## Volume 15



# Formalized Mathematics 

(a computer assisted approach)

Edited by
Roman Matuszewski


University of Białystok

## Contents

Combinatorial Grassmannians
By Andrzej Owsiejczuk ..... 27
The Jordan-Hölder Theorem
By Marco Riccardi ..... 35
Regular Expression Quantifiers - $m$ to $n$ Occurrences By Michae Trybulec ..... 53
Riemann Indefinite Integral of Functions of Real Variable By Yasunari Shidama et al. ..... 59
Partial Differentiation on Normed Linear Spaces $\mathcal{R}^{n}$ By Noboru Endou et al. ..... 65

# Combinatorial Grassmannians 

Andrzej Owsiejczuk<br>Białystok, Poland


#### Abstract

Summary. In the paper I construct the configuration $G$ which is a partial linear space. It consists of $k$-element subsets of some base set as points and $(k+1)$-element subsets as lines. The incidence is given by inclusion. I also introduce automorphisms of partial linear spaces and show that automorphisms of $G$ are generated by permutations of the base set.


MML identifier: COMBGRAS, version: 7.8.05 4.84.971

The articles [15], [17], [3], [14], [7], [11], [13], [8], [18], [19], [4], [12], [16], [9], [5], [6], [10], [2], and [1] provide the notation and terminology for this paper.

## 1. Preliminaries

We follow the rules: $k, n$ denote elements of $\mathbb{N}$ and $X, Y, Z$ denote sets. One can prove the following propositions:
(1) For all sets $a, b$ such that $a \neq b$ and $\overline{\bar{a}}=n$ and $\overline{\bar{b}}=n$ holds $\overline{\overline{a \cap b}}<n$ and $n+1 \leq \overline{\overline{a \cup b}}$.
(2) For all sets $a, b$ such that $\overline{\bar{a}}=n+k$ and $\overline{\bar{b}}=n+k$ holds $\overline{\overline{a \cap b}}=n$ iff $\overline{\overline{a \cup b}}=n+2 \cdot k$.
(3) $\overline{\bar{X}} \leq \overline{\bar{Y}}$ iff there exists a function $f$ such that $f$ is one-to-one and $X \subseteq \operatorname{dom} f$ and $f^{\circ} X \subseteq Y$.
(4) For every function $f$ such that $f$ is one-to-one and $X \subseteq \operatorname{dom} f$ holds $\overline{\overline{f^{\circ} X}}=\overline{\bar{X}}$.
(5) If $X \backslash Y=X \backslash Z$ and $Y \subseteq X$ and $Z \subseteq X$, then $Y=Z$.
(6) Let $Y$ be a non empty set and $p$ be a function from $X$ into $Y$. Suppose $p$ is one-to-one. Let $x_{1}, x_{2}$ be subsets of $X$. If $x_{1} \neq x_{2}$, then $p^{\circ} x_{1} \neq p^{\circ} x_{2}$.
(7) Let $a, b, c$ be sets such that $\overline{\bar{a}}=n-1$ and $\overline{\bar{b}}=n-1$ and $\overline{\bar{c}}=n-1$ and $\overline{\overline{a \cap b}}=n-2$ and $\overline{\overline{a \cap c}}=n-2$ and $\overline{\overline{b \cap c}}=n-2$ and $2 \leq n$. Then
(i) if $3 \leq n$, then $\overline{\overline{a \cap b \cap c}}=n-2$ and $\overline{\overline{a \cup b \cup c}}=n+1$ or $\overline{\overline{a \cap b \cap c}}=n-3$ and $\overline{\overline{a \cup b \cup c}}=n$, and
(ii) if $n=2$, then $\overline{\overline{a \cap b \cap c}}=n-2$ and $\overline{\overline{a \cup b \cup c}}=n+1$.
(8) Let $P_{1}, P_{2}$ be projective incidence structures. Suppose the projective incidence structure of $P_{1}=$ the projective incidence structure of $P_{2}$. Let $A_{1}$ be a point of $P_{1}$ and $A_{2}$ be a point of $P_{2}$. Suppose $A_{1}=A_{2}$. Let $L_{1}$ be a line of $P_{1}$ and $L_{2}$ be a line of $P_{2}$. If $L_{1}=L_{2}$, then if $A_{1}$ lies on $L_{1}$, then $A_{2}$ lies on $L_{2}$.
(9) Let $P_{1}, P_{2}$ be projective incidence structures. Suppose the projective incidence structure of $P_{1}=$ the projective incidence structure of $P_{2}$. Let $A_{1}$ be a subset of the points of $P_{1}$ and $A_{2}$ be a subset of the points of $P_{2}$. Suppose $A_{1}=A_{2}$. Let $L_{1}$ be a line of $P_{1}$ and $L_{2}$ be a line of $P_{2}$. If $L_{1}=L_{2}$, then if $A_{1}$ lies on $L_{1}$, then $A_{2}$ lies on $L_{2}$.
Let us note that there exists a projective incidence structure which is linear, up-2-rank, and strict and has non-trivial-lines.

## 2. Configuration $G$

A partial linear space is an up-2-rank projective incidence structure with non-trivial-lines.

Let $k$ be an element of $\mathbb{N}$ and let $X$ be a non empty set. Let us assume that $0<k$ and $k+1 \leq \overline{\bar{X}}$. The functor $\mathrm{G}_{k}(X)$ yields a strict partial linear space and is defined by the conditions (Def. 1).
(Def. 1)(i) The points of $\mathrm{G}_{k}(X)=\{A ; A$ ranges over subsets of $X: \overline{\bar{A}}=k\}$,
(ii) the lines of $\mathrm{G}_{k}(X)=\{L ; L$ ranges over subsets of $X: \overline{\bar{L}}=k+1\}$, and
(iii) the incidence of $\mathrm{G}_{k}(X)=\subseteq_{2^{X}} \cap$ : the points of $\mathrm{G}_{k}(X)$, the lines of $\left.\mathrm{G}_{k}(X):\right]$.
One can prove the following four propositions:
(10) Let $k$ be an element of $\mathbb{N}$ and $X$ be a non empty set. Suppose $0<k$ and $k+1 \leq \overline{\bar{X}}$. Let $A$ be a point of $\mathrm{G}_{k}(X)$ and $L$ be a line of $\mathrm{G}_{k}(X)$. Then $A$ lies on $L$ if and only if $A \subseteq L$.
(11) For every element $k$ of $\mathbb{N}$ and for every non empty set $X$ such that $0<k$ and $k+1 \leq \overline{\bar{X}}$ holds $\mathrm{G}_{k}(X)$ is Vebleian.
(12) Let $k$ be an element of $\mathbb{N}$ and $X$ be a non empty set. Suppose $0<k$ and $k+1 \leq \overline{\bar{X}}$. Let $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}$ be points of $\mathrm{G}_{k}(X)$ and $L_{1}$, $L_{2}, L_{3}, L_{4}$ be lines of $\mathrm{G}_{k}(X)$. Suppose that $A_{1}$ lies on $L_{1}$ and $A_{2}$ lies on $L_{1}$ and $A_{3}$ lies on $L_{2}$ and $A_{4}$ lies on $L_{2}$ and $A_{5}$ lies on $L_{1}$ and $A_{5}$ lies on
$L_{2}$ and $A_{1}$ lies on $L_{3}$ and $A_{3}$ lies on $L_{3}$ and $A_{2}$ lies on $L_{4}$ and $A_{4}$ lies on $L_{4}$ and $A_{5}$ does not lie on $L_{3}$ and $A_{5}$ does not lie on $L_{4}$ and $L_{1} \neq L_{2}$ and $L_{3} \neq L_{4}$. Then there exists a point $A_{6}$ of $\mathrm{G}_{k}(X)$ such that $A_{6}$ lies on $L_{3}$ and $A_{6}$ lies on $L_{4}$ and $A_{6}=A_{1} \cap A_{2} \cup A_{3} \cap A_{4}$.
(13) For every element $k$ of $\mathbb{N}$ and for every non empty set $X$ such that $0<k$ and $k+1 \leq \overline{\bar{X}}$ holds $\mathrm{G}_{k}(X)$ is Desarguesian.
Let $S$ be a projective incidence structure and let $K$ be a subset of the points of $S$. We say that $K$ is a clique if and only if:
(Def. 2) For all points $A, B$ of $S$ such that $A \in K$ and $B \in K$ there exists a line $L$ of $S$ such that $\{A, B\}$ lies on $L$.
Let $S$ be a projective incidence structure and let $K$ be a subset of the points of $S$. We say that $K$ is a maximal-clique if and only if:
(Def. 3) $K$ is a clique and for every subset $U$ of the points of $S$ such that $U$ is a clique and $K \subseteq U$ holds $U=K$.
Let $k$ be an element of $\mathbb{N}$, let $X$ be a non empty set, and let $T$ be a subset of the points of $\mathrm{G}_{k}(X)$. We say that $T$ is a star if and only if:
(Def. 4) There exists a subset $S$ of $X$ such that $\overline{\bar{S}}=k-1$ and $T=\{A ; A$ ranges over subsets of $X: \overline{\bar{A}}=k \wedge S \subseteq A\}$.
We say that $T$ is a top if and only if:
(Def. 5) There exists a subset $S$ of $X$ such that $\overline{\bar{S}}=k+1$ and $T=\{A ; A$ ranges over subsets of $X: \overline{\bar{A}}=k \wedge A \subseteq S\}$.
Next we state two propositions:
(14) Let $k$ be an element of $\mathbb{N}$ and $X$ be a non empty set. Suppose $2 \leq k$ and $k+2 \leq \overline{\bar{X}}$. Let $K$ be a subset of the points of $\mathrm{G}_{k}(X)$. If $K$ is a star or a top, then $K$ is a maximal-clique.
(15) Let $k$ be an element of $\mathbb{N}$ and $X$ be a non empty set. Suppose $2 \leq k$ and $k+2 \leq \overline{\bar{X}}$. Let $K$ be a subset of the points of $\mathrm{G}_{k}(X)$. If $K$ is a maximal-clique, then $K$ is a star or a top.

## 3. Automorphisms

Let $S_{1}, S_{2}$ be projective incidence structures. We consider maps between projective spaces $S_{1}$ and $S_{2}$ as systems
$\langle$ a point-map, a line-map $\rangle$,
where the point-map is a function from the points of $S_{1}$ into the points of $S_{2}$ and the line-map is a function from the lines of $S_{1}$ into the lines of $S_{2}$.

Let $S_{1}, S_{2}$ be projective incidence structures, let $F$ be a map between projective spaces $S_{1}$ and $S_{2}$, and let $a$ be a point of $S_{1}$. The functor $F(a)$ yields a point of $S_{2}$ and is defined as follows:
(Def. 6) $\quad F(a)=($ the point-map of $F)(a)$.
Let $S_{1}, S_{2}$ be projective incidence structures, let $F$ be a map between projective spaces $S_{1}$ and $S_{2}$, and let $L$ be a line of $S_{1}$. The functor $F(L)$ yields a line of $S_{2}$ and is defined by:
$($ Def. 7) $\quad F(L)=($ the line-map of $F)(L)$.
Next we state the proposition
(16) Let $S_{1}, S_{2}$ be projective incidence structures and $F_{1}, F_{2}$ be maps between projective spaces $S_{1}$ and $S_{2}$. Suppose for every point $A$ of $S_{1}$ holds $F_{1}(A)=$ $F_{2}(A)$ and for every line $L$ of $S_{1}$ holds $F_{1}(L)=F_{2}(L)$. Then the map of $F_{1}=$ the map of $F_{2}$.
Let $S_{1}, S_{2}$ be projective incidence structures and let $F$ be a map between projective spaces $S_{1}$ and $S_{2}$. We say that $F$ preserves incidence strongly if and only if:
(Def. 8) For every point $A_{1}$ of $S_{1}$ and for every line $L_{1}$ of $S_{1}$ holds $A_{1}$ lies on $L_{1}$ iff $F\left(A_{1}\right)$ lies on $F\left(L_{1}\right)$.
The following proposition is true
(17) Let $S_{1}, S_{2}$ be projective incidence structures and $F_{1}, F_{2}$ be maps between projective spaces $S_{1}$ and $S_{2}$. Suppose the map of $F_{1}=$ the map of $F_{2}$. If $F_{1}$ preserves incidence strongly, then $F_{2}$ preserves incidence strongly.
Let $S$ be a projective incidence structure and let $F$ be a map between projective spaces $S$ and $S$. We say that $F$ is automorphism if and only if:
(Def. 9) The line-map of $F$ is bijective and the point-map of $F$ is bijective and $F$ preserves incidence strongly.
Let $S_{1}, S_{2}$ be projective incidence structures, let $F$ be a map between projective spaces $S_{1}$ and $S_{2}$, and let $K$ be a subset of the points of $S_{1}$. The functor $F^{\circ} K$ yielding a subset of the points of $S_{2}$ is defined by:
(Def. 10) $\quad F^{\circ} K=(\text { the point-map of } F)^{\circ} K$.
Let $S_{1}, S_{2}$ be projective incidence structures, let $F$ be a map between projective spaces $S_{1}$ and $S_{2}$, and let $K$ be a subset of the points of $S_{2}$. The functor $F^{-1}(K)$ yielding a subset of the points of $S_{1}$ is defined as follows:
(Def. 11) $\quad F^{-1}(K)=(\text { the point-map of } F)^{-1}(K)$.
Let $X$ be a set and let $A$ be a finite set. The functor $\uparrow(A, X)$ yielding a subset of $2^{X}$ is defined as follows:
(Def. 12) $\uparrow(A, X)=\{B ; B$ ranges over subsets of $X: \overline{\bar{B}}=\operatorname{card} A+1 \wedge A \subseteq B\}$.
Let $k$ be an element of $\mathbb{N}$ and let $X$ be a non empty set. Let us assume that $0<k$ and $k+1 \leq \overline{\bar{X}}$. Let $A$ be a finite set. Let us assume that $\overline{\bar{A}}=k-1$ and $A \subseteq X$. The functor $\uparrow(A, X, k)$ yields a subset of the points of $\mathrm{G}_{k}(X)$ and is defined as follows:
(Def. 13) $\uparrow(A, X, k)=\uparrow(A, X)$.

