S × the carrier of A ) is complying-with-empty-instruction,

(ii) π1(S × the carrier of A ) is complying-with-catenation,

(iii) π1(S × the carrier of A ) complies with if w.r.t. T , and

(iv) π1(S × the carrier of A ) complies with while w.r.t. T .

Let A be a pre-if-while algebra, let S be a non empty set, and let T be

a subset of S. A function from [:S, the carrier of A :] into S is said to be an

execution function of A over S and T if it satisfies the conditions (Def. 32).

(Def. 32)(i) It is complying-with-empty-instruction,

(ii) it is complying-with-catenation,

(iii) it complies with if w.r.t. T , and

(iv) it complies with while w.r.t. T .

Let A be a pre-if-while algebra, let S be a non empty set, and let T be a

subset of S. One can verify that every execution function of A over S and T is

complying-with-empty-instruction and complying-with-catenation.

Let A be a pre-if-while algebra, let I be an element of A, let S be a non

empty set, let s be an element of S, let T be a subset of S, and let f be an

execution function of A over S and T . We say that iteration of f started in I

terminates w.r.t. s if and only if the condition (Def. 33) is satisfied.

(Def. 33) There exists a non empty finite sequence r of elements of S such that

r(1) = s and r(len r) 6∈ T and for every natural number i such that 1 ≤ i
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and i < len r holds r(i) ∈ T and r(i+ 1) = f(r(i), I).

Let A be a pre-if-while algebra, let I be an element of A, let S be a non

empty set, let s be an element of S, let T be a subset of S, and let f be an

execution function of A over S and T . The functor termination-degree(I, s, f)

yields an extended real number and is defined by:

(Def. 34)(i) There exists a non empty finite sequence r of elements of S such that

termination-degree(I, s, f) = len r − 1 and r(1) = s and r(len r) 6∈ T and

for every natural number i such that 1 ≤ i and i < len r holds r(i) ∈ T
and r(i+ 1) = f(r(i), I) if iteration of f started in I terminates w.r.t. s,

(ii) termination-degree(I, s, f) = +∞, otherwise.

In the sequel f denotes an execution function of A over S and T .

We now state four propositions:

(82) Iteration of f started in I terminates w.r.t. s

iff termination-degree(I, s, f) < +∞.
(83) If s 6∈ T, then iteration of f started in I terminates w.r.t. s and

termination-degree(I, s, f) = 0.

(84) Suppose s ∈ T. Then

(i) iteration of f started in I terminates w.r.t. s iff iteration of f started

in I terminates w.r.t. f(s, I), and

(ii) termination-degree(I, s, f) = 1 + termination-degree(I, f(s, I), f).

(85) termination-degree(I, s, f) ≥ 0.

Now we present two schemes. The scheme Termination deals with a pre-if-

while algebra A, an element B of A, a non empty set C, an element D of C, a

subset E of C, an execution function F of A over C and E , a unary functor F
yielding a natural number, and a unary predicate P, and states that:

Iteration of F started in B terminates w.r.t. D
provided the parameters meet the following requirements:

• D ∈ E iff P[D], and

• For every element s of C such that P[s] holds P[F(s, B)] iff F(s,

B) ∈ E and F(F(s, B)) < F(s).

The scheme Termination2 deals with a pre-if-while algebra A, an element

B of A, a non empty set C, an element D of C, a subset E of C, an execution

function F of A over C and E , a unary functor F yielding a natural number,

and two unary predicates P, Q, and states that:

Iteration of F started in B terminates w.r.t. D
provided the following requirements are met:

• P[D],

• D ∈ E iff Q[D], and

• Let s be an element of C. Suppose P[s] and s ∈ E and Q[s]. Then

P[F(s, B)] and Q[F(s, B)] iff F(s, B) ∈ E and F(F(s, B)) <

F(s).



mizar analysis of algorithms: preliminaries 103

Next we state two propositions:

(86) Let r be a non empty finite sequence of elements of S. Suppose r(1) =

f(s, C) and r(len r) 6∈ T and for every natural number i such that 1 ≤ i

and i < len r holds r(i) ∈ T and r(i + 1) = f(r(i), I;C). Then f(s,

whileC do I) = r(len r).

(87) Let I be an element of A and s be an element of S. Then iter-

ation of f started in I does not terminate w.r.t. s if and only if

(curry′ f)(I)-orbit(s) ⊆ T.
Now we present two schemes. The scheme InvariantSch deals with a pre-if-

while algebra A, elements B, C of A, a non empty set D, an element E of D,
a subset F of D, an execution function G of A over D and F , and two unary

predicates P, Q, and states that:

P[G(E , whileB do C)] and not Q[G(E , whileB do C)]
provided the following conditions are met:

• P[E ],

• Iteration of G started in C;B terminates w.r.t. G(E , B),

• For every element s of D such that P[s] and s ∈ F and Q[s] holds

P[G(s, C)], and

• For every element s of D such that P[s] holds P[G(s, B)] and G(s,

B) ∈ F iff Q[G(s, B)].

The scheme coInvariantSch deals with a pre-if-while algebra A, elements B,
C of A, a non empty set D, an element E of D, a subset F of D, an execution

function G of A over D and F , and a unary predicate P, and states that:

P[E ]

provided the following conditions are met:

• P[G(E , whileB do C)],
• Iteration of G started in C;B terminates w.r.t. G(E , B),

• For every element s of D such that P[G(G(s, B), C)] and G(s,

B) ∈ F holds P[G(s, B)], and

• For every element s of D such that P[G(s, B)] holds P[s].

Next we state three propositions:

(88) Let A be a free pre-if-while algebra, I1, I2 be elements of A, and

n be a natural number. Suppose I1; I2 ∈ ElementaryInstructionsA
n.

Then there exists a natural number i such that n = i + 1 and I1 ∈
ElementaryInstructionsA

i and I2 ∈ ElementaryInstructionsA
i.

(89) Let A be a free pre-if-while algebra, C, I1, I2 be elements of A, and n be

a natural number. Suppose if C thenI1elseI2 ∈ ElementaryInstructionsA
n.

Then there exists a natural number i such that n = i + 1 and C ∈
ElementaryInstructionsA

i and I1 ∈ ElementaryInstructionsA
i and I2 ∈

ElementaryInstructionsA
i.
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(90) Let A be a free pre-if-while algebra, C, I be elements of A, and n be

a natural number. Suppose whileC do I ∈ ElementaryInstructionsA
n.

Then there exists a natural number i such that n = i + 1 and C ∈
ElementaryInstructionsA

i and I ∈ ElementaryInstructionsA
i.

5. Existence and Uniqueness of Execution Function and

Termination

The scheme IndDef deals with a free E.C.I.W.-strict pre-if-while algebra A,
a non empty set B, an element C of B, a unary functor F yielding a set, two

binary functors G andH yielding elements of B, and a ternary functor I yielding

an element of B, and states that:

There exists a function f from the carrier of A into B such that

(i) for every element I ofA such that I ∈ ElementaryInstructionsA
holds f(I) = F(I),

(ii) f(EmptyInsA) = C,
(iii) for all elements I1, I2 of A holds f(I1; I2) = G(f(I1), f(I2)),

(iv) for all elements C, I1, I2 of A holds f(if C then I1 else I2) =

I(f(C), f(I1), f(I2)), and

(v) for all elements C, I of A holds f(whileC do I) =

H(f(C), f(I))

provided the following requirement is met:

• For every element I of A such that I ∈ ElementaryInstructionsA
holds F(I) ∈ B.

We now state three propositions:

(91) Let A be a free E.C.I.W.-strict pre-if-while algebra, g be a function from

[:S, ElementaryInstructionsA :] into S, and s0 be an element of S. Then

there exists an execution function f of A over S and T such that

(i) f�[:S, ElementaryInstructionsA :] = g, and

(ii) for every element s of S and for all elements C, I of A such that

iteration of f started in I;C does not terminate w.r.t. f(s, C) holds f(s,

whileC do I) = s0.

(92) Let A be a free E.C.I.W.-strict pre-if-while algebra, g be a function from

[:S, ElementaryInstructionsA :] into S, and F be a function from SS into

SS . Suppose that for every element h of SS holds F (h) · h = F (h). Then

there exists an execution function f of A over S and T such that

(i) f�[:S, ElementaryInstructionsA :] = g, and

(ii) for all elements C, I of A and for every element s of S such that

iteration of f started in I;C does not terminate w.r.t. f(s, C) holds f(s,

whileC do I) = F ((curry′ f)(I;C))(f(s, C)).
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(93) Let A be a free E.C.I.W.-strict pre-if-while algebra and f1, f2 be execu-

tion functions of A over S and T . Suppose that

(i) f1�[:S, ElementaryInstructionsA :] = f2�[:S, ElementaryInstructionsA :],

and

(ii) for every element s of S and for all elements C, I of A such that

iteration of f1 started in I;C does not terminate w.r.t. f1(s, C) holds

f1(s, whileC do I) = f2(s, whileC do I).

Then f1 = f2.

Let A be a pre-if-while algebra, let S be a non empty set, let T be a subset

of S, and let f be an execution function of A over S and T . The functor

TerminatingPrograms(A,S, T, f) yielding a subset of [:S, the carrier of A :] is

defined by the conditions (Def. 35).

(Def. 35)(i) [:S, ElementaryInstructionsA :] ⊆ TerminatingPrograms(A,S, T, f),

(ii) [:S, {EmptyInsA} :] ⊆ TerminatingPrograms(A,S, T, f),

(iii) for every element s of S and for all elements C, I,

J of A holds if 〈〈s, I〉〉 ∈ TerminatingPrograms(A,S, T, f) and

〈〈f(s, I), J〉〉 ∈ TerminatingPrograms(A,S, T, f), then 〈〈s, I; J〉〉 ∈
TerminatingPrograms(A,S, T, f) and if 〈〈s, C〉〉 ∈ TerminatingPrograms(A,

S, T, f) and 〈〈f(s, C), I〉〉 ∈ TerminatingPrograms(A,S, T, f) and f(s,

C) ∈ T, then 〈〈s, if C then I else J〉〉 ∈ TerminatingPrograms(A,S, T, f)

and if 〈〈s, C〉〉 ∈ TerminatingPrograms(A,S, T, f) and 〈〈f(s, C),

J〉〉 ∈ TerminatingPrograms(A,S, T, f) and f(s, C) 6∈ T, then 〈〈s,
if C then I else J〉〉 ∈ TerminatingPrograms(A,S, T, f) and if 〈〈s, C〉〉 ∈
TerminatingPrograms(A,S, T, f) and there exists a non empty finite se-

quence r of elements of S such that r(1) = f(s, C) and r(len r) 6∈ T and

for every natural number i such that 1 ≤ i and i < len r holds r(i) ∈ T
and 〈〈r(i), I;C〉〉 ∈ TerminatingPrograms(A,S, T, f) and r(i+ 1) = f(r(i),

I;C), then 〈〈s, whileC do I〉〉 ∈ TerminatingPrograms(A,S, T, f), and

(iv) for every subset P of [:S, the carrier of A :] such that [:S,

ElementaryInstructionsA :] ⊆ P and [:S, {EmptyInsA} :] ⊆ P and for ev-

ery element s of S and for all elements C, I, J of A holds if 〈〈s, I〉〉 ∈ P
and 〈〈f(s, I), J〉〉 ∈ P, then 〈〈s, I; J〉〉 ∈ P and if 〈〈s, C〉〉 ∈ P and 〈〈f(s, C),

I〉〉 ∈ P and f(s, C) ∈ T, then 〈〈s, if C then I else J〉〉 ∈ P and if 〈〈s, C〉〉 ∈ P
and 〈〈f(s, C), J〉〉 ∈ P and f(s, C) 6∈ T, then 〈〈s, if C then I else J〉〉 ∈ P

and if 〈〈s, C〉〉 ∈ P and there exists a non empty finite sequence r of el-

ements of S such that r(1) = f(s, C) and r(len r) 6∈ T and for every

natural number i such that 1 ≤ i and i < len r holds r(i) ∈ T and 〈〈r(i),
I;C〉〉 ∈ P and r(i + 1) = f(r(i), I;C), then 〈〈s, whileC do I〉〉 ∈ P holds

TerminatingPrograms(A,S, T, f) ⊆ P.
Let A be a pre-if-while algebra and let I be an element of A. We say that I

is absolutely-terminating if and only if the condition (Def. 36) is satisfied.
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(Def. 36) Let S be a non empty set, s be an element of S, T be a subset of

S, and f be an execution function of A over S and T . Then 〈〈s, I〉〉 ∈
TerminatingPrograms(A,S, T, f).

Let A be a pre-if-while algebra, let S be a non empty set, let T be a subset

of S, let I be an element of A, and let f be an execution function of A over S

and T . We say that I is terminating w.r.t. f if and only if:

(Def. 37) For every element s of S holds 〈〈s, I〉〉 ∈ TerminatingPrograms(A,S, T, f).

Let A be a pre-if-while algebra, let S be a non empty set, let T be a subset

of S, let I be an element of A, let f be an execution function of A over S and

T , and let Z be a set. We say that I is terminating w.r.t. f and Z if and only

if:

(Def. 38) For every element s of S such that s ∈ Z holds 〈〈s, I〉〉 ∈
TerminatingPrograms(A,S, T, f).

We say that Z is invariant w.r.t. I and f if and only if:

(Def. 39) For every element s of S such that s ∈ Z holds f(s, I) ∈ Z.
One can prove the following propositions:

(94) If I ∈ ElementaryInstructionsA, then

〈〈s, I〉〉 ∈ TerminatingPrograms(A,S, T, f).

(95) If I ∈ ElementaryInstructionsA, then I is absolutely-terminating.

(96) 〈〈s, EmptyInsA 〉〉 ∈ TerminatingPrograms(A,S, T, f).

Let us consider A. Observe that EmptyInsA is absolutely-terminating.

Let us consider A. Observe that there exists an element of A which is

absolutely-terminating.

Next we state the proposition

(97) If A is free and 〈〈s, I; J〉〉 ∈ TerminatingPrograms(A,S, T, f),

then 〈〈s, I〉〉 ∈ TerminatingPrograms(A,S, T, f) and 〈〈f(s, I), J〉〉 ∈
TerminatingPrograms(A,S, T, f).

Let us consider A and let I, J be absolutely-terminating elements of A. One

can verify that I; J is absolutely-terminating.

