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The Jordan-Hölder Theorem
By Marco Riccardi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Regular Expression Quantifiers – m to n Occurrences
By Michał Trybulec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Riemann Indefinite Integral of Functions of Real Variable
By Yasunari Shidama et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Partial Differentiation on Normed Linear Spaces Rn

By Noboru Endou et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



FORMALIZED MATHEMATICS

2007, Vol. 15, No. 2, Pages 27–33

Combinatorial Grassmannians

Andrzej Owsiejczuk
Bia lystok, Poland

Summary. In the paper I construct the configuration G which is a partial

linear space. It consists of k-element subsets of some base set as points and

(k + 1)-element subsets as lines. The incidence is given by inclusion. I also

introduce automorphisms of partial linear spaces and show that automorphisms

of G are generated by permutations of the base set.

MML identifier: COMBGRAS, version: 7.8.05 4.84.971

The articles [15], [17], [3], [14], [7], [11], [13], [8], [18], [19], [4], [12], [16], [9], [5],

[6], [10], [2], and [1] provide the notation and terminology for this paper.

1. Preliminaries

We follow the rules: k, n denote elements of N and X, Y , Z denote sets.

One can prove the following propositions:

(1) For all sets a, b such that a 6= b and a = n and b = n holds a ∩ b < n

and n+ 1 ≤ a ∪ b.
(2) For all sets a, b such that a = n+ k and b = n+ k holds a ∩ b = n iff

a ∪ b = n+ 2 · k.
(3) X ≤ Y iff there exists a function f such that f is one-to-one and

X ⊆ dom f and f ◦X ⊆ Y.
(4) For every function f such that f is one-to-one and X ⊆ dom f holds

f◦X = X .

(5) If X \ Y = X \ Z and Y ⊆ X and Z ⊆ X, then Y = Z.

(6) Let Y be a non empty set and p be a function from X into Y . Suppose

p is one-to-one. Let x1, x2 be subsets of X. If x1 6= x2, then p◦x1 6= p◦x2.
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28 andrzej owsiejczuk

(7) Let a, b, c be sets such that a = n− 1 and b = n− 1 and c = n− 1 and

a ∩ b = n− 2 and a ∩ c = n− 2 and b ∩ c = n− 2 and 2 ≤ n. Then

(i) if 3 ≤ n, then a ∩ b ∩ c = n−2 and a ∪ b ∪ c = n+1 or a ∩ b ∩ c = n−3

and a ∪ b ∪ c = n, and

(ii) if n = 2, then a ∩ b ∩ c = n− 2 and a ∪ b ∪ c = n+ 1.

(8) Let P1, P2 be projective incidence structures. Suppose the projective

incidence structure of P1 = the projective incidence structure of P2. Let

A1 be a point of P1 and A2 be a point of P2. Suppose A1 = A2. Let L1

be a line of P1 and L2 be a line of P2. If L1 = L2, then if A1 lies on L1,

then A2 lies on L2.

(9) Let P1, P2 be projective incidence structures. Suppose the projective

incidence structure of P1 = the projective incidence structure of P2. Let

A1 be a subset of the points of P1 and A2 be a subset of the points of

P2. Suppose A1 = A2. Let L1 be a line of P1 and L2 be a line of P2. If

L1 = L2, then if A1 lies on L1, then A2 lies on L2.

Let us note that there exists a projective incidence structure which is linear,

up-2-rank, and strict and has non-trivial-lines.

2. Configuration G

A partial linear space is an up-2-rank projective incidence structure with

non-trivial-lines.

Let k be an element of N and let X be a non empty set. Let us assume that

0 < k and k + 1 ≤ X . The functor Gk(X) yields a strict partial linear space

and is defined by the conditions (Def. 1).

(Def. 1)(i) The points of Gk(X) = {A;A ranges over subsets of X: A = k},
(ii) the lines of Gk(X) = {L;L ranges over subsets of X: L = k + 1}, and

(iii) the incidence of Gk(X) = ⊆
2X ∩ [: the points of Gk(X), the lines of

Gk(X) :].

One can prove the following four propositions:

(10) Let k be an element of N and X be a non empty set. Suppose 0 < k and

k + 1 ≤ X . Let A be a point of Gk(X) and L be a line of Gk(X). Then

A lies on L if and only if A ⊆ L.
(11) For every element k of N and for every non empty set X such that 0 < k

and k + 1 ≤ X holds Gk(X) is Vebleian.

(12) Let k be an element of N and X be a non empty set. Suppose 0 < k

and k + 1 ≤ X . Let A1, A2, A3, A4, A5, A6 be points of Gk(X) and L1,

L2, L3, L4 be lines of Gk(X). Suppose that A1 lies on L1 and A2 lies on

L1 and A3 lies on L2 and A4 lies on L2 and A5 lies on L1 and A5 lies on
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L2 and A1 lies on L3 and A3 lies on L3 and A2 lies on L4 and A4 lies on

L4 and A5 does not lie on L3 and A5 does not lie on L4 and L1 6= L2 and

L3 6= L4. Then there exists a point A6 of Gk(X) such that A6 lies on L3

and A6 lies on L4 and A6 = A1 ∩A2 ∪A3 ∩A4.

(13) For every element k of N and for every non empty set X such that 0 < k

and k + 1 ≤ X holds Gk(X) is Desarguesian.

Let S be a projective incidence structure and let K be a subset of the points

of S. We say that K is a clique if and only if:

(Def. 2) For all points A, B of S such that A ∈ K and B ∈ K there exists a line

L of S such that {A,B} lies on L.

Let S be a projective incidence structure and let K be a subset of the points

of S. We say that K is a maximal-clique if and only if:

(Def. 3) K is a clique and for every subset U of the points of S such that U is a

clique and K ⊆ U holds U = K.

Let k be an element of N, let X be a non empty set, and let T be a subset

of the points of Gk(X). We say that T is a star if and only if:

(Def. 4) There exists a subset S of X such that S = k− 1 and T = {A;A ranges

over subsets of X: A = k ∧ S ⊆ A}.
We say that T is a top if and only if:

(Def. 5) There exists a subset S of X such that S = k+ 1 and T = {A;A ranges

over subsets of X: A = k ∧ A ⊆ S}.
Next we state two propositions:

(14) Let k be an element of N and X be a non empty set. Suppose 2 ≤ k and

k + 2 ≤ X . Let K be a subset of the points of Gk(X). If K is a star or a

top, then K is a maximal-clique.

(15) Let k be an element of N and X be a non empty set. Suppose 2 ≤ k

and k + 2 ≤ X . Let K be a subset of the points of Gk(X). If K is a

maximal-clique, then K is a star or a top.

3. Automorphisms

Let S1, S2 be projective incidence structures. We consider maps between

projective spaces S1 and S2 as systems

〈 a point-map, a line-map 〉,
where the point-map is a function from the points of S1 into the points of S2

and the line-map is a function from the lines of S1 into the lines of S2.

Let S1, S2 be projective incidence structures, let F be a map between pro-

jective spaces S1 and S2, and let a be a point of S1. The functor F (a) yields a

point of S2 and is defined as follows:
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(Def. 6) F (a) = (the point-map of F )(a).

Let S1, S2 be projective incidence structures, let F be a map between pro-

jective spaces S1 and S2, and let L be a line of S1. The functor F (L) yields a

line of S2 and is defined by:

(Def. 7) F (L) = (the line-map of F )(L).

Next we state the proposition

(16) Let S1, S2 be projective incidence structures and F1, F2 be maps between

projective spaces S1 and S2. Suppose for every pointA of S1 holds F1(A) =

F2(A) and for every line L of S1 holds F1(L) = F2(L). Then the map of

F1 = the map of F2.

Let S1, S2 be projective incidence structures and let F be a map between

projective spaces S1 and S2. We say that F preserves incidence strongly if and

only if:

(Def. 8) For every point A1 of S1 and for every line L1 of S1 holds A1 lies on L1

iff F (A1) lies on F (L1).

The following proposition is true

(17) Let S1, S2 be projective incidence structures and F1, F2 be maps between

projective spaces S1 and S2. Suppose the map of F1 = the map of F2. If

F1 preserves incidence strongly, then F2 preserves incidence strongly.

Let S be a projective incidence structure and let F be a map between pro-

jective spaces S and S. We say that F is automorphism if and only if:

(Def. 9) The line-map of F is bijective and the point-map of F is bijective and

F preserves incidence strongly.

Let S1, S2 be projective incidence structures, let F be a map between pro-

jective spaces S1 and S2, and let K be a subset of the points of S1. The functor

F ◦K yielding a subset of the points of S2 is defined by:

(Def. 10) F ◦K = (the point-map of F )◦K.

Let S1, S2 be projective incidence structures, let F be a map between pro-

jective spaces S1 and S2, and let K be a subset of the points of S2. The functor

F−1(K) yielding a subset of the points of S1 is defined as follows:

(Def. 11) F−1(K) = (the point-map of F )−1(K).

Let X be a set and let A be a finite set. The functor ↑(A,X) yielding a

subset of 2X is defined as follows:

(Def. 12) ↑(A,X) = {B;B ranges over subsets of X: B = cardA+ 1 ∧ A ⊆ B}.
Let k be an element of N and let X be a non empty set. Let us assume that

0 < k and k + 1 ≤ X . Let A be a finite set. Let us assume that A = k − 1

and A ⊆ X. The functor ↑(A,X, k) yields a subset of the points of Gk(X) and

is defined as follows:

(Def. 13) ↑(A,X, k) = ↑(A,X).



combinatorial grassmannians 31

The following propositions are true:

(18) Let S1, S2 be projective incidence structures, F be a map between pro-

jective spaces S1 and S2, and K be a subset of the points of S1. Then

F ◦K = {B;B ranges over points of S2:
∨
A : point of S1

(A ∈ K ∧ F (A) =

B)}.
(19) Let S1, S2 be projective incidence structures, F be a map between

projective spaces S1 and S2, and K be a subset of the points of S2.

Then F−1(K) = {A;A ranges over points of S1:
∨
B : point of S2

(B ∈
K ∧ F (A) = B)}.

(20) Let S be a projective incidence structure, F be a map between projective

spaces S and S, and K be a subset of the points of S. If F preserves

incidence strongly and K is a clique, then F ◦K is a clique.

(21) Let S be a projective incidence structure, F be a map between projective

spaces S and S, and K be a subset of the points of S. Suppose F preserves

incidence strongly and the line-map of F is onto and K is a clique. Then

F−1(K) is a clique.

(22) Let S be a projective incidence structure, F be a map between projective

spaces S and S, and K be a subset of the points of S. Suppose F is

automorphism and K is a maximal-clique. Then F ◦K is a maximal-clique

and F−1(K) is a maximal-clique.