The following propositions are true:
(18) Let $S_{1}, S_{2}$ be projective incidence structures, $F$ be a map between projective spaces $S_{1}$ and $S_{2}$, and $K$ be a subset of the points of $S_{1}$. Then $F^{\circ} K=\left\{B ; B\right.$ ranges over points of $S_{2}: \bigvee_{A: \text { point of } S_{1}}(A \in K \wedge F(A)=$ B) $\}$.
(19) Let $S_{1}, S_{2}$ be projective incidence structures, $F$ be a map between projective spaces $S_{1}$ and $S_{2}$, and $K$ be a subset of the points of $S_{2}$. Then $F^{-1}(K)=\left\{A ; A\right.$ ranges over points of $S_{1}: \bigvee_{B \text { : point of } S_{2}}(B \in$ $K \wedge F(A)=B)\}$.
(20) Let $S$ be a projective incidence structure, $F$ be a map between projective spaces $S$ and $S$, and $K$ be a subset of the points of $S$. If $F$ preserves incidence strongly and $K$ is a clique, then $F^{\circ} K$ is a clique.
(21) Let $S$ be a projective incidence structure, $F$ be a map between projective spaces $S$ and $S$, and $K$ be a subset of the points of $S$. Suppose $F$ preserves incidence strongly and the line-map of $F$ is onto and $K$ is a clique. Then $F^{-1}(K)$ is a clique.
(22) Let $S$ be a projective incidence structure, $F$ be a map between projective spaces $S$ and $S$, and $K$ be a subset of the points of $S$. Suppose $F$ is automorphism and $K$ is a maximal-clique. Then $F^{\circ} K$ is a maximal-clique and $F^{-1}(K)$ is a maximal-clique.
(23) Let $k$ be an element of $\mathbb{N}$ and $X$ be a non empty set. Suppose $2 \leq k$ and $k+2 \leq \overline{\bar{X}}$. Let $F$ be a map between projective spaces $\mathrm{G}_{k}(X)$ and $\mathrm{G}_{k}(X)$. Suppose $F$ is automorphism. Let $K$ be a subset of the points of $\mathrm{G}_{k}(X)$. If $K$ is a star, then $F^{\circ} K$ is a star and $F^{-1}(K)$ is a star.
Let $k$ be an element of $\mathbb{N}$ and let $X$ be a non empty set. Let us assume that $0<k$ and $k+1 \leq \overline{\bar{X}}$. Let $s$ be a permutation of $X$. The functor $\operatorname{incprojmap}(k, s)$ yielding a strict map between projective spaces $\mathrm{G}_{k}(X)$ and $\mathrm{G}_{k}(X)$ is defined as follows:
(Def. 14) For every point $A$ of $\mathrm{G}_{k}(X)$ holds (incprojmap $\left.(k, s)\right)(A)=s^{\circ} A$ and for every line $L$ of $\mathrm{G}_{k}(X)$ holds (incprojmap $\left.(k, s)\right)(L)=s^{\circ} L$.
One can prove the following propositions:
(24) Let $k$ be an element of $\mathbb{N}$ and $X$ be a non empty set. Suppose $k=1$ and $k+1 \leq \overline{\bar{X}}$. Let $F$ be a map between projective spaces $\mathrm{G}_{k}(X)$ and $\mathrm{G}_{k}(X)$. Suppose $F$ is automorphism. Then there exists a permutation $s$ of $X$ such that the map of $F=\operatorname{incprojmap}(k, s)$.
(25) Let $k$ be an element of $\mathbb{N}$ and $X$ be a non empty set. Suppose $1<k$ and $\overline{\bar{X}}=k+1$. Let $F$ be a map between projective spaces $\mathrm{G}_{k}(X)$ and $\mathrm{G}_{k}(X)$. Suppose $F$ is automorphism. Then there exists a permutation $s$ of $X$ such that the map of $F=\operatorname{incprojmap}(k, s)$.
(26) Let $k$ be an element of $\mathbb{N}$ and $X$ be a non empty set. Suppose $0<k$
and $k+1 \leq \overline{\bar{X}}$. Let $T$ be a subset of the points of $\mathrm{G}_{k}(X)$ and $S$ be a subset of $X$. If $\overline{\bar{S}}=k-1$ and $T=\{A ; A$ ranges over subsets of $X$ : $\overline{\bar{A}}=k \wedge S \subseteq A\}$, then $S=\bigcap T$.
(27) Let $k$ be an element of $\mathbb{N}$ and $X$ be a non empty set. Suppose $0<k$ and $k+1 \leq \overline{\bar{X}}$. Let $T$ be a subset of the points of $\mathrm{G}_{k}(X)$. Suppose $T$ is a star. Let $S$ be a subset of $X$. If $S=\bigcap T$, then $\overline{\bar{S}}=k-1$ and $T=\{A ; A$ ranges over subsets of $X: \overline{\bar{A}}=k \wedge S \subseteq A\}$.
(28) Let $k$ be an element of $\mathbb{N}$ and $X$ be a non empty set. Suppose $0<k$ and $k+1 \leq \overline{\bar{X}}$. Let $T_{1}, T_{2}$ be subsets of the points of $\mathrm{G}_{k}(X)$. If $T_{1}$ is a star and $T_{2}$ is a star and $\bigcap T_{1}=\bigcap T_{2}$, then $T_{1}=T_{2}$.
(29) Let $k$ be an element of $\mathbb{N}$ and $X$ be a non empty set. Suppose $0<k$ and $k+1 \leq \overline{\bar{X}}$. Let $A$ be a finite subset of $X$. If $\overline{\bar{A}}=k-1$, then $\uparrow(A, X, k)$ is a star.
(30) Let $k$ be an element of $\mathbb{N}$ and $X$ be a non empty set. Suppose $0<k$ and $k+1 \leq \overline{\bar{X}}$. Let $A$ be a finite subset of $X$. If $\overline{\bar{A}}=k-1$, then $\bigcap \uparrow(A, X, k)=A$.
(31) Let $k$ be an element of $\mathbb{N}$ and $X$ be a non empty set. Suppose $0<k$ and $k+3 \leq \overline{\bar{X}}$. Let $F$ be a map between projective spaces $\mathrm{G}_{(k+1)}(X)$ and $\mathrm{G}_{(k+1)}(X)$. Suppose $F$ is automorphism. Then there exists a map $H$ between projective spaces $\mathrm{G}_{k}(X)$ and $\mathrm{G}_{k}(X)$ such that
(i) $H$ is automorphism,
(ii) the line-map of $H=$ the point-map of $F$, and
(iii) for every point $A$ of $\mathrm{G}_{k}(X)$ and for every finite set $B$ such that $B=A$ holds $H(A)=\bigcap\left(F^{\circ} \uparrow(B, X, k+1)\right)$.
(32) Let $k$ be an element of $\mathbb{N}$ and $X$ be a non empty set. Suppose $0<k$ and $k+3 \leq \overline{\bar{X}}$. Let $F$ be a map between projective spaces $\mathrm{G}_{(k+1)}(X)$ and $\mathrm{G}_{(k+1)}(X)$. Suppose $F$ is automorphism. Let $H$ be a map between projective spaces $\mathrm{G}_{k}(X)$ and $\mathrm{G}_{k}(X)$. Suppose that
(i) $H$ is automorphism,
(ii) the line-map of $H=$ the point-map of $F$, and
(iii) for every point $A$ of $\mathrm{G}_{k}(X)$ and for every finite set $B$ such that $B=A$ holds $H(A)=\bigcap\left(F^{\circ} \uparrow(B, X, k+1)\right)$.
Let $f$ be a permutation of $X$. If the map of $H=\operatorname{incprojmap}(k, f)$, then the map of $F=\operatorname{incprojmap}(k+1, f)$.
(33) Let $k$ be an element of $\mathbb{N}$ and $X$ be a non empty set. Suppose $2 \leq k$ and $k+2 \leq \overline{\bar{X}}$. Let $F$ be a map between projective spaces $\mathrm{G}_{k}(X)$ and $\mathrm{G}_{k}(X)$. Suppose $F$ is automorphism. Then there exists a permutation $s$ of $X$ such that the map of $F=\operatorname{incprojmap}(k, s)$.
(34) Let $k$ be an element of $\mathbb{N}$ and $X$ be a non empty set. Suppose $0<k$
and $k+1 \leq \overline{\bar{X}}$. Let $s$ be a permutation of $X$. Then $\operatorname{incprojmap}(k, s)$ is automorphism.
(35) Let $X$ be a non empty set. Suppose $0<k$ and $k+1 \leq \overline{\bar{X}}$. Let $F$ be a map between projective spaces $\mathrm{G}_{k}(X)$ and $\mathrm{G}_{k}(X)$. Then $F$ is automorphism if and only if there exists a permutation $s$ of $X$ such that the map of $F=\operatorname{incprojmap}(k, s)$.

## References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1(2):265-267, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[8] Agata Darmochwat. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Wojciech Leończuk and Krzysztof Prażmowski. Incidence projective spaces. Formalized Mathematics, 2(2):225-232, 1991.
[11] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[13] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[14] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[16] Wojciech A. Trybulec. Axioms of incidency. Formalized Mathematics, 1(1):205-213, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[19] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

# The Jordan-Hölder Theorem 

Marco Riccardi<br>Casella Postale 49<br>54038 Montignoso, Italy


#### Abstract

Summary. The goal of this article is to formalize the Jordan-Hölder theorem in the context of group with operators as in the book [5]. Accordingly, the article introduces the structure of group with operators and reformulates some theorems on a group already present in the Mizar Mathematical Library. Next, the article formalizes the Zassenhaus butterfly lemma and the Schreier refinement theorem, and defines the composition series.


MML identifier: GROUP_9, version: 7.8.05 4.84.971

The terminology and notation used here are introduced in the following articles: [17], [25], [3], [26], [7], [27], [8], [9], [4], [10], [1], [12], [18], [2], [6], [21], [20], [22], [19], [15], [23], [11], [14], [16], [13], and [24].

## 1. Actions and Groups with Operators

Let $O, E$ be sets. An action of $O$ on $E$ is a function from $O$ into $E^{E}$.
Let $O, E$ be sets, let $A$ be an action of $O$ on $E$, and let $I_{1}$ be a set. We say that $I_{1}$ is stable under the action of $A$ if and only if:
(Def. 1) For every element $o$ of $O$ and for every function $f$ from $E$ into $E$ such that $o \in O$ and $f=A(o)$ holds $f^{\circ} I_{1} \subseteq I_{1}$.
Let $O, E$ be sets, let $A$ be an action of $O$ on $E$, and let $X$ be a subset of $E$. The stable subset generated by $X$ yields a subset of $E$ and is defined by the conditions (Def. 2).
(Def. 2)(i) $\quad X \subseteq$ the stable subset generated by $X$,
(ii) the stable subset generated by $X$ is stable under the action of $A$, and
(iii) for every subset $Y$ of $E$ such that $Y$ is stable under the action of $A$ and $X \subseteq Y$ holds the stable subset generated by $X \subseteq Y$.

Let $O, E$ be sets, let $A$ be an action of $O$ on $E$, and let $F$ be a finite sequence of elements of $O$. The functor $\operatorname{Product}(F, A)$ yields a function from $E$ into $E$ and is defined by:
$($ Def. 3$)(\mathrm{i}) \quad \operatorname{Product}(F, A)=\mathrm{id}_{E}$ if len $F=0$,
(ii) there exists a finite sequence $P_{1}$ of elements of $E^{E}$ such that $\operatorname{Product}(F, A)=P_{1}(\operatorname{len} F)$ and len $P_{1}=\operatorname{len} F$ and $P_{1}(1)=A(F(1))$ and for every natural number $n$ such that $n \neq 0$ and $n<$ len $F$ there exist functions $f, g$ from $E$ into $E$ such that $f=P_{1}(n)$ and $g=A(F(n+1))$ and $P_{1}(n+1)=f \cdot g$, otherwise.
Let $O$ be a set, let $G$ be a group, and let $I_{1}$ be an action of $O$ on the carrier of $G$. We say that $I_{1}$ is distributive if and only if:
(Def. 4) For every element $o$ of $O$ such that $o \in O$ holds $I_{1}(o)$ is a homomorphism from $G$ to $G$.
Let $O$ be a set. We consider group structures with operators in $O$ as extensions of groupoid as systems
$\langle$ a carrier, a multiplication, an action $\rangle$,
where the carrier is a set, the multiplication is a binary operation on the carrier, and the action is an action of $O$ on the carrier.

Let $O$ be a set. Observe that there exists a group structure with operators in $O$ which is non empty.

Let $O$ be a set and let $I_{1}$ be a non empty group structure with operators in $O$. We say that $I_{1}$ is distributive if and only if the condition (Def. 5) is satisfied.
(Def. 5) Let $G$ be a group and $a$ be an action of $O$ on the carrier of $G$. Suppose $a=$ the action of $I_{1}$ and the groupoid of $G=$ the groupoid of $I_{1}$. Then $a$ is distributive.
Let $O$ be a set. Observe that there exists a non empty group structure with operators in $O$ which is strict, distributive, group-like, and associative.

Let $O$ be a set. A group with operators in $O$ is a distributive group-like associative non empty group structure with operators in $O$.

Let $O$ be a set, let $G$ be a group with operators in $O$, and let $o$ be an element of $O$. The functor $G^{\frown} o$ yields a homomorphism from $G$ to $G$ and is defined as follows:
(Def. 6)

$$
G \frown o=\left\{\begin{array}{l}
(\text { the action of } G)(o), \text { if } o \in O \\
\operatorname{id}_{\text {the carrier of } G}, \text { otherwise }
\end{array}\right.
$$

Let $O$ be a set and let $G$ be a group with operators in $O$. A distributive group-like associative non empty group structure with operators in $O$ is said to be a stable subgroup of $G$ if:
(Def. 7) It is a subgroup of $G$ and for every element $o$ of $O$ holds it $^{\wedge} o=\left(G^{\wedge} o\right)$ 「the carrier of it.
Let $O$ be a set and let $G$ be a group with operators in $O$. Note that there exists a stable subgroup of $G$ which is strict.

Let $O$ be a set and let $G$ be a group with operators in $O$. The functor $\{\mathbf{1}\}_{G}$ yields a strict stable subgroup of $G$ and is defined by:
(Def. 8) The carrier of $\{\mathbf{1}\}_{G}=\left\{\mathbf{1}_{G}\right\}$.
Let $O$ be a set and let $G$ be a group with operators in $O$. The functor $\Omega_{G}$ yielding a strict stable subgroup of $G$ is defined as follows:
(Def. 9) $\Omega_{G}=$ the group structure with operators of $G$.
Let $O$ be a set, let $G$ be a group with operators in $O$, and let $I_{1}$ be a stable subgroup of $G$. We say that $I_{1}$ is normal if and only if:
(Def. 10) For every strict subgroup $H$ of $G$ such that $H=$ the groupoid of $I_{1}$ holds $H$ is normal.
Let $O$ be a set and let $G$ be a group with operators in $O$. Note that there exists a stable subgroup of $G$ which is strict and normal.

Let $O$ be a set, let $G$ be a group with operators in $O$, and let $H$ be a stable subgroup of $G$. Observe that there exists a stable subgroup of $H$ which is normal.

Let $O$ be a set and let $G$ be a group with operators in $O$. Note that $\{\mathbf{1}\}_{G}$ is normal and $\Omega_{G}$ is normal.

Let $O$ be a set and let $G$ be a group with operators in $O$. The stable subgroups of $G$ yields a set and is defined as follows:
(Def. 11) For every set $x$ holds $x \in$ the stable subgroups of $G$ iff $x$ is a strict stable subgroup of $G$.
Let $O$ be a set and let $G$ be a group with operators in $O$. Observe that the stable subgroups of $G$ is non empty.