We now state the proposition

(98) Suppose A is free and

〈〈s, if C then I else J〉〉 ∈ TerminatingPrograms(A,S, T, f). Then 〈〈s, C〉〉 ∈
TerminatingPrograms(A,S, T, f) and if f(s, C) ∈ T, then 〈〈f(s, C), I〉〉 ∈
TerminatingPrograms(A,S, T, f) and if f(s, C) 6∈ T, then 〈〈f(s, C), J〉〉 ∈
TerminatingPrograms(A,S, T, f).

Let us consider A and let C, I, J be absolutely-terminating elements of A.

Note that if C then I else J is absolutely-terminating.

Let us consider A and let C, I be absolutely-terminating elements of A.

Note that if C then I is absolutely-terminating.

The following propositions are true:
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(99) SupposeA is free and 〈〈s, whileCdoI〉〉 ∈ TerminatingPrograms(A,S, T, f).

Then

(i) 〈〈s, C〉〉 ∈ TerminatingPrograms(A,S, T, f), and

(ii) there exists a non empty finite sequence r of elements of S such

that r(1) = f(s, C) and r(len r) 6∈ T and for every natural number

i such that 1 ≤ i and i < len r holds r(i) ∈ T and 〈〈r(i), I;C〉〉 ∈
TerminatingPrograms(A,S, T, f) and r(i+ 1) = f(r(i), I;C).

(100) If A is free and 〈〈s, whileC do I〉〉 ∈ TerminatingPrograms(A,S, T, f) and

f(s, C) ∈ T, then 〈〈f(s, C), I〉〉 ∈ TerminatingPrograms(A,S, T, f).

(101) Let C, I be absolutely-terminating elements of A. Suppose iteration

of f started in I;C terminates w.r.t. f(s, C). Then 〈〈s, whileC do I〉〉 ∈
TerminatingPrograms(A,S, T, f).

(102) Let A be a free E.C.I.W.-strict pre-if-while algebra and f1,

f2 be execution functions of A over S and T . If f1�[:S,
ElementaryInstructionsA :] = f2�[:S, ElementaryInstructionsA :], then

TerminatingPrograms(A,S, T, f1) = TerminatingPrograms(A,S, T, f2).

(103) Let A be a free E.C.I.W.-strict pre-if-while algebra and f1, f2

be execution functions of A over S and T . Suppose f1�[:S,
ElementaryInstructionsA :] = f2�[:S, ElementaryInstructionsA :]. Let s

be an element of S and I be an element of A. If 〈〈s, I〉〉 ∈
TerminatingPrograms(A,S, T, f1), then f1(s, I) = f2(s, I).

(104) Every absolutely-terminating element of A is terminating w.r.t. f .

(105) For every element I of A holds I is terminating w.r.t. f iff I is termi-

nating w.r.t. f and S.

(106) Let I be an element of A. Suppose I is terminating w.r.t. f . Let P be

a set. Then I is terminating w.r.t. f and P .

(107) For every absolutely-terminating element I of A and for every set P

holds I is terminating w.r.t. f and P .

(108) For every element I of A holds S is invariant w.r.t. I and f .

(109) Let P be a set and I, J be elements of A. Suppose P is invariant w.r.t.

I and f and invariant w.r.t. J and f . Then P is invariant w.r.t. I; J and

f .

(110) Let I, J be elements of A. Suppose I is terminating w.r.t. f and J is

terminating w.r.t. f . Then I; J is terminating w.r.t. f .

(111) Let P be a set and I, J be elements of A. Suppose I is terminating

w.r.t. f and P and J is terminating w.r.t. f and P and P is invariant

w.r.t. I and f . Then I; J is terminating w.r.t. f and P .

(112) Let C, I, J be elements of A. Suppose C is terminating w.r.t. f and I is

terminating w.r.t. f and J is terminating w.r.t. f . Then if C then I else J

is terminating w.r.t. f .
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(113) Let P be a set and C, I, J be elements of A. Suppose that

(i) C is terminating w.r.t. f and P ,

(ii) I is terminating w.r.t. f and P ,

(iii) J is terminating w.r.t. f and P , and

(iv) P is invariant w.r.t. C and f .

Then if C then I else J is terminating w.r.t. f and P .

(114) Let C, I be elements of A. Suppose that

(i) C is terminating w.r.t. f ,

(ii) I is terminating w.r.t. f , and

(iii) iteration of f started in I;C terminates w.r.t. f(s, C).

Then 〈〈s, whileC do I〉〉 ∈ TerminatingPrograms(A,S, T, f).

(115) Let P be a set and C, I be elements of A. Suppose that

(i) C is terminating w.r.t. f and P ,

(ii) I is terminating w.r.t. f and P ,

(iii) P is invariant w.r.t. C and f and invariant w.r.t. I and f ,

(iv) iteration of f started in I;C terminates w.r.t. f(s, C), and

(v) s ∈ P.
Then 〈〈s, whileC do I〉〉 ∈ TerminatingPrograms(A,S, T, f).

(116) Let P be a set and C, I be elements of A. Suppose that

(i) C is terminating w.r.t. f ,

(ii) I is terminating w.r.t. f and P ,

(iii) P is invariant w.r.t. C and f ,

(iv) for every s such that s ∈ P and f(f(s, I), C) ∈ T holds f(s, I) ∈ P,
(v) iteration of f started in I;C terminates w.r.t. f(s, C), and

(vi) s ∈ P.
Then 〈〈s, whileC do I〉〉 ∈ TerminatingPrograms(A,S, T, f).

(117) Let C, I be elements of A. Suppose that

(i) C is terminating w.r.t. f ,

(ii) I is terminating w.r.t. f , and

(iii) for every s holds iteration of f started in I;C terminates w.r.t. s.

Then whileC do I is terminating w.r.t. f .

(118) Let P be a set and C, I be elements of A. Suppose that

(i) C is terminating w.r.t. f ,

(ii) I is terminating w.r.t. f and P ,

(iii) P is invariant w.r.t. C and f ,

(iv) for every s such that s ∈ P and f(f(s, I), C) ∈ T holds f(s, I) ∈ P,
and

(v) for every s such that f(s, C) ∈ P holds iteration of f started in I;C

terminates w.r.t. f(s, C).

Then whileC do I is terminating w.r.t. f and P .
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Summary. In this article we mainly define the information entropy [3],

[11] and prove some its basic properties. First, we discuss some properties on

four kinds of transformation functions between vector and matrix. The trans-

formation functions are LineVec2Mx, ColVec2Mx, Vec2DiagMx and Mx2FinS.

Mx2FinS is a horizontal concatenation operator for a given matrix, treating rows

of the given matrix as finite sequences, yielding a new finite sequence by hori-

zontally joining each row of the given matrix in order to index. Then we define

each concept of information entropy for a probability sequence and two kinds

of probability matrices, joint and conditional, that are defined in article [25].

Further, we discuss some properties of information entropy including Shannon’s

lemma, maximum property, additivity and super-additivity properties.

MML identifier: ENTROPY1, version: 7.8.05 4.84.971

The papers [21], [23], [1], [20], [24], [6], [14], [8], [4], [22], [17], [7], [9], [2], [5], [15],

[16], [12], [10], [13], [18], [25], and [19] provide the terminology and notation for

this paper.

1. Preliminaries

For simplicity, we use the following convention: D denotes a non empty set,

i, j, k, l denote elements of N, n denotes a natural number, a, b, c, r, r1, r2

denote real numbers, p, q denote finite sequences of elements of R, and M1, M2

denote matrices over R.

Next we state several propositions:

(1) If k 6= 0 and i < l and l ≤ j and k | l, then i÷ k < j ÷ k.
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(2) If r > 0, then (log (e))(r) ≤ r − 1 and r = 1 iff (log (e))(r) = r − 1 and

r 6= 1 iff (log (e))(r) < r − 1.

(3) If r > 0, then loge r ≤ r − 1 and r = 1 iff loge r = r − 1 and r 6= 1 iff

loge r < r − 1.

(4) If a > 1 and b > 1, then loga b > 0.

(5) If a > 0 and a 6= 1 and b > 0, then −loga b = loga(
1
b ).

(6) If a > 0 and a 6= 1 and b ≥ 0 and c ≥ 0, then b · c · loga(b · c) =

b · c · loga b+ b · c · loga c.

(7) Let q, q1, q2 be finite sequences of elements of R. Suppose len q1 = len q

and len q1 = len q2 and for every k such that k ∈ dom q1 holds q(k) =

q1(k) + q2(k). Then
∑
q =

∑
q1 +

∑
q2.

(8) Let q, q1, q2 be finite sequences of elements of R. Suppose len q1 = len q

and len q1 = len q2 and for every k such that k ∈ dom q1 holds q(k) =

q1(k)− q2(k). Then
∑
q =

∑
q1 −

∑
q2.

(9) Suppose len p ≥ 1. Then there exists q such that len q = len p and q(1) =

p(1) and for every k such that 0 6= k and k < len p holds q(k + 1) =

q(k) + p(k + 1) and
∑
p = q(len p).

Let us consider p. Let us observe that p is non-negative if and only if:

(Def. 1) For every i such that i ∈ dom p holds p(i) ≥ 0.

Let us note that there exists a finite sequence of elements of R which is

non-negative.

The following proposition is true

(10) If p is non-negative and r ≥ 0, then r · p is non-negative.

Let us consider p, k. We say that p has only one value in k if and only if:

(Def. 2) k ∈ dom p and for every i such that i ∈ dom p and i 6= k holds p(i) = 0.

Next we state four propositions:

(11) If p has only one value in k and i 6= k, then p(i) = 0.

(12) If len p = len q and p has only one value in k, then p • q has only one

value in k and (p • q)(k) = p(k) · q(k).

(13) If p has only one value in k, then
∑
p = p(k).

(14) If p is non-negative, then for every k such that k ∈ dom p and p(k) =
∑
p

holds p has only one value in k.

Let us observe that every finite sequence of elements of R which is finite

probability distribution is also non empty and non-negative.

One can prove the following propositions:

(15) Let p be finite probability distribution finite sequence of elements of R
and given k such that k ∈ dom p and p(k) = 1. Then p has only one value

in k.
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(16) Let i be a non empty natural number. Then i 7→ 1
i is finite probability

distribution finite sequence of elements of R.

One can check that every matrix over R which is summable-to-1 is also non

empty yielding and every matrix over R which is joint probability is also non

empty yielding.

The following propositions are true:

(17) For every matrix M over R such that M = ∅ holds SumAllM = 0.

(18) For every matrix M over D and for every i such that i ∈ domM holds

domM(i) = Seg widthM.

(19) M1 is nonnegative iff for every i such that i ∈ domM1 holds Line(M1, i)

is non-negative.

2. Properties of Transformations between Vector and Matrix

Next we state four propositions:

(20) For every j such that j ∈ dom p holds (LineVec2Mx p)�,j = 〈p(j)〉.
(21) Let p be a non empty finite sequence of elements of R, q be a fi-

nite sequence of elements of R, and M be a matrix over R. Then

M = ColVec2Mx p · LineVec2Mx q if and only if the following conditions

are satisfied:

(i) lenM = len p,

(ii) widthM = len q, and

(iii) for all i, j such that 〈〈i, j〉〉 ∈ the indices of M holds Mi,j = p(i) · q(j).
(22) Let p be a non empty finite sequence of elements of R, q be a fi-

nite sequence of elements of R, and M be a matrix over R. Then

M = ColVec2Mx p · LineVec2Mx q if and only if the following conditions

are satisfied:

(i) lenM = len p,

(ii) widthM = len q, and

(iii) for every i such that i ∈ domM holds Line(M, i) = p(i) · q.
(23) Let p, q be finite probability distribution finite sequences of elements of

R. Then ColVec2Mx p · LineVec2Mx q is joint probability.

Let us consider n and let M1 be a matrix over R of dimension n. We say

that M1 is diagonal if and only if:

(Def. 3) For all i, j such that 〈〈i, j〉〉 ∈ the indices of M1 and (M1)i,j 6= 0 holds

i = j.

Let us consider n. Observe that there exists a matrix over R of dimension

n which is diagonal.

The following proposition is true
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(24) Let M1 be a matrix over R of dimension n. Then M1 is diagonal if and

only if for every i such that i ∈ domM1 holds Line(M1, i) has only one

value in i.

Let us consider p. The functor Vec2DiagMx p yielding a diagonal matrix

over R of dimension len p is defined as follows:

(Def. 4) For every j such that j ∈ dom p holds (Vec2DiagMx p)j,j = p(j).

One can prove the following propositions:

(25) M1 = Vec2DiagMx p iff lenM1 = len p and widthM1 = len p and for

every i such that i ∈ domM1 holds Line(M1, i) has only one value in i

and Line(M1, i)(i) = p(i).

(26) Suppose len p = lenM1. Then M2 = Vec2DiagMx p ·M1 if and only if

the following conditions are satisfied:

(i) lenM2 = len p,

(ii) widthM2 = widthM1, and

(iii) for all i, j such that 〈〈i, j〉〉 ∈ the indices of M2 holds (M2)i,j = p(i) ·
(M1)i,j .

(27) If len p = lenM1, then M2 = Vec2DiagMx p · M1 iff lenM2 = len p

and widthM2 = widthM1 and for every i such that i ∈ domM2 holds

Line(M2, i) = p(i) · Line(M1, i).

(28) Let p be finite probability distribution finite sequence of elements of R
and M be a non empty yielding conditional probability matrix over R. If

len p = lenM, then Vec2DiagMx p ·M is joint probability.

(29) Let M be a matrix over D and p be a finite sequence of elements of D∗.
Suppose len p = lenM and p(1) = M(1) and for every k such that k ≥ 1

and k < lenM holds p(k+1) = p(k)aM(k+1). Let given k. If k ∈ dom p,

then len p(k) = k · widthM.

(30) Let M be a matrix over D and p be a finite sequence of elements of

D∗. Suppose len p = lenM and p(1) = M(1) and for every k such that

k ≥ 1 and k < lenM holds p(k + 1) = p(k) aM(k + 1). Let given i, j. If

i ∈ dom p and j ∈ dom p and i ≤ j, then dom p(i) ⊆ dom p(j).

(31) Let M be a matrix over D and p be a finite sequence of elements of D∗.
Suppose len p = lenM and p(1) = M(1) and for every k such that k ≥ 1

and k < lenM holds p(k+1) = p(k)aM(k+1). Then len p(1) = widthM

and for every j such that 〈〈1, j〉〉 ∈ the indices of M holds j ∈ dom p(1)

and p(1)(j) = M1,j .