(23) Let k be an element of N and X be a non empty set. Suppose 2 ≤ k and

k+ 2 ≤ X . Let F be a map between projective spaces Gk(X) and Gk(X).

Suppose F is automorphism. Let K be a subset of the points of Gk(X).

If K is a star, then F ◦K is a star and F−1(K) is a star.

Let k be an element of N and let X be a non empty set. Let us assume that

0 < k and k+1 ≤ X . Let s be a permutation ofX. The functor incprojmap(k, s)

yielding a strict map between projective spaces Gk(X) and Gk(X) is defined as

follows:

(Def. 14) For every point A of Gk(X) holds (incprojmap(k, s))(A) = s◦A and for

every line L of Gk(X) holds (incprojmap(k, s))(L) = s◦L.

One can prove the following propositions:

(24) Let k be an element of N and X be a non empty set. Suppose k = 1

and k + 1 ≤ X . Let F be a map between projective spaces Gk(X) and

Gk(X). Suppose F is automorphism. Then there exists a permutation s

of X such that the map of F = incprojmap(k, s).

(25) Let k be an element of N and X be a non empty set. Suppose 1 < k

and X = k + 1. Let F be a map between projective spaces Gk(X) and

Gk(X). Suppose F is automorphism. Then there exists a permutation s

of X such that the map of F = incprojmap(k, s).

(26) Let k be an element of N and X be a non empty set. Suppose 0 < k
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and k + 1 ≤ X . Let T be a subset of the points of Gk(X) and S be a

subset of X. If S = k − 1 and T = {A;A ranges over subsets of X:

A = k ∧ S ⊆ A}, then S =
⋂
T.

(27) Let k be an element of N and X be a non empty set. Suppose 0 < k

and k+ 1 ≤ X . Let T be a subset of the points of Gk(X). Suppose T is a

star. Let S be a subset of X. If S =
⋂
T, then S = k− 1 and T = {A;A

ranges over subsets of X: A = k ∧ S ⊆ A}.
(28) Let k be an element of N and X be a non empty set. Suppose 0 < k and

k + 1 ≤ X . Let T1, T2 be subsets of the points of Gk(X). If T1 is a star

and T2 is a star and
⋂
T1 =

⋂
T2, then T1 = T2.

(29) Let k be an element of N and X be a non empty set. Suppose 0 < k and

k + 1 ≤ X . Let A be a finite subset of X. If A = k − 1, then ↑(A,X, k)

is a star.

(30) Let k be an element of N and X be a non empty set. Suppose 0 < k

and k + 1 ≤ X . Let A be a finite subset of X. If A = k − 1, then⋂ ↑(A,X, k) = A.

(31) Let k be an element of N and X be a non empty set. Suppose 0 < k

and k + 3 ≤ X . Let F be a map between projective spaces G(k+1)(X)

and G(k+1)(X). Suppose F is automorphism. Then there exists a map H

between projective spaces Gk(X) and Gk(X) such that

(i) H is automorphism,

(ii) the line-map of H = the point-map of F , and

(iii) for every point A of Gk(X) and for every finite set B such that B = A

holds H(A) =
⋂

(F ◦ ↑(B,X, k + 1)).

(32) Let k be an element of N and X be a non empty set. Suppose 0 < k

and k + 3 ≤ X . Let F be a map between projective spaces G(k+1)(X)

and G(k+1)(X). Suppose F is automorphism. Let H be a map between

projective spaces Gk(X) and Gk(X). Suppose that

(i) H is automorphism,

(ii) the line-map of H = the point-map of F , and

(iii) for every point A of Gk(X) and for every finite set B such that B = A

holds H(A) =
⋂

(F ◦ ↑(B,X, k + 1)).

Let f be a permutation of X. If the map of H = incprojmap(k, f), then

the map of F = incprojmap(k + 1, f).

(33) Let k be an element of N and X be a non empty set. Suppose 2 ≤ k

and k + 2 ≤ X . Let F be a map between projective spaces Gk(X) and

Gk(X). Suppose F is automorphism. Then there exists a permutation s

of X such that the map of F = incprojmap(k, s).

(34) Let k be an element of N and X be a non empty set. Suppose 0 < k
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and k + 1 ≤ X . Let s be a permutation of X. Then incprojmap(k, s) is

automorphism.

(35) Let X be a non empty set. Suppose 0 < k and k+1 ≤ X . Let F be a map

between projective spaces Gk(X) and Gk(X). Then F is automorphism

if and only if there exists a permutation s of X such that the map of

F = incprojmap(k, s).
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The Jordan-Hölder Theorem

Marco Riccardi
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54038 Montignoso, Italy

Summary. The goal of this article is to formalize the Jordan-Hölder

theorem in the context of group with operators as in the book [5]. Accordingly,

the article introduces the structure of group with operators and reformulates

some theorems on a group already present in the Mizar Mathematical Library.

Next, the article formalizes the Zassenhaus butterfly lemma and the Schreier

refinement theorem, and defines the composition series.

MML identifier: GROUP 9, version: 7.8.05 4.84.971

The terminology and notation used here are introduced in the following articles:

[17], [25], [3], [26], [7], [27], [8], [9], [4], [10], [1], [12], [18], [2], [6], [21], [20], [22],

[19], [15], [23], [11], [14], [16], [13], and [24].

1. Actions and Groups with Operators

Let O, E be sets. An action of O on E is a function from O into EE .

Let O, E be sets, let A be an action of O on E, and let I1 be a set. We say

that I1 is stable under the action of A if and only if:

(Def. 1) For every element o of O and for every function f from E into E such

that o ∈ O and f = A(o) holds f ◦I1 ⊆ I1.

Let O, E be sets, let A be an action of O on E, and let X be a subset of

E. The stable subset generated by X yields a subset of E and is defined by the

conditions (Def. 2).

(Def. 2)(i) X ⊆ the stable subset generated by X,

(ii) the stable subset generated by X is stable under the action of A, and

(iii) for every subset Y of E such that Y is stable under the action of A and

X ⊆ Y holds the stable subset generated by X ⊆ Y.

35
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Let O, E be sets, let A be an action of O on E, and let F be a finite sequence

of elements of O. The functor Product(F,A) yields a function from E into E

and is defined by:

(Def. 3)(i) Product(F,A) = idE if lenF = 0,

(ii) there exists a finite sequence P1 of elements of EE such that

Product(F,A) = P1(lenF ) and lenP1 = lenF and P1(1) = A(F (1)) and

for every natural number n such that n 6= 0 and n < lenF there exist

functions f , g from E into E such that f = P1(n) and g = A(F (n + 1))

and P1(n+ 1) = f · g, otherwise.

Let O be a set, let G be a group, and let I1 be an action of O on the carrier

of G. We say that I1 is distributive if and only if:

(Def. 4) For every element o of O such that o ∈ O holds I1(o) is a homomorphism

from G to G.

Let O be a set. We consider group structures with operators in O as exten-

sions of groupoid as systems

〈 a carrier, a multiplication, an action 〉,
where the carrier is a set, the multiplication is a binary operation on the carrier,

and the action is an action of O on the carrier.

Let O be a set. Observe that there exists a group structure with operators

in O which is non empty.

Let O be a set and let I1 be a non empty group structure with operators in

O. We say that I1 is distributive if and only if the condition (Def. 5) is satisfied.

(Def. 5) Let G be a group and a be an action of O on the carrier of G. Suppose

a = the action of I1 and the groupoid of G = the groupoid of I1. Then a

is distributive.

Let O be a set. Observe that there exists a non empty group structure with

operators in O which is strict, distributive, group-like, and associative.

Let O be a set. A group with operators in O is a distributive group-like

associative non empty group structure with operators in O.

Let O be a set, let G be a group with operators in O, and let o be an element

of O. The functor G a o yields a homomorphism from G to G and is defined as

follows:

(Def. 6) G a o =

{
(the action of G)(o), if o ∈ O,
idthe carrier of G, otherwise.

Let O be a set and let G be a group with operators in O. A distributive

group-like associative non empty group structure with operators in O is said to

be a stable subgroup of G if:

(Def. 7) It is a subgroup ofG and for every element o of O holds itao = (Gao)�the

carrier of it.

Let O be a set and let G be a group with operators in O. Note that there

exists a stable subgroup of G which is strict.
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Let O be a set and let G be a group with operators in O. The functor {1}G
yields a strict stable subgroup of G and is defined by:

(Def. 8) The carrier of {1}G = {1G}.
Let O be a set and let G be a group with operators in O. The functor ΩG

yielding a strict stable subgroup of G is defined as follows:

(Def. 9) ΩG = the group structure with operators of G.

Let O be a set, let G be a group with operators in O, and let I1 be a stable

subgroup of G. We say that I1 is normal if and only if:

(Def. 10) For every strict subgroup H of G such that H = the groupoid of I1 holds

H is normal.

Let O be a set and let G be a group with operators in O. Note that there

exists a stable subgroup of G which is strict and normal.

Let O be a set, let G be a group with operators in O, and let H be a

stable subgroup of G. Observe that there exists a stable subgroup of H which

is normal.

Let O be a set and let G be a group with operators in O. Note that {1}G is

normal and ΩG is normal.

Let O be a set and let G be a group with operators in O. The stable

subgroups of G yields a set and is defined as follows:

(Def. 11) For every set x holds x ∈ the stable subgroups of G iff x is a strict stable

subgroup of G.

Let O be a set and let G be a group with operators in O. Observe that the

stable subgroups of G is non empty.

Let I1 be a group. We say that I1 is simple if and only if:

(Def. 12) I1 is not trivial and it is not true that there exists a strict normal sub-

group H of I1 such that H 6= Ω(I1) and H 6= {1}(I1).

Let us note that there exists a group which is strict and simple.

Let O be a set and let I1 be a group with operators in O. We say that I1 is

simple if and only if:

(Def. 13) I1 is not trivial and it is not true that there exists a strict normal stable

subgroup H of I1 such that H 6= Ω(I1) and H 6= {1}(I1).

Let O be a set. Observe that there exists a group with operators in O which

is strict and simple.

Let O be a set, let G be a group with operators in O, and let N be a normal

stable subgroup of G. The functor CosetsN yields a set and is defined by:

(Def. 14) For every strict normal subgroup H of G such that H = the groupoid of

N holds CosetsN = CosetsH.

Let O be a set, let G be a group with operators in O, and let N be a normal

stable subgroup of G. The functor CosOpN yielding a binary operation on

CosetsN is defined by:
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(Def. 15) For every strict normal subgroup H of G such that H = the groupoid of

N holds CosOpN = CosOpH.