Let $I_{1}$ be a group. We say that $I_{1}$ is simple if and only if:
(Def. 12) $I_{1}$ is not trivial and it is not true that there exists a strict normal subgroup $H$ of $I_{1}$ such that $H \neq \Omega_{\left(I_{1}\right)}$ and $H \neq\{\mathbf{1}\}_{\left(I_{1}\right)}$.
Let us note that there exists a group which is strict and simple.
Let $O$ be a set and let $I_{1}$ be a group with operators in $O$. We say that $I_{1}$ is simple if and only if:
(Def. 13) $I_{1}$ is not trivial and it is not true that there exists a strict normal stable subgroup $H$ of $I_{1}$ such that $H \neq \Omega_{\left(I_{1}\right)}$ and $H \neq\{\mathbf{1}\}_{\left(I_{1}\right)}$.
Let $O$ be a set. Observe that there exists a group with operators in $O$ which is strict and simple.

Let $O$ be a set, let $G$ be a group with operators in $O$, and let $N$ be a normal stable subgroup of $G$. The functor Cosets $N$ yields a set and is defined by:
(Def. 14) For every strict normal subgroup $H$ of $G$ such that $H=$ the groupoid of $N$ holds Cosets $N=$ Cosets $H$.
Let $O$ be a set, let $G$ be a group with operators in $O$, and let $N$ be a normal stable subgroup of $G$. The functor $\operatorname{CosOp} N$ yielding a binary operation on Cosets $N$ is defined by:
(Def. 15) For every strict normal subgroup $H$ of $G$ such that $H=$ the groupoid of $N$ holds $\operatorname{CosOp} N=\operatorname{CosOp} H$.
Let $O$ be a set, let $G$ be a group with operators in $O$, and let $N$ be a normal stable subgroup of $G$. The functor $\operatorname{CosAc} N$ yielding an action of $O$ on Cosets $N$ is defined as follows:
(Def. 16)(i) For every element $o$ of $O$ holds $(\operatorname{CosAc} N)(o)=\{\langle A, B\rangle ; A$ ranges over elements of Cosets $N, B$ ranges over elements of Cosets $N$ : $\left.\bigvee_{g, h: \text { element of } G}\left(g \in A \wedge h \in B \wedge h=\left(G^{\wedge} o\right)(g)\right)\right\}$ if $O$ is not empty,
(ii) $\operatorname{CosAc} N=\left[\emptyset,\left\{\operatorname{id}_{\operatorname{Cosests} N}\right\}:\right.$, otherwise.

Let $O$ be a set, let $G$ be a group with operators in $O$, and let $N$ be a normal stable subgroup of $G$. The functor ${ }^{G} /{ }_{N}$ yields a group structure with operators in $O$ and is defined as follows:
(Def. 17) ${ }^{G} /{ }_{N}=\langle\operatorname{Cosets} N, \operatorname{CosOp} N, \operatorname{CosAc} N\rangle$.
Let $O$ be a set, let $G$ be a group with operators in $O$, and let $N$ be a normal stable subgroup of $G$. Note that ${ }^{G} / N_{N}$ is non empty and ${ }^{G} /{ }_{N}$ is distributive, group-like, and associative.

Let $O$ be a set, let $G, H$ be groups with operators in $O$, and let $f$ be a function from $G$ into $H$. We say that $f$ is homomorphic if and only if:
(Def. 18) For every element $o$ of $O$ and for every element $g$ of $G$ holds $f\left(\left(G^{\wedge}\right.\right.$ $o)(g))=\left(H^{\wedge} o\right)(f(g))$.
Let $O$ be a set and let $G, H$ be groups with operators in $O$. One can check that there exists a function from $G$ into $H$ which is multiplicative and homomorphic.

Let $O$ be a set and let $G, H$ be groups with operators in $O$. A homomorphism from $G$ to $H$ is a multiplicative homomorphic function from $G$ into $H$.

Let $O$ be a set, let $G, H, I$ be groups with operators in $O$, let $h$ be a homomorphism from $G$ to $H$, and let $h_{1}$ be a homomorphism from $H$ to $I$. Then $h_{1} \cdot h$ is a homomorphism from $G$ to $I$.

Let $O$ be a set, let $G, H$ be groups with operators in $O$, and let $h$ be a homomorphism from $G$ to $H$. We say that $h$ is monomorphism if and only if:
(Def. 19) $h$ is one-to-one.
We say that $h$ is epimorphism if and only if:
(Def. 20) $\operatorname{rng} h=$ the carrier of $H$.
Let $O$ be a set, let $G, H$ be groups with operators in $O$, and let $h$ be a homomorphism from $G$ to $H$. We say that $h$ is isomorphism if and only if:
(Def. 21) $h$ is an epimorphism and a monomorphism.
Let $O$ be a set and let $G, H$ be groups with operators in $O$. We say that $G$ and $H$ are isomorphic if and only if:
(Def. 22) There exists a homomorphism from $G$ to $H$ which is an isomorphism.

Let us note that the predicate $G$ and $H$ are isomorphic is reflexive.
Let $O$ be a set and let $G, H$ be groups with operators in $O$. Let us note that the predicate $G$ and $H$ are isomorphic is symmetric.

Let $O$ be a set, let $G$ be a group with operators in $O$, and let $N$ be a normal stable subgroup of $G$. The canonical homomorphism onto cosets of $N$ yields a homomorphism from $G$ to ${ }^{G} / N$ and is defined by the condition (Def. 23).
(Def. 23) Let $H$ be a strict normal subgroup of $G$. Suppose $H=$ the groupoid of $N$. Then the canonical homomorphism onto cosets of $N=$ the canonical homomorphism onto cosets of $H$.
Let $O$ be a set, let $G, H$ be groups with operators in $O$, and let $g$ be a homomorphism from $G$ to $H$. The functor $\operatorname{Ker} g$ yields a strict stable subgroup of $G$ and is defined as follows:
(Def. 24) The carrier of Ker $g=\left\{a ; a\right.$ ranges over elements of $\left.G: g(a)=\mathbf{1}_{H}\right\}$.
Let $O$ be a set, let $G, H$ be groups with operators in $O$, and let $g$ be a homomorphism from $G$ to $H$. Observe that $\operatorname{Ker} g$ is normal.

Let $O$ be a set, let $G, H$ be groups with operators in $O$, and let $g$ be a homomorphism from $G$ to $H$. The functor $\operatorname{Im} g$ yielding a strict stable subgroup of $H$ is defined by:
(Def. 25) The carrier of $\operatorname{Im} g=g^{\circ}$ (the carrier of $G$ ).
Let $O$ be a set, let $G$ be a group with operators in $O$, and let $H$ be a stable subgroup of $G$. The functor $\bar{H}$ yielding a subset of $G$ is defined as follows:
(Def. 26) $\bar{H}=$ the carrier of $H$.
Let $O$ be a set, let $G$ be a group with operators in $O$, and let $H_{1}, H_{2}$ be stable subgroups of $G$. The functor $H_{1} \cdot H_{2}$ yields a subset of $G$ and is defined as follows:
(Def. 27) $H_{1} \cdot H_{2}=\overline{H_{1}} \cdot \overline{H_{2}}$.
Let $O$ be a set, let $G$ be a group with operators in $O$, and let $H_{1}, H_{2}$ be stable subgroups of $G$. The functor $H_{1} \cap H_{2}$ yielding a strict stable subgroup of $G$ is defined by:
(Def. 28) The carrier of $H_{1} \cap H_{2}=\overline{H_{1}} \cap \overline{H_{2}}$.
Let us note that the functor $H_{1} \cap H_{2}$ is commutative.
Let $O$ be a set, let $G$ be a group with operators in $O$, and let $A$ be a subset of $G$. The stable subgroup of $A$ yielding a strict stable subgroup of $G$ is defined by the conditions (Def. 29).
(Def. 29)(i) $\quad A \subseteq$ the carrier of the stable subgroup of $A$, and
(ii) for every strict stable subgroup $H$ of $G$ such that $A \subseteq$ the carrier of $H$ holds the stable subgroup of $A$ is a stable subgroup of $H$.
Let $O$ be a set, let $G$ be a group with operators in $O$, and let $H_{1}, H_{2}$ be stable subgroups of $G$. The functor $H_{1} \sqcup H_{2}$ yielding a strict stable subgroup of $G$ is defined as follows:
(Def. 30) $H_{1} \sqcup H_{2}=$ the stable subgroup of $\overline{H_{1}} \cup \overline{H_{2}}$.

## 2. Some Theorems on Groups Reformulated for Groups with Operators

For simplicity, we follow the rules: $x, O$ are sets, $o$ is an element of $O, G, H$, $I$ are groups with operators in $O, A, B$ are subsets of $G, N$ is a normal stable subgroup of $G, H_{1}, H_{2}, H_{3}$ are stable subgroups of $G, g_{1}, g_{2}$ are elements of $G$, $h_{1}, h_{2}$ are elements of $H_{1}$, and $h$ is a homomorphism from $G$ to $H$.

One can prove the following propositions:
(1) If $x \in H_{1}$, then $x \in G$.
(2) $h_{1}$ is an element of $G$.
(3) If $h_{1}=g_{1}$ and $h_{2}=g_{2}$, then $h_{1} \cdot h_{2}=g_{1} \cdot g_{2}$.
(4) $\mathbf{1}_{G}=\mathbf{1}_{\left(H_{1}\right)}$.
(5) $\mathbf{1}_{G} \in H_{1}$.
(6) If $h_{1}=g_{1}$, then $h_{1}^{-1}=g_{1}^{-1}$.
(7) If $g_{1} \in H_{1}$ and $g_{2} \in H_{1}$, then $g_{1} \cdot g_{2} \in H_{1}$.
(8) If $g_{1} \in H_{1}$, then $g_{1}^{-1} \in H_{1}$.
(9) Suppose that
(i) $A \neq \emptyset$,
(ii) for all $g_{1}, g_{2}$ such that $g_{1} \in A$ and $g_{2} \in A$ holds $g_{1} \cdot g_{2} \in A$,
(iii) for every $g_{1}$ such that $g_{1} \in A$ holds $g_{1}{ }^{-1} \in A$, and
(iv) for all $o, g_{1}$ such that $g_{1} \in A$ holds $\left(G^{\wedge} o\right)\left(g_{1}\right) \in A$.

Then there exists a strict stable subgroup $H$ of $G$ such that the carrier of $H=A$.
(10) $G$ is a stable subgroup of $G$.
(11) Let $G_{1}, G_{2}, G_{3}$ be groups with operators in $O$. Suppose $G_{1}$ is a stable subgroup of $G_{2}$ and $G_{2}$ is a stable subgroup of $G_{3}$. Then $G_{1}$ is a stable subgroup of $G_{3}$.
(12) If the carrier of $H_{1} \subseteq$ the carrier of $H_{2}$, then $H_{1}$ is a stable subgroup of $\mathrm{H}_{2}$.
(13) If for every element $g$ of $G$ such that $g \in H_{1}$ holds $g \in H_{2}$, then $H_{1}$ is a stable subgroup of $\mathrm{H}_{2}$.
(14) For all strict stable subgroups $H_{1}, H_{2}$ of $G$ such that the carrier of $H_{1}=$ the carrier of $H_{2}$ holds $H_{1}=H_{2}$.
(15) $\{\mathbf{1}\}_{G}=\{\mathbf{1}\}_{\left(H_{1}\right)}$.
(16) $\{\mathbf{1}\}_{G}$ is a stable subgroup of $H_{1}$.
(17) If $\overline{H_{1}} \cdot \overline{H_{2}}=\overline{H_{2}} \cdot \overline{H_{1}}$, then there exists a strict stable subgroup $H$ of $G$ such that the carrier of $H=\overline{H_{1}} \cdot \overline{H_{2}}$.
(18)(i) For every stable subgroup $H$ of $G$ such that $H=H_{1} \cap H_{2}$ holds the carrier of $H=\left(\right.$ the carrier of $\left.H_{1}\right) \cap\left(\right.$ the carrier of $\left.H_{2}\right)$, and
(ii) for every strict stable subgroup $H$ of $G$ such that the carrier of $H=$ (the carrier of $\left.H_{1}\right) \cap\left(\right.$ the carrier of $H_{2}$ ) holds $H=H_{1} \cap H_{2}$.
(19) For every strict stable subgroup $H$ of $G$ holds $H \cap H=H$.
(20) $\quad\left(H_{1} \cap H_{2}\right) \cap H_{3}=H_{1} \cap\left(H_{2} \cap H_{3}\right)$.
(21) $\{\mathbf{1}\}_{G} \cap H_{1}=\{\mathbf{1}\}_{G}$ and $H_{1} \cap\{\mathbf{1}\}_{G}=\{\mathbf{1}\}_{G}$.
(22) $\cup \operatorname{Cosets} N=$ the carrier of $G$.
(23) Let $N_{1}, N_{2}$ be strict normal stable subgroups of $G$. Then there exists a strict normal stable subgroup $N$ of $G$ such that the carrier of $N=\overline{N_{1}} \cdot \overline{N_{2}}$.
(24) $g_{1} \in$ the stable subgroup of $A$ if and only if there exists a finite sequence $F$ of elements of the carrier of $G$ and there exists a finite sequence $I$ of elements of $\mathbb{Z}$ and there exists a subset $C$ of $G$ such that $C=$ the stable subset generated by $A$ and len $F=\operatorname{len} I$ and $\operatorname{rng} F \subseteq C$ and $\prod\left(F^{I}\right)=g_{1}$.
(25) For every strict stable subgroup $H$ of $G$ holds the stable subgroup of $\bar{H}=H$.
(26) If $A \subseteq B$, then the stable subgroup of $A$ is a stable subgroup of the stable subgroup of $B$.
The scheme MeetSbg $W O p E x$ deals with a set $\mathcal{A}$, a group $\mathcal{B}$ with operators in $\mathcal{A}$, and a unary predicate $\mathcal{P}$, and states that:

There exists a strict stable subgroup $H$ of $\mathcal{B}$ such that the carrier of $H=\bigcap\{A ; A$ ranges over subsets of $\mathcal{B}$ : $\bigvee_{K}$ : strict stable subgroup of $\mathcal{B}(A=$ the carrier of $\left.K \wedge \mathcal{P}[K])\right\}$
provided the parameters meet the following requirement:

- There exists a strict stable subgroup $H$ of $\mathcal{B}$ such that $\mathcal{P}[H]$.