(32) Let M be a matrix over D and p be a finite sequence of elements of D∗.
Suppose len p = lenM and p(1) = M(1) and for every k such that k ≥ 1

and k < lenM holds p(k+ 1) = p(k)aM(k+ 1). Let given j. If j ≥ 1 and

j < len p, then for every l such that l ∈ dom p(j) holds p(j)(l) = p(j+1)(l).

(33) Let M be a matrix over D and p be a finite sequence of elements of D∗.
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Suppose len p = lenM and p(1) = M(1) and for every k such that k ≥ 1

and k < lenM holds p(k + 1) = p(k) aM(k + 1). Let given i, j. Suppose

i ∈ dom p and j ∈ dom p and i ≤ j. Let given l. If l ∈ dom p(i), then

p(i)(l) = p(j)(l).

(34) Let M be a matrix over D and p be a finite sequence of elements of

D∗. Suppose len p = lenM and p(1) = M(1) and for every k such that

k ≥ 1 and k < lenM holds p(k + 1) = p(k) a M(k + 1). Let given j.

Suppose j ≥ 1 and j < len p. Let given l. If l ∈ Seg widthM, then

j ·widthM + l ∈ dom p(j+ 1) and p(j+ 1)(j ·widthM + l) = M(j+ 1)(l).

(35) Let M be a matrix over D and p be a finite sequence of elements of

D∗. Suppose len p = lenM and p(1) = M(1) and for every k such that

k ≥ 1 and k < lenM holds p(k + 1) = p(k) a M(k + 1). Let given i, j.

Suppose 〈〈i, j〉〉 ∈ the indices of M . Then (i − 1) · widthM + j ∈ dom p(i)

and Mi,j = p(i)((i − 1) · widthM + j).

(36) Let M be a matrix over D and p be a finite sequence of elements of D∗.
Suppose len p = lenM and p(1) = M(1) and for every k such that k ≥ 1

and k < lenM holds p(k + 1) = p(k) aM(k + 1). Let given i, j. Suppose

〈〈i, j〉〉 ∈ the indices of M . Then (i− 1) ·widthM + j ∈ dom p(lenM) and

Mi,j = p(lenM)((i − 1) · widthM + j).

(37) Let M be a matrix over R and p be a finite sequence of elements of R∗.
Suppose len p = lenM and p(1) = M(1) and for every k such that k ≥ 1

and k < lenM holds p(k + 1) = p(k) a M(k + 1). Let given k. If k ≥ 1

and k < lenM, then
∑
p(k + 1) =

∑
p(k) +

∑
M(k + 1).

(38) Let M be a matrix over R and p be a finite sequence of elements of R∗.
Suppose len p = lenM and p(1) = M(1) and for every k such that k ≥ 1

and k < lenM holds p(k + 1) = p(k) a M(k + 1). Then SumAllM =∑
p(lenM).

Let D be a non empty set and let M be a matrix over D. The functor

Mx2FinSM yields a finite sequence of elements of D and is defined by:

(Def. 5)(i) Mx2FinSM = ∅ if lenM = 0,

(ii) there exists a finite sequence p of elements of D∗ such that

Mx2FinSM = p(lenM) and len p = lenM and p(1) = M(1) and for

every k such that k ≥ 1 and k < lenM holds p(k + 1) = p(k) aM(k + 1),

otherwise.

We now state several propositions:

(39) For every matrix M over D holds len Mx2FinSM = lenM · widthM.

(40) Let M be a matrix over D and given i, j. If 〈〈i, j〉〉 ∈ the indices of M ,

then (i−1)·widthM+j ∈ dom Mx2FinSM and Mi,j = (Mx2FinSM)((i−
1) · widthM + j).

(41) Let M be a matrix over D and given k, l. Suppose k ∈ dom Mx2FinSM
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and l = k−1. Then 〈〈(l÷widthM)+1, (lmod widthM)+1〉〉 ∈ the indices

of M and (Mx2FinSM)(k) = M(l÷widthM)+1,(lmod widthM)+1.

(42) SumAllM1 =
∑

Mx2FinSM1.

(43) M1 is nonnegative iff Mx2FinSM1 is non-negative.

(44) M1 is joint probability iff Mx2FinSM1 is finite probability distribution.

(45) Let p, q be finite probability distribution finite sequences of elements

of R. Then Mx2FinS(ColVec2Mx p · LineVec2Mx q) is finite probability

distribution.

(46) Let p be finite probability distribution finite sequence of elements of R
and M be a non empty yielding conditional probability matrix over R.

If len p = lenM, then Mx2FinS(Vec2DiagMx p ·M) is finite probability

distribution.

3. Information Entropy

Let us consider a, p. Let us assume that a > 0 and a 6= 1 and p is non-

negative. The functor
−→
loga p yields a finite sequence of elements of R and is

defined by:

(Def. 6) len
−→
loga p = len p and for every k such that k ∈ dom

−→
loga p holds if

p(k) > 0, then (
−→
loga p)(k) = loga p(k) and if p(k) = 0, then (

−→
loga p)(k) = 0.

Let us consider p. The functor
−−−→
id log p yields a finite sequence of elements

of R and is defined by:

(Def. 7)
−−−→
id log p = p • −→log2 p.

The following propositions are true:

(47) Let p be a non-negative finite sequence of elements of R and given q.

Then q =
−−−→
id log p if and only if the following conditions are satisfied:

(i) len q = len p, and

(ii) for every k such that k ∈ dom q holds q(k) = p(k) · log2 p(k).

(48) Let p be a non-negative finite sequence of elements of R and given k such

that k ∈ dom p. Then

(i) if p(k) = 0, then (
−−−→
id log p)(k) = 0, and

(ii) if p(k) > 0, then (
−−−→
id log p)(k) = p(k) · log2 p(k).

(49) Let p be a non-negative finite sequence of elements of R and given q.

Then q = −−−−→id log p if and only if the following conditions are satisfied:

(i) len q = len p, and

(ii) for every k such that k ∈ dom q holds q(k) = p(k) · log2( 1
p(k) ).

(50) Let p be a non-negative finite sequence of elements of R. Suppose r1 ≥ 0

and r2 ≥ 0. Let given i. If i ∈ dom p and p(i) = r1 · r2, then (
−−−→
id log p)(i) =

r1 · r2 · log2 r1 + r1 · r2 · log2 r2.
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(51) For every non-negative finite sequence p of elements of R such that r ≥ 0

holds
−−−→
id log r · p = r · log2 r · p+ r · (p • −→log2 p).

(52) Let p be a non empty finite probability distribution finite sequence of

elements of R and given k. If k ∈ dom p, then (
−−−→
id log p)(k) ≤ 0.

Let us consider M1. Let us assume that M1 is nonnegative. The functor−−−→
id logM1 yields a matrix over R and is defined as follows:

(Def. 8) len
−−−→
id logM1 = lenM1 and width

−−−→
id logM1 = widthM1 and for ev-

ery k such that k ∈ dom
−−−→
id logM1 holds (

−−−→
id logM1)(k) = Line(M1, k) •−→

log2 Line(M1, k).

The following two propositions are true:

(53) For every nonnegative matrix M over R and for every k such that k ∈
domM holds Line(

−−−→
id logM,k) =

−−−→
id log Line(M,k).

(54) Let M be a nonnegative matrix over R and M3 be a matrix over R.

Then M3 =
−−−→
id logM if and only if the following conditions are satisfied:

(i) lenM3 = lenM,

(ii) widthM3 = widthM, and

(iii) for all i, j such that 〈〈i, j〉〉 ∈ the indices of M3 holds (M3)i,j = Mi,j ·
log2(Mi,j).

Let p be a finite sequence of elements of R. The functor Entropy p yields a

real number and is defined by:

(Def. 9) Entropy p = −∑−−−→id log p.

We now state several propositions:

(55) For every non empty finite probability distribution finite sequence p of

elements of R holds Entropy p ≥ 0.

(56) Let p be a non empty finite probability distribution finite sequence of

elements of R. If there exists k such that k ∈ dom p and p(k) = 1, then

Entropy p = 0.

(57) Let p, q be non empty finite probability distribution finite sequences of

elements of R and p1, q3 be finite sequences of elements of R. Suppose

that

(i) len p = len q,

(ii) len p1 = len p,

(iii) len q3 = len q, and

(iv) for every k such that k ∈ dom p holds p(k) > 0 and q(k) > 0 and

p1(k) = −p(k) · log2 p(k) and q3(k) = −p(k) · log2 q(k).

Then

(v)
∑
p1 ≤

∑
q3,

(vi) for every k such that k ∈ dom p holds p(k) = q(k) iff
∑
p1 =

∑
q3, and

(vii) there exists k such that k ∈ dom p and p(k) 6= q(k) iff
∑
p1 <

∑
q3.
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(58) Let p be a non empty finite probability distribution finite sequence of

elements of R. Suppose that for every k such that k ∈ dom p holds p(k) >

0. Then

(i) Entropy p ≤ log2 len p,

(ii) for every k such that k ∈ dom p holds p(k) = 1
len p iff Entropy p =

log2 len p, and

(iii) there exists k such that k ∈ dom p and p(k) 6= 1
len p iff Entropy p <

log2 len p.

(59) For every nonnegative matrix M over R holds Mx2FinS
−−−→
id logM =−−−→

id log Mx2FinSM.

(60) Let p, q be finite probability distribution finite sequences of elements of

R and M be a matrix over R. If M = ColVec2Mx p · LineVec2Mx q, then

SumAll
−−−→
id logM =

∑−−−→
id log p+

∑−−−→
id log q.

Let us consider M1. The entropy of joint probability of M1 yields a real

number and is defined as follows:

(Def. 10) The entropy of joint probability of M1 = Entropy Mx2FinSM1.

Next we state the proposition

(61) Let p, q be finite probability distribution finite sequences of elements of

R. Then the entropy of joint probability of ColVec2Mx p ·LineVec2Mx q =

Entropy p+ Entropy q.

Let us consider M1. The entropy of conditional probability of M1 yields a

finite sequence of elements of R and is defined by the conditions (Def. 11).

(Def. 11)(i) len (the entropy of conditional probability of M1) = lenM1, and

(ii) for every k such that k ∈ dom (the entropy of conditional probabil-

ity of M1) holds (the entropy of conditional probability of M1)(k) =

Entropy Line(M1, k).

One can prove the following propositions:

(62) Let M be a non empty yielding conditional probability matrix over R
and p be a finite sequence of elements of R. Then p = the entropy of

conditional probability of M if and only if len p = lenM and for every k

such that k ∈ dom p holds p(k) = −∑(
−−−→
id logM)(k).

(63) Let M be a non empty yielding conditional probability matrix over R.

Then the entropy of conditional probability of M = −LineSum
−−−→
id logM.

(64) Let p be finite probability distribution finite sequence of elements

of R and M be a non empty yielding conditional probability matrix

over R. Suppose len p = lenM. Let M3 be a matrix over R. If

M3 = Vec2DiagMx p · M, then SumAll
−−−→
id logM3 =

∑−−−→
id log p +

∑
(p •

LineSum
−−−→
id logM).

(65) Let p be finite probability distribution finite sequence of elements of

R and M be a non empty yielding conditional probability matrix over
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R. Suppose len p = lenM. Then the entropy of joint probability of

Vec2DiagMx p ·M = Entropy p+
∑

(p • the entropy of conditional proba-

bility of M).

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[3] P. Billingsley. Ergodic Theory and Information. John Wiley & Sons, 1964.
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[6] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
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String Rewriting Systems
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Summary. Basing on the definitions from [15], semi-Thue systems, Thue

systems, and direct derivations are introduced. Next, the standard reduction

relation is defined that, in turn, is used to introduce derivations using the theory

from [1]. Finally, languages generated by rewriting systems are defined as all

strings reachable from an initial word. This is followed by the introduction of

the equivalence of semi-Thue systems with respect to the initial word.

MML identifier: REWRITE2, version: 7.8.05 4.87.985

The notation and terminology used here are introduced in the following papers:

[11], [13], [8], [16], [10], [4], [17], [14], [7], [18], [2], [1], [3], [12], [5], [6], and [9].

1. Preliminaries

We adopt the following convention: x denotes a set, k, l denote natural

numbers, and p, q denote finite sequences.

Next we state two propositions:

(1) If k /∈ dom p and k + 1 ∈ dom p, then k = 0.

(2) If k > len p and k ≤ len(p a q), then there exists l such that k = len p+ l

and l ≥ 1 and l ≤ len q.

In the sequel R denotes a binary relation and p, q denote reduction sequences

w.r.t. R.

Next we state two propositions:

(3) If k ≥ 1, then p�k is a reduction sequence w.r.t. R.

(4) If k ∈ dom p, then there exists q such that len q = k and q(1) = p(1) and

q(len q) = p(k).
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2. Finite 0-sequence Yielding Functions and Finite Sequences

Let f be a function. We say that f is finite-0-sequence-yielding if and only

if:

(Def. 1) If x ∈ dom f, then f(x) is a finite 0-sequence.

Let us mention that ∅ is finite-0-sequence-yielding.

Let f be a finite 0-sequence. Observe that 〈f〉 is finite-0-sequence-yielding.

Let us observe that there exists a function which is finite-0-sequence-yielding.

Let p be a finite-0-sequence-yielding function and let us consider x. Then

p(x) is a finite 0-sequence.

One can verify that there exists a finite sequence which is finite-0-sequence-

yielding.

Let E be a set. Note that every finite sequence of elements of Eω is finite-

0-sequence-yielding.

Let p, q be finite-0-sequence-yielding finite sequences. Observe that p a q is

finite-0-sequence-yielding.

3. Concatenation of a Finite 0-sequence with All Elements of a

Finite 0-sequence Yielding Function

Let s be a finite 0-sequence and let p be a finite-0-sequence-yielding function.

The functor s+ p yields a finite-0-sequence-yielding function and is defined by:

(Def. 2) dom(s + p) = dom p and for every x such that x ∈ dom p holds (s +

p)(x) = s a p(x).

The functor p+ s yielding a finite-0-sequence-yielding function is defined by:

(Def. 3) dom(p + s) = dom p and for every x such that x ∈ dom p holds (p +

s)(x) = p(x) a s.