Let O be a set, let G be a group with operators in O, and let N be a normal

stable subgroup of G. The functor CosAcN yielding an action of O on CosetsN

is defined as follows:

(Def. 16)(i) For every element o of O holds (CosAcN)(o) = {〈〈A, B〉〉;A
ranges over elements of CosetsN,B ranges over elements of CosetsN :∨
g,h : element of G (g ∈ A ∧ h ∈ B ∧ h = (G a o)(g))} if O is not empty,

(ii) CosAcN = [: ∅, {idCosetsN} :], otherwise.

Let O be a set, let G be a group with operators in O, and let N be a normal

stable subgroup of G. The functor G/N yields a group structure with operators

in O and is defined as follows:

(Def. 17) G/N = 〈CosetsN,CosOpN,CosAcN〉.
Let O be a set, let G be a group with operators in O, and let N be a normal

stable subgroup of G. Note that G/N is non empty and G/N is distributive,

group-like, and associative.

Let O be a set, let G, H be groups with operators in O, and let f be a

function from G into H. We say that f is homomorphic if and only if:

(Def. 18) For every element o of O and for every element g of G holds f((G a

o)(g)) = (H a o)(f(g)).

Let O be a set and let G, H be groups with operators in O. One can

check that there exists a function from G into H which is multiplicative and

homomorphic.

Let O be a set and let G, H be groups with operators inO. A homomorphism

from G to H is a multiplicative homomorphic function from G into H.

Let O be a set, let G, H, I be groups with operators in O, let h be a

homomorphism from G to H, and let h1 be a homomorphism from H to I.

Then h1 · h is a homomorphism from G to I.

Let O be a set, let G, H be groups with operators in O, and let h be a

homomorphism from G to H. We say that h is monomorphism if and only if:

(Def. 19) h is one-to-one.

We say that h is epimorphism if and only if:

(Def. 20) rng h = the carrier of H.

Let O be a set, let G, H be groups with operators in O, and let h be a

homomorphism from G to H. We say that h is isomorphism if and only if:

(Def. 21) h is an epimorphism and a monomorphism.

Let O be a set and let G, H be groups with operators in O. We say that G

and H are isomorphic if and only if:

(Def. 22) There exists a homomorphism from G to H which is an isomorphism.
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Let us note that the predicate G and H are isomorphic is reflexive.

Let O be a set and let G, H be groups with operators in O. Let us note

that the predicate G and H are isomorphic is symmetric.

Let O be a set, let G be a group with operators in O, and let N be a normal

stable subgroup of G. The canonical homomorphism onto cosets of N yields a

homomorphism from G to G/N and is defined by the condition (Def. 23).

(Def. 23) Let H be a strict normal subgroup of G. Suppose H = the groupoid of

N . Then the canonical homomorphism onto cosets of N = the canonical

homomorphism onto cosets of H.

Let O be a set, let G, H be groups with operators in O, and let g be a

homomorphism from G to H. The functor Ker g yields a strict stable subgroup

of G and is defined as follows:

(Def. 24) The carrier of Ker g = {a; a ranges over elements of G: g(a) = 1H}.
Let O be a set, let G, H be groups with operators in O, and let g be a

homomorphism from G to H. Observe that Ker g is normal.

Let O be a set, let G, H be groups with operators in O, and let g be a

homomorphism from G to H. The functor Im g yielding a strict stable subgroup

of H is defined by:

(Def. 25) The carrier of Im g = g◦(the carrier of G).

Let O be a set, let G be a group with operators in O, and let H be a stable

subgroup of G. The functor H yielding a subset of G is defined as follows:

(Def. 26) H = the carrier of H.

Let O be a set, let G be a group with operators in O, and let H1, H2 be

stable subgroups of G. The functor H1 ·H2 yields a subset of G and is defined

as follows:

(Def. 27) H1 ·H2 = H1 ·H2.

Let O be a set, let G be a group with operators in O, and let H1, H2 be

stable subgroups of G. The functor H1 ∩H2 yielding a strict stable subgroup

of G is defined by:

(Def. 28) The carrier of H1 ∩H2 = H1 ∩H2.

Let us note that the functor H1 ∩H2 is commutative.

Let O be a set, let G be a group with operators in O, and let A be a subset

of G. The stable subgroup of A yielding a strict stable subgroup of G is defined

by the conditions (Def. 29).

(Def. 29)(i) A ⊆ the carrier of the stable subgroup of A, and

(ii) for every strict stable subgroup H of G such that A ⊆ the carrier of H

holds the stable subgroup of A is a stable subgroup of H.

Let O be a set, let G be a group with operators in O, and let H1, H2 be

stable subgroups of G. The functor H1 tH2 yielding a strict stable subgroup

of G is defined as follows:
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(Def. 30) H1 tH2 = the stable subgroup of H1 ∪H2.

2. Some Theorems on Groups Reformulated for Groups with

Operators

For simplicity, we follow the rules: x, O are sets, o is an element of O, G, H,

I are groups with operators in O, A, B are subsets of G, N is a normal stable

subgroup of G, H1, H2, H3 are stable subgroups of G, g1, g2 are elements of G,

h1, h2 are elements of H1, and h is a homomorphism from G to H.

One can prove the following propositions:

(1) If x ∈ H1, then x ∈ G.
(2) h1 is an element of G.

(3) If h1 = g1 and h2 = g2, then h1 · h2 = g1 · g2.

(4) 1G = 1(H1).

(5) 1G ∈ H1.

(6) If h1 = g1, then h1
−1 = g1

−1.

(7) If g1 ∈ H1 and g2 ∈ H1, then g1 · g2 ∈ H1.

(8) If g1 ∈ H1, then g1
−1 ∈ H1.

(9) Suppose that

(i) A 6= ∅,
(ii) for all g1, g2 such that g1 ∈ A and g2 ∈ A holds g1 · g2 ∈ A,
(iii) for every g1 such that g1 ∈ A holds g1

−1 ∈ A, and

(iv) for all o, g1 such that g1 ∈ A holds (G a o)(g1) ∈ A.
Then there exists a strict stable subgroup H of G such that the carrier of

H = A.

(10) G is a stable subgroup of G.

(11) Let G1, G2, G3 be groups with operators in O. Suppose G1 is a stable

subgroup of G2 and G2 is a stable subgroup of G3. Then G1 is a stable

subgroup of G3.

(12) If the carrier of H1 ⊆ the carrier of H2, then H1 is a stable subgroup of

H2.

(13) If for every element g of G such that g ∈ H1 holds g ∈ H2, then H1 is a

stable subgroup of H2.

(14) For all strict stable subgroups H1, H2 of G such that the carrier of

H1 = the carrier of H2 holds H1 = H2.

(15) {1}G = {1}(H1).

(16) {1}G is a stable subgroup of H1.

(17) If H1 ·H2 = H2 ·H1, then there exists a strict stable subgroup H of G

such that the carrier of H = H1 ·H2.
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(18)(i) For every stable subgroup H of G such that H = H1 ∩H2 holds the

carrier of H = (the carrier of H1) ∩ (the carrier of H2), and

(ii) for every strict stable subgroupH of G such that the carrier of H = (the

carrier of H1) ∩ (the carrier of H2) holds H = H1 ∩H2.

(19) For every strict stable subgroup H of G holds H ∩H = H.

(20) (H1 ∩H2) ∩H3 = H1 ∩ (H2 ∩H3).

(21) {1}G ∩H1 = {1}G and H1 ∩ {1}G = {1}G.
(22)

⋃
CosetsN = the carrier of G.

(23) Let N1, N2 be strict normal stable subgroups of G. Then there exists a

strict normal stable subgroup N of G such that the carrier of N = N1 ·N2.

(24) g1 ∈ the stable subgroup of A if and only if there exists a finite sequence

F of elements of the carrier of G and there exists a finite sequence I of

elements of Z and there exists a subset C of G such that C = the stable

subset generated by A and lenF = len I and rngF ⊆ C and
∏

(F I) = g1.

(25) For every strict stable subgroup H of G holds the stable subgroup of

H = H.

(26) If A ⊆ B, then the stable subgroup of A is a stable subgroup of the

stable subgroup of B.

The scheme MeetSbgWOpEx deals with a set A, a group B with operators

in A, and a unary predicate P, and states that:

There exists a strict stable subgroup H of B such that

the carrier of H =
⋂{A;A ranges over subsets of B :∨

K : strict stable subgroup of B (A = the carrier of K ∧ P[K])}
provided the parameters meet the following requirement:

• There exists a strict stable subgroup H of B such that P[H].

The following propositions are true:

(27) The carrier of the stable subgroup of A =
⋂{B;B ranges over subsets

of G:
∨
H : strict stable subgroup of G (B = the carrier of H ∧ A ⊆ H)}.

(28) For all strict normal stable subgroupsN1, N2 of G holdsN1·N2 = N2·N1.

(29) H1 tH2 = the stable subgroup of H1 ·H2.

(30) If H1 ·H2 = H2 ·H1, then the carrier of H1 tH2 = H1 ·H2.

(31) For all strict normal stable subgroups N1, N2 of G holds the carrier of

N1 tN2 = N1 ·N2.

(32) For all strict normal stable subgroups N1, N2 of G holds N1 t N2 is a

normal stable subgroup of G.

(33) For every strict stable subgroup H of G holds {1}G t H = H and

H t {1}G = H.

(34) ΩG tH1 = ΩG and H1 t ΩG = ΩG.
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(35) H1 is a stable subgroup of H1 t H2 and H2 is a stable subgroup of

H1 tH2.

(36) For every strict stable subgroup H2 of G holds H1 is a stable subgroup

of H2 iff H1 tH2 = H2.

(37) Let H3 be a strict stable subgroup of G. SupposeH1 is a stable subgroup

of H3 andH2 is a stable subgroup of H3. ThenH1tH2 is a stable subgroup

of H3.

(38) Let H2, H3 be strict stable subgroups of G. Suppose H1 is a stable

subgroup of H2. Then H1 tH3 is a stable subgroup of H2 tH3.

(39) For all stable subgroups X, Y of H1 and for all stable subgroups X ′, Y ′

of G such that X = X ′ and Y = Y ′ holds X ′ ∩ Y ′ = X ∩ Y.
(40) If N is a stable subgroup of H1, then N is a normal stable subgroup of

H1.

(41) H1∩N is a normal stable subgroup of H1 and N ∩H1 is a normal stable

subgroup of H1.

(42) For every strict group G with operators in O such that G is trivial holds

{1}G = G.

(43) 1G/N = N.

(44) Let M , N be strict normal stable subgroups of G and M1 be a normal

stable subgroup of N . Suppose M1 = M and M is a stable subgroup of

N . Then N/M1 is a normal stable subgroup of G/M .

(45) h(1G) = 1H .

(46) h(g1
−1) = h(g1)−1.

(47) g1 ∈ Kerh iff h(g1) = 1H .

(48) For every strict normal stable subgroup N of G holds Ker (the canonical

homomorphism onto cosets of N) = N.

(49) rng h = the carrier of Imh.