The following propositions are true:
(27) The carrier of the stable subgroup of $A=\bigcap\{B ; B$ ranges over subsets of $G$ : $\bigvee_{H: \text { strict stable subgroup of } G}(B=$ the carrier of $\left.H \wedge A \subseteq \bar{H})\right\}$.
(28) For all strict normal stable subgroups $N_{1}, N_{2}$ of $G$ holds $N_{1} \cdot N_{2}=N_{2} \cdot N_{1}$.
(29) $\quad H_{1} \sqcup H_{2}=$ the stable subgroup of $H_{1} \cdot H_{2}$.
(30) If $H_{1} \cdot H_{2}=H_{2} \cdot H_{1}$, then the carrier of $H_{1} \sqcup H_{2}=H_{1} \cdot H_{2}$.
(31) For all strict normal stable subgroups $N_{1}, N_{2}$ of $G$ holds the carrier of $N_{1} \sqcup N_{2}=N_{1} \cdot N_{2}$.
(32) For all strict normal stable subgroups $N_{1}, N_{2}$ of $G$ holds $N_{1} \sqcup N_{2}$ is a normal stable subgroup of $G$.
(33) For every strict stable subgroup $H$ of $G$ holds $\{\mathbf{1}\}_{G} \sqcup H=H$ and $H \sqcup\{\mathbf{1}\}_{G}=H$.
(34) $\Omega_{G} \sqcup H_{1}=\Omega_{G}$ and $H_{1} \sqcup \Omega_{G}=\Omega_{G}$.
(35) $\quad H_{1}$ is a stable subgroup of $H_{1} \sqcup H_{2}$ and $H_{2}$ is a stable subgroup of $H_{1} \sqcup H_{2}$.
(36) For every strict stable subgroup $H_{2}$ of $G$ holds $H_{1}$ is a stable subgroup of $H_{2}$ iff $H_{1} \sqcup H_{2}=H_{2}$.
(37) Let $H_{3}$ be a strict stable subgroup of $G$. Suppose $H_{1}$ is a stable subgroup of $H_{3}$ and $H_{2}$ is a stable subgroup of $H_{3}$. Then $H_{1} \sqcup H_{2}$ is a stable subgroup of $\mathrm{H}_{3}$.
(38) Let $H_{2}, H_{3}$ be strict stable subgroups of $G$. Suppose $H_{1}$ is a stable subgroup of $H_{2}$. Then $H_{1} \sqcup H_{3}$ is a stable subgroup of $H_{2} \sqcup H_{3}$.
(39) For all stable subgroups $X, Y$ of $H_{1}$ and for all stable subgroups $X^{\prime}, Y^{\prime}$ of $G$ such that $X=X^{\prime}$ and $Y=Y^{\prime}$ holds $X^{\prime} \cap Y^{\prime}=X \cap Y$.
(40) If $N$ is a stable subgroup of $H_{1}$, then $N$ is a normal stable subgroup of $H_{1}$.
(41) $\quad H_{1} \cap N$ is a normal stable subgroup of $H_{1}$ and $N \cap H_{1}$ is a normal stable subgroup of $H_{1}$.
(42) For every strict group $G$ with operators in $O$ such that $G$ is trivial holds $\{\mathbf{1}\}_{G}=G$.
(43) $\mathbf{1}_{G / N}=\bar{N}$.
(44) Let $M, N$ be strict normal stable subgroups of $G$ and $M_{1}$ be a normal stable subgroup of $N$. Suppose $M_{1}=M$ and $M$ is a stable subgroup of $N$. Then ${ }^{N} / M_{1}$ is a normal stable subgroup of $G / M$.
(45) $\quad h\left(\mathbf{1}_{G}\right)=\mathbf{1}_{H}$.
(46) $h\left(g_{1}^{-1}\right)=h\left(g_{1}\right)^{-1}$.
(47) $g_{1} \in$ Ker $h$ iff $h\left(g_{1}\right)=\mathbf{1}_{H}$.
(48) For every strict normal stable subgroup $N$ of $G$ holds Ker (the canonical homomorphism onto cosets of $N)=N$.
(49) $\operatorname{rng} h=$ the carrier of $\operatorname{Im} h$.
(50) $\operatorname{Im}($ the canonical homomorphism onto cosets of $N)={ }^{G} / N$.
(51) Let $H$ be a strict group with operators in $O$ and $h$ be a homomorphism from $G$ to $H$. Then $h$ is an epimorphism if and only if $\operatorname{Im} h=H$.
(52) Let $H$ be a strict group with operators in $O$ and $h$ be a homomorphism from $G$ to $H$. Suppose $h$ is an epimorphism. Let $c$ be an element of $H$. Then there exists an element $a$ of $G$ such that $h(a)=c$.
(53) The canonical homomorphism onto cosets of $N$ is an epimorphism.
(54) The canonical homomorphism onto cosets of $\{\mathbf{1}\}_{G}$ is an isomorphism.
(55) If $G$ and $H$ are isomorphic and $H$ and $I$ are isomorphic, then $G$ and $I$ are isomorphic.
(56) For every strict group $G$ with operators in $O$ holds $G$ and ${ }^{G} /\{\mathbf{1}\}_{G}$ are isomorphic.
(57) For every strict group $G$ with operators in $O$ holds ${ }^{G} / \Omega_{G}$ is trivial.
(58) Let $G, H$ be strict groups with operators in $O$. If $G$ and $H$ are isomorphic and $G$ is trivial, then $H$ is trivial.
(59) ${ }^{G} / \operatorname{Ker} h$ and $\operatorname{Im} h$ are isomorphic.
(60) Let $H, F_{1}, F_{2}$ be strict stable subgroups of $G$. Suppose $F_{1}$ is a normal stable subgroup of $F_{2}$. Then $H \cap F_{1}$ is a normal stable subgroup of $H \cap F_{2}$.

## 3. Others Theorems on Actions and Groups with Operators

In the sequel $E$ is a set, $A$ is an action of $O$ on $E, C$ is a subset of $G$, and $N_{1}$ is a normal stable subgroup of $H_{1}$.

One can prove the following propositions:
(61) $\Omega_{E}$ is stable under the action of $A$.
(62) $\left\lceil O,\left\{\operatorname{id}_{E}\right\} \rrbracket\right.$ is an action of $O$ on $E$.
(63) Let $O$ be a non empty set, $E$ be a set, $o$ be an element of $O$, and $A$ be an action of $O$ on $E$. Then $\operatorname{Product}(\langle o\rangle, A)=A(o)$.
(64) Let $O$ be a non empty set, $E$ be a set, $F_{1}, F_{2}$ be finite sequences of elements of $O$, and $A$ be an action of $O$ on $E$. Then $\operatorname{Product}\left(F_{1} \wedge F_{2}, A\right)=$ $\operatorname{Product}\left(F_{1}, A\right) \cdot \operatorname{Product}\left(F_{2}, A\right)$.
(65) Let $F$ be a finite sequence of elements of $O$ and $Y$ be a subset of $E$. If $Y$ is stable under the action of $A$, then $(\operatorname{Product}(F, A))^{\circ} Y \subseteq Y$.
(66) Let $E$ be a non empty set, $A$ be an action of $O$ on $E, X$ be a subset of $E$, and $a$ be an element of $E$. Suppose $X$ is not empty. Then $a \in$ the stable subset generated by $X$ if and only if there exists a finite sequence $F$ of elements of $O$ and there exists an element $x$ of $X$ such that $(\operatorname{Product}(F, A))(x)=a$.
(67) For every strict group $G$ there exists a strict group $H$ with operators in $O$ such that $G=$ the groupoid of $H$.
(68) The groupoid of $H_{1}$ is a strict subgroup of $G$.
(69) The groupoid of $N$ is a strict normal subgroup of $G$.
(70) If $g_{1} \in H_{1}$, then $\left(G^{\wedge} o\right)\left(g_{1}\right) \in H_{1}$.
(71) Let $O$ be a set, $G, H$ be groups with operators in $O, G^{\prime}$ be a strict stable subgroup of $G$, and $f$ be a homomorphism from $G$ to $H$. Then there exists a strict stable subgroup $H^{\prime}$ of $H$ such that the carrier of $H^{\prime}=f^{\circ}$ (the carrier of $\left.G^{\prime}\right)$.
(72) If $B$ is empty, then the stable subgroup of $B=\{\mathbf{1}\}_{G}$.
(73) If $B=$ the carrier of $\operatorname{gr}(C)$, then the stable subgroup of $C=$ the stable subgroup of $B$.
(74) Let $N^{\prime}$ be a normal subgroup of $G$. Suppose $N^{\prime}=$ the groupoid of $N$. Then ${ }^{G} / N_{N^{\prime}}=$ the groupoid of ${ }^{G} / N_{N}$ and $\mathbf{1}_{G / N^{\prime}}=\mathbf{1}_{G / N}$.
(75) Suppose the carrier of $H_{1}=$ the carrier of $H_{2}$. Then the group structure with operators of $H_{1}=$ the group structure with operators of $H_{2}$.
(76) Suppose ${ }^{H_{1}} / N_{1}$ is trivial. Then the group structure with operators of $H_{1}=$ the group structure with operators of $N_{1}$.
(77) If the carrier of $H_{1}=$ the carrier of $N_{1}$, then $H_{1} / N_{1}$ is trivial.
(78) Let $G, H$ be groups with operators in $O, N$ be a stable subgroup of $G$, $H^{\prime}$ be a strict stable subgroup of $H$, and $f$ be a homomorphism from $G$ to $H$. Suppose $N=\operatorname{Ker} f$. Then there exists a strict stable subgroup $G^{\prime}$ of $G$ such that
(i) the carrier of $G^{\prime}=f^{-1}$ (the carrier of $H^{\prime}$ ), and
(ii) if $H^{\prime}$ is normal, then $N$ is a normal stable subgroup of $G^{\prime}$ and $G^{\prime}$ is normal.
(79) Let $G, H$ be groups with operators in $O, N$ be a stable subgroup of $G$, $G^{\prime}$ be a strict stable subgroup of $G$, and $f$ be a homomorphism from $G$ to $H$. Suppose $N=\operatorname{Ker} f$. Then there exists a strict stable subgroup $H^{\prime}$ of $H$ such that
(i) the carrier of $H^{\prime}=f^{\circ}$ (the carrier of $\left.G^{\prime}\right)$,
(ii) $\quad f^{-1}$ (the carrier of $\left.H^{\prime}\right)=$ the carrier of $G^{\prime} \sqcup N$, and
(iii) if $f$ is an epimorphism and $G^{\prime}$ is normal, then $H^{\prime}$ is normal.
(80) Let $G$ be a strict group with operators in $O, N$ be a strict normal stable subgroup of $G$, and $H$ be a strict stable subgroup of $G / N$. Suppose the carrier of $G=$ (the canonical homomorphism onto cosets of $N)^{-1}$ (the carrier of $H$ ). Then $H=\Omega_{G / N}$.
(81) Let $G$ be a strict group with operators in $O, N$ be a strict normal stable subgroup of $G$, and $H$ be a strict stable subgroup of $G / N$. Suppose the carrier of $N=$ (the canonical homomorphism onto cosets of $N)^{-1}$ (the carrier of $H)$. Then $H=\{\mathbf{1}\}_{G} /_{N}$.
(82) Let $G, H$ be strict groups with operators in $O$. If $G$ and $H$ are isomorphic and $G$ is simple, then $H$ is simple.
(83) Let $G$ be a group with operators in $O, H$ be a stable subgroup of $G, F_{3}$ be a finite sequence of elements of the carrier of $G, F_{4}$ be a finite sequence of elements of the carrier of $H$, and $I$ be a finite sequence of elements of $\mathbb{Z}$. If $F_{3}=F_{4}$ and len $F_{3}=$ len $I$, then $\prod\left(F_{3}^{I}\right)=\prod\left(F_{4}^{I}\right)$.
(84) Let $O, E_{1}, E_{2}$ be sets, $A_{1}$ be an action of $O$ on $E_{1}, A_{2}$ be an action of $O$ on $E_{2}$, and $F$ be a finite sequence of elements of $O$. Suppose that
(i) $\quad E_{1} \subseteq E_{2}$, and
(ii) for every element $o$ of $O$ and for every function $f_{1}$ from $E_{1}$ into $E_{1}$ and for every function $f_{2}$ from $E_{2}$ into $E_{2}$ such that $f_{1}=A_{1}(o)$ and $f_{2}=A_{2}(o)$
holds $f_{1}=f_{2} \upharpoonright E_{1}$.
Then $\operatorname{Product}\left(F, A_{1}\right)=\operatorname{Product}\left(F, A_{2}\right) \mid E_{1}$.
(85) Let $N_{1}, N_{2}$ be strict stable subgroups of $H_{1}$ and $N_{1}^{\prime}, N_{2}^{\prime}$ be strict stable subgroups of $G$. If $N_{1}=N_{1}^{\prime}$ and $N_{2}=N_{2}^{\prime}$, then $N_{1}^{\prime} \cdot N_{2}^{\prime}=N_{1} \cdot N_{2}$.
(86) Let $N_{1}, N_{2}$ be strict stable subgroups of $H_{1}$ and $N_{1}^{\prime}, N_{2}^{\prime}$ be strict stable subgroups of $G$. If $N_{1}=N_{1}^{\prime}$ and $N_{2}=N_{2}^{\prime}$, then $N_{1}^{\prime} \sqcup N_{2}^{\prime}=N_{1} \sqcup N_{2}$.
(87) Let $N_{1}, N_{2}$ be strict stable subgroups of $G$. Suppose $N_{1}$ is a normal stable subgroup of $H_{1}$ and $N_{2}$ is a normal stable subgroup of $H_{1}$. Then $N_{1} \sqcup N_{2}$ is a normal stable subgroup of $H_{1}$.
(88) Let $f$ be a homomorphism from $G$ to $H$ and $g$ be a homomorphism from $H$ to $I$. Then the carrier of $\operatorname{Ker}(g \cdot f)=f^{-1}$ (the carrier of $\operatorname{Ker} g$ ).
(89) Let $G^{\prime}$ be a stable subgroup of $G, H^{\prime}$ be a stable subgroup of $H$, and $f$ be a homomorphism from $G$ to $H$. Suppose the carrier of $H^{\prime}=f^{\circ}$ (the carrier of $G^{\prime}$ ) or the carrier of $G^{\prime}=f^{-1}$ (the carrier of $H^{\prime}$ ). Then $f$ the carrier of $G^{\prime}$ is a homomorphism from $G^{\prime}$ to $H^{\prime}$.
(90) Let $G, H$ be strict groups with operators in $O, N, L, G^{\prime}$ be strict stable subgroups of $G$, and $f$ be a homomorphism from $G$ to $H$. Suppose $N=$ $\operatorname{Ker} f$ and $L$ is a strict normal stable subgroup of $G^{\prime}$. Then
(i) $L \sqcup G^{\prime} \cap N$ is a normal stable subgroup of $G^{\prime}$,
(ii) $L \sqcup N$ is a normal stable subgroup of $G^{\prime} \sqcup N$, and
(iii) for every strict normal stable subgroup $N_{1}$ of $G^{\prime} \sqcup N$ and for every strict normal stable subgroup $N_{2}$ of $G^{\prime}$ such that $N_{1}=L \sqcup N$ and $N_{2}=L \sqcup G^{\prime} \cap N$ holds $\left(G^{\prime} \sqcup N\right) / N_{1}$ and $G^{\prime} / N_{2}$ are isomorphic.