Let s be a finite 0-sequence and let p be a finite-0-sequence-yielding finite

sequence. Note that s+ p is finite sequence-like and p+ s is finite sequence-like.

We adopt the following convention: E denotes a set, s, t denote finite 0-

sequences, and p, q denote finite-0-sequence-yielding finite sequences.

The following propositions are true:

(5) len(s+ p) = len p and len(p+ s) = len p.

(6) 〈〉E + p = p and p+ 〈〉E = p.

(7) s+ (t+ p) = s a t+ p and p+ t+ s = p+ t a s.

(8) s+ (p+ t) = (s+ p) + t.

(9) s+ p a q = (s+ p) a (s+ q) and p a q + s = (p+ s) a (q + s).
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4. Semi-Thue Systems and Thue Systems

Let E be a set, let p be a finite sequence of elements of Eω, and let k be a

natural number. Then p(k) is an element of Eω.

Let E be a set, let k be a natural number, and let s be an element of Eω.

Then k 7→ s is a finite sequence of elements of Eω.

Let E be a set, let s be an element of Eω, and let p be a finite sequence of

elements of Eω. Then s+ p is a finite sequence of elements of Eω. Then p+ s

is a finite sequence of elements of Eω.

Let E be a set. A semi-Thue-system of E is a binary relation on Eω.

In the sequel E is a set and S, T , U are semi-Thue-systems of E.

Let S be a binary relation. Observe that S ∪ S` is symmetric.

Let us consider E. One can check that there exists a semi-Thue-system of

E which is symmetric.

Let E be a set. A Thue-system of E is a symmetric semi-Thue-system of E.

5. Direct Derivations

We follow the rules: s, t, s1, t1, u, v, w are elements of Eω and p is a finite

sequence of elements of Eω.

Let us consider E, S, s, t. The predicate s→S t is defined by:

(Def. 4) 〈〈s, t〉〉 ∈ S.
Let us consider E, S, s, t. The predicate s⇒S t is defined as follows:

(Def. 5) There exist v, w, s1, t1 such that s = v a s1
a w and t = v a t1 a w and

s1 →S t1.

The following propositions are true:

(10) If s→S t, then s⇒S t.

(11) If s⇒S s, then there exist v, w, s1 such that s = vas1
aw and s1 →S s1.

(12) If s⇒S t, then u a s⇒S u
a t and s a u⇒S t

a u.
(13) If s⇒S t, then u a s a v ⇒S u

a t a v.
(14) If s→S t, then u a s⇒S u

a t and s a u⇒S t
a u.

(15) If s→S t, then u a s a v ⇒S u
a t a v.

(16) If S is a Thue-system of E and s→S t, then t→S s.

(17) If S is a Thue-system of E and s⇒S t, then t⇒S s.

(18) If S ⊆ T and s→S t, then s→T t.

(19) If S ⊆ T and s⇒S t, then s⇒T t.

(20) s 6⇒∅Eω,Eω t.
(21) If s⇒S∪T t, then s⇒S t or s⇒T t.
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6. Reduction Relation

Let us consider E. Then idE is a binary relation on E.

Let us consider E, S. The functor ⇒S yielding a binary relation on Eω is

defined as follows:

(Def. 6) 〈〈s, t〉〉 ∈ ⇒S iff s⇒S t.

The following propositions are true:

(22) S ⊆ ⇒S.

(23) Suppose p is a reduction sequence w.r.t. ⇒S. Then p+ u is a reduction

sequence w.r.t. ⇒S and u+ p is a reduction sequence w.r.t. ⇒S.

(24) If p is a reduction sequence w.r.t. ⇒S , then (t + p) + u is a reduction

sequence w.r.t. ⇒S.

(25) If S is a Thue-system of E, then ⇒S = (⇒S)`.
(26) If S ⊆ T, then ⇒S ⊆ ⇒T .

(27) ⇒idEω = idEω .

(28) ⇒S∪idEω =⇒S ∪ idEω .

(29) ⇒∅Eω,Eω = ∅Eω,Eω .
(30) If s⇒⇒S

t, then s⇒S t.

(31) ⇒⇒S
=⇒S.

7. Derivations

Let us consider E, S, s, t. The predicate s⇒∗S t is defined by:

(Def. 7) ⇒S reduces s to t.

One can prove the following propositions:

(32) s⇒∗S s.
(33) If s⇒S t, then s⇒∗S t.
(34) If s→S t, then s⇒∗S t.
(35) If s⇒∗S t and t⇒∗S u, then s⇒∗S u.
(36) If s⇒∗S t, then s a u⇒∗S t a u and u a s⇒∗S u a t.
(37) If s⇒∗S t, then u a s a v ⇒∗S u a t a v.
(38) If s⇒∗S t and u⇒∗S v, then s a u⇒∗S t a v and u a s⇒∗S v a t.
(39) If S is a Thue-system of E and s⇒∗S t, then t⇒∗S s.
(40) If S ⊆ T and s⇒∗S t, then s⇒∗T t.
(41) s⇒∗S t iff s⇒∗S∪idEω

t.

(42) If s⇒∗∅Eω,Eω t, then s = t.

(43) If s⇒∗⇒S
t, then s⇒∗S t.
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(44) If s⇒∗S t and u⇒{〈〈s, t〉〉} v, then u⇒∗S v.
(45) If s⇒∗S t and u⇒∗

S∪{〈〈s, t〉〉} v, then u⇒∗S v.

8. Languages Generated by Semi-Thue Systems

Let us consider E, S, w. The functor Lang(w,S) yields a subset of Eω and

is defined by:

(Def. 8) Lang(w,S) = {s : w ⇒∗S s}.
Next we state two propositions:

(46) s ∈ Lang(w,S) iff w ⇒∗S s.
(47) w ∈ Lang(w,S).

Let E be a non empty set, let S be a semi-Thue-system of E, and let w be

an element of Eω. Note that Lang(w,S) is non empty.

We now state four propositions:

(48) If S ⊆ T, then Lang(w,S) ⊆ Lang(w, T ).

(49) Lang(w,S) = Lang(w,S ∪ idEω).

(50) Lang(w, ∅Eω ,Eω) = {w}.
(51) Lang(w, idEω) = {w}.

9. Equivalence of Semi-Thue Systems

Let us consider E, S, T , w. We say that S and T are equivalent wrt w if

and only if:

(Def. 9) Lang(w,S) = Lang(w, T ).

The following propositions are true:

(52) S and S are equivalent wrt w.

(53) If S and T are equivalent wrt w, then T and S are equivalent wrt w.

(54) Suppose S and T are equivalent wrt w and T and U are equivalent wrt

w. Then S and U are equivalent wrt w.

(55) S and S ∪ idEω are equivalent wrt w.

(56) Suppose S and T are equivalent wrt w and S ⊆ U and U ⊆ T. Then S

and U are equivalent wrt w and U and T are equivalent wrt w.

(57) S and ⇒S are equivalent wrt w.

(58) If S and T are equivalent wrt w and ⇒S∪T reduces w to s, then ⇒S

reduces w to s.

(59) If S and T are equivalent wrt w and w ⇒∗S∪T s, then w ⇒∗S s.
(60) If S and T are equivalent wrt w, then S and S∪T are equivalent wrt w.
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(61) If s⇒S t, then S and S ∪ {〈〈s, t〉〉} are equivalent wrt w.

(62) If s⇒∗S t, then S and S ∪ {〈〈s, t〉〉} are equivalent wrt w.
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Summary. In this paper the classic theory of matrices of real elements

(see e.g. [12], [13]) is developed. We prove selected equations that have been

proved previously for matrices of field elements. Similarly, we introduce in this

special context the determinant of a matrix, the identity and zero matrices, and

the inverse matrix. The new concept discussed in the case of matrices of real

numbers is the property of matrices as operators acting on finite sequences of

real numbers from both sides. The relations of invertibility of matrices and the

“onto” property of matrices as operators are discussed.

MML identifier: MATRIXR2, version: 7.8.05 4.87.985

The articles [24], [30], [9], [2], [22], [31], [7], [4], [5], [8], [3], [6], [28], [26], [21],

[14], [29], [32], [23], [25], [27], [15], [34], [33], [19], [16], [11], [18], [20], [10], [17],

[1], and [35] provide the terminology and notation for this paper.

1. Preliminaries

We use the following convention: D denotes a non empty set, k, n, m, i, j,

l denote elements of N, and K denotes a field.

We now state several propositions:

(1) For all finite sequences x, y of elements of R such that lenx = len y and

x+ y = 〈0, . . . , 0︸ ︷︷ ︸
len x

〉 holds x = −y and y = −x.

(2) Let A be a matrix over D and p be a finite sequence of elements of D.

If p = A(i) and 1 ≤ i and i ≤ lenA and 1 ≤ j and j ≤ widthA and

len p = widthA, then Ai,j = p(j).
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(3) Let a be a real number and A be a matrix over R. Suppose len(a ·A) =

lenA and width(a · A) = widthA and 〈〈i, j〉〉 ∈ the indices of A. Then

(a ·A)i,j = a · Ai,j.
(4) For all matrices A, B over R of dimension n holds len(A · B) = lenA

and width(A ·B) = widthB and len(A · B) = n and width(A ·B) = n.

(5) For every real number a and for every matrix A over R holds len(a ·A) =

lenA and width(a ·A) = widthA.

2. Calculation of Matrices

We now state the proposition

(6) Let A, B be matrices over R. Suppose lenA = lenB and widthA =

widthB. Then len(A − B) = lenA and width(A − B) = widthA and for

all i, j such that 〈〈i, j〉〉 ∈ the indices of A holds (A−B)i,j = Ai,j −Bi,j.
Let us consider n and let A, B be matrices over R of dimension n. Then

A · B is a matrix over R of dimension n.

The following propositions are true:

(7) For all matrices A, B over R such that lenA = lenB and widthA =

widthB and lenA > 0 holds A+ (B −B) = A.

(8) For all matrices A, B over R such that lenA = lenB and widthA =

widthB and lenA > 0 holds (A+B)−B = A.

(9) For every matrix A over R holds (−1) · A = −A.
(10) For every matrix A over R and for all elements i, j of N such that 〈〈i,

j〉〉 ∈ the indices of A holds (−A)i,j = −Ai,j.
(11) For all real numbers a, b and for every matrix A over R holds (a · b) ·A =

a · (b · A).

(12) For all real numbers a, b and for every matrix A over R holds (a+b)·A =

a · A+ b · A.
(13) For all real numbers a, b and for every matrix A over R holds (a−b)·A =

a · A− b · A.
(14) For every matrix A over K such that n > 0 and lenA > 0 holds


0 . . . 0
...

. . .
...

0 . . . 0




n×(lenA)

K

·A =




0 . . . 0
...

. . .
...

0 . . . 0




n×(widthA)

K

.

(15) For all matrices A, C over K such that lenA = widthC and lenC > 0

and lenA > 0 holds (−C) · A = −C ·A.
(16) For all matrices A, B, C over K such that lenB = lenC and widthB =

widthC and lenA = widthB and lenB > 0 and lenA > 0 holds (B−C) ·
A = B · A− C ·A.
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(17) For all matrices A, B, C over R such that lenA = lenB and widthA =

widthB and lenC = widthA and lenA > 0 and lenC > 0 holds (A−B) ·
C = A · C −B · C.

(18) For every element m of N and for all matrices A, C over K such

that widthA > 0 and lenA > 0 holds A ·




0 . . . 0
...

. . .
...

0 . . . 0




(widthA)×m

K

=




0 . . . 0
...

. . .
...

0 . . . 0




(lenA)×m

K

.

(19) For all matrices A, C over K such that widthA = lenC and lenA > 0

and lenC > 0 holds A · −C = −A · C.
(20) For all matrices A, B, C over K such that lenB = lenC and widthB =

widthC and lenB = widthA and lenB > 0 and lenA > 0 holds A · (B −
C) = A · B −A · C.

(21) For all matrices A, B, C over R such that lenA = lenB and widthA =

widthB and widthC = lenA and lenC > 0 and lenA > 0 holds C · (A−
B) = C ·A−C · B.

(22) Let A, B, C be matrices over R. Suppose that

(i) lenA = lenB,

(ii) widthA = widthB,

(iii) lenC = lenA,

(iv) widthC = widthA, and

(v) for all elements i, j of N such that 〈〈i, j〉〉 ∈ the indices of A holds

Ci,j = Ai,j −Bi,j.
Then C = A−B.

(23) For all finite sequences x1, x2 of elements of R such that lenx1 =

lenx2 and lenx1 > 0 holds LineVec2Mx(x1 − x2) = LineVec2Mx x1 −
LineVec2Mx x2.

(24) For all finite sequences x1, x2 of elements of R such that lenx1 =

lenx2 and len x1 > 0 holds ColVec2Mx(x1 − x2) = ColVec2Mx x1 −
ColVec2Mx x2.

(25) Let A, B be matrices over R. Suppose lenA = lenB and widthA =

widthB. Let i be a natural number. If 1 ≤ i and i ≤ lenA, then Line(A−
B, i) = Line(A, i) − Line(B, i).

(26) Let A, B be matrices over R. Suppose lenA = lenB and widthA =

widthB. Let i be a natural number. If 1 ≤ i and i ≤ widthA, then

(A−B)�,i = A�,i −B�,i.
(27) Let A be a matrix over R of dimension n × k, B be a matrix over R of
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dimension k × m, and C be a matrix over R of dimension m × l. If n > 0

and k > 0 and m > 0, then (A ·B) · C = A · (B · C).

(28) For all matrices A, B, C over R of dimension n holds (A · B) · C =

A · (B · C).

(29) For every matrix A over D of dimension n holds (AT)T = A.

(30) For all matrices A, B over R of dimension n holds (A · B)T = BT ·AT.

(31) For every matrix A over R such that n > 0 and lenA = n and widthA =

m holds −A+A =




0 . . . 0
...

. . .
...

0 . . . 0




n×m

R

.

3. Determinants

Let us consider n and let A be a matrix over R of dimension n. Then

(R→ RF)A is a matrix over RF of dimension n.

Let us consider n and let A be a matrix over R of dimension n. The functor

DetA yielding a real number is defined as follows:

(Def. 1) DetA = Det(R→ RF)A.

We now state a number of propositions:

(32) For every matrix A over R of dimension 2 holds DetA = A1,1 · A2,2 −
A1,2 ·A2,1.