(50) Im (the canonical homomorphism onto cosets of N) = G/N .

(51) Let H be a strict group with operators in O and h be a homomorphism

from G to H. Then h is an epimorphism if and only if Imh = H.

(52) Let H be a strict group with operators in O and h be a homomorphism

from G to H. Suppose h is an epimorphism. Let c be an element of H.

Then there exists an element a of G such that h(a) = c.

(53) The canonical homomorphism onto cosets of N is an epimorphism.

(54) The canonical homomorphism onto cosets of {1}G is an isomorphism.

(55) If G and H are isomorphic and H and I are isomorphic, then G and I

are isomorphic.

(56) For every strict group G with operators in O holds G and G/{1}G are

isomorphic.
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(57) For every strict group G with operators in O holds G/ΩG is trivial.

(58) Let G, H be strict groups with operators in O. IfG andH are isomorphic

and G is trivial, then H is trivial.

(59) G/Kerh and Imh are isomorphic.

(60) Let H, F1, F2 be strict stable subgroups of G. Suppose F1 is a normal

stable subgroup of F2. Then H∩F1 is a normal stable subgroup of H∩F2.

3. Others Theorems on Actions and Groups with Operators

In the sequel E is a set, A is an action of O on E, C is a subset of G, and

N1 is a normal stable subgroup of H1.

One can prove the following propositions:

(61) ΩE is stable under the action of A.

(62) [:O, {idE} :] is an action of O on E.

(63) Let O be a non empty set, E be a set, o be an element of O, and A be

an action of O on E. Then Product(〈o〉, A) = A(o).

(64) Let O be a non empty set, E be a set, F1, F2 be finite sequences of

elements of O, and A be an action of O on E. Then Product(F1
aF2, A) =

Product(F1, A) · Product(F2, A).

(65) Let F be a finite sequence of elements of O and Y be a subset of E. If

Y is stable under the action of A, then (Product(F,A))◦Y ⊆ Y.
(66) Let E be a non empty set, A be an action of O on E, X be a sub-

set of E, and a be an element of E. Suppose X is not empty. Then

a ∈ the stable subset generated by X if and only if there exists a finite

sequence F of elements of O and there exists an element x of X such that

(Product(F,A))(x) = a.

(67) For every strict group G there exists a strict group H with operators in

O such that G = the groupoid of H.

(68) The groupoid of H1 is a strict subgroup of G.

(69) The groupoid of N is a strict normal subgroup of G.

(70) If g1 ∈ H1, then (G a o)(g1) ∈ H1.

(71) Let O be a set, G, H be groups with operators in O, G′ be a strict

stable subgroup of G, and f be a homomorphism from G to H. Then

there exists a strict stable subgroup H ′ of H such that the carrier of

H ′ = f◦(the carrier of G′).

(72) If B is empty, then the stable subgroup of B = {1}G.
(73) If B = the carrier of gr(C), then the stable subgroup of C = the stable

subgroup of B.
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(74) Let N ′ be a normal subgroup of G. Suppose N ′ = the groupoid of N .

Then G/N ′ = the groupoid of G/N and 1G/N′ = 1G/N .

(75) Suppose the carrier of H1 = the carrier of H2. Then the group structure

with operators of H1 = the group structure with operators of H2.

(76) Suppose H1/N1 is trivial. Then the group structure with operators of

H1 = the group structure with operators of N1.

(77) If the carrier of H1 = the carrier of N1, then H1/N1 is trivial.

(78) Let G, H be groups with operators in O, N be a stable subgroup of G,

H ′ be a strict stable subgroup of H, and f be a homomorphism from G

to H. Suppose N = Ker f. Then there exists a strict stable subgroup G′

of G such that

(i) the carrier of G′ = f−1(the carrier of H ′), and

(ii) if H ′ is normal, then N is a normal stable subgroup of G′ and G′ is

normal.

(79) Let G, H be groups with operators in O, N be a stable subgroup of G,

G′ be a strict stable subgroup of G, and f be a homomorphism from G to

H. Suppose N = Ker f. Then there exists a strict stable subgroup H ′ of

H such that

(i) the carrier of H ′ = f◦(the carrier of G′),
(ii) f−1(the carrier of H ′) = the carrier of G′ tN, and

(iii) if f is an epimorphism and G′ is normal, then H ′ is normal.

(80) Let G be a strict group with operators in O, N be a strict normal stable

subgroup of G, and H be a strict stable subgroup of G/N . Suppose the

carrier of G = (the canonical homomorphism onto cosets of N)−1(the

carrier of H). Then H = ΩG/N .

(81) Let G be a strict group with operators in O, N be a strict normal stable

subgroup of G, and H be a strict stable subgroup of G/N . Suppose the

carrier of N = (the canonical homomorphism onto cosets of N)−1(the

carrier of H). Then H = {1}G/N .
(82) Let G, H be strict groups with operators in O. IfG andH are isomorphic

and G is simple, then H is simple.

(83) Let G be a group with operators in O, H be a stable subgroup of G, F3

be a finite sequence of elements of the carrier of G, F4 be a finite sequence

of elements of the carrier of H, and I be a finite sequence of elements of

Z. If F3 = F4 and lenF3 = len I, then
∏

(F3
I) =

∏
(F4

I).

(84) Let O, E1, E2 be sets, A1 be an action of O on E1, A2 be an action of

O on E2, and F be a finite sequence of elements of O. Suppose that

(i) E1 ⊆ E2, and

(ii) for every element o of O and for every function f1 from E1 into E1 and

for every function f2 from E2 into E2 such that f1 = A1(o) and f2 = A2(o)
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holds f1 = f2�E1.

Then Product(F,A1) = Product(F,A2)�E1.

(85) Let N1, N2 be strict stable subgroups of H1 and N ′1, N ′2 be strict stable

subgroups of G. If N1 = N ′1 and N2 = N ′2, then N ′1 ·N ′2 = N1 ·N2.

(86) Let N1, N2 be strict stable subgroups of H1 and N ′1, N ′2 be strict stable

subgroups of G. If N1 = N ′1 and N2 = N ′2, then N ′1 tN ′2 = N1 tN2.

(87) Let N1, N2 be strict stable subgroups of G. Suppose N1 is a normal

stable subgroup of H1 and N2 is a normal stable subgroup of H1. Then

N1 tN2 is a normal stable subgroup of H1.

(88) Let f be a homomorphism from G to H and g be a homomorphism from

H to I. Then the carrier of Ker(g · f) = f−1(the carrier of Ker g).

(89) Let G′ be a stable subgroup of G, H ′ be a stable subgroup of H, and

f be a homomorphism from G to H. Suppose the carrier of H ′ = f◦(the

carrier of G′) or the carrier of G′ = f−1(the carrier of H ′). Then f�the

carrier of G′ is a homomorphism from G′ to H ′.

(90) Let G, H be strict groups with operators in O, N , L, G′ be strict stable

subgroups of G, and f be a homomorphism from G to H. Suppose N =

Ker f and L is a strict normal stable subgroup of G′. Then

(i) L tG′ ∩N is a normal stable subgroup of G′,
(ii) L tN is a normal stable subgroup of G′ tN, and

(iii) for every strict normal stable subgroup N1 of G′tN and for every strict

normal stable subgroupN2 of G′ such that N1 = LtN andN2 = LtG′∩N
holds (G′tN)/N1 and G′/N2 are isomorphic.

4. The Zassenhaus Butterfly Lemma

The following propositions are true:

(91) Let H, K, H ′, K ′ be strict stable subgroups of G, J1 be a normal stable

subgroup of H ′ tH ∩K, and H4 be a normal stable subgroup of H ∩K.
Suppose H ′ is a normal stable subgroup of H and K ′ is a normal stable

subgroup of K and J1 = H ′ tH ∩K ′ and H4 = H ′ ∩K tK ′ ∩H. Then
(H′tH∩K)/J1 and (H∩K)/H4 are isomorphic.

(92) Let H, K, H ′, K ′ be strict stable subgroups of G. Suppose H ′ is a

normal stable subgroup of H and K ′ is a normal stable subgroup of K.

Then H ′ tH ∩K ′ is a normal stable subgroup of H ′ tH ∩K.
(93) Let H, K, H ′, K ′ be strict stable subgroups of G, J1 be a normal stable

subgroup of H ′tH∩K, and J2 be a normal stable subgroup of K ′tK∩H.
Suppose J1 = H ′ t H ∩ K ′ and J2 = K ′ t K ∩ H ′ and H ′ is a normal

stable subgroup of H and K ′ is a normal stable subgroup of K. Then
(H′tH∩K)/J1 and (K′tK∩H)/J2 are isomorphic.
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5. Composition Series

Let O be a set, let G be a group with operators in O, and let I1 be a finite

sequence of elements of the stable subgroups of G. We say that I1 is composition

series if and only if the conditions (Def. 31) are satisfied.

(Def. 31)(i) I1(1) = ΩG,

(ii) I1(len I1) = {1}G, and

(iii) for every natural number i such that i ∈ dom I1 and i + 1 ∈ dom I1

and for all stable subgroups H1, H2 of G such that H1 = I1(i) and H2 =

I1(i+ 1) holds H2 is a normal stable subgroup of H1.

Let O be a set and let G be a group with operators in O. One can verify that

there exists a finite sequence of elements of the stable subgroups of G which is

composition series.

Let O be a set and let G be a group with operators in O. A composition series

of G is a composition series finite sequence of elements of the stable subgroups

of G.

Let O be a set, let G be a group with operators in O, and let s1, s2 be

composition series of G. We say that s1 is finer than s2 if and only if:

(Def. 32) There exists a set x such that x ⊆ dom s1 and s2 = s1 · Sgmx.

Let us note that the predicate s1 is finer than s2 is reflexive.

Let O be a set, let G be a group with operators in O, and let I1 be a

composition series of G. We say that I1 is strictly decreasing if and only if the

condition (Def. 33) is satisfied.

(Def. 33) Let i be a natural number. Suppose i ∈ dom I1 and i+ 1 ∈ dom I1. Let

H be a stable subgroup of G and N be a normal stable subgroup of H. If

H = I1(i) and N = I1(i+ 1), then H/N is not trivial.

Let O be a set, let G be a group with operators in O, and let I1 be a

composition series of G. We say that I1 is Jordan-Hölder if and only if the

conditions (Def. 34) are satisfied.

(Def. 34)(i) I1 is strictly decreasing, and

(ii) it is not true that there exists a composition series s of G such that

s 6= I1 and s is strictly decreasing and finer than I1.

Let O be a set, let G1, G2 be groups with operators in O, let s1 be a

composition series of G1, and let s2 be a composition series of G2. We say that

s1 is equivalent with s2 if and only if the conditions (Def. 35) are satisfied.