## 4. The Zassenhaus Butterfly Lemma

The following propositions are true:
(91) Let $H, K, H^{\prime}, K^{\prime}$ be strict stable subgroups of $G, J_{1}$ be a normal stable subgroup of $H^{\prime} \sqcup H \cap K$, and $H_{4}$ be a normal stable subgroup of $H \cap K$. Suppose $H^{\prime}$ is a normal stable subgroup of $H$ and $K^{\prime}$ is a normal stable subgroup of $K$ and $J_{1}=H^{\prime} \sqcup H \cap K^{\prime}$ and $H_{4}=H^{\prime} \cap K \sqcup K^{\prime} \cap H$. Then $\left(H^{\prime} \sqcup H \cap K\right) / J_{1}$ and $(H \cap K) / H_{4}$ are isomorphic.
(92) Let $H, K, H^{\prime}, K^{\prime}$ be strict stable subgroups of $G$. Suppose $H^{\prime}$ is a normal stable subgroup of $H$ and $K^{\prime}$ is a normal stable subgroup of $K$. Then $H^{\prime} \sqcup H \cap K^{\prime}$ is a normal stable subgroup of $H^{\prime} \sqcup H \cap K$.
(93) Let $H, K, H^{\prime}, K^{\prime}$ be strict stable subgroups of $G, J_{1}$ be a normal stable subgroup of $H^{\prime} \sqcup H \cap K$, and $J_{2}$ be a normal stable subgroup of $K^{\prime} \sqcup K \cap H$. Suppose $J_{1}=H^{\prime} \sqcup H \cap K^{\prime}$ and $J_{2}=K^{\prime} \sqcup K \cap H^{\prime}$ and $H^{\prime}$ is a normal stable subgroup of $H$ and $K^{\prime}$ is a normal stable subgroup of $K$. Then $\left(H^{\prime} \sqcup H \cap K\right) / J_{1}$ and $\left(K^{\prime} \sqcup K \cap H\right) / J_{2}$ are isomorphic.

## 5. Composition Series

Let $O$ be a set, let $G$ be a group with operators in $O$, and let $I_{1}$ be a finite sequence of elements of the stable subgroups of $G$. We say that $I_{1}$ is composition series if and only if the conditions (Def. 31) are satisfied.
(Def. 31)(i) $\quad I_{1}(1)=\Omega_{G}$,
(ii) $I_{1}\left(\operatorname{len} I_{1}\right)=\{\mathbf{1}\}_{G}$, and
(iii) for every natural number $i$ such that $i \in \operatorname{dom} I_{1}$ and $i+1 \in \operatorname{dom} I_{1}$ and for all stable subgroups $H_{1}, H_{2}$ of $G$ such that $H_{1}=I_{1}(i)$ and $H_{2}=$ $I_{1}(i+1)$ holds $H_{2}$ is a normal stable subgroup of $H_{1}$.
Let $O$ be a set and let $G$ be a group with operators in $O$. One can verify that there exists a finite sequence of elements of the stable subgroups of $G$ which is composition series.

Let $O$ be a set and let $G$ be a group with operators in $O$. A composition series of $G$ is a composition series finite sequence of elements of the stable subgroups of $G$.

Let $O$ be a set, let $G$ be a group with operators in $O$, and let $s_{1}, s_{2}$ be composition series of $G$. We say that $s_{1}$ is finer than $s_{2}$ if and only if:
(Def. 32) There exists a set $x$ such that $x \subseteq \operatorname{dom} s_{1}$ and $s_{2}=s_{1} \cdot \operatorname{Sgm} x$.
Let us note that the predicate $s_{1}$ is finer than $s_{2}$ is reflexive.
Let $O$ be a set, let $G$ be a group with operators in $O$, and let $I_{1}$ be a composition series of $G$. We say that $I_{1}$ is strictly decreasing if and only if the condition (Def. 33) is satisfied.
(Def. 33) Let $i$ be a natural number. Suppose $i \in \operatorname{dom} I_{1}$ and $i+1 \in \operatorname{dom} I_{1}$. Let $H$ be a stable subgroup of $G$ and $N$ be a normal stable subgroup of $H$. If $H=I_{1}(i)$ and $N=I_{1}(i+1)$, then ${ }^{H} / N$ is not trivial.
Let $O$ be a set, let $G$ be a group with operators in $O$, and let $I_{1}$ be a composition series of $G$. We say that $I_{1}$ is Jordan-Hölder if and only if the conditions (Def. 34) are satisfied.
(Def. 34)(i) $\quad I_{1}$ is strictly decreasing, and
(ii) it is not true that there exists a composition series $s$ of $G$ such that $s \neq I_{1}$ and $s$ is strictly decreasing and finer than $I_{1}$.
Let $O$ be a set, let $G_{1}, G_{2}$ be groups with operators in $O$, let $s_{1}$ be a composition series of $G_{1}$, and let $s_{2}$ be a composition series of $G_{2}$. We say that $s_{1}$ is equivalent with $s_{2}$ if and only if the conditions (Def. 35) are satisfied.
(Def. 35)(i) $\quad$ len $s_{1}=\operatorname{len} s_{2}$, and
(ii) for every natural number $n$ such that $n+1=\operatorname{len} s_{1}$ there exists a permutation $p$ of $\operatorname{Seg} n$ such that for every stable subgroup $H_{1}$ of $G_{1}$ and for every stable subgroup $H_{2}$ of $G_{2}$ and for every normal stable subgroup $N_{1}$ of $H_{1}$ and for every normal stable subgroup $N_{2}$ of $H_{2}$ and for all natural numbers $i, j$ such that $1 \leq i$ and $i \leq n$ and $j=p(i)$ and $H_{1}=s_{1}(i)$ and
$H_{2}=s_{2}(j)$ and $N_{1}=s_{1}(i+1)$ and $N_{2}=s_{2}(j+1)$ holds $H_{1} / N_{1}$ and $H_{2} / N_{2}$ are isomorphic.
Let $O$ be a set, let $G$ be a group with operators in $O$, and let $s$ be a composition series of $G$. The series of quotients of $s$ yielding a finite sequence is defined as follows:
(Def. 36)(i) $\quad$ len $s=$ len (the series of quotients of $s)+1$ and for every natural number $i$ such that $i \in \operatorname{dom}$ (the series of quotients of $s$ ) and for every stable subgroup $H$ of $G$ and for every normal stable subgroup $N$ of $H$ such that $H=s(i)$ and $N=s(i+1)$ holds (the series of quotients of $s)(i)={ }^{H} / N$ if len $s>1$,
(ii) the series of quotients of $s=\emptyset$, otherwise.

Let $O$ be a set, let $f_{1}, f_{2}$ be finite sequences, and let $p$ be a permutation of $\operatorname{dom} f_{1}$. We say that $f_{1}$ and $f_{2}$ are equivalent under $p$ in $O$ if and only if the conditions (Def. 37) are satisfied.
(Def. 37)(i) $\quad \operatorname{len} f_{1}=\operatorname{len} f_{2}$, and
(ii) for all groups $H_{1}, H_{2}$ with operators in $O$ and for all natural numbers $i, j$ such that $i \in \operatorname{dom} f_{1}$ and $j=p^{-1}(i)$ and $H_{1}=f_{1}(i)$ and $H_{2}=f_{2}(j)$ holds $H_{1}$ and $H_{2}$ are isomorphic.
For simplicity, we follow the rules: $y$ is a set, $s_{1}, s_{1}^{\prime}, s_{2}, s_{2}^{\prime}$ are composition series of $G, f_{3}$ is a finite sequence of elements of the stable subgroups of $G, f_{1}$, $f_{2}$ are finite sequences, and $i, j, n$ are natural numbers.

We now state a number of propositions:
(94) If $i \in \operatorname{dom} s_{1}$ and $i+1 \in \operatorname{dom} s_{1}$ and $s_{1}(i)=s_{1}(i+1)$ and $f_{3}=\left(s_{1}\right)_{\lceil i}$, then $f_{3}$ is composition series.
(95) If $s_{1}$ is finer than $s_{2}$, then there exists $n$ such that len $s_{1}=\operatorname{len} s_{2}+n$.
(96) If len $s_{2}=$ len $s_{1}$ and $s_{2}$ is finer than $s_{1}$, then $s_{1}=s_{2}$.
(97) If $s_{1}$ is not empty and $s_{2}$ is finer than $s_{1}$, then $s_{2}$ is not empty.
(98) If $s_{1}$ is finer than $s_{2}$ and Jordan-Hölder and $s_{2}$ is Jordan-Hölder, then $s_{1}=s_{2}$.
(99) If $i \in \operatorname{dom} s_{1}$ and $i+1 \in \operatorname{dom} s_{1}$ and $s_{1}(i)=s_{1}(i+1)$ and $s_{1}^{\prime}=\left(s_{1}\right)_{\upharpoonright i}$ and $s_{2}$ is Jordan-Hölder and $s_{1}$ is finer than $s_{2}$, then $s_{1}^{\prime}$ is finer than $s_{2}$.
(100) Suppose len $s_{1}>1$ and $s_{2} \neq s_{1}$ and $s_{2}$ is strictly decreasing and finer than $s_{1}$. Then there exist $i, j$ such that $i \in \operatorname{dom} s_{1}$ and $i \in \operatorname{dom} s_{2}$ and $i+1 \in \operatorname{dom} s_{1}$ and $i+1 \in \operatorname{dom} s_{2}$ and $j \in \operatorname{dom} s_{2}$ and $i+1<j$ and $s_{1}(i)=s_{2}(i)$ and $s_{1}(i+1) \neq s_{2}(i+1)$ and $s_{1}(i+1)=s_{2}(j)$.
(101) If $i \in \operatorname{dom} s_{1}$ and $j \in \operatorname{dom} s_{1}$ and $i \leq j$ and $H_{1}=s_{1}(i)$ and $H_{2}=s_{1}(j)$, then $H_{2}$ is a stable subgroup of $H_{1}$.
(102) If $y \in \operatorname{rng}\left(\right.$ the series of quotients of $\left.s_{1}\right)$, then $y$ is a strict group with operators in $O$.
(103) Suppose $i \in \operatorname{dom}$ (the series of quotients of $s_{1}$ ) and for every $H$ such that $H=\left(\right.$ the series of quotients of $\left.s_{1}\right)(i)$ holds $H$ is trivial. Then $i \in \operatorname{dom} s_{1}$ and $i+1 \in \operatorname{dom} s_{1}$ and $s_{1}(i)=s_{1}(i+1)$.
(104) Suppose $i \in \operatorname{dom} s_{1}$ and $i+1 \in \operatorname{dom} s_{1}$ and $s_{1}(i)=s_{1}(i+1)$ and $s_{2}=\left(s_{1}\right)_{\mid i}$. Then the series of quotients of $s_{2}=$ (the series of quotients of $\left.s_{1}\right)_{\mid i}$.
(105) Suppose $f_{1}=$ the series of quotients of $s_{1}$ and $i \in \operatorname{dom} f_{1}$ and for every $H$ such that $H=f_{1}(i)$ holds $H$ is trivial. Then $\left(s_{1}\right)_{l i}$ is a composition series of $G$ and for every $s_{2}$ such that $s_{2}=\left(s_{1}\right)_{\text {li }}$ holds the series of quotients of $s_{2}=\left(f_{1}\right)_{\mid i}$.
(106) Suppose that
(i) $f_{1}=$ the series of quotients of $s_{1}$,
(ii) $f_{2}=$ the series of quotients of $s_{2}$,
(iii) $i \in \operatorname{dom} f_{1}$,
(iv) for every $H$ such that $H=f_{1}(i)$ holds $H$ is trivial, and
(v) there exists a permutation $p$ of $\operatorname{dom} f_{1}$ such that $f_{1}$ and $f_{2}$ are equivalent under $p$ in $O$ and $j=p^{-1}(i)$.
Then there exists a permutation $p^{\prime}$ of $\operatorname{dom}\left(\left(f_{1}\right)_{\mid i}\right)$ such that $\left(f_{1}\right)_{\mid i}$ and $\left(f_{2}\right)_{\mid j}$ are equivalent under $p^{\prime}$ in $O$.
(107) Let $G_{1}, G_{2}$ be groups with operators in $O, s_{1}$ be a composition series of $G_{1}$, and $s_{2}$ be a composition series of $G_{2}$. If $s_{1}$ is empty and $s_{2}$ is empty, then $s_{1}$ is equivalent with $s_{2}$.
(108) Let $G_{1}, G_{2}$ be groups with operators in $O, s_{1}$ be a composition series of $G_{1}$, and $s_{2}$ be a composition series of $G_{2}$. Suppose $s_{1}$ is not empty and $s_{2}$ is not empty. Then $s_{1}$ is equivalent with $s_{2}$ if and only if there exists a permutation $p$ of dom (the series of quotients of $s_{1}$ ) such that the series of quotients of $s_{1}$ and the series of quotients of $s_{2}$ are equivalent under $p$ in $O$.
(109) Suppose $s_{1}$ is finer than $s_{2}$ and $s_{2}$ is Jordan-Hölder and len $s_{1}>\operatorname{len} s_{2}$. Then there exists $i$ such that $i \in \operatorname{dom}$ (the series of quotients of $s_{1}$ ) and for every $H$ such that $H=$ (the series of quotients of $\left.s_{1}\right)(i)$ holds $H$ is trivial.
(110) Suppose len $s_{1}>1$. Then $s_{1}$ is Jordan-Hölder if and only if for every $i$ such that $i \in \operatorname{dom}$ (the series of quotients of $s_{1}$ ) holds (the series of quotients of $\left.s_{1}\right)(i)$ is a strict simple group with operators in $O$.
(111) Suppose $1 \leq i$ and $i \leq \operatorname{len} s_{1}-1$. Then $s_{1}(i)$ is a strict stable subgroup of $G$ and $s_{1}(i+1)$ is a strict stable subgroup of $G$.
(112) If $1 \leq i$ and $i \leq \operatorname{len} s_{1}-1$ and $H_{1}=s_{1}(i)$ and $H_{2}=s_{1}(i+1)$, then $H_{2}$ is a normal stable subgroup of $H_{1}$.
(113) $s_{1}$ is equivalent with $s_{1}$.
(114) If len $s_{1} \leq 1$ or len $s_{2} \leq 1$ and if len $s_{1} \leq \operatorname{len} s_{2}$, then $s_{2}$ is finer than $s_{1}$. If $s_{1}$ is equivalent with $s_{2}$ and Jordan-Hölder, then $s_{2}$ is Jordan-Hölder.

## 6. The Schreier Refinement Theorem

Let us consider $O, G, s_{1}, s_{2}$. Let us assume that len $s_{1}>1$ and len $s_{2}>1$. The Schreier series of $s_{1}$ and $s_{2}$ yielding a composition series of $G$ is defined by the condition (Def. 38).
(Def. 38) Let $k, i, j$ be natural numbers and $H_{1}, H_{2}, H_{3}$ be stable subgroups of $G$. Then
(i) if $k=(i-1) \cdot\left(\operatorname{len} s_{2}-1\right)+j$ and $1 \leq i$ and $i \leq \operatorname{len} s_{1}-1$ and $1 \leq j$ and $j \leq \operatorname{len} s_{2}-1$ and $H_{1}=s_{1}(i+1)$ and $H_{2}=s_{1}(i)$ and $H_{3}=s_{2}(j)$, then (the Schreier series of $s_{1}$ and $\left.s_{2}\right)(k)=H_{1} \sqcup H_{2} \cap H_{3}$,
(ii) if $k=\left(\operatorname{len} s_{1}-1\right) \cdot\left(\operatorname{len} s_{2}-1\right)+1$, then (the Schreier series of $s_{1}$ and $\left.s_{2}\right)(k)=\{\mathbf{1}\}_{G}$, and
(iii) $\quad$ len $\left(\right.$ the Schreier series of $s_{1}$ and $\left.s_{2}\right)=\left(\operatorname{len} s_{1}-1\right) \cdot\left(\operatorname{len} s_{2}-1\right)+1$.