(33) For all finite sequences s1, s2, s3 such that len s1 = n and len s2 = n and

len s3 = n holds 〈s1, s2, s3〉 is tabular.

(34) Let p1, p2, p3 be finite sequences of elements of D. Suppose len p1 = n

and len p2 = n and len p3 = n. Then 〈p1, p2, p3〉 is a matrix over D of

dimension 3 × n.

(35) For all elements a1, a2, a3, b1, b2, b3, c1, c2, c3 of D holds 〈〈a1, a2, a3〉,
〈b1, b2, b3〉, 〈c1, c2, c3〉〉 is a matrix over D of dimension 3.

(36) Let A be a matrix over D of dimension n, p be a finite sequence of

elements of D, and i be a natural number. If p = A(i) and i ∈ Segn, then

len p = n.

(37) For every matrix A over D of dimension 3 holds A = 〈〈A1,1, A1,2, A1,3〉,
〈A2,1, A2,2, A2,3〉, 〈A3,1, A3,2, A3,3〉〉.

(38) Let A be a matrix over R of dimension 3. Then DetA = (((A1,1 · A2,2 ·
A3,3 −A1,3 ·A2,2 ·A3,1 −A1,1 ·A2,3 ·A3,2) +A1,2 ·A2,3 ·A3,1)−A1,2 ·A2,1 ·
A3,3) +A1,3 ·A2,1 ·A3,2.

(39) For every permutation f of Seg 0 holds f = εN.

(40) The permutations of 0-element set = {εN}.
(41) For every matrix A over K of dimension 0 holds DetA = 1K .
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(42) For every matrix A over R of dimension 0 holds DetA = 1.

(43) For every natural number n and for every matrix A over K of dimension

n holds DetA = Det(AT).

(44) For every matrix A over R of dimension n holds DetA = Det(AT).

(45) For all matrices A, B over K of dimension n holds Det(A ·B) = DetA ·
DetB.

(46) For all matrices A, B over R of dimension n holds Det(A ·B) = DetA ·
DetB.

4. Matrix as Operator

We now state a number of propositions:

(47) Let x, y be finite sequences of elements of R and A be a matrix over

R. If lenx = lenA and len y = lenx and lenx > 0 and lenA > 0, then

(x− y) ·A = x ·A− y ·A.
(48) Let x, y be finite sequences of elements of R and A be a matrix over R.

If lenx = widthA and len y = lenx and lenx > 0 and lenA > 0, then

A · (x− y) = A · x−A · y.
(49) Let x be a finite sequence of elements of R and A be a matrix over R.

If lenA = lenx and lenx > 0 and widthA > 0, then (−x) · A = −x · A.
(50) Let x be a finite sequence of elements of R and A be a matrix over R.

If lenx = widthA and lenA > 0 and len x > 0, then A · −x = −A · x.
(51) Let x be a finite sequence of elements of R and A be a matrix over R.

If lenx = lenA and lenx > 0 and widthA > 0, then x · −A = −x · A.
(52) Let x be a finite sequence of elements of R and A be a matrix over R.

If lenx = widthA and lenA > 0 and len x > 0, then (−A) · x = −A · x.
(53) Let a be a real number, x be a finite sequence of elements of R, and A

be a matrix over R. If widthA = len x and len x > 0 and lenA > 0, then

A · (a · x) = a · (A · x).

(54) Let x be a finite sequence of elements of R and A, B be matrices over R.

If len x = lenA and lenA = lenB and widthA = widthB and lenA > 0,

then x · (A−B) = x · A− x · B.
(55) Let x be a finite sequence of elements of R and A, B be matrices over R.

If len x = widthA and lenA = lenB and widthA = widthB and lenx > 0

and lenA > 0, then (A−B) · x = A · x−B · x.
(56) For every finite sequence x of elements of R and for every matrix A over

R such that lenA = lenx holds LineVec2Mx x ·A = LineVec2Mx(x · A).

(57) Let x be a finite sequence of elements of R and A, B be matrices over

R. If lenx = lenA and widthA = lenB, then x · (A ·B) = (x ·A) · B.
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(58) Let x be a finite sequence of elements of R and A be a matrix over R.

If widthA = lenx and len x > 0 and lenA > 0, then A · ColVec2Mx x =

ColVec2Mx(A · x).

(59) Let x be a finite sequence of elements of R and A, B be matrices over

R. If len x = widthB and widthA = lenB and lenx > 0 and lenB > 0,

then (A ·B) · x = A · (B · x).

(60) Let B be a matrix over R of dimension n × m and A be a matrix over R
of dimension m × k. Suppose n > 0. Let given i, j. If 〈〈i, j〉〉 ∈ the indices

of B · A, then (B ·A)i,j = (Line(B, i) ·A)(j).

(61) Let A, B be matrices over R of dimension n and given i, j. If 〈〈i, j〉〉 ∈ the

indices of B ·A, then (B · A)i,j = (Line(B, i) ·A)(j).

(62) Let A, B be matrices over R of dimension n. Suppose n > 0. Let given

i, j. If 〈〈i, j〉〉 ∈ the indices of A ·B, then (A · B)i,j = (A ·B�,j)(i).

5. Identity and Zero of Matrix of R

Let n be an element of N. The functor 1Rmatrix(n) yields a matrix over R
of dimension n and is defined as follows:

(Def. 2) 1Rmatrix(n) = (RF → R)(




1 0
. . .

0 1




n×n

RF

).

One can prove the following propositions:

(63)(i) For every i such that 〈〈i, i〉〉 ∈ the indices of 1Rmatrix(n) holds

(1Rmatrix(n))i,i = 1, and

(ii) for all i, j such that 〈〈i, j〉〉 ∈ the indices of 1Rmatrix(n) and i 6= j holds

(1Rmatrix(n))i,j = 0.

(64) (1Rmatrix(n))T = 1Rmatrix(n).

(65) For all elements n, m of N such that n > 0 holds




0 . . . 0
...

. . .
...

0 . . . 0




n×m

R

+




0 . . . 0
...

. . .
...

0 . . . 0




n×m

R

=




0 . . . 0
...

. . .
...

0 . . . 0




n×m

R

.

(66) For every real number a such that n > 0 holds a ·




0 . . . 0
...

. . .
...

0 . . . 0




n×m

R

=
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


0 . . . 0
...

. . .
...

0 . . . 0




n×m

R

.

(67) For every field K and for every matrix A over K holds A ·


1 0
. . .

0 1




widthA×widthA

K

= A.

(68) For every matrix A over K holds




1 0
. . .

0 1




lenA×lenA

K

· A = A.

(69) For every matrix A over R holds if n = widthA, thenA·1Rmatrix(n) = A

and if m = lenA, then 1Rmatrix(m) ·A = A.

(70) For every matrix A over R of dimension n holds 1Rmatrix(n) ·A = A.

(71) For every matrix A over R of dimension n holds A · 1Rmatrix(n) = A.

(72) Det 1Rmatrix(n) = 1.

Let n be an element of N. The functor 0Rmatrix(n) yields a matrix over R
of dimension n and is defined by:

(Def. 3) 0Rmatrix(n) =




0 . . . 0
...

. . .
...

0 . . . 0




n×n

R

.

One can prove the following proposition

(73) If n > 0, then Det 0Rmatrix(n) = 0.

Let us consider n and let us consider i. The base fin seq( n, i ) yielding a

finite sequence of elements of R is defined by:

(Def. 4) The base fin seq( n, i) = Replace(n 7→ (0 qua element of R), i, 1).

We now state several propositions:

(74) len (the base fin seq( n, i)) = n.

(75) If 1 ≤ i and i ≤ n, then (the base fin seq( n, i))(i) = 1.

(76) If 1 ≤ i and i ≤ n and 1 ≤ j and j ≤ n and i 6= j, then (the base fin seq(

n, i))(j) = 0.

(77)(i) The base fin seq( 1, 1) = 〈1〉,
(ii) the base fin seq( 2, 1) = 〈1, 0〉,

(iii) the base fin seq( 2, 2) = 〈0, 1〉,
(iv) the base fin seq( 3, 1) = 〈1, 0, 0〉,
(v) the base fin seq( 3, 2) = 〈0, 1, 0〉, and

(vi) the base fin seq( 3, 3) = 〈0, 0, 1〉.
(78) If 1 ≤ i and i ≤ n, then (1Rmatrix(n))(i) = the base fin seq( n, i).
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6. Inverse of Matrix

Let n be an element of N and let A be a matrix over R of dimension n. We

say that A is invertible if and only if:

(Def. 5) There exists a matrix B over R of dimension n such that B · A =

1Rmatrix(n) and A ·B = 1Rmatrix(n).

Let n be an element of N and let A be a matrix over R of dimension n. Let

us assume that A is invertible. The functor InvA yields a matrix over R of

dimension n and is defined as follows:

(Def. 6) InvA ·A = 1Rmatrix(n) and A · InvA = 1Rmatrix(n).

Let us consider n. Note that 1Rmatrix(n) is invertible.

We now state a number of propositions:

(79) Inv 1Rmatrix(n) = 1Rmatrix(n).

(80) For all matrices A, B1, B2 over R of dimension n such that B1 · A =

1Rmatrix(n) and A ·B2 = 1Rmatrix(n) holds B1 = B2 and A is invertible.

(81) For every matrix A over R of dimension n such that A is invertible holds

Det InvA = DetA−1.

(82) For every matrix A over R of dimension n such that A is invertible holds

DetA 6= 0.

(83) Let A, B be matrices over R of dimension n. Suppose A is invertible

and B is invertible. Then A ·B is invertible and InvA ·B = InvB · InvA.

(84) For every matrix A over R of dimension n such that A is invertible holds

Inv InvA = A.

(85) 1Rmatrix(0) = 0Rmatrix(0) and 1Rmatrix(0) = ∅.
(86) For every finite sequence x of elements of R such that lenx = n and

n > 0 holds 1Rmatrix(n) · x = x.

(87) Let n be an element of N, x, y be finite sequences of elements of R, and A

be a matrix over R of dimension n. Suppose A is invertible and lenx = n

and len y = n and n > 0. Then A · x = y if and only if x = InvA · y.
(88) For every finite sequence x of elements of R such that lenx = n holds

x · 1Rmatrix(n) = x.

(89) Let x, y be finite sequences of elements of R and A be a matrix over R of

dimension n. Suppose A is invertible and len x = n and len y = n. Then

x · A = y if and only if x = y · InvA.

(90) Let A be a matrix over R of dimension n. Suppose n > 0 and A is

invertible. Let y be a finite sequence of elements of R. Suppose len y = n.

Then there exists a finite sequence x of elements of R such that lenx = n

and A · x = y.
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(91) Let A be a matrix over R of dimension n. Suppose A is invertible. Let y

be a finite sequence of elements of R. Suppose len y = n. Then there exists

a finite sequence x of elements of R such that lenx = n and x · A = y.

(92) Let A be a matrix over R of dimension n and x, y be finite sequences of

elements of R. Suppose lenx = n and len y = n and x · A = y. Let j be

an element of N. If 1 ≤ j and j ≤ n, then y(j) = |(x,A�,j)|.
(93) Let A be a matrix over R of dimension n. Suppose that for every finite

sequence y of elements of R such that len y = n there exists a finite

sequence x of elements of R such that len x = n and x ·A = y. Then there

exists a matrix B over R of dimension n such that B ·A = 1Rmatrix(n).

(94) Let x be a finite sequence of elements of R and A be a matrix over R of

dimension n. If n > 0 and lenx = n, then AT · x = x · A.
(95) Let x be a finite sequence of elements of R and A be a matrix over R of

dimension n. If n > 0 and lenx = n, then x ·AT = A · x.
(96) Let A be a matrix over R of dimension n. Suppose that

(i) n > 0, and

(ii) for every finite sequence y of elements of R such that len y = n there

exists a finite sequence x of elements of R such that lenx = n and A·x = y.

Then there exists a matrix B over R of dimension n such that A · B =

1Rmatrix(n).

(97) Let A be a matrix over R of dimension n. Suppose that

(i) n > 0, and

(ii) for every finite sequence y of elements of R such that len y = n there

exist finite sequences x1, x2 of elements of R such that len x1 = n and

lenx2 = n and A · x1 = y and x2 · A = y.

Then A is invertible.
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[6] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized

Mathematics, 1(3):529–536, 1990.
[7] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
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Summary. The rank+nullity theorem states that, if T is a linear trans-

formation from a finite-dimensional vector space V to a finite-dimensional vector

space W , then dim(V ) = rank(T ) + nullity(T ), where rank(T ) = dim(im(T ))

and nullity(T ) = dim(ker(T )). The proof treated here is standard; see, for ex-

ample, [14]: take a basis A of ker(T ) and extend it to a basis B of V , and then

show that dim(im(T )) is equal to |B −A|, and that T is one-to-one on B −A.

MML identifier: RANKNULL, version: 7.8.05 4.87.985

The articles [21], [11], [32], [22], [19], [33], [34], [7], [2], [17], [10], [18], [8], [9],

[20], [1], [12], [3], [5], [6], [27], [29], [24], [31], [25], [13], [4], [30], [28], [26], [23],

[15], [16], and [35] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following three propositions:

(1) For all functions f , g such that g is one-to-one and f� rng g is one-to-one

and rng g ⊆ dom f holds f · g is one-to-one.

(2) For every function f and for all sets X, Y such that X ⊆ Y and f�Y is

one-to-one holds f�X is one-to-one.

(3) Let V be a 1-sorted structure and X, Y be subsets of V . Then X meets

Y if and only if there exists an element v of V such that v ∈ X and v ∈ Y.
In the sequel F is a field and V , W are vector spaces over F .

Let F be a field and let V be a finite dimensional vector space over F . One

can verify that there exists a basis of V which is finite.
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Let F be a field and let V , W be vector spaces over F . Note that there

exists a function from V into W which is linear.

Next we state three propositions:

(4) If ΩV is finite, then V is finite dimensional.

(5) For every finite dimensional vector space V over F such that ΩV = 1

holds dim(V ) = 0.

(6) If ΩV = 2, then dim(V ) = 1.

2. Basic Facts of Linear Transformations

Let F be a field and let V , W be vector spaces over F . A linear transfor-

mation from V to W is a linear function from V into W .

In the sequel T is a linear transformation from V to W .

One can prove the following propositions:

(7) For all non empty 1-sorted structures V , W and for every function T

from V into W holds domT = ΩV and rng T ⊆ ΩW .