(Def. 35)(i) len s1 = len s2, and

(ii) for every natural number n such that n + 1 = len s1 there exists a

permutation p of Segn such that for every stable subgroup H1 of G1 and

for every stable subgroup H2 of G2 and for every normal stable subgroup

N1 of H1 and for every normal stable subgroupN2 of H2 and for all natural

numbers i, j such that 1 ≤ i and i ≤ n and j = p(i) and H1 = s1(i) and
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H2 = s2(j) and N1 = s1(i+ 1) and N2 = s2(j+ 1) holds H1/N1 and H2/N2

are isomorphic.

Let O be a set, let G be a group with operators in O, and let s be a com-

position series of G. The series of quotients of s yielding a finite sequence is

defined as follows:

(Def. 36)(i) len s = len (the series of quotients of s) + 1 and for every natural

number i such that i ∈ dom (the series of quotients of s) and for every

stable subgroup H of G and for every normal stable subgroup N of H

such that H = s(i) and N = s(i + 1) holds (the series of quotients of

s)(i) = H/N if len s > 1,

(ii) the series of quotients of s = ∅, otherwise.

Let O be a set, let f1, f2 be finite sequences, and let p be a permutation of

dom f1. We say that f1 and f2 are equivalent under p in O if and only if the

conditions (Def. 37) are satisfied.

(Def. 37)(i) len f1 = len f2, and

(ii) for all groups H1, H2 with operators in O and for all natural numbers

i, j such that i ∈ dom f1 and j = p−1(i) and H1 = f1(i) and H2 = f2(j)

holds H1 and H2 are isomorphic.

For simplicity, we follow the rules: y is a set, s1, s′1, s2, s′2 are composition

series of G, f3 is a finite sequence of elements of the stable subgroups of G, f1,

f2 are finite sequences, and i, j, n are natural numbers.

We now state a number of propositions:

(94) If i ∈ dom s1 and i + 1 ∈ dom s1 and s1(i) = s1(i + 1) and f3 = (s1)�i,
then f3 is composition series.

(95) If s1 is finer than s2, then there exists n such that len s1 = len s2 + n.

(96) If len s2 = len s1 and s2 is finer than s1, then s1 = s2.

(97) If s1 is not empty and s2 is finer than s1, then s2 is not empty.

(98) If s1 is finer than s2 and Jordan-Hölder and s2 is Jordan-Hölder, then

s1 = s2.

(99) If i ∈ dom s1 and i + 1 ∈ dom s1 and s1(i) = s1(i + 1) and s′1 = (s1)�i
and s2 is Jordan-Hölder and s1 is finer than s2, then s′1 is finer than s2.

(100) Suppose len s1 > 1 and s2 6= s1 and s2 is strictly decreasing and finer

than s1. Then there exist i, j such that i ∈ dom s1 and i ∈ dom s2 and

i + 1 ∈ dom s1 and i + 1 ∈ dom s2 and j ∈ dom s2 and i + 1 < j and

s1(i) = s2(i) and s1(i+ 1) 6= s2(i+ 1) and s1(i+ 1) = s2(j).

(101) If i ∈ dom s1 and j ∈ dom s1 and i ≤ j and H1 = s1(i) and H2 = s1(j),

then H2 is a stable subgroup of H1.

(102) If y ∈ rng (the series of quotients of s1), then y is a strict group with

operators in O.
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(103) Suppose i ∈ dom (the series of quotients of s1) and for every H such that

H = (the series of quotients of s1)(i) holds H is trivial. Then i ∈ dom s1

and i+ 1 ∈ dom s1 and s1(i) = s1(i+ 1).

(104) Suppose i ∈ dom s1 and i + 1 ∈ dom s1 and s1(i) = s1(i + 1) and

s2 = (s1)�i. Then the series of quotients of s2 = (the series of quotients of

s1)�i.

(105) Suppose f1 = the series of quotients of s1 and i ∈ dom f1 and for every H

such that H = f1(i) holds H is trivial. Then (s1)�i is a composition series

of G and for every s2 such that s2 = (s1)�i holds the series of quotients of

s2 = (f1)�i.

(106) Suppose that

(i) f1 = the series of quotients of s1,

(ii) f2 = the series of quotients of s2,

(iii) i ∈ dom f1,

(iv) for every H such that H = f1(i) holds H is trivial, and

(v) there exists a permutation p of dom f1 such that f1 and f2 are equivalent

under p in O and j = p−1(i).

Then there exists a permutation p′ of dom((f1)�i) such that (f1)�i and

(f2)�j are equivalent under p′ in O.

(107) Let G1, G2 be groups with operators in O, s1 be a composition series of

G1, and s2 be a composition series of G2. If s1 is empty and s2 is empty,

then s1 is equivalent with s2.

(108) Let G1, G2 be groups with operators in O, s1 be a composition series of

G1, and s2 be a composition series of G2. Suppose s1 is not empty and

s2 is not empty. Then s1 is equivalent with s2 if and only if there exists

a permutation p of dom (the series of quotients of s1) such that the series

of quotients of s1 and the series of quotients of s2 are equivalent under p

in O.

(109) Suppose s1 is finer than s2 and s2 is Jordan-Hölder and len s1 > len s2.

Then there exists i such that i ∈ dom (the series of quotients of s1) and

for every H such that H = (the series of quotients of s1)(i) holds H is

trivial.

(110) Suppose len s1 > 1. Then s1 is Jordan-Hölder if and only if for every

i such that i ∈ dom (the series of quotients of s1) holds (the series of

quotients of s1)(i) is a strict simple group with operators in O.

(111) Suppose 1 ≤ i and i ≤ len s1 − 1. Then s1(i) is a strict stable subgroup

of G and s1(i+ 1) is a strict stable subgroup of G.

(112) If 1 ≤ i and i ≤ len s1 − 1 and H1 = s1(i) and H2 = s1(i + 1), then H2

is a normal stable subgroup of H1.

(113) s1 is equivalent with s1.
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(114) If len s1 ≤ 1 or len s2 ≤ 1 and if len s1 ≤ len s2, then s2 is finer than s1.

(115) If s1 is equivalent with s2 and Jordan-Hölder, then s2 is Jordan-Hölder.

6. The Schreier Refinement Theorem

Let us consider O, G, s1, s2. Let us assume that len s1 > 1 and len s2 > 1.

The Schreier series of s1 and s2 yielding a composition series of G is defined by

the condition (Def. 38).

(Def. 38) Let k, i, j be natural numbers and H1, H2, H3 be stable subgroups of

G. Then

(i) if k = (i − 1) · (len s2 − 1) + j and 1 ≤ i and i ≤ len s1 − 1 and 1 ≤ j

and j ≤ len s2 − 1 and H1 = s1(i + 1) and H2 = s1(i) and H3 = s2(j),

then (the Schreier series of s1 and s2)(k) = H1 tH2 ∩H3,

(ii) if k = (len s1 − 1) · (len s2 − 1) + 1, then (the Schreier series of s1 and

s2)(k) = {1}G, and

(iii) len (the Schreier series of s1 and s2) = (len s1 − 1) · (len s2 − 1) + 1.

Next we state three propositions:

(116) If len s1 > 1 and len s2 > 1, then the Schreier series of s1 and s2 is finer

than s1.

(117) If len s1 > 1 and len s2 > 1, then the Schreier series of s1 and s2 is

equivalent with the Schreier series of s2 and s1.

(118) There exist s′1, s′2 such that s′1 is finer than s1 and s′2 is finer than s2

and s′1 is equivalent with s′2.

7. The Jordan-Hölder Theorem

One can prove the following proposition

(119) If s1 is Jordan-Hölder and s2 is Jordan-Hölder, then s1 is equivalent with

s2.

8. Appendix

Next we state several propositions:

(120) For all binary relations P , R holds P = rngP �R iff P ` = R`�dom(P`).

(121) For every set X and for all binary relations P , R holds P · (R�X) =

(X�P ) · R.
(122) Let n be a natural number, X be a set, and f be a partial function

from R to R. If X ⊆ Seg n and X ⊆ dom f and f is increasing on X and

f◦X ⊆ N \ {0}, then Sgm(f ◦X) = f · SgmX.
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(123) Let y be a set and i, n be natural numbers. Suppose y ⊆ Seg(n + 1)

and i ∈ Seg(n + 1) and i /∈ y. Then there exists x such that Sgmx =

(Sgm(Seg(n+ 1) \ {i}))−1 · Sgm y and x ⊆ Seg n.

(124) Let D be a non empty set, f be a finite sequence of elements of D,

p be an element of D, and n be an element of N. If n ∈ dom f, then

f = (Ins(f, n, p))�n+1.

(125) Let G, H be groups, F1 be a finite sequence of elements of the carrier

of G, F2 be a finite sequence of elements of the carrier of H, I be a

finite sequence of elements of Z, and f be a homomorphism from G to H.

Suppose for every element k of N such that k ∈ Seg lenF1 holds F2(k) =

f(F1(k)) and lenF1 = len I and lenF2 = len I. Then f(
∏

(F1
I)) =

∏
(F2

I).
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Micha l Trybulec
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Cracow, Poland

Summary. This article includes proofs of several facts that are supple-

mental to the theorems proved in [10]. Next, it builds upon that theory to extend

the framework for proving facts about formal languages in general and regular

expression operators in particular. In this article, two quantifiers are defined

and their properties are shown: m to n occurrences (or the union of a range

of powers) and optional occurrence. Although optional occurrence is a special

case of the previous operator (0 to 1 occurrences), it is often defined in regex

applications as a separate operator – hence its explicit definition and properties

in the article. Notation and terminology were taken from [13].

MML identifier: FLANG 2, version: 7.8.05 4.84.971

The articles [9], [4], [11], [7], [8], [2], [14], [3], [1], [5], [12], [6], and [10] provide

the terminology and notation for this paper.

1. Preliminaries

For simplicity, we adopt the following convention: E, x denote sets, A, B,

C denote subsets of Eω, a, b denote elements of Eω, and i, k, l, k1, m, n, m1

denote natural numbers.

We now state four propositions:

(1) If m + k ≤ i and i ≤ n+ k, then there exists m1 such that m1 + k = i

and m ≤ m1 and m1 ≤ n.
(2) If m ≤ n and k ≤ l and m+ k ≤ i and i ≤ n+ l, then there exist m1, k1

such that m1 + k1 = i and m ≤ m1 and m1 ≤ n and k ≤ k1 and k1 ≤ l.
(3) If m < n, then there exists k such that m+ k = n and k > 0.
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(4) If a a b = a or b a a = a, then b = ∅.