Next we state three propositions:
(116) If len $s_{1}>1$ and len $s_{2}>1$, then the Schreier series of $s_{1}$ and $s_{2}$ is finer than $s_{1}$.
(117) If len $s_{1}>1$ and len $s_{2}>1$, then the Schreier series of $s_{1}$ and $s_{2}$ is equivalent with the Schreier series of $s_{2}$ and $s_{1}$.
(118) There exist $s_{1}^{\prime}, s_{2}^{\prime}$ such that $s_{1}^{\prime}$ is finer than $s_{1}$ and $s_{2}^{\prime}$ is finer than $s_{2}$ and $s_{1}^{\prime}$ is equivalent with $s_{2}^{\prime}$.

## 7. The Jordan-Hölder Theorem

One can prove the following proposition
(119) If $s_{1}$ is Jordan-Hölder and $s_{2}$ is Jordan-Hölder, then $s_{1}$ is equivalent with $s_{2}$.

## 8. Appendix

Next we state several propositions:
(120) For all binary relations $P, R$ holds $P=\operatorname{rng} P \upharpoonright R$ iff $P^{\smile}=R^{\smile} \upharpoonright \operatorname{dom}\left(P^{\smile}\right)$.
(121) For every set $X$ and for all binary relations $P, R$ holds $P \cdot(R \mid X)=$ $(X \upharpoonright P) \cdot R$.
(122) Let $n$ be a natural number, $X$ be a set, and $f$ be a partial function from $\mathbb{R}$ to $\mathbb{R}$. If $X \subseteq \operatorname{Seg} n$ and $X \subseteq \operatorname{dom} f$ and $f$ is increasing on $X$ and $f^{\circ} X \subseteq \mathbb{N} \backslash\{0\}$, then $\operatorname{Sgm}\left(f^{\circ} X\right)=f \cdot \operatorname{Sgm} X$.
(123) Let $y$ be a set and $i, n$ be natural numbers. Suppose $y \subseteq \operatorname{Seg}(n+1)$ and $i \in \operatorname{Seg}(n+1)$ and $i \notin y$. Then there exists $x$ such that $\operatorname{Sgm} x=$ $(\operatorname{Sgm}(\operatorname{Seg}(n+1) \backslash\{i\}))^{-1} \cdot \operatorname{Sgm} y$ and $x \subseteq \operatorname{Seg} n$.
(124) Let $D$ be a non empty set, $f$ be a finite sequence of elements of $D$, $p$ be an element of $D$, and $n$ be an element of $\mathbb{N}$. If $n \in \operatorname{dom} f$, then $f=(\operatorname{Ins}(f, n, p))_{\text {in+1 }}$.
(125) Let $G, H$ be groups, $F_{1}$ be a finite sequence of elements of the carrier of $G, F_{2}$ be a finite sequence of elements of the carrier of $H, I$ be a finite sequence of elements of $\mathbb{Z}$, and $f$ be a homomorphism from $G$ to $H$. Suppose for every element $k$ of $\mathbb{N}$ such that $k \in \operatorname{Seg}$ len $F_{1}$ holds $F_{2}(k)=$ $f\left(F_{1}(k)\right)$ and len $F_{1}=$ len $I$ and len $F_{2}=$ len $I$. Then $f\left(\Pi\left(F_{1}{ }^{I}\right)\right)=\Pi\left(F_{2}^{I}\right)$.

## References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Nicolas Bourbaki. Elements of Mathematics. Algebra I. Chapters 1-3. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[11] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[12] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[13] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[14] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
[15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[16] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[19] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.
[20] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[21] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.
[22] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.
[23] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.
[24] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received April 20, 2007

# Regular Expression Quantifiers - $m$ to $n$ Occurrences 

Michał Trybulec<br>Motorola Software Group<br>Cracow, Poland


#### Abstract

Summary. This article includes proofs of several facts that are supplemental to the theorems proved in [10]. Next, it builds upon that theory to extend the framework for proving facts about formal languages in general and regular expression operators in particular. In this article, two quantifiers are defined and their properties are shown: $m$ to $n$ occurrences (or the union of a range of powers) and optional occurrence. Although optional occurrence is a special case of the previous operator ( 0 to 1 occurrences), it is often defined in regex applications as a separate operator - hence its explicit definition and properties in the article. Notation and terminology were taken from [13].


MML identifier: FLANG_2, version: 7.8.05 4.84.971

The articles [9], [4], [11], [7], [8], [2], [14], [3], [1], [5], [12], [6], and [10] provide the terminology and notation for this paper.

## 1. Preliminaries

For simplicity, we adopt the following convention: $E, x$ denote sets, $A, B$, $C$ denote subsets of $E^{\omega}, a, b$ denote elements of $E^{\omega}$, and $i, k, l, k_{1}, m, n, m_{1}$ denote natural numbers.

We now state four propositions:
(1) If $m+k \leq i$ and $i \leq n+k$, then there exists $m_{1}$ such that $m_{1}+k=i$ and $m \leq m_{1}$ and $m_{1} \leq n$.
(2) If $m \leq n$ and $k \leq l$ and $m+k \leq i$ and $i \leq n+l$, then there exist $m_{1}, k_{1}$ such that $m_{1}+k_{1}=i$ and $m \leq m_{1}$ and $m_{1} \leq n$ and $k \leq k_{1}$ and $k_{1} \leq l$.
(3) If $m<n$, then there exists $k$ such that $m+k=n$ and $k>0$.
(4) If $a^{\wedge} b=a$ or $b^{\frown} a=a$, then $b=\emptyset$.

## 2. ADDENDA TO [10]

One can prove the following propositions:
(5) If $x \in A$ or $x \in B$ and if $x \neq\langle \rangle_{E}$, then $A \frown B \neq\left\{\langle \rangle_{E}\right\}$.
(6) $\langle x\rangle \in A \frown B$ iff $\left\rangle_{E} \in A\right.$ and $\langle x\rangle \in B$ or $\langle x\rangle \in A$ and $\left\rangle_{E} \in B\right.$.
(7) If $x \in A$ and $x \neq\langle \rangle_{E}$ and $n>0$, then $A^{n} \neq\left\{\langle \rangle_{E}\right\}$.
(8) $\left\rangle_{E} \in A^{n}\right.$ iff $n=0$ or $\left\rangle_{E} \in A\right.$.
(9) $\langle x\rangle \in A^{n}$ iff $\langle x\rangle \in A$ but $\left\rangle_{E} \in A\right.$ and $n>1$ or $n=1$.
(10) If $m \neq n$ and $A^{m}=\{x\}$ and $A^{n}=\{x\}$, then $x=\langle \rangle_{E}$.
(11) $\left(A^{m}\right)^{n}=\left(A^{n}\right)^{m}$.
(12) $\left(A^{m}\right) \frown A^{n}=\left(A^{n}\right) \frown A^{m}$.
(13) If $\left\rangle_{E} \in B\right.$, then $A \subseteq A \frown B^{l}$ and $A \subseteq\left(B^{l}\right) \frown A$.
(14) If $A \subseteq C^{k}$ and $B \subseteq C^{l}$, then $A \frown B \subseteq C^{k+l}$.
(15) If $x \in A$ and $x \neq\langle \rangle_{E}$, then $A^{*} \neq\left\{\langle \rangle_{E}\right\}$.
(16) If $\left\rangle_{E} \in A\right.$ and $n>0$, then $\left(A^{n}\right)^{*}=A^{*}$.
(17) If $\left\rangle_{E} \in A\right.$, then $\left(A^{n}\right)^{*}=\left(A^{*}\right)^{n}$.
(18) $A \subseteq A \frown B^{*}$ and $A \subseteq\left(B^{*}\right) \frown A$.

## 3. Union of a Range of Powers

Let us consider $E, A$ and let us consider $m, n$. The functor $A^{m, n}$ yields a subset of $E^{\omega}$ and is defined as follows:
(Def. 1) $\quad A^{m, n}=\bigcup\left\{B: \bigvee_{k}\left(m \leq k \wedge k \leq n \wedge B=A^{k}\right)\right\}$.
One can prove the following propositions:
(19) $\quad x \in A^{m, n}$ iff there exists $k$ such that $m \leq k$ and $k \leq n$ and $x \in A^{k}$.
(20) If $m \leq k$ and $k \leq n$, then $A^{k} \subseteq A^{m, n}$.
(21) $A^{m, n}=\emptyset$ iff $m>n$ or $m>0$ and $A=\emptyset$.
(22) $A^{m, m}=A^{m}$.
(23) If $m \leq k$ and $l \leq n$, then $A^{k, l} \subseteq A^{m, n}$.
(24) If $m \leq k$ and $k \leq n$, then $A^{m, n}=A^{m, k} \cup A^{k, n}$.
(25) If $m \leq k$ and $k \leq n$, then $A^{m, n}=A^{m, k} \cup A^{k+1, n}$.
(26) If $m \leq n+1$, then $A^{m, n+1}=A^{m, n} \cup A^{n+1}$.
(27) If $m \leq n$, then $A^{m, n}=A^{m} \cup A^{m+1, n}$.
(28) $A^{n, n+1}=A^{n} \cup A^{n+1}$.
(29) If $A \subseteq B$, then $A^{m, n} \subseteq B^{m, n}$.
(30) If $x \in A$ and if $x \neq\langle \rangle_{E}$ and if $m>0$ or $n>0$, then $A^{m, n} \neq\left\{\langle \rangle_{E}\right\}$.
(31) $A^{m, n}=\left\{\langle \rangle_{E}\right\}$ iff $m \leq n$ and $A=\left\{\langle \rangle_{E}\right\}$ or $m=0$ and $n=0$ or $m=0$ and $A=\emptyset$.
(32) $\quad A^{m, n} \subseteq A^{*}$.
(33) $\left\rangle_{E} \in A^{m, n}\right.$ iff $m=0$ or $m \leq n$ and $\left\rangle_{E} \in A\right.$.
(34) If $\left\rangle_{E} \in A\right.$ and $m \leq n$, then $A^{m, n}=A^{n}$.
(35) $\left(A^{m, n}\right) \frown A^{k}=\left(A^{k}\right) \frown A^{m, n}$.
(36) $\left(A^{m, n}\right) \frown A=A \frown A^{m, n}$.
(37) If $m \leq n$ and $k \leq l$, then $\left(A^{m, n}\right) \frown A^{k, l}=A^{m+k, n+l}$.
(38) $A^{m+1, n+1}=\left(A^{m, n}\right) \frown A$.
(39) $\left(A^{m, n}\right) \frown A^{k, l}=\left(A^{k, l}\right) \frown A^{m, n}$.
(40) $\left(A^{m, n}\right)^{k}=A^{m \cdot k, n \cdot k}$.
(41) $\left(A^{k+1}\right)^{m, n} \subseteq\left(\left(A^{k}\right)^{m, n}\right) \frown A^{m, n}$.
(42) $\left(A^{k}\right)^{m, n} \subseteq A^{k \cdot m, k \cdot n}$.
(43) $\left(A^{k}\right)^{m, n} \subseteq\left(A^{m, n}\right)^{k}$.
(44) $\left(A^{k+l}\right)^{m, n} \subseteq\left(\left(A^{k}\right)^{m, n}\right) \frown\left(A^{l}\right)^{m, n}$.
(45) $A^{0,0}=\left\{\langle \rangle_{E}\right\}$.
(46) $A^{0,1}=\left\{\langle \rangle_{E}\right\} \cup A$.
(47) $A^{1,1}=A$.
(48) $A^{0,2}=\left\{\langle \rangle_{E}\right\} \cup A \cup A \frown A$.
(49) $A^{1,2}=A \cup A \frown A$.
(50) $A^{2,2}=A \frown A$.
(51) If $m>0$ and $m \neq n$ and $A^{m, n}=\{x\}$, then for every $m_{1}$ such that $m \leq m_{1}$ and $m_{1} \leq n$ holds $A^{m_{1}}=\{x\}$.
(52) If $m \neq n$ and $A^{m, n}=\{x\}$, then $x=\langle \rangle_{E}$.
(53) $\langle x\rangle \in A^{m, n}$ iff $\langle x\rangle \in A$ but $m \leq n$ but $\left\rangle_{E} \in A\right.$ and $n>0$ or $m \leq 1$ and $1 \leq n$.
(54) $(A \cap B)^{m, n} \subseteq A^{m, n} \cap B^{m, n}$.
(55) $A^{m, n} \cup B^{m, n} \subseteq(A \cup B)^{m, n}$.
(56) $\left(A^{m, n}\right)^{k, l} \subseteq A^{m \cdot k, n \cdot l}$.
(57) If $m \leq n$ and $\left\rangle_{E} \in B\right.$, then $A \subseteq A \frown B^{m, n}$ and $A \subseteq\left(B^{m, n}\right) \frown A$.
(58) If $m \leq n$ and $k \leq l$ and $A \subseteq C^{m, n}$ and $B \subseteq C^{k, l}$, then $A \frown B \subseteq C^{m+k, n+l}$.
(59) $\left(A^{m, n}\right)^{*} \subseteq A^{*}$.
(60) $\left(A^{*}\right)^{m, n} \subseteq A^{*}$.
(61) If $m \leq n$ and $n>0$, then $\left(A^{*}\right)^{m, n}=A^{*}$.
(62) If $m \leq n$ and $n>0$ and $\left\rangle_{E} \in A\right.$, then $\left(A^{m, n}\right)^{*}=A^{*}$.
(63) If $m \leq n$ and $\left\rangle_{E} \in A\right.$, then $\left(A^{m, n}\right)^{*}=\left(A^{*}\right)^{m, n}$.
(64) If $A \subseteq B^{*}$, then $A^{m, n} \subseteq B^{*}$.
(65) If $A \subseteq B^{*}$, then $B^{*}=\left(B \cup A^{m, n}\right)^{*}$.
(66) $\left(A^{m, n}\right) \frown A^{*}=\left(A^{*}\right) \frown A^{m, n}$.
(67) If $\left\rangle_{E} \in A\right.$ and $m \leq n$, then $A^{*}=\left(A^{*}\right) \frown A^{m, n}$.
(68) $\left(A^{m, n}\right)^{k} \subseteq A^{*}$.
(69) $\left(A^{k}\right)^{m, n} \subseteq A^{*}$.
(70) If $m \leq n$, then $\left(A^{m}\right)^{*} \subseteq\left(A^{m, n}\right)^{*}$.
(71) $\left(A^{m, n}\right)^{k, l} \subseteq A^{*}$.
(72) If $\left\rangle_{E} \in A\right.$ and $k \leq n$ and $l \leq n$, then $A^{k, n}=A^{l, n}$.