(8) For all elements x, y of V holds T (x)− T (y) = T (x− y).

(9) T (0V ) = 0W .

Let F be a field, let V , W be vector spaces over F , and let T be a linear

transformation from V to W . The functor kerT yielding a strict subspace of V

is defined as follows:

(Def. 1) ΩkerT = {u;u ranges over elements of V : T (u) = 0W }.
We now state the proposition

(10) For every element x of V holds x ∈ kerT iff T (x) = 0W .

Let V , W be non empty 1-sorted structures, let T be a function from V into

W , and let X be a subset of V . Then T ◦X is a subset of W .

Let F be a field, let V , W be vector spaces over F , and let T be a linear

transformation from V to W . The functor imT yielding a strict subspace of W

is defined as follows:

(Def. 2) ΩimT = T ◦(ΩV ).

The following propositions are true:

(11) 0V ∈ kerT.

(12) For every subset X of V holds T ◦X is a subset of imT.

(13) For every element y of W holds y ∈ im T iff there exists an element x of

V such that y = T (x).

(14) For every element x of ker T holds T (x) = 0W .

(15) If T is one-to-one, then kerT = 0V .

(16) For every finite dimensional vector space V over F holds dim(0V ) = 0.
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(17) For all elements x, y of V such that T (x) = T (y) holds x− y ∈ ker T.

(18) For every subset A of V and for all elements x, y of V such that x− y ∈
Lin(A) holds x ∈ Lin(A ∪ {y}).

3. Some Lemmas on Linearly Independent Subsets, Linear

Combinations, and Linear Transformations

One can prove the following propositions:

(19) For every subset X of V such that V is a subspace of W holds X is a

subset of W .

(20) For every subset A of V such that A is linearly independent holds A is

a basis of Lin(A).

(21) For every subset A of V and for every element x of V such that x ∈
Lin(A) and x /∈ A holds A ∪ {x} is linearly dependent.

(22) For every subset A of V and for every basis B of V such that A is a

basis of kerT and A ⊆ B holds T �(B \ A) is one-to-one.

(23) Let A be a subset of V , l be a linear combination of A, x be an element

of V , and a be an element of F . Then l +· (x, a) is a linear combination

of A ∪ {x}.
Let V be a 1-sorted structure and let X be a subset of V . The functor V \X

yields a subset of V and is defined by:

(Def. 3) V \X = ΩV \X.
Let F be a field, let V be a vector space over F , let l be a linear combination

of V , and let X be a subset of V . Then l◦X is a subset of F .

In the sequel l is a linear combination of V .

Let F be a field and let V be a vector space over F . Note that there exists

a subset of V which is linearly dependent.

Let F be a field, let V be a vector space over F , let l be a linear combination

of V , and let A be a subset of V . The functor l[A] yields a linear combination

of A and is defined by:

(Def. 4) l[A] = l�A+·(V \A 7−→ 0F ).

The following propositions are true:

(24) l = l[the support of l].

(25) For every subset A of V and for every element v of V such that v ∈ A
holds l[A](v) = l(v).

(26) For every subset A of V and for every element v of V such that v /∈ A
holds l[A](v) = 0F .

(27) For all subsets A, B of V and for every linear combination l of B such

that A ⊆ B holds l = l[A] + l[B \A].
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Let F be a field, let V be a vector space over F , let l be a linear combination

of V , and let X be a subset of V . Observe that l◦X is finite.

Let V , W be non empty 1-sorted structures, let T be a function from V into

W , and let X be a subset of W . Then T−1(X) is a subset of V .

We now state the proposition

(28) For every subset X of V such that X misses the support of l holds

l◦X ⊆ {0F }.
Let F be a field, let V , W be vector spaces over F , let l be a linear combi-

nation of V , and let T be a linear transformation from V to W . The functor

T @ l yielding a linear combination of W is defined by:

(Def. 5) For every element w of W holds (T @ l)(w) =
∑

(l◦T−1({w})).
One can prove the following propositions:

(29) T @ l is a linear combination of T ◦(the support of l).

(30) The support of T @ l ⊆ T ◦(the support of l).

(31) Let l, m be linear combinations of V . Suppose the support of l misses

the support of m. Then the support of l +m = (the support of l) ∪ (the

support of m).

(32) Let l, m be linear combinations of V . Suppose the support of l misses

the support of m. Then the support of l −m = (the support of l) ∪ (the

support of m).

(33) For all subsets A, B of V such that A ⊆ B and B is a basis of V holds

V is the direct sum of Lin(A) and Lin(B \A).

(34) Let A be a subset of V , l be a linear combination of A, and v be an

element of V . Suppose T �A is one-to-one and v ∈ A. Then there exists a

subset X of V such that X misses A and T−1({T (v)}) = {v} ∪X.
(35) For every subset X of V such that X misses the support of l and X 6= ∅

holds l◦X = {0F }.
(36) For every element w of W such that w ∈ the support of T @ l holds

T−1({w}) meets the support of l.

(37) Let v be an element of V . Suppose T �(the support of l) is one-to-one

and v ∈ the support of l. Then (T @ l)(T (v)) = l(v).

(38) Let G be a finite sequence of elements of V . Suppose rngG = the support

of l and T �(the support of l) is one-to-one. Then T · (l G) = (T @ l) (T ·G).

(39) If T �(the support of l) is one-to-one, then T ◦(the support of l) = the

support of T @ l.

(40) Let A be a subset of V , B be a basis of V , and l be a linear combination

of B \ A. If A is a basis of ker T and A ⊆ B, then T (
∑
l) =

∑
(T @ l).

(41) Let X be a subset of V . Suppose X is linearly dependent. Then there

exists a linear combination l of X such that the support of l 6= ∅ and
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∑
l = 0V .

Let F be a field, let V , W be vector spaces over F , let X be a subset of V ,

let T be a linear transformation from V to W , and let l be a linear combination

of T ◦X. Let us assume that T �X is one-to-one. The functor T#l yields a linear

combination of X and is defined as follows:

(Def. 6) T#l = l · T+·(V \X 7−→ 0F ).

We now state two propositions:

(42) Let X be a subset of V , l be a linear combination of T ◦X, and v be an

element of V . If v ∈ X and T �X is one-to-one, then (T#l)(v) = l(T (v)).

(43) For every subset X of V and for every linear combination l of T ◦X such

that T �X is one-to-one holds T @ T#l = l.

4. The Rank+Nullity Theorem

Let F be a field, let V , W be finite dimensional vector spaces over F , and

let T be a linear transformation from V to W . The functor rankT yielding a

natural number is defined by:

(Def. 7) rankT = dim(im T ).

The functor nullity T yields a natural number and is defined by:

(Def. 8) nullity T = dim(ker T ).

Next we state two propositions:

(44) Let V , W be finite dimensional vector spaces over F and T be a linear

transformation from V to W . Then dim(V ) = rankT + nullity T.

(45) Let V , W be finite dimensional vector spaces over F and T be a linear

transformation from V to W . If T is one-to-one, then dim(V ) = rankT.
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The notation and terminology used in this paper are introduced in the following

articles: [23], [11], [29], [20], [12], [30], [31], [6], [9], [7], [3], [4], [21], [28], [26],

[15], [22], [10], [5], [13], [24], [14], [33], [25], [18], [34], [1], [8], [2], [16], [17], [27],

[19], and [32].

1. Preliminaries

For simplicity, we follow the rules: x, y are sets, N is an element of N, c,

i, j, k, m, n are natural numbers, D is a non empty set, s is an element of

2Set Seg(n + 2), p is an element of the permutations of n-element set, p1, q1

are elements of the permutations of (n+ 1)-element set, p2 is an element of the

permutations of (n+ 2)-element set, K is a field, a, b are elements of K, f is a

finite sequence of elements of K, A is a matrix over K, A1 is a matrix over D

of dimension n × m, p3 is a finite sequence of elements of D, and M is a matrix

over K of dimension n.

The following propositions are true:

(1) For every finite sequence f and for every natural number i such that

i ∈ dom f holds len(f�i) = len f −′ 1.
(2) Let i, j, n be natural numbers and M be a matrix over K of dimension n.

If i ∈ domM, then len (the deleting of i-row and j-column in M) = n−′ 1.
(3) If j ∈ Seg widthA, then width (the deleting of j-column in A) =

widthA−′ 1.
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(4) For every natural number i such that lenA > 1 holds widthA =

width (the deleting of i-row in A).

(5) For every natural number i such that j ∈ Seg widthM holds width (the

deleting of i-row and j-column in M) = n−′ 1.
Let G be a non empty groupoid, let B be a function from [: the carrier of

G, N :] into the carrier of G, let g be an element of G, and let i be a natural

number. Then B(g, i) is an element of G.

One can prove the following propositions:

(6) the permutations of n-element set = n!.

(7) For all i, j such that i ∈ Seg(n + 1) and j ∈ Seg(n + 1) holds

{p1 : p1(i) = j} = n!.

(8) Let K be a Fanoian field, given p2, and X, Y be el-

ements of Fin 2Set Seg(n + 2). Suppose Y = {s : s ∈
X ∧ (Part-sgn(p2,K))(s) = −1K}. Then (the multiplication of

K)-
∑

X Part-sgn(p2,K) = powerK(−1K , cardY ).

(9) Let K be a Fanoian field and given p2, i, j. Suppose i ∈ Seg(n + 2)

and p2(i) = j. Then there exists an element X of Fin 2Set Seg(n+ 2) such

that X = {{N, i} : {N, i} ∈ 2Set Seg(n + 2)} and (the multiplication of

K)-
∑

X Part-sgn(p2,K) = powerK(−1K , i+ j).

(10) Let given i, j. Suppose i ∈ Seg(n + 1) and j ∈ Seg(n + 1) and n ≥ 2.

Then there exists a function P1 from 2Set Seg n into 2Set Seg(n+ 1) such

that

(i) rngP1 = 2Set Seg(n+ 1) \ {{N, i} : {N, i} ∈ 2Set Seg(n+ 1)},
(ii) P1 is one-to-one, and

(iii) for all k, m such that k < m and {k,m} ∈ 2Set Seg n holds if m < i

and k < i, then P1({k,m}) = {k,m} and if m ≥ i and k < i, then

P1({k,m}) = {k,m + 1} and if m ≥ i and k ≥ i, then P1({k,m}) =

{k + 1,m+ 1}.
(11) If n < 2, then for every element p of the permutations of n-element set

holds p is even and p = idseq(n).

(12) Let X, Y , D be non empty sets, f be a function from X into FinY, g be

a function from FinY into D, and F be a binary operation on D. Suppose

that

(i) for all elements A, B of Fin Y such that A misses B holds F (g(A),

g(B)) = g(A ∪B),

(ii) F is commutative and associative and has a unity, and

(iii) g(∅) = 1F .

Let I be an element of FinX. Suppose that for all x, y such that x ∈ I
and y ∈ I and f(x) meets f(y) holds x = y. Then F -

∑
I g ·f = F -

∑
f◦I g

and F -
∑

f◦I g = g(
⋃

(f◦I)) and
⋃

(f◦I) is an element of FinY.
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2. Auxiliary Notions

Let i, j, n be natural numbers, let us consider K, and let M be a matrix

over K of dimension n. Let us assume that i ∈ Seg n and j ∈ Seg n. The functor

Delete(M, i, j) yielding a matrix over K of dimension n−′1 is defined as follows:

(Def. 1) Delete(M, i, j) = the deleting of i-row and j-column in M .

The following propositions are true:

(13) Let given i, j. Suppose i ∈ Seg n and j ∈ Segn. Let given k, m such

that k ∈ Seg(n−′ 1) and m ∈ Seg(n−′ 1). Then

(i) if k < i and m < j, then (Delete(M, i, j))k,m = Mk,m,

(ii) if k < i and m ≥ j, then (Delete(M, i, j))k,m = Mk,m+1,

(iii) if k ≥ i and m < j, then (Delete(M, i, j))k,m = Mk+1,m, and

(iv) if k ≥ i and m ≥ j, then (Delete(M, i, j))k,m = Mk+1,m+1.

(14) For all i, j such that i ∈ Seg n and j ∈ Seg n holds (Delete(M, i, j))T =

Delete(MT, j, i).

(15) For every finite sequence f of elements of K and for all i, j such that

i ∈ Seg n and j ∈ Seg n holds Delete(M, i, j) = Delete(RLine(M, i, f), i, j).

Let us consider c, n, m, D, let M be a matrix over D of dimension n×m, and

let p3 be a finite sequence of elements of D. The functor ReplaceCol(M, c, p3)

yielding a matrix over D of dimension n × m is defined by:

(Def. 2)(i) len ReplaceCol(M, c, p3) = lenM and width ReplaceCol(M, c, p3) =

widthM and for all i, j such that 〈〈i, j〉〉 ∈ the indices of M holds

if j 6= c, then (ReplaceCol(M, c, p3))i,j = Mi,j and if j = c, then

(ReplaceCol(M, c, p3))i,c = p3(i) if len p3 = lenM,

(ii) ReplaceCol(M, c, p3) = M, otherwise.

Let us consider c, n, m, D, let M be a matrix over D of dimension n × m,

and let p3 be a finite sequence of elements of D. We introduce RCol(M, c, p3)

as a synonym of ReplaceCol(M, c, p3).

We now state four propositions:

(16) For every i such that i ∈ Seg widthA1 holds if i = c and len p3 = lenA1,

then (RCol(A1, c, p3))�,i = p3 and if i 6= c, then (RCol(A1, c, p3))�,i =

(A1)�,i.

(17) If c /∈ Seg widthA1, then RCol(A1, c, p3) = A1.

(18) RCol(A1, c, (A1)�,c) = A1.

(19) Let A be a matrix over D of dimension n × m and A′ be a matrix over

D of dimension m × n. If A′ = AT and if m = 0, then n = 0, then

ReplaceCol(A, c, p3) = (ReplaceLine(A′, c, p3))T.
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3. Permutations

Let us consider i, n and let p4 be an element of the permutations of (n+ 1)-

element set. Let us assume that i ∈ Seg(n+ 1). The functor Rem(p4, i) yielding

an element of the permutations of n-element set is defined by the condition

(Def. 3).