2. Addenda to [10]

One can prove the following propositions:

(5) If x ∈ A or x ∈ B and if x 6= 〈〉E , then A _ B 6= {〈〉E}.
(6) 〈x〉 ∈ A _ B iff 〈〉E ∈ A and 〈x〉 ∈ B or 〈x〉 ∈ A and 〈〉E ∈ B.
(7) If x ∈ A and x 6= 〈〉E and n > 0, then An 6= {〈〉E}.
(8) 〈〉E ∈ An iff n = 0 or 〈〉E ∈ A.
(9) 〈x〉 ∈ An iff 〈x〉 ∈ A but 〈〉E ∈ A and n > 1 or n = 1.

(10) If m 6= n and Am = {x} and An = {x}, then x = 〈〉E.
(11) (Am)n = (An)m.

(12) (Am) _ An = (An) _ Am.

(13) If 〈〉E ∈ B, then A ⊆ A _ Bl and A ⊆ (Bl) _ A.

(14) If A ⊆ Ck and B ⊆ C l, then A_ B ⊆ Ck+l.

(15) If x ∈ A and x 6= 〈〉E , then A∗ 6= {〈〉E}.
(16) If 〈〉E ∈ A and n > 0, then (An)∗ = A∗.

(17) If 〈〉E ∈ A, then (An)∗ = (A∗)n.

(18) A ⊆ A_ B∗ and A ⊆ (B∗) _ A.

3. Union of a Range of Powers

Let us consider E, A and let us consider m, n. The functor Am,n yields a

subset of Eω and is defined as follows:

(Def. 1) Am,n =
⋃{B :

∨
k (m ≤ k ∧ k ≤ n ∧ B = Ak)}.

One can prove the following propositions:

(19) x ∈ Am,n iff there exists k such that m ≤ k and k ≤ n and x ∈ Ak.
(20) If m ≤ k and k ≤ n, then Ak ⊆ Am,n.
(21) Am,n = ∅ iff m > n or m > 0 and A = ∅.
(22) Am,m = Am.

(23) If m ≤ k and l ≤ n, then Ak,l ⊆ Am,n.
(24) If m ≤ k and k ≤ n, then Am,n = Am,k ∪Ak,n.
(25) If m ≤ k and k ≤ n, then Am,n = Am,k ∪Ak+1,n.

(26) If m ≤ n+ 1, then Am,n+1 = Am,n ∪An+1.

(27) If m ≤ n, then Am,n = Am ∪Am+1,n.

(28) An,n+1 = An ∪An+1.

(29) If A ⊆ B, then Am,n ⊆ Bm,n.
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(30) If x ∈ A and if x 6= 〈〉E and if m > 0 or n > 0, then Am,n 6= {〈〉E}.
(31) Am,n = {〈〉E} iff m ≤ n and A = {〈〉E} or m = 0 and n = 0 or m = 0

and A = ∅.
(32) Am,n ⊆ A∗.
(33) 〈〉E ∈ Am,n iff m = 0 or m ≤ n and 〈〉E ∈ A.
(34) If 〈〉E ∈ A and m ≤ n, then Am,n = An.

(35) (Am,n) _ Ak = (Ak) _ Am,n.

(36) (Am,n) _ A = A_ Am,n.

(37) If m ≤ n and k ≤ l, then (Am,n) _ Ak,l = Am+k,n+l.

(38) Am+1,n+1 = (Am,n) _ A.

(39) (Am,n) _ Ak,l = (Ak,l) _ Am,n.

(40) (Am,n)k = Am·k,n·k.

(41) (Ak+1)
m,n ⊆ ((Ak)

m,n
) _ Am,n.

(42) (Ak)
m,n ⊆ Ak·m,k·n.

(43) (Ak)
m,n ⊆ (Am,n)k.

(44) (Ak+l)
m,n ⊆ ((Ak)

m,n
) _ (Al)

m,n
.

(45) A0,0 = {〈〉E}.
(46) A0,1 = {〈〉E} ∪A.
(47) A1,1 = A.

(48) A0,2 = {〈〉E} ∪A ∪A _ A.

(49) A1,2 = A ∪A_ A.

(50) A2,2 = A_ A.

(51) If m > 0 and m 6= n and Am,n = {x}, then for every m1 such that

m ≤ m1 and m1 ≤ n holds Am1 = {x}.
(52) If m 6= n and Am,n = {x}, then x = 〈〉E.
(53) 〈x〉 ∈ Am,n iff 〈x〉 ∈ A but m ≤ n but 〈〉E ∈ A and n > 0 or m ≤ 1 and

1 ≤ n.
(54) (A ∩B)m,n ⊆ Am,n ∩Bm,n.

(55) Am,n ∪Bm,n ⊆ (A ∪B)m,n.

(56) (Am,n)k,l ⊆ Am·k,n·l.
(57) If m ≤ n and 〈〉E ∈ B, then A ⊆ A_ Bm,n and A ⊆ (Bm,n) _ A.

(58) If m ≤ n and k ≤ l and A ⊆ Cm,n and B ⊆ Ck,l, then A_B ⊆ Cm+k,n+l.

(59) (Am,n)∗ ⊆ A∗.
(60) (A∗)m,n ⊆ A∗.
(61) If m ≤ n and n > 0, then (A∗)m,n = A∗.

(62) If m ≤ n and n > 0 and 〈〉E ∈ A, then (Am,n)∗ = A∗.

(63) If m ≤ n and 〈〉E ∈ A, then (Am,n)∗ = (A∗)m,n.
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(64) If A ⊆ B∗, then Am,n ⊆ B∗.
(65) If A ⊆ B∗, then B∗ = (B ∪Am,n)∗.

(66) (Am,n) _ A∗ = (A∗) _ Am,n.

(67) If 〈〉E ∈ A and m ≤ n, then A∗ = (A∗) _ Am,n.

(68) (Am,n)k ⊆ A∗.
(69) (Ak)

m,n ⊆ A∗.
(70) If m ≤ n, then (Am)∗ ⊆ (Am,n)∗.

(71) (Am,n)k,l ⊆ A∗.
(72) If 〈〉E ∈ A and k ≤ n and l ≤ n, then Ak,n = Al,n.

4. Optional Occurrence

Let us consider E, A. The functor A? yields a subset of Eω and is defined

by:

(Def. 2) A? =
⋃{B :

∨
k (k ≤ 1 ∧ B = Ak)}.

One can prove the following propositions:

(73) x ∈ A? iff there exists k such that k ≤ 1 and x ∈ Ak.
(74) If n ≤ 1, then An ⊆ A?.

(75) A? = A0 ∪A1.

(76) A? = {〈〉E} ∪A.
(77) A ⊆ A?.

(78) x ∈ A? iff x = 〈〉E or x ∈ A.
(79) A? = A0,1.

(80) A? = A iff 〈〉E ∈ A.
Let us consider E, A. One can check that A? is non empty.

We now state a number of propositions:

(81) A?? = A?.

(82) If A ⊆ B, then A? ⊆ B?.

(83) If x ∈ A and x 6= 〈〉E , then A? 6= {〈〉E}.
(84) A? = {〈〉E} iff A = ∅ or A = {〈〉E}.
(85) A∗? = A∗ and A?∗ = A∗.

(86) A? ⊆ A∗.
(87) (A ∩B)? = A? ∩B?.

(88) A? ∪B? = (A ∪B)?.

(89) If A? = {x}, then x = 〈〉E .
(90) 〈x〉 ∈ A? iff 〈x〉 ∈ A.
(91) A? _ A = A_ A?.
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(92) A? _ A = A1,2.

(93) A? _ A? = A0,2.

(94) A?k = A?0,k.

(95) A?k = A0,k.

(96) If m ≤ n, then A?m,n = A?0,n.

(97) A?0,n = A0,n.

(98) If m ≤ n, then A?m,n = A0,n.

(99) A1,n? = A0,n.

(100) If 〈〉E ∈ A and 〈〉E ∈ B, then A? ⊆ A_ B and A? ⊆ B _ A.

(101) A ⊆ A_ B? and A ⊆ B? _ A.

(102) If A ⊆ C? and B ⊆ C?, then A _ B ⊆ C0,2.

(103) If 〈〉E ∈ A and n > 0, then A? ⊆ An.
(104) A? _ Ak = (Ak) _ A?.

(105) If A ⊆ B∗, then A? ⊆ B∗.
(106) If A ⊆ B∗, then B∗ = (B ∪A?)∗.

(107) A? _ A∗ = (A∗) _ A?.

(108) A? _ A∗ = A∗.

(109) A?k ⊆ A∗.
(110) Ak? ⊆ A∗.
(111) A? _ Am,n = (Am,n) _ A?.

(112) A? _ Ak = Ak,k+1.

(113) A?m,n ⊆ A∗.
(114) Am,n? ⊆ A∗.
(115) A? = (A \ {〈〉E})?.
(116) If A ⊆ B?, then A? ⊆ B?.

(117) If A ⊆ B?, then B? = (B ∪A)?.
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Summary. In this article we define the Riemann indefinite integral of

functions of real variable and prove the linearity of that [1]. And we give some

examples of the indefinite integral of some elementary functions. Furthermore,

also the theorem about integral operation and uniform convergent sequence of

functions is proved.
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[15], [14], [19], [20], [6], [9], [11], [18], [12], [27], and [22] provide the terminology

and notation for this paper.

1. Preliminaries

For simplicity, we adopt the following rules: a, b, r are real numbers, A is a

non empty set, X, x are sets, f , g, F , G are partial functions from R to R, and

n is an element of N.

Next we state a number of propositions:
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(1) Let f , g be functions from A into R. Suppose rng f is upper bounded

and rng g is upper bounded and for every set x such that x ∈ A holds

|f(x)−g(x)| ≤ a. Then sup rng f−suprng g ≤ a and sup rng g−sup rng f ≤
a.

(2) Let f , g be functions from A into R. Suppose rng f is lower bounded

and rng g is lower bounded and for every set x such that x ∈ A holds

|f(x)−g(x)| ≤ a. Then inf rng f−inf rng g ≤ a and inf rng g−inf rng f ≤ a.
(3) If f�X is bounded on X, then f is bounded on X.

(4) For every real number x such that x ∈ X and f�X is differentiable in x

holds f is differentiable in x.

(5) If f�X is differentiable on X, then f is differentiable on X.

(6) Suppose f is differentiable on X and g is differentiable on X. Then

f + g is differentiable on X and f − g is differentiable on X and f g is

differentiable on X.

(7) If f is differentiable on X, then r f is differentiable on X.

(8) Suppose for every set x such that x ∈ X holds g(x) 6= 0 and f is

differentiable on X and g is differentiable on X. Then f
g is differentiable

on X.

(9) If for every set x such that x ∈ X holds f(x) 6= 0 and f is differentiable

on X, then 1
f is differentiable on X.

(10) Suppose a ≤ b and [′a, b′] ⊆ X and F is differentiable on X and F ′�X
is integrable on [′a, b′] and F ′�X is bounded on [′a, b′]. Then F (b) =
b∫

a

(F ′�X )(x)dx+ F (a).