## 4. Optional Occurrence

Let us consider $E, A$. The functor $A$ ? yields a subset of $E^{\omega}$ and is defined by:
(Def. 2) $\quad A ?=\bigcup\left\{B: \bigvee_{k}\left(k \leq 1 \wedge B=A^{k}\right)\right\}$.
One can prove the following propositions:
(73) $x \in A$ ? iff there exists $k$ such that $k \leq 1$ and $x \in A^{k}$.
(74) If $n \leq 1$, then $A^{n} \subseteq A$ ?.
(75) $A$ ? $=A^{0} \cup A^{1}$.
(76) $A$ ? $=\left\{\langle \rangle_{E}\right\} \cup A$.
(77) $A \subseteq A$ ?.
(78) $x \in A$ ? iff $x=\langle \rangle_{E}$ or $x \in A$.
(79) $A ?=A^{0,1}$.
(80) $A$ ? $=A$ iff $\left\rangle_{E} \in A\right.$.

Let us consider $E, A$. One can check that $A$ ? is non empty.
We now state a number of propositions:
(81) $A ? ?=A$ ?.
(82) If $A \subseteq B$, then $A$ ? $\subseteq B$ ?.
(83) If $x \in A$ and $x \neq\langle \rangle_{E}$, then $A ? \neq\left\{\langle \rangle_{E}\right\}$.
(84) $A$ ? $=\left\{\langle \rangle_{E}\right\}$ iff $A=\emptyset$ or $A=\left\{\langle \rangle_{E}\right\}$.
(85) $A^{*}$ ? $=A^{*}$ and $A ?^{*}=A^{*}$.
(86) $\quad A ? \subseteq A^{*}$.
(87) $(A \cap B) ?=A ? \cap B$ ?.
(88) $A$ ? $\cup B$ ? $=(A \cup B)$ ?.
(89) If $A$ ? $=\{x\}$, then $x=\langle \rangle_{E}$.
(90) $\langle x\rangle \in A$ ? iff $\langle x\rangle \in A$.
(91) $A ? \frown A=A \frown A$ ?.
(92) $A$ ? $\frown A=A^{1,2}$.
(93) $A$ ? ${ }^{\wedge} A$ ? $=A^{0,2}$.
(94) $A ?^{k}=A ?^{0^{0, k}}$.
(95) $A ?^{k}=A^{0, k}$.
(96) If $m \leq n$, then $A ?^{m, n}=A ?^{0, n}$.
(97) $A ?^{0, n}=A^{0, n}$.
(98) If $m \leq n$, then $A ?^{m, n}=A^{0, n}$.
(99) $\quad A^{1, n} ?=A^{0, n}$.
(100) If $\left\rangle_{E} \in A\right.$ and $\left\rangle_{E} \in B\right.$, then $A$ ? $\subseteq A \frown B$ and $A$ ? $\subseteq B \frown A$.
(101) $A \subseteq A \subset B$ ? and $A \subseteq B$ ? $\frown^{\wedge}$.
(102) If $A \subseteq C$ ? and $B \subseteq C$ ?, then $A \frown B \subseteq C^{0,2}$.
(103) If $\left\rangle_{E} \in A\right.$ and $n>0$, then $A$ ? $\subseteq A^{n}$.
(104) $A$ ? $\frown A^{k}=\left(A^{k}\right) \frown A$ ?.
(105) If $A \subseteq B^{*}$, then $A$ ? $\subseteq B^{*}$.
(106) If $A \subseteq B^{*}$, then $B^{*}=(B \cup A \text { ? })^{*}$.
(107) $A$ ? $\frown^{*}=\left(A^{*}\right) \frown A$ ?.
(108) $A$ ? $\frown^{*}=A^{*}$.
(109) $A ?^{k} \subseteq A^{*}$.
(110) $\quad A^{k} ? \subseteq A^{*}$.
(111) $A$ ? $\frown A^{m, n}=\left(A^{m, n}\right) \frown A$ ?.
(112) $A ?^{\wedge} A^{k}=A^{k, k+1}$.
(113) $A ?^{m, n} \subseteq A^{*}$.
(114) $\quad A^{m, n} ? \subseteq A^{*}$.
(115) $A$ ? $=\left(A \backslash\left\{\langle \rangle_{E}\right\}\right)$ ?.
(116) If $A \subseteq B$ ?, then $A$ ? $\subseteq B$ ?
(117) If $A \subseteq B$ ?, then $B$ ? $=(B \cup A)$ ?.

## References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[5] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[6] Karol Pa̧k. The Catalan numbers. Part II. Formalized Mathematics, 14(4):153-159, 2006.
[7] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[8] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Michał Trybulec. Formal languages - concatenation and closure. Formalized Mathematics, 15(1):11-15, 2007.
[11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[12] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.
[13] Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl, Third Edition. O'Reilly Media, 2000.
[14] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received June 6, 2007

# Riemann Indefinite Integral of Functions of Real Variable ${ }^{1}$ 

Yasunari Shidama<br>Shinshu University<br>Nagano, Japan

Noboru Endou<br>Gifu National College of Technology<br>Japan

Katsumi Wasaki<br>Shinshu University<br>Nagano, Japan


#### Abstract

Summary. In this article we define the Riemann indefinite integral of functions of real variable and prove the linearity of that [1]. And we give some examples of the indefinite integral of some elementary functions. Furthermore, also the theorem about integral operation and uniform convergent sequence of functions is proved.


MML identifier: INTEGRA7, version: 7.8.05 4.84.971

The papers [24], [25], [3], [23], [5], [13], [2], [26], [7], [21], [8], [10], [4], [17], [16], [15], [14], [19], [20], [6], [9], [11], [18], [12], [27], and [22] provide the terminology and notation for this paper.

## 1. Preliminaries

For simplicity, we adopt the following rules: $a, b, r$ are real numbers, $A$ is a non empty set, $X, x$ are sets, $f, g, F, G$ are partial functions from $\mathbb{R}$ to $\mathbb{R}$, and $n$ is an element of $\mathbb{N}$.

Next we state a number of propositions:

[^0](1) Let $f, g$ be functions from $A$ into $\mathbb{R}$. Suppose $\operatorname{rng} f$ is upper bounded and $\operatorname{rng} g$ is upper bounded and for every set $x$ such that $x \in A$ holds $|f(x)-g(x)| \leq a$. Then sup rng $f-\sup \operatorname{rng} g \leq a$ and sup rng $g-\sup \operatorname{rng} f \leq$ $a$.
(2) Let $f, g$ be functions from $A$ into $\mathbb{R}$. Suppose $\operatorname{rng} f$ is lower bounded and $\operatorname{rng} g$ is lower bounded and for every set $x$ such that $x \in A$ holds $|f(x)-g(x)| \leq a$. Then inf rng $f-\inf \operatorname{rng} g \leq a$ and inf rng $g-\inf \operatorname{rng} f \leq a$.
(3) If $f \upharpoonright X$ is bounded on $X$, then $f$ is bounded on $X$.
(4) For every real number $x$ such that $x \in X$ and $f \upharpoonright X$ is differentiable in $x$ holds $f$ is differentiable in $x$.
(5) If $f \upharpoonright X$ is differentiable on $X$, then $f$ is differentiable on $X$.
(6) Suppose $f$ is differentiable on $X$ and $g$ is differentiable on $X$. Then $f+g$ is differentiable on $X$ and $f-g$ is differentiable on $X$ and $f g$ is differentiable on $X$.
(7) If $f$ is differentiable on $X$, then $r f$ is differentiable on $X$.
(8) Suppose for every set $x$ such that $x \in X$ holds $g(x) \neq 0$ and $f$ is differentiable on $X$ and $g$ is differentiable on $X$. Then $\frac{f}{g}$ is differentiable on $X$.
(9) If for every set $x$ such that $x \in X$ holds $f(x) \neq 0$ and $f$ is differentiable on $X$, then $\frac{1}{f}$ is differentiable on $X$.
(10) Suppose $a \leq b$ and $\left.{ }^{\prime} a, b^{\prime}\right] \subseteq X$ and $F$ is differentiable on $X$ and $F_{\lceil X}^{\prime}$ is integrable on $\left[{ }^{\prime} a, b^{\prime}\right]$ and $F_{\uparrow X}^{\prime}$ is bounded on $\left[{ }^{\prime} a, b^{\prime}\right]$. Then $F(b)=$ $\int_{a}^{b}\left(F_{\lceil X}^{\prime}\right)(x) d x+F(a)$.

## 2. The Definition of Indefinite Integral

Let $X$ be a set and let $f$ be a partial function from $\mathbb{R}$ to $\mathbb{R}$. The functor IntegralFuncs $(f, X)$ yields a set and is defined by the condition (Def. 1).
(Def. 1) $x \in \operatorname{IntegralFuncs}(f, X)$ if and only if there exists a partial function $F$ from $\mathbb{R}$ to $\mathbb{R}$ such that $x=F$ and $F$ is differentiable on $X$ and $F_{\lceil X}^{\prime}=f \upharpoonright X$.
Let $X$ be a set and let $F, f$ be partial functions from $\mathbb{R}$ to $\mathbb{R}$. We say that $F$ is an integral of $f$ on $X$ if and only if:
(Def. 2) $\quad F \in \operatorname{IntegralFuncs}(f, X)$.
The following propositions are true:
(11) If $F$ is an integral of $f$ on $X$, then $X \subseteq \operatorname{dom} F$.
(12) Suppose $F$ is an integral of $f$ on $X$ and $G$ is an integral of $g$ on $X$. Then $F+G$ is an integral of $f+g$ on $X$ and $F-G$ is an integral of $f-g$ on $X$.
(13) If $F$ is an integral of $f$ on $X$, then $r F$ is an integral of $r f$ on $X$.
(14) If $F$ is an integral of $f$ on $X$ and $G$ is an integral of $g$ on $X$, then $F G$ is an integral of $f G+F g$ on $X$.
(15) Suppose for every set $x$ such that $x \in X$ holds $G(x) \neq 0$ and $F$ is an integral of $f$ on $X$ and $G$ is an integral of $g$ on $X$. Then $\frac{F}{G}$ is an integral of $\frac{f G-F g}{G G}$ on $X$.
(16) Suppose that
(i) $a \leq b$,
(ii) $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} f$,
(iii) $f$ is continuous on $\left[{ }^{\prime} a, b^{\prime}\right]$,
(iv) $] a, b[\subseteq \operatorname{dom} F$, and
(v) for every real number $x$ such that $x \in] a, b\left[\right.$ holds $F(x)=\int_{a}^{x} f(x) d x+$ $F(a)$.
Then $F$ is an integral of $f$ on $] a, b[$.
(17) Let $x, x_{0}$ be real numbers. Suppose $f$ is continuous on $[a, b]$ and $\left.x \in\right] a, b[$ and $\left.x_{0} \in\right] a, b[$ and $F$ is an integral of $f$ on $] a, b\left[\right.$. Then $F(x)=\int_{x_{0}}^{x} f(x) d x+$ $F\left(x_{0}\right)$.
(18) Suppose $a \leq b$ and $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq X$ and $F$ is an integral of $f$ on $X$ and $f$ is integrable on [' $\left.a, b^{\prime}\right]$ and $f$ is bounded on $\left[{ }^{\prime} a, b^{\prime}\right]$. Then $F(b)=\int_{a}^{b} f(x) d x+$ $F(a)$.
(19) Suppose $a \leq b$ and $[a, b] \subseteq X$ and $f$ is continuous on $X$. Then $f$ is continuous on [' $\left.a, b^{\prime}\right]$ and $f$ is integrable on $\left[{ }^{\prime} a, b^{\prime}\right]$ and $f$ is bounded on [' $\left.a, b^{\prime}\right]$.
(20) If $a \leq b$ and $[a, b] \subseteq X$ and $f$ is continuous on $X$ and $F$ is an integral of $f$ on $X$, then $F(b)=\int_{a}^{b} f(x) d x+F(a)$.
(21) Suppose that $b \leq a$ and $\left[{ }^{\prime} b, a^{\prime}\right] \subseteq X$ and $f$ is integrable on $\left[{ }^{\prime} b, a^{\prime}\right]$ and $g$ is integrable on $\left[' b, a^{\prime}\right]$ and $f$ is bounded on $\left[' b, a^{\prime}\right]$ and $g$ is bounded on $\left[{ }^{\prime} b, a^{\prime}\right]$ and $X \subseteq \operatorname{dom} f$ and $X \subseteq \operatorname{dom} g$ and $F$ is an integral of $f$ on $X$ and $G$ is an integral of $g$ on $X$. Then $F(a) \cdot G(a)-F(b) \cdot G(b)=$ $\int_{b}^{a}(f G)(x) d x+\int_{b}^{a}(F g)(x) d x$.
(22) Suppose that $b \leq a$ and $[b, a] \subseteq X$ and $X \subseteq \operatorname{dom} f$ and $X \subseteq \operatorname{dom} g$ and
$f$ is continuous on $X$ and $g$ is continuous on $X$ and $F$ is an integral of $f$ on $X$ and $G$ is an integral of $g$ on $X$. Then $F(a) \cdot G(a)-F(b) \cdot G(b)=$ $\int_{b}^{a}(f G)(x) d x+\int_{b}^{a}(F g)(x) d x$.

## 3. Examples of Indefinite Integral

We now state several propositions:
(23) The function $\sin$ is an integral of the function $\cos$ on $\mathbb{R}$.
(24) (The function $\sin )(b)-($ the function $\sin )(a)=\int_{a}^{b}($ the function $\cos )(x) d x$.
(25) (-1) (the function cos) is an integral of the function sin on $\mathbb{R}$.
(26) (The function $\cos )(a)-($ the function $\cos )(b)=\int_{a}^{b}($ the function $\sin )(x) d x$.
(27) The function exp is an integral of the function exp on $\mathbb{R}$.
(28) (The function $\exp )(b)-($ the function $\exp )(a)=\int_{a}^{b}$ (the function $\left.\exp \right)(x) d x$.
(29) ${\underset{\mathbb{Z}}{ }}_{n+1}^{\text {is an integral of }(n+1)}{ }_{\mathbb{Z}}^{n}$ on $\mathbb{R}$.
(30)
$\left({\underset{\mathbb{Z}}{ }}_{n+1}^{)}(b)-\left({ }_{\mathbb{Z}}^{n+1}\right)(a)=\int_{a}^{b}\left((n+1)_{\mathbb{Z}}^{n}\right)(x) d x\right.$

## 4. Uniform Convergent Functional Sequence

We now state the proposition
(31) Let $H$ be a sequence of partial functions from $\mathbb{R}$ into $\mathbb{R}$ and $r_{1}$ be a sequence of real numbers. Suppose that
(i) $a<b$,
(ii) for every element $n$ of $\mathbb{N}$ holds $H(n)$ is integrable on [' $\left.a, b^{\prime}\right]$ and $H(n)$ is bounded on $\left[{ }^{\prime} a, b^{\prime}\right]$ and $r_{1}(n)=\int_{a}^{b} H(n)(x) d x$, and
(iii) $\quad H$ is uniform-convergent on $\left[{ }^{\prime} a, b^{\prime}\right]$.

Then $\lim _{\left[{ }^{\prime} a, b^{\prime}\right]} H$ is bounded on $\left[{ }^{\prime} a, b^{\prime}\right]$ and $\lim _{\left[{ }^{\prime} a, b^{\prime}\right]} H$ is integrable on $\left[{ }^{\prime} a, b^{\prime}\right]$ and $r_{1}$ is convergent and $\lim r_{1}=\int_{a}^{b} \lim _{\left[{ }^{\prime} a, b^{\prime}\right]} H(x) d x$.

## References

[1] Tom M. Apostol. Mathematical Analysis. Addison-Wesley, 1969.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[10] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in $\mathcal{E}^{2}$. Formalized Mathematics, 6(3):427-440, 1997.
[11] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.
[12] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from $\mathbb{R}$ to $\mathbb{R}$ and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.
[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[14] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[15] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[16] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[17] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[18] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.
[19] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[20] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[21] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[22] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
[23] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[24] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[26] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[27] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received June 6, 2007

# Partial Differentiation on Normed Linear Spaces $\mathcal{R}^{n}$ 

Noboru Endou<br>Gifu National College of Technology Japan<br>Yasunari Shidama<br>Shinshu University<br>Nagano, Japan<br>Keiichi Miyajima<br>Ibaraki University<br>Hitachi, Japan

Summary. In this article, we define the partial differentiation of functions of real variable and prove the linearity of this operator [18].

MML identifier: PDIFF_1, version: 7.8.05 4.84.971

The notation and terminology used here are introduced in the following papers: [21], [24], [25], [5], [26], [7], [6], [15], [13], [3], [1], [20], [11], [22], [23], [14], [8], [2], [4], [27], [28], [16], [9], [19], [17], [12], and [10].

## 1. Preliminaries

Let $i, n$ be elements of $\mathbb{N}$. The functor $\operatorname{proj}(i, n)$ yielding a function from $\mathcal{R}^{n}$ into $\mathbb{R}$ is defined by:
(Def. 1) For every element $x$ of $\mathcal{R}^{n}$ holds $(\operatorname{proj}(i, n))(x)=x(i)$.
Next we state two propositions:
(1) $\operatorname{dom} \operatorname{proj}(1,1)=\mathcal{R}^{1}$ and $\operatorname{rng} \operatorname{proj}(1,1)=\mathbb{R}$ and for every element $x$ of $\mathbb{R}$ holds $(\operatorname{proj}(1,1))(\langle x\rangle)=x$ and $(\operatorname{proj}(1,1))^{-1}(x)=\langle x\rangle$.
(2)(i) $\quad(\operatorname{proj}(1,1))^{-1}$ is a function from $\mathbb{R}$ into $\mathcal{R}^{1}$,
(ii) $(\operatorname{proj}(1,1))^{-1}$ is one-to-one,
(iii) $\operatorname{dom}\left((\operatorname{proj}(1,1))^{-1}\right)=\mathbb{R}$,
(iv) $\quad \operatorname{rng}\left((\operatorname{proj}(1,1))^{-1}\right)=\mathcal{R}^{1}$, and
(v) there exists a function $g$ from $\mathbb{R}$ into $\mathcal{R}^{1}$ such that $g$ is bijective and $(\operatorname{proj}(1,1))^{-1}=g$.

One can check that $\operatorname{proj}(1,1)$ is bijective.
Let $g$ be a partial function from $\mathbb{R}$ to $\mathbb{R}$. The functor $\langle g\rangle$ yields a partial function from $\mathcal{R}^{1}$ to $\mathcal{R}^{1}$ and is defined as follows:
(Def. 2) $\quad\langle g\rangle=(\operatorname{proj}(1,1))^{-1} \cdot g \cdot \operatorname{proj}(1,1)$.
Let $n$ be an element of $\mathbb{N}$ and let $g$ be a partial function from $\mathcal{R}^{n}$ to $\mathbb{R}$. The functor $\langle g\rangle$ yielding a partial function from $\mathcal{R}^{n}$ to $\mathcal{R}^{1}$ is defined as follows:
$($ Def. 3$) \quad\langle g\rangle=(\operatorname{proj}(1,1))^{-1} \cdot g$.
Let $i, n$ be elements of $\mathbb{N}$. The functor $\operatorname{Proj}(i, n)$ yielding a function from $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ is defined as follows:
(Def. 4) For every point $x$ of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ holds $(\operatorname{Proj}(i, n))(x)=\langle(\operatorname{proj}(i, n))(x)\rangle$.
Let $i$ be an element of $\mathbb{N}$ and let $x$ be a finite sequence of elements of $\mathbb{R}$. The functor reproj $(i, x)$ yielding a function is defined as follows:
(Def. 5) domreproj $(i, x)=\mathbb{R}$ and for every element $r$ of $\mathbb{R}$ holds $(\operatorname{reproj}(i, x))(r)=\operatorname{Replace}(x, i, r)$.
Let $n, i$ be elements of $\mathbb{N}$ and let $x$ be an element of $\mathcal{R}^{n}$. Then reproj $(i, x)$ is a function from $\mathbb{R}$ into $\mathcal{R}^{n}$.

Let $n, i$ be elements of $\mathbb{N}$ and let $x$ be a point of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. The functor $\operatorname{reproj}(i, x)$ yielding a function from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ is defined by the condition (Def. 6).
(Def. 6) Let $r$ be an element of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$. Then there exists an element $q$ of $\mathbb{R}$ and there exists an element $y$ of $\mathcal{R}^{n}$ such that $r=\langle q\rangle$ and $y=x$ and $(\operatorname{reproj}(i, x))(r)=(\operatorname{reproj}(i, y))(q)$.
Let $m, n$ be non empty elements of $\mathbb{N}$, let $f$ be a partial function from $\mathcal{R}^{m}$ to $\mathcal{R}^{n}$, and let $x$ be an element of $\mathcal{R}^{m}$. We say that $f$ is differentiable in $x$ if and only if the condition (Def. 7) is satisfied.
(Def. 7) There exists a partial function $g$ from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and there exists a point $y$ of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $f=g$ and $x=y$ and $g$ is differentiable in $y$.
Let $m, n$ be non empty elements of $\mathbb{N}$, let $f$ be a partial function from $\mathcal{R}^{m}$ to $\mathcal{R}^{n}$, and let $x$ be an element of $\mathcal{R}^{m}$. Let us assume that $f$ is differentiable in $x$. The functor $f^{\prime}(x)$ yields a function from $\mathcal{R}^{m}$ into $\mathcal{R}^{n}$ and is defined as follows:
(Def. 8) There exists a partial function $g$ from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and there exists a point $y$ of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $f=g$ and $x=y$ and $f^{\prime}(x)=g^{\prime}(y)$.
We now state four propositions:
(3) Let $I$ be a function from $\mathbb{R}$ into $\mathcal{R}^{1}$. Suppose $I=(\operatorname{proj}(1,1))^{-1}$. Then
(i) for every vector $x$ of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ and for every element $y$ of $\mathbb{R}$ such that $x=I(y)$ holds $\|x\|=|y|$,
(ii) for all vectors $x, y$ of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ and for all elements $a, b$ of $\mathbb{R}$ such that $x=I(a)$ and $y=I(b)$ holds $x+y=I(a+b)$,
(iii) for every vector $x$ of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ and for every element $y$ of $\mathbb{R}$ and for every real number $a$ such that $x=I(y)$ holds $a \cdot x=I(a \cdot y)$,
(iv) for every vector $x$ of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ and for every element $a$ of $\mathbb{R}$ such that $x=I(a)$ holds $-x=I(-a)$, and
(v) for all vectors $x, y$ of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ and for all elements $a, b$ of $\mathbb{R}$ such that $x=I(a)$ and $y=I(b)$ holds $x-y=I(a-b)$.
(4) Let $J$ be a function from $\mathcal{R}^{1}$ into $\mathbb{R}$. Suppose $J=\operatorname{proj}(1,1)$. Then
(i) for every vector $x$ of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ and for every element $y$ of $\mathbb{R}$ such that $J(x)=y$ holds $\|x\|=|y|$,
(ii) for all vectors $x, y$ of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ and for all elements $a, b$ of $\mathbb{R}$ such that $J(x)=a$ and $J(y)=b$ holds $J(x+y)=a+b$,
(iii) for every vector $x$ of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ and for every element $y$ of $\mathbb{R}$ and for every real number $a$ such that $J(x)=y$ holds $J(a \cdot x)=a \cdot y$,
(iv) for every vector $x$ of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ and for every element $a$ of $\mathbb{R}$ such that $J(x)=a$ holds $J(-x)=-a$, and
(v) for all vectors $x, y$ of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ and for all elements $a, b$ of $\mathbb{R}$ such that $J(x)=a$ and $J(y)=b$ holds $J(x-y)=a-b$.
(5) Let $I$ be a function from $\mathbb{R}$ into $\mathcal{R}^{1}$ and $J$ be a function from $\mathcal{R}^{1}$ into $\mathbb{R}$. Suppose $I=(\operatorname{proj}(1,1))^{-1}$ and $J=\operatorname{proj}(1,1)$. Then
(i) for every rest $R$ of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle,\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ holds $J \cdot R \cdot I$ is a rest, and
(ii) for every linear operator $L$ from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ holds $J \cdot L \cdot I$ is a linear function.
(6) Let $I$ be a function from $\mathbb{R}$ into $\mathcal{R}^{1}$ and $J$ be a function from $\mathcal{R}^{1}$ into $\mathbb{R}$. Suppose $I=(\operatorname{proj}(1,1))^{-1}$ and $J=\operatorname{proj}(1,1)$. Then
(i) for every rest $R$ holds $I \cdot R \cdot J$ is a rest of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle,\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$, and
(ii) for every linear function $L$ holds $I \cdot L \cdot J$ is a bounded linear operator from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$.
In the sequel $f$ is a partial function from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle, g$ is a partial function from $\mathbb{R}$ to $\mathbb{R}, x$ is a point of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$, and $y$ is an element of $\mathbb{R}$.

We now state four propositions:
(7) If $f=\langle g\rangle$ and $x=\langle y\rangle$ and $f$ is differentiable in $x$, then $g$ is differentiable in $y$ and $g^{\prime}(y)=\left(\operatorname{proj}(1,1) \cdot f^{\prime}(x) \cdot(\operatorname{proj}(1,1))^{-1}\right)(1)$.
(8) If $f=\langle g\rangle$ and $x=\langle y\rangle$ and $g$ is differentiable in $y$, then $f$ is differentiable in $x$ and $f^{\prime}(x)(\langle 1\rangle)=\left\langle g^{\prime}(y)\right\rangle$.
(9) If $f=\langle g\rangle$ and $x=\langle y\rangle$, then $f$ is differentiable in $x$ iff $g$ is differentiable in $y$.
(10) If $f=\langle g\rangle$ and $x=\langle y\rangle$ and $f$ is differentiable in $x$, then $f^{\prime}(x)(\langle 1\rangle)=$ $\left\langle g^{\prime}(y)\right\rangle$.

## 2. Partial Differentiation

For simplicity, we adopt the following rules: $m, n$ are non empty elements of $\mathbb{N}, i, j$ are elements of $\mathbb{N}, f$ is a partial function from $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle, g$ is a partial function from $\mathcal{R}^{n}$ to $\mathbb{R}, x$ is a point of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and $y$ is an element of $\mathcal{R}^{n}$.

Let $n, m$ be non empty elements of $\mathbb{N}$, let $i$ be an element of $\mathbb{N}$, let $f$ be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and let $x$ be a point of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. We say that $f$ is partially differentiable in $x$ w.r.t. $i$ if and only if:
(Def. 9) $f \cdot \operatorname{reproj}(i, x)$ is differentiable in $(\operatorname{Proj}(i, m))(x)$.
Let $m, n$ be non empty elements of $\mathbb{N}$, let $i$ be an element of $\mathbb{N}$, let $f$ be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and let $x$ be a point of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. The functor partdiff $(f, x, i)$ yielding a point of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ is defined as follows:
(Def. 10) partdiff $(f, x, i)=(f \cdot \operatorname{reproj}(i, x))^{\prime}((\operatorname{Proj}(i, m))(x))$.
Let $n$ be a non empty element of $\mathbb{N}$, let $i$ be an element of $\mathbb{N}$, let $f$ be a partial function from $\mathcal{R}^{n}$ to $\mathbb{R}$, and let $x$ be an element of $\mathcal{R}^{n}$. We say that $f$ is partially differentiable in $x$ w.r.t. $i$ if and only if:
(Def. 11) $f \cdot \operatorname{reproj}(i, x)$ is differentiable in $(\operatorname{proj}(i, n))(x)$.
Let $n$ be a non empty element of $\mathbb{N}$, let $i$ be an element of $\mathbb{N}$, let $f$ be a partial function from $\mathcal{R}^{n}$ to $\mathbb{R}$, and let $x$ be an element of $\mathcal{R}^{n}$. The functor partdiff $(f, x, i)$ yields a real number and is defined by:
(Def. 12) partdiff $(f, x, i)=(f \cdot \operatorname{reproj}(i, x))^{\prime}((\operatorname{proj}(i, n))(x))$.
We now state several propositions:
(11) $\operatorname{Proj}(i, n)=(\operatorname{proj}(1,1))^{-1} \cdot \operatorname{proj}(i, n)$.
(12) If $x=y$, then $\operatorname{reproj}(i, y) \cdot \operatorname{proj}(1,1)=\operatorname{reproj}(i, x)$.
(13) If $f=\langle g\rangle$ and $x=y$, then $\langle g \cdot \operatorname{reproj}(i, y)\rangle=f \cdot \operatorname{reproj}(i, x)$.
(14) Suppose $f=\langle g\rangle$ and $x=y$. Then $f$ is partially differentiable in $x$ w.r.t. $i$ if and only if $g$ is partially differentiable in $y$ w.r.t. $i$.
(15) If $f=\langle g\rangle$ and $x=y$ and $f$ is partially differentiable in $x$ w.r.t. $i$, then $(\operatorname{partdiff}(f, x, i))(\langle 1\rangle)=\langle\operatorname{partdiff}(g, y, i)\rangle$.
Let $m, n$ be non empty elements of $\mathbb{N}$, let $i$ be an element of $\mathbb{N}$, let $f$ be a partial function from $\mathcal{R}^{m}$ to $\mathcal{R}^{n}$, and let $x$ be an element of $\mathcal{R}^{m}$. We say that $f$ is partially differentiable in $x$ w.r.t. $i$ if and only if the condition (Def. 13) is satisfied.
(Def. 13) There exists a partial function $g$ from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and there exists a point $y$ of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $f=g$ and $x=y$ and $g$ is partially differentiable in $y$ w.r.t. $i$.
Let $m, n$ be non empty elements of $\mathbb{N}$, let $i$ be an element of $\mathbb{N}$, let $f$ be a partial function from $\mathcal{R}^{m}$ to $\mathcal{R}^{n}$, and let $x$ be an element of $\mathcal{R}^{m}$. Let us assume that $f$ is partially differentiable in $x$ w.r.t. $i$. The functor partdiff