(Def. 3) Let given k such that k ∈ Seg n. Then

(i) if k < i, then if p4(k) < p4(i), then (Rem(p4, i))(k) = p4(k) and if

p4(k) ≥ p4(i), then (Rem(p4, i))(k) = p4(k)− 1, and

(ii) if k ≥ i, then if p4(k+ 1) < p4(i), then (Rem(p4, i))(k) = p4(k+ 1) and

if p4(k + 1) ≥ p4(i), then (Rem(p4, i))(k) = p4(k + 1)− 1.

One can prove the following three propositions:

(20) Let given i, j. Suppose i ∈ Seg(n + 1) and j ∈ Seg(n + 1). Let P be a

set. Suppose P = {p1 : p1(i) = j}. Then there exists a function P1 from

P into the permutations of n-element set such that P1 is bijective and for

every q1 such that q1(i) = j holds P1(q1) = Rem(q1, i).

(21) For all i, j such that i ∈ Seg(n+ 1) and p1(i) = j holds (−1)sgn(p1)a =

powerK(−1K , i+ j) · (−1)sgn(Rem(p1,i))a.

(22) Let given i, j. Suppose i ∈ Seg(n+ 1) and p1(i) = j. Let M be a matrix

over K of dimension n + 1 and D1 be a matrix over K of dimension n.

Suppose D1 = Delete(M, i, j). Then (the product on paths of M)(p1) =

powerK(−1K , i+ j) ·Mi,j · (the product on paths of D1)(Rem(p1, i)).

4. Minors and Cofactors

Let i, j, n be natural numbers, let us consider K, and let M be a matrix

over K of dimension n. The functor Minor(M, i, j) yielding an element of K is

defined by:

(Def. 4) Minor(M, i, j) = Det Delete(M, i, j).

Let i, j, n be natural numbers, let us consider K, and let M be a matrix

over K of dimension n. The functor Cofactor(M, i, j) yielding an element of K

is defined as follows:

(Def. 5) Cofactor(M, i, j) = powerK(−1K , i+ j) ·Minor(M, i, j).

The following propositions are true:

(23) Let given i, j. Suppose i ∈ Seg n and j ∈ Seg n. Let P be an element of

Fin (the permutations of n-element set). Suppose P = {p : p(i) = j}. Let

M be a matrix over K of dimension n. Then (the addition of K)-
∑

P (the

product on paths of M) = Mi,j · Cofactor(M, i, j).

(24) For all i, j such that i ∈ Seg n and j ∈ Seg n holds Minor(M, i, j) =

Minor(MT, j, i).
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Let us consider n, K and let M be a matrix over K of dimension n. The

matrix of cofactor M yielding a matrix over K of dimension n is defined by the

condition (Def. 6).

(Def. 6) Let i, j be natural numbers. Suppose 〈〈i, j〉〉 ∈ the indices of the matrix

of cofactor M . Then (the matrix of cofactor M)i,j = Cofactor(M, i, j).

5. Laplace Expansion

Let us consider n, i, K and let M be a matrix over K of dimension n.

The functor LaplaceExpL(M, i) yields a finite sequence of elements of K and is

defined as follows:

(Def. 7) len LaplaceExpL(M, i) = n and for every j such that j ∈
dom LaplaceExpL(M, i) holds

(LaplaceExpL(M, i))(j) = Mi,j · Cofactor(M, i, j).

Let us consider n, let j be a natural number, let us consider K, and let M

be a matrix over K of dimension n. The functor LaplaceExpC(M, j) yields a

finite sequence of elements of K and is defined by:

(Def. 8) len LaplaceExpC(M, j) = n and for every i such that i ∈
dom LaplaceExpC(M, j) holds (LaplaceExpC(M, j))(i) = Mi,j ·
Cofactor(M, i, j).

One can prove the following propositions:

(25) For every natural number i and for every matrix M over K of dimension

n such that i ∈ Seg n holds DetM =
∑

LaplaceExpL(M, i).

(26) For every i such that i ∈ Segn holds LaplaceExpC(M, i) =

LaplaceExpL(MT, i).

(27) For every natural number j and for every matrix M over K of dimension

n such that j ∈ Segn holds DetM =
∑

LaplaceExpC(M, j).

(28) For all p, i such that len f = n and i ∈ Seg n holds Line(the matrix of

cofactor M , i) • f = LaplaceExpL(RLine(M, i, f), i).

(29) If i ∈ Seg n, then Line(M, j) · ((the matrix of cofactor M)T)�,i =

Det RLine(M, i,Line(M, j)).

(30) If DetM 6= 0K , then M · (DetM−1 · (the matrix of cofactor M)T) =


1 0
. . .

0 1




n×n

K

.

(31) For all f , i such that len f = n and i ∈ Seg n holds (the matrix of

cofactor M)�,i • f = LaplaceExpL(RLine(MT, i, f), i).

(32) If i ∈ Seg n and j ∈ Seg n, then Line((the matrix of cofactor M)T, i) ·
M�,j = Det RLine(MT, i,Line(MT, j)).
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(33) If DetM 6= 0K , then DetM−1 · (the matrix of cofactor M)T · M =


1 0
. . .

0 1




n×n

K

.

(34) M is invertible iff DetM 6= 0K .

(35) If DetM 6= 0K , then M` = DetM−1 · (the matrix of cofactor M)T.

(36) Let M be a matrix over K of dimension n. Suppose M is invertible.

Let given i, j. If 〈〈i, j〉〉 ∈ the indices of M`, then M`i,j = DetM−1 ·
powerK(−1K , i+ j) ·Minor(M, j, i).

(37) Let A be a matrix over K of dimension n. Suppose DetA 6= 0K . Let x,

b be matrices over K. Suppose lenx = n and A · x = b. Then x = A` · b
and for all i, j such that 〈〈i, j〉〉 ∈ the indices of x holds xi,j = DetA−1 ·
Det ReplaceCol(A, i, b�,j).

(38) Let A be a matrix over K of dimension n. Suppose DetA 6= 0K . Let

x, b be matrices over K. Suppose widthx = n and x · A = b. Then

x = b · A` and for all i, j such that 〈〈i, j〉〉 ∈ the indices of x holds

xi,j = DetA−1 ·Det ReplaceLine(A, j,Line(b, i)).

6. Product by a Vector

Let D be a non empty set and let f be a finite sequence of elements of D.

Then 〈f〉 is a matrix over D of dimension 1 × len f.

Let us consider K, let M be a matrix over K, and let f be a finite sequence

of elements of K. The functor M · f yielding a matrix over K is defined by:

(Def. 9) M · f = M · 〈f〉T.
The functor f ·M yields a matrix over K and is defined by:

(Def. 10) f ·M = 〈f〉 ·M.

Next we state two propositions:

(39) Let A be a matrix over K of dimension n. Suppose DetA 6= 0K . Let x, b

be finite sequences of elements of K. Suppose len x = n and A · x = 〈b〉T.
Then 〈x〉T = A` · b and for every i such that i ∈ Segn holds x(i) =

DetA−1 · Det ReplaceCol(A, i, b).

(40) Let A be a matrix over K of dimension n. Suppose DetA 6= 0K . Let x,

b be finite sequences of elements of K. Suppose len x = n and x ·A = 〈b〉.
Then 〈x〉 = b · A` and for every i such that i ∈ Seg n holds x(i) =

DetA−1 · Det ReplaceLine(A, i, b).
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The articles [8], [13], [17], [11], [1], [18], [5], [6], [2], [7], [15], [16], [9], [10], [20],

[4], [3], [21], [12], [14], and [19] provide the notation and terminology for this

paper.

For simplicity, we adopt the following convention: j, k, l, n, m, i are natural

numbers, K is a field, a is an element of K, M , M1 are matrices over K of

dimension n × m, and A is a matrix over K of dimension n.

Let us consider n, m, let us consider K, let M be a matrix over

K of dimension n × m, and let l, k be natural numbers. The functor

InterchangeLine(M, l, k) yielding a matrix over K of dimension n × m is defined

by the conditions (Def. 1).

(Def. 1)(i) len InterchangeLine(M, l, k) = lenM, and

(ii) for all i, j such that i ∈ domM and j ∈ Seg widthM holds if

i = l, then (InterchangeLine(M, l, k))i,j = Mk,j and if i = k, then

(InterchangeLine(M, l, k))i,j = Ml,j and if i 6= l and i 6= k, then

(InterchangeLine(M, l, k))i,j = Mi,j.
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The following three propositions are true:

(1) For all matrices M1, M2 over K of dimension n × m holds widthM1 =

widthM2.

(2) Let given M , M1, i such that l ∈ domM and k ∈ domM and i ∈ domM

and M1 = InterchangeLine(M, l, k). Then

(i) if i = l, then Line(M1, i) = Line(M,k),

(ii) if i = k, then Line(M1, i) = Line(M, l), and

(iii) if i 6= l and i 6= k, then Line(M1, i) = Line(M, i).

(3) For all a, i, j, M such that i ∈ domM and j ∈ Seg widthM holds

(a · Line(M, i))(j) = a ·Mi,j .

Let us consider n, m, let us consider K, let M be a matrix over K of

dimension n × m, let l be a natural number, and let a be an element of K. The

functor ScalarXLine(M, l, a) yields a matrix over K of dimension n × m and is

defined by the conditions (Def. 2).

(Def. 2)(i) len ScalarXLine(M, l, a) = lenM, and

(ii) for all i, j such that i ∈ domM and j ∈ Seg widthM holds if

i = l, then (ScalarXLine(M, l, a))i,j = a · Ml,j and if i 6= l, then

(ScalarXLine(M, l, a))i,j = Mi,j.

We now state the proposition

(4) If l ∈ domM and i ∈ domM and a 6= 0K and M1 =

ScalarXLine(M, l, a), then if i = l, then Line(M1, i) = a ·Line(M, l) and if

i 6= l, then Line(M1, i) = Line(M, i).

Let us consider n, m, let us consider K, let M be a matrix over K of

dimension n × m, let l, k be natural numbers, and let a be an element of K. Let

us assume that l ∈ domM and k ∈ domM. The functor RlineXScalar(M, l, k, a)

yielding a matrix over K of dimension n × m is defined by the conditions

(Def. 3).

(Def. 3)(i) len RlineXScalar(M, l, k, a) = lenM, and

(ii) for all i, j such that i ∈ domM and j ∈ Seg widthM holds if i =

l, then (RlineXScalar(M, l, k, a))i,j = a · Mk,j + Ml,j and if i 6= l, then

(RlineXScalar(M, l, k, a))i,j = Mi,j.

We now state the proposition

(5) If l ∈ domM and k ∈ domM and i ∈ domM and M1 =

RlineXScalar(M, l, k, a), then if i = l, then Line(M1, i) = a · Line(M,k) +

Line(M, l) and if i 6= l, then Line(M1, i) = Line(M, i).

Let us consider n, m, let us consider K, let M be a matrix over K of

dimension n × m, and let l, k be natural numbers. We introduce ILine(M, l, k)

as a synonym of InterchangeLine(M, l, k).

Let us consider n, m, let us consider K, let M be a matrix over K of

dimension n × m, let l be a natural number, and let a be an element of K. We
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introduce SXLine(M, l, a) as a synonym of ScalarXLine(M, l, a).

Let us consider n, m, let us consider K, let M be a matrix over K of

dimension n × m, let l, k be natural numbers, and let a be an element of K.

We introduce RLineXS(M, l, k, a) as a synonym of RlineXScalar(M, l, k, a).

We now state several propositions:

(6) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and k ∈ dom(




1 0
. . .

0 1




n×n

K

), then

ILine(




1 0
. . .

0 1




n×n

K

, l, k) · A = ILine(A, l, k).

(7) For all l, a, A such that l ∈ dom(




1 0
. . .

0 1




n×n

K

) and a 6= 0K holds

SXLine(




1 0
. . .

0 1




n×n

K

, l, a) · A = SXLine(A, l, a).

(8) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and k ∈ dom(




1 0
. . .

0 1




n×n

K

), then

RLineXS(




1 0
. . .

0 1




n×n

K

, l, k, a) ·A = RLineXS(A, l, k, a).

(9) ILine(M,k, k) = M.

(10) ILine(M, l, k) = ILine(M,k, l).

(11) If l ∈ domM and k ∈ domM, then ILine(ILine(M, l, k), l, k) = M.

(12) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and k ∈ dom(




1 0
. . .

0 1




n×n

K

), then

ILine(




1 0
. . .

0 1




n×n

K

, l, k) is invertible and

(ILine(




1 0
. . .

0 1




n×n

K

, l, k))` = ILine(




1 0
. . .

0 1




n×n

K

, l, k).
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(13) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and k ∈ dom(




1 0
. . .

0 1




n×n

K

)

and k 6= l, then RLineXS(




1 0
. . .

0 1




n×n

K

, l, k, a) is invertible and

(RLineXS(




1 0
. . .

0 1




n×n

K

, l, k, a))` = RLineXS(




1 0
. . .

0 1




n×n

K

,

l, k,−a).

(14) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and a 6= 0K , then

SXLine(




1 0
. . .

0 1




n×n

K

, l, a) is invertible and

(SXLine(




1 0
. . .

0 1




n×n

K

, l, a))` = SXLine(




1 0
. . .

0 1




n×n

K

, l, a−1).

Let us consider n, m, let us consider K, let M be a matrix over K of dimen-

sion n ×m, and let l, k be natural numbers. Let us assume that l ∈ Seg widthM

and k ∈ Seg widthM and n > 0 and m > 0. The functor InterchangeCol(M, l, k)

yields a matrix over K of dimension n × m and is defined by the conditions

(Def. 4).

(Def. 4)(i) len InterchangeCol(M, l, k) = lenM, and

(ii) for all i, j such that i ∈ domM and j ∈ Seg widthM holds if

j = l, then (InterchangeCol(M, l, k))i,j = Mi,k and if j = k, then

(InterchangeCol(M, l, k))i,j = Mi,l and if j 6= l and j 6= k, then

(InterchangeCol(M, l, k))i,j = Mi,j.

Let us consider n, m, let us consider K, let M be a matrix over K of di-

mension n × m, let l be a natural number, and let a be an element of K.

Let us assume that l ∈ Seg widthM and n > 0 and m > 0. The functor

ScalarXCol(M, l, a) yielding a matrix over K of dimension n × m is defined

by the conditions (Def. 5).