2. The Definition of Indefinite Integral

Let X be a set and let f be a partial function from R to R. The functor

IntegralFuncs(f,X) yields a set and is defined by the condition (Def. 1).

(Def. 1) x ∈ IntegralFuncs(f,X) if and only if there exists a partial function F

from R to R such that x = F and F is differentiable on X and F ′�X = f�X.
Let X be a set and let F , f be partial functions from R to R. We say that

F is an integral of f on X if and only if:

(Def. 2) F ∈ IntegralFuncs(f,X).

The following propositions are true:

(11) If F is an integral of f on X, then X ⊆ domF.

(12) Suppose F is an integral of f on X and G is an integral of g on X. Then

F +G is an integral of f + g on X and F −G is an integral of f − g on X.
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(13) If F is an integral of f on X, then r F is an integral of r f on X.

(14) If F is an integral of f on X and G is an integral of g on X, then F G

is an integral of f G+ F g on X.

(15) Suppose for every set x such that x ∈ X holds G(x) 6= 0 and F is an

integral of f on X and G is an integral of g on X. Then F
G is an integral

of f G−F g
G G on X.

(16) Suppose that

(i) a ≤ b,
(ii) [′a, b′] ⊆ dom f,

(iii) f is continuous on [′a, b′],
(iv) ]a, b[ ⊆ domF, and

(v) for every real number x such that x ∈ ]a, b[ holds F (x) =

x∫

a

f(x)dx+

F (a).

Then F is an integral of f on ]a, b[.

(17) Let x, x0 be real numbers. Suppose f is continuous on [a, b] and x ∈ ]a, b[

and x0 ∈ ]a, b[ and F is an integral of f on ]a, b[. Then F (x) =

x∫

x0

f(x)dx+

F (x0).

(18) Suppose a ≤ b and [′a, b′] ⊆ X and F is an integral of f on X and f is

integrable on [′a, b′] and f is bounded on [′a, b′]. Then F (b) =

b∫

a

f(x)dx+

F (a).

(19) Suppose a ≤ b and [a, b] ⊆ X and f is continuous on X. Then f is

continuous on [′a, b′] and f is integrable on [′a, b′] and f is bounded on

[′a, b′].

(20) If a ≤ b and [a, b] ⊆ X and f is continuous on X and F is an integral of

f on X, then F (b) =

b∫

a

f(x)dx+ F (a).

(21) Suppose that b ≤ a and [′b, a′] ⊆ X and f is integrable on [′b, a′] and

g is integrable on [′b, a′] and f is bounded on [′b, a′] and g is bounded

on [′b, a′] and X ⊆ dom f and X ⊆ dom g and F is an integral of f on

X and G is an integral of g on X. Then F (a) · G(a) − F (b) · G(b) =
a∫

b

(f G)(x)dx +

a∫

b

(F g)(x)dx.

(22) Suppose that b ≤ a and [b, a] ⊆ X and X ⊆ dom f and X ⊆ dom g and
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f is continuous on X and g is continuous on X and F is an integral of f

on X and G is an integral of g on X. Then F (a) · G(a) − F (b) · G(b) =
a∫

b

(f G)(x)dx +

a∫

b

(F g)(x)dx.

3. Examples of Indefinite Integral

We now state several propositions:

(23) The function sin is an integral of the function cos on R.

(24) (The function sin)(b)−(the function sin)(a) =

b∫

a

(the function cos)(x)dx.

(25) (−1) (the function cos) is an integral of the function sin on R.

(26) (The function cos)(a)−(the function cos)(b) =

b∫

a

(the function sin)(x)dx.

(27) The function exp is an integral of the function exp on R.

(28) (The function exp)(b)−(the function exp)(a) =

b∫

a

(the function exp)(x)dx.

(29) n+1
Z is an integral of (n+ 1) nZ on R.

(30) (n+1
Z )(b)− (n+1

Z )(a) =

b∫

a

((n+ 1) nZ)(x)dx.

4. Uniform Convergent Functional Sequence

We now state the proposition

(31) Let H be a sequence of partial functions from R into R and r1 be a

sequence of real numbers. Suppose that

(i) a < b,

(ii) for every element n of N holds H(n) is integrable on [′a, b′] and H(n)

is bounded on [′a, b′] and r1(n) =

b∫

a

H(n)(x)dx, and

(iii) H is uniform-convergent on [′a, b′].
Then lim[′a,b′]H is bounded on [′a, b′] and lim[′a,b′]H is integrable on [′a, b′]

and r1 is convergent and lim r1 =

b∫

a

lim
[′a,b′]

H(x)dx.
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Summary. In this article, we define the partial differentiation of functions
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[2], [4], [27], [28], [16], [9], [19], [17], [12], and [10].

1. Preliminaries

Let i, n be elements of N. The functor proj(i, n) yielding a function from

Rn into R is defined by:

(Def. 1) For every element x of Rn holds (proj(i, n))(x) = x(i).

Next we state two propositions:

(1) dom proj(1, 1) = R1 and rng proj(1, 1) = R and for every element x of R
holds (proj(1, 1))(〈x〉) = x and (proj(1, 1))−1(x) = 〈x〉.

(2)(i) (proj(1, 1))−1 is a function from R into R1,

(ii) (proj(1, 1))−1 is one-to-one,

(iii) dom((proj(1, 1))−1) = R,
(iv) rng((proj(1, 1))−1) = R1, and
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(v) there exists a function g from R into R1 such that g is bijective and

(proj(1, 1))−1 = g.

One can check that proj(1, 1) is bijective.

Let g be a partial function from R to R. The functor 〈g〉 yields a partial

function from R1 to R1 and is defined as follows:

(Def. 2) 〈g〉 = (proj(1, 1))−1 · g · proj(1, 1).

Let n be an element of N and let g be a partial function from Rn to R. The

functor 〈g〉 yielding a partial function from Rn to R1 is defined as follows:

(Def. 3) 〈g〉 = (proj(1, 1))−1 · g.
Let i, n be elements of N. The functor Proj(i, n) yielding a function from

〈En, ‖ · ‖〉 into 〈E1, ‖ · ‖〉 is defined as follows:

(Def. 4) For every point x of 〈En, ‖ · ‖〉 holds (Proj(i, n))(x) = 〈(proj(i, n))(x)〉.
Let i be an element of N and let x be a finite sequence of elements of R. The

functor reproj(i, x) yielding a function is defined as follows:

(Def. 5) dom reproj(i, x) = R and for every element r of R holds

(reproj(i, x))(r) = Replace(x, i, r).

Let n, i be elements of N and let x be an element of Rn. Then reproj(i, x)

is a function from R into Rn.

Let n, i be elements of N and let x be a point of 〈En, ‖ · ‖〉. The functor

reproj(i, x) yielding a function from 〈E 1, ‖ · ‖〉 into 〈En, ‖ · ‖〉 is defined by the

condition (Def. 6).

(Def. 6) Let r be an element of 〈E1, ‖ · ‖〉. Then there exists an element q of R
and there exists an element y of Rn such that r = 〈q〉 and y = x and

(reproj(i, x))(r) = (reproj(i, y))(q).

Let m, n be non empty elements of N, let f be a partial function from Rm

to Rn, and let x be an element of Rm. We say that f is differentiable in x if

and only if the condition (Def. 7) is satisfied.

(Def. 7) There exists a partial function g from 〈Em, ‖·‖〉 to 〈En, ‖·‖〉 and there ex-

ists a point y of 〈Em, ‖·‖〉 such that f = g and x = y and g is differentiable

in y.

Let m, n be non empty elements of N, let f be a partial function from Rm

to Rn, and let x be an element of Rm. Let us assume that f is differentiable

in x. The functor f ′(x) yields a function from Rm into Rn and is defined as

follows:

(Def. 8) There exists a partial function g from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉 and there

exists a point y of 〈Em, ‖ · ‖〉 such that f = g and x = y and f ′(x) = g′(y).

We now state four propositions:

(3) Let I be a function from R into R1. Suppose I = (proj(1, 1))−1. Then
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(i) for every vector x of 〈E1, ‖ · ‖〉 and for every element y of R such that

x = I(y) holds ‖x‖ = |y|,
(ii) for all vectors x, y of 〈E1, ‖ · ‖〉 and for all elements a, b of R such that

x = I(a) and y = I(b) holds x+ y = I(a+ b),

(iii) for every vector x of 〈E1, ‖ · ‖〉 and for every element y of R and for

every real number a such that x = I(y) holds a · x = I(a · y),

(iv) for every vector x of 〈E1, ‖ · ‖〉 and for every element a of R such that

x = I(a) holds −x = I(−a), and

(v) for all vectors x, y of 〈E1, ‖ · ‖〉 and for all elements a, b of R such that

x = I(a) and y = I(b) holds x− y = I(a− b).
(4) Let J be a function from R1 into R. Suppose J = proj(1, 1). Then

(i) for every vector x of 〈E1, ‖ · ‖〉 and for every element y of R such that

J(x) = y holds ‖x‖ = |y|,
(ii) for all vectors x, y of 〈E1, ‖ · ‖〉 and for all elements a, b of R such that

J(x) = a and J(y) = b holds J(x+ y) = a+ b,

(iii) for every vector x of 〈E1, ‖ · ‖〉 and for every element y of R and for

every real number a such that J(x) = y holds J(a · x) = a · y,
(iv) for every vector x of 〈E1, ‖ · ‖〉 and for every element a of R such that

J(x) = a holds J(−x) = −a, and

(v) for all vectors x, y of 〈E1, ‖ · ‖〉 and for all elements a, b of R such that

J(x) = a and J(y) = b holds J(x− y) = a− b.
(5) Let I be a function from R into R1 and J be a function from R1 into

R. Suppose I = (proj(1, 1))−1 and J = proj(1, 1). Then

(i) for every rest R of 〈E1, ‖ · ‖〉, 〈E1, ‖ · ‖〉 holds J · R · I is a rest, and

(ii) for every linear operator L from 〈E 1, ‖ · ‖〉 into 〈E1, ‖ · ‖〉 holds J · L · I
is a linear function.

(6) Let I be a function from R into R1 and J be a function from R1 into

R. Suppose I = (proj(1, 1))−1 and J = proj(1, 1). Then

(i) for every rest R holds I · R · J is a rest of 〈E 1, ‖ · ‖〉, 〈E1, ‖ · ‖〉, and

(ii) for every linear function L holds I · L · J is a bounded linear operator

from 〈E1, ‖ · ‖〉 into 〈E1, ‖ · ‖〉.
In the sequel f is a partial function from 〈E 1, ‖ · ‖〉 to 〈E1, ‖ · ‖〉, g is a partial

function from R to R, x is a point of 〈E 1, ‖ · ‖〉, and y is an element of R.

We now state four propositions:

(7) If f = 〈g〉 and x = 〈y〉 and f is differentiable in x, then g is differentiable

in y and g′(y) = (proj(1, 1) · f ′(x) · (proj(1, 1))−1)(1).

(8) If f = 〈g〉 and x = 〈y〉 and g is differentiable in y, then f is differentiable

in x and f ′(x)(〈1〉) = 〈g′(y)〉.
(9) If f = 〈g〉 and x = 〈y〉, then f is differentiable in x iff g is differentiable

in y.
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(10) If f = 〈g〉 and x = 〈y〉 and f is differentiable in x, then f ′(x)(〈1〉) =

〈g′(y)〉.

2. Partial Differentiation

For simplicity, we adopt the following rules: m, n are non empty elements

of N, i, j are elements of N, f is a partial function from 〈En, ‖ · ‖〉 to 〈E1, ‖ · ‖〉, g
is a partial function from Rn to R, x is a point of 〈En, ‖ · ‖〉, and y is an element

of Rn.

Let n, m be non empty elements of N, let i be an element of N, let f be a

partial function from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and let x be a point of 〈Em, ‖ · ‖〉.
We say that f is partially differentiable in x w.r.t. i if and only if:

(Def. 9) f · reproj(i, x) is differentiable in (Proj(i,m))(x).

Let m, n be non empty elements of N, let i be an element of N, let f be a

partial function from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and let x be a point of 〈Em, ‖ · ‖〉.
The functor partdiff(f, x, i) yielding a point of the real norm space of bounded

linear operators from 〈E1, ‖ · ‖〉 into 〈En, ‖ · ‖〉 is defined as follows:

(Def. 10) partdiff(f, x, i) = (f · reproj(i, x))′((Proj(i,m))(x)).

Let n be a non empty element of N, let i be an element of N, let f be a

partial function from Rn to R, and let x be an element of Rn. We say that f is

partially differentiable in x w.r.t. i if and only if:

(Def. 11) f · reproj(i, x) is differentiable in (proj(i, n))(x).

Let n be a non empty element of N, let i be an element of N, let f be a

partial function from Rn to R, and let x be an element of Rn. The functor

partdiff(f, x, i) yields a real number and is defined by:

(Def. 12) partdiff(f, x, i) = (f · reproj(i, x))′((proj(i, n))(x)).

We now state several propositions:

(11) Proj(i, n) = (proj(1, 1))−1 · proj(i, n).

(12) If x = y, then reproj(i, y) · proj(1, 1) = reproj(i, x).

(13) If f = 〈g〉 and x = y, then 〈g · reproj(i, y)〉 = f · reproj(i, x).

(14) Suppose f = 〈g〉 and x = y. Then f is partially differentiable in x w.r.t.

i if and only if g is partially differentiable in y w.r.t. i.

(15) If f = 〈g〉 and x = y and f is partially differentiable in x w.r.t. i, then

(partdiff(f, x, i))(〈1〉) = 〈partdiff(g, y, i)〉.
Let m, n be non empty elements of N, let i be an element of N, let f be a

partial function from Rm to Rn, and let x be an element of Rm. We say that

f is partially differentiable in x w.r.t. i if and only if the condition (Def. 13) is

satisfied.
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(Def. 13) There exists a partial function g from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉 and there

exists a point y of 〈Em, ‖ · ‖〉 such that f = g and x = y and g is partially

differentiable in y w.r.t. i.

Let m, n be non empty elements of N, let i be an element of N, let f be a

partial function from Rm to Rn, and let x be an element of Rm. Let us assume

that f is partially differentiable in x w.r.t. i. The functor partdiff(f, x, i)

yielding an element of Rn is defined as follows:

(Def. 14) There exists a partial function g from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉 and

there exists a point y of 〈Em, ‖ · ‖〉 such that f = g and x = y and

partdiff(f, x, i) = (partdiff(g, y, i))(〈1〉).
One can prove the following four propositions:

(16) Let m, n be non empty elements of N, F be a partial function from

〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, G be a partial function from Rm to Rn, x be a

point of 〈Em, ‖ · ‖〉, and y be an element of Rm. Suppose F = G and

x = y. Then F is partially differentiable in x w.r.t. i if and only if G is

partially differentiable in y w.r.t. i.

(17) Let m, n be non empty elements of N, F be a partial function from

〈Em, ‖·‖〉 to 〈En, ‖·‖〉, G be a partial function fromRm toRn, x be a point

of 〈Em, ‖ · ‖〉, and y be an element of Rm. Suppose F = G and x = y and

F is partially differentiable in x w.r.t. i. Then (partdiff(F, x, i))(〈1〉) =

partdiff(G, y, i).

(18) Let g1 be a partial function fromRn to R1. Suppose g1 = 〈g〉. Then g1 is

partially differentiable in y w.r.t. i if and only if g is partially differentiable

in y w.r.t. i.

(19) Let g1 be a partial function from Rn to R1. Suppose g1 = 〈g〉 and

g1 is partially differentiable in y w.r.t. i. Then partdiff(g1, y, i) =

〈partdiff(g, y, i)〉.

3. Linearity of Partial Differential Operator

For simplicity, we use the following convention: X is a set, r is a real number,

f , f1, f2 are partial functions from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, g, g1, g2 are partial

functions from Rn to R, h is a partial function from Rm to Rn, x is a point of

〈Em, ‖ · ‖〉, y is an element of Rn, and z is an element of Rm.

Let m, n be non empty elements of N, let i, j be elements of N, let f be a

partial function from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and let x be a point of 〈Em, ‖ · ‖〉.
We say that f is partially differentiable in x w.r.t. i and j if and only if:

(Def. 15) Proj(j, n) · f · reproj(i, x) is differentiable in (Proj(i,m))(x).

Let m, n be non empty elements of N, let i, j be elements of N, let f be a

partial function from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and let x be a point of 〈Em, ‖ · ‖〉.
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The functor partdiff(f, x, i, j) yields a point of the real norm space of bounded

linear operators from 〈E1, ‖ · ‖〉 into 〈E1, ‖ · ‖〉 and is defined by:

(Def. 16) partdiff(f, x, i, j) = (Proj(j, n) · f · reproj(i, x))′((Proj(i,m))(x)).

Let m, n be non empty elements of N, let i, j be elements of N, let h be a

partial function from Rm to Rn, and let z be an element of Rm. We say that

h is partially differentiable in z w.r.t. i and j if and only if:

(Def. 17) proj(j, n) · h · reproj(i, z) is differentiable in (proj(i,m))(z).

Let m, n be non empty elements of N, let i, j be elements of N, let h be a

partial function from Rm to Rn, and let z be an element of Rm. The functor

partdiff(h, z, i, j) yielding a real number is defined as follows:

(Def. 18) partdiff(h, z, i, j) = (proj(j, n) · h · reproj(i, z))′((proj(i,m))(z)).

The following propositions are true:

(20) Let m, n be non empty elements of N, F be a partial function from

〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, G be a partial function from Rm to Rn, x be a

point of 〈Em, ‖ · ‖〉, and y be an element of Rm. Suppose F = G and

x = y. Then F is differentiable in x if and only if G is differentiable in y.

(21) Let m, n be non empty elements of N, F be a partial function from

〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, G be a partial function from Rm to Rn, x be a

point of 〈Em, ‖ · ‖〉, and y be an element of Rm. If F = G and x = y and

F is differentiable in x, then F ′(x) = G′(y).

(22) If f = h and x = z, then Proj(j, n) · f · reproj(i, x) = 〈proj(j, n) · h ·
reproj(i, z)〉.

(23) Suppose f = h and x = z. Then f is partially differentiable in x w.r.t. i

and j if and only if h is partially differentiable in z w.r.t. i and j.

(24) If f = h and x = z and f is partially differentiable in x w.r.t. i and j,

then (partdiff(f, x, i, j))(〈1〉) = 〈partdiff(h, z, i, j)〉.
Let m, n be non empty elements of N, let i be an element of N, let f be a

partial function from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and let X be a set. We say that

f is partially differentiable on X w.r.t. i if and only if:

(Def. 19) X ⊆ dom f and for every point x of 〈Em, ‖ · ‖〉 such that x ∈ X holds

f�X is partially differentiable in x w.r.t. i.

We now state the proposition

(25) If f is partially differentiable on X w.r.t. i, then X is a subset of

〈Em, ‖ · ‖〉.
Let m, n be non empty elements of N, let i be an element of N, let f be

a partial function from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and let us consider X. Let

us assume that f is partially differentiable on X w.r.t. i. The functor f�iX
yielding a partial function from 〈Em, ‖ · ‖〉 to the real norm space of bounded

linear operators from 〈E1, ‖ · ‖〉 into 〈En, ‖ · ‖〉 is defined by:
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(Def. 20) dom(f�iX) = X and for every point x of 〈Em, ‖ · ‖〉 such that x ∈ X
holds (f�iX)x = partdiff(f, x, i).

The following propositions are true:

(26) (f1 + f2) · reproj(i, x) = f1 · reproj(i, x) + f2 · reproj(i, x) and (f1 − f2) ·
reproj(i, x) = f1 · reproj(i, x) − f2 · reproj(i, x).

(27) r (f · reproj(i, x)) = (r f) · reproj(i, x).

(28) Suppose f1 is partially differentiable in x w.r.t. i and f2 is partially

differentiable in x w.r.t. i. Then f1 + f2 is partially differentiable in x

w.r.t. i and partdiff(f1 + f2, x, i) = partdiff(f1, x, i) + partdiff(f2, x, i).

(29) Suppose g1 is partially differentiable in y w.r.t. i and g2 is partially

differentiable in y w.r.t. i. Then g1 + g2 is partially differentiable in y

w.r.t. i and partdiff(g1 + g2, y, i) = partdiff(g1, y, i) + partdiff(g2, y, i).

(30) Suppose f1 is partially differentiable in x w.r.t. i and f2 is partially

differentiable in x w.r.t. i. Then f1 − f2 is partially differentiable in x

w.r.t. i and partdiff(f1 − f2, x, i) = partdiff(f1, x, i) − partdiff(f2, x, i).

(31) Suppose g1 is partially differentiable in y w.r.t. i and g2 is partially

differentiable in y w.r.t. i. Then g1 − g2 is partially differentiable in y

w.r.t. i and partdiff(g1 − g2, y, i) = partdiff(g1, y, i) − partdiff(g2, y, i).

(32) Suppose f is partially differentiable in x w.r.t. i. Then r f is partially

differentiable in x w.r.t. i and partdiff(r f, x, i) = r · partdiff(f, x, i).

(33) Suppose g is partially differentiable in y w.r.t. i. Then r g is partially

differentiable in y w.r.t. i and partdiff(r g, y, i) = r · partdiff(g, y, i).
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