(Def. 5)(i) len ScalarXCol(M, l, a) = lenM, and

(ii) for all i, j such that i ∈ domM and j ∈ Seg widthM holds if

j = l, then (ScalarXCol(M, l, a))i,j = a · Mi,l and if j 6= l, then

(ScalarXCol(M, l, a))i,j = Mi,j .
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Let us consider n, m, let us consider K, let M be a matrix over K of

dimension n × m, let l, k be natural numbers, and let a be an element of K.

Let us assume that l ∈ Seg widthM and k ∈ Seg widthM and n > 0 and m > 0.

The functor RcolXScalar(M, l, k, a) yielding a matrix over K of dimension n ×
m is defined by the conditions (Def. 6).

(Def. 6)(i) len RcolXScalar(M, l, k, a) = lenM, and

(ii) for all i, j such that i ∈ domM and j ∈ Seg widthM holds if j =

l, then (RcolXScalar(M, l, k, a))i,j = a · Mi,k + Mi,l and if j 6= l, then

(RcolXScalar(M, l, k, a))i,j = Mi,j.

Let us consider n, m, let us consider K, let M be a matrix over K of

dimension n × m, and let l, k be natural numbers. We introduce ICol(M, l, k)

as a synonym of InterchangeCol(M, l, k).

Let us consider n, m, let us consider K, let M be a matrix over K of

dimension n × m, let l be a natural number, and let a be an element of K. We

introduce SXCol(M, l, a) as a synonym of ScalarXCol(M, l, a).

Let us consider n, m, let us consider K, let M be a matrix over K of

dimension n × m, let l, k be natural numbers, and let a be an element of K.

We introduce RColXS(M, l, k, a) as a synonym of RcolXScalar(M, l, k, a).

We now state several propositions:

(15) If l ∈ Seg widthM and k ∈ Seg widthM and n > 0 and m > 0 and

M1 = MT, then (ILine(M1, l, k))T = ICol(M, l, k).

(16) If l ∈ Seg widthM and a 6= 0K and n > 0 and m > 0 and M1 = MT,

then (SXLine(M1, l, a))T = SXCol(M, l, a).

(17) If l ∈ Seg widthM and k ∈ Seg widthM and n > 0 and m > 0 and

M1 = MT, then (RLineXS(M1, l, k, a))T = RColXS(M, l, k, a).

(18) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and k ∈ dom(




1 0
. . .

0 1




n×n

K

) and

n > 0, then A · ICol(




1 0
. . .

0 1




n×n

K

, l, k) = ICol(A, l, k).

(19) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and a 6= 0K and n > 0, then A ·

SXCol(




1 0
. . .

0 1




n×n

K

, l, a) = SXCol(A, l, a).
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(20) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and k ∈ dom(




1 0
. . .

0 1




n×n

K

) and

n > 0, then A · RColXS(




1 0
. . .

0 1




n×n

K

, l, k, a) = RColXS(A, l, k, a).

(21) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and k ∈ dom(




1 0
. . .

0 1




n×n

K

) and

n > 0, then (ICol(




1 0
. . .

0 1




n×n

K

, l, k))` = ICol(




1 0
. . .

0 1




n×n

K

,

l, k).

(22) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and k ∈ dom(




1 0
. . .

0 1




n×n

K

)

and k 6= l and n > 0, then (RColXS(




1 0
. . .

0 1




n×n

K

, l, k, a))` =

RColXS(




1 0
. . .

0 1




n×n

K

, l, k,−a).

(23) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and a 6= 0K and n > 0, then

(SXCol(




1 0
. . .

0 1




n×n

K

, l, a))` = SXCol(




1 0
. . .

0 1




n×n

K

, l, a−1).
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The Sylow Theorems
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54038 Montignoso, Italy

Summary. The goal of this article is to formalize the Sylow theorems

closely following the book [4]. Accordingly, the article introduces the group op-

erating on a set, the stabilizer, the orbits, the p-groups and the Sylow subgroups.

MML identifier: GROUP 10, version: 7.8.05 4.87.985

The papers [20], [26], [18], [9], [21], [14], [11], [27], [6], [28], [7], [3], [5], [10],

[1], [23], [24], [22], [16], [13], [19], [17], [2], [25], [15], [8], and [12] provide the

notation and terminology for this paper.

1. Group Operating on a Set

Let S be a non empty 1-sorted structure, let E be a set, let A be an action

of the carrier of S on E, and let s be an element of S. We introduce A a s as a

synonym of A(s).

Let S be a non empty 1-sorted structure, let E be a set, let A be an action

of the carrier of S on E, and let s be an element of S. Then A a s is a function

from E into E.

Let S be a unital non empty groupoid, let E be a set, and let A be an action

of the carrier of S on E. We say that A is left-operation if and only if:

(Def. 1) A a (1S) = idE and for all elements s1, s2 of S holds A a (s1 · s2) =

(A a s1) · (A a s2).

Let S be a unital non empty groupoid and let E be a set. Note that there

exists an action of the carrier of S on E which is left-operation.

Let S be a unital non empty groupoid and let E be a set. A left operation

of S on E is a left-operation action of the carrier of S on E.
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The scheme ExLeftOperation deals with a set A, a group-like non empty

groupoid B, and a unary functor F yielding a function from A into A, and

states that:

There exists a left operation T of B on A such that for every

element s of B holds T (s) = F(s)

provided the parameters meet the following requirements:

• F(1B) = idA, and

• For all elements s1, s2 of B holds F(s1 · s2) = F(s1) · F(s2).

Next we state the proposition

(1) Let E be a non empty set, S be a group-like non empty groupoid, s be

an element of S, and L1 be a left operation of S on E. Then L1
a s is

one-to-one.

Let S be a non empty groupoid and let s be an element of S. We introduce

γs as a synonym of s∗.
Let S be a group-like associative non empty groupoid. The functor ΓS

yielding a left operation of S on the carrier of S is defined as follows:

(Def. 2) For every element s of S holds ΓS(s) = γs.

Let E be a set and let n be a set. The functor [E]n yielding a family of

subsets of E is defined by:

(Def. 3) [E]n = {X;X ranges over subsets of E: X = n}.
Let E be a finite set and let n be a set. One can verify that [E]n is finite.

The following two propositions are true:

(2) For every natural number n and for every non empty set E such that

n ≤ E holds [E]n is non empty.

(3) For every non empty finite set E and for every element k of N and for all

sets x1, x2 such that x1 6= x2 holds card Choose(E, k, x1, x2) = card([E]k).

Let E be a non empty set, let n be a natural number, let S be a group-like

non empty groupoid, let s be an element of S, and let L1 be a left operation of

S on E. Let us assume that n ≤ E . The functor γns,L1
yields a function from

[E]n into [E]n and is defined by:

(Def. 4) For every element X of [E]n holds γns,L1
(X) = (L1

a s)◦X.

Let E be a non empty set, let n be a natural number, let S be a group-like

non empty groupoid, and let L1 be a left operation of S on E. Let us assume

that n ≤ E . The functor ΓnL1
yields a left operation of S on [E]n and is defined

by:

(Def. 5) For every element s of S holds Γn
L1

(s) = γns,L1
.

Let S be a non empty groupoid, let s be an element of S, and let Z be a

non empty set. The functor γs,Z yielding a function from [: the carrier of S, Z :]

into [: the carrier of S, Z :] is defined by the condition (Def. 6).
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(Def. 6) Let z1 be an element of [: the carrier of S, Z :]. Then there exists an

element z2 of [: the carrier of S, Z :] and there exist elements s1, s2 of S

and there exists an element z of Z such that z2 = γs,Z(z1) and s2 = s · s1

and z1 = 〈〈s1, z〉〉 and z2 = 〈〈s2, z〉〉.
Let S be a group-like associative non empty groupoid and let Z be a non

empty set. The functor ΓS,Z yields a left operation of S on [: the carrier of S,

Z :] and is defined by:

(Def. 7) For every element s of S holds ΓS,Z(s) = γs,Z .

Let G be a group, let H, P be subgroups of G, and let h be an element of

H. The functor γh,P yields a function from the left cosets of P into the left

cosets of P and is defined by the condition (Def. 8).

(Def. 8) Let P1 be an element of the left cosets of P . Then there exists an element

P2 of the left cosets of P and there exist subsets A1, A2 of G and there

exists an element g of G such that P2 = γh,P (P1) and A2 = g · A1 and

A1 = P1 and A2 = P2 and g = h.

Let G be a group and let H, P be subgroups of G. The functor ΓH,P yields

a left operation of H on the left cosets of P and is defined as follows:

(Def. 9) For every element h of H holds ΓH,P (h) = γh,P .

2. Stabilizer and Orbits

Let G be a group, let E be a non empty set, let T be a left operation of G

on E, and let A be a subset of E. The functor TA yields a strict subgroup of G

and is defined as follows:

(Def. 10) The carrier of TA = {g; g ranges over elements of G: (T a g)◦A = A}.
Let G be a group, let E be a non empty set, let T be a left operation of G

on E, and let x be an element of E. The functor Tx yielding a strict subgroup

of G is defined by:

(Def. 11) Tx = T{x}.

Let S be a unital non empty groupoid, let E be a set, let T be a left operation

of S on E, and let x be an element of E. We say that x is fixed under T if and

only if:

(Def. 12) For every element s of S holds x = (T a s)(x).

Let S be a unital non empty groupoid, let E be a set, and let T be a left

operation of S on E. The functor T0 yields a subset of E and is defined by:

(Def. 13) T0 =




{x;x ranges over elements of E: x is fixed under T},

if E is non empty,

∅E , otherwise.
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Let S be a unital non empty groupoid, let E be a set, let T be a left operation

of S on E, and let x, y be elements of E. We say that x and y are conjugated

under T if and only if:

(Def. 14) There exists an element s of S such that y = (T a s)(x).

We now state three propositions:

(4) Let S be a unital non empty groupoid, E be a non empty set, x be an

element of E, and T be a left operation of S on E. Then x and x are

conjugated under T .

(5) Let G be a group, E be a non empty set, x, y be elements of E, and T

be a left operation of G on E. Suppose x and y are conjugated under T .

Then y and x are conjugated under T .

(6) Let S be a unital non empty groupoid, E be a non empty set, x, y, z be

elements of E, and T be a left operation of S on E. Suppose x and y are

conjugated under T and y and z are conjugated under T . Then x and z

are conjugated under T .

Let S be a unital non empty groupoid, let E be a non empty set, let T be a

left operation of S on E, and let x be an element of E. The functor T (x) yields

a subset of E and is defined as follows:

(Def. 15) T (x) = {y; y ranges over elements of E: x and y are conjugated under

T}.
One can prove the following four propositions:

(7) Let S be a unital non empty groupoid, E be a non empty set, x be an

element of E, and T be a left operation of S on E. Then T (x) is non

empty.

(8) Let G be a group, E be a non empty set, x, y be elements of E, and T

be a left operation of G on E. Then T (x) misses T (y) or T (x) = T (y).

(9) Let S be a unital non empty groupoid, E be a non empty finite set, x be

an element of E, and T be a left operation of S on E. If x is fixed under

T , then T (x) = {x}.
(10) Let G be a group, E be a non empty set, a be an element of E, and T

be a left operation of G on E. Then T (a) = |• : Ta|.
Let G be a group, let E be a non empty set, and let T be a left operation

of G on E. The orbits of T yields a partition of E and is defined by:

(Def. 16) The orbits of T = {X;X ranges over subsets of E:
∨
x : element of E X =

T (x)}.

3. p-groups

Let p be a prime natural number and let G be a group. We say that G is a

p-group if and only if:
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(Def. 17) There exists a natural number r such that ord(G) = pr.

Let p be a prime natural number, let G be a group, and let P be a subgroup

of G. We say that P is a p-group if and only if:

(Def. 18) There exists a finite group H such that P = H and H is a p-group.

One can prove the following proposition

(11) Let E be a non empty finite set, G be a finite group, p be a prime

natural number, and T be a left operation of G on E. If G is a p-group,

then cardT0 mod p = cardE mod p.

4. The Sylow Theorems

Let p be a prime natural number, let G be a group, and let P be a subgroup

of G. We say that P is a Sylow p-subgroup if and only if:

(Def. 19) P is a p-group and p - |• : P |N.
We now state three propositions:

(12) For every finite group G and for every prime natural number p holds

there exists a subgroup of G which is a Sylow p-subgroup.

(13) Let G be a finite group and p be a prime natural number. If p | ord(G),

then there exists an element g of G such that ord(g) = p.

(14) Let G be a finite group and p be a prime natural number. Then

(i) for every subgroup H of G such that H is a p-group there exists a

subgroup P of G such that P is a Sylow p-subgroup and H is a subgroup

of P , and

(ii) for all subgroups P1, P2 of G such that P1 is a Sylow p-subgroup and

P2 is a Sylow p-subgroup holds P1 and P2 are conjugated.

Let G be a group and let p be a prime natural number. The functor Sylp(G)

yielding a subset of SubGrG is defined as follows:

(Def. 20) Sylp(G) = {H;H ranges over elements of SubGrG :∨
P : strict subgroup of G (P = H ∧ P is a Sylow p-subgroup)}.

Let G be a finite group and let p be a prime natural number. Note that

Sylp(G) is non empty and finite.

Let G be a finite group, let p be a prime natural number, let H be a subgroup

of G, and let h be an element of H. The functor γh,p yielding a function from

Sylp(G) into Sylp(G) is defined by the condition (Def. 21).

(Def. 21) Let P1 be an element of Sylp(G). Then there exists an element P2 of

Sylp(G) and there exist strict subgroups H1, H2 of G and there exists an

element g of G such that P2 = γh,p(P1) and P1 = H1 and P2 = H2 and

h−1 = g and H2 = H1
g.
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Let G be a finite group, let p be a prime natural number, and let H be a

subgroup of G. The functor ΓH,p yields a left operation of H on Sylp(G) and is

defined as follows:

(Def. 22) For every element h of H holds ΓH,p(h) = γh,p.

The following proposition is true

(15) For every finite group G and for every prime natural number p holds

card(Sylp(G)) mod p = 1 and card(Sylp(G)) | ord(G).

5. Appendix

The following propositions are true:

(16) For all non empty sets X, Y holds

{[:X, {y} :] : y ranges over elements of Y } = Y .

(17) For all natural numbers n, m, r and for every prime natural number p

such that n = pr ·m and p - m holds
(
n
pr

)
mod p 6= 0.

(18) For every natural number n such that n > 0 holds ord(Z+
n ) = n.

(19) For every group G and for every non empty subset A of G and for every

element g of G holds A = A · g .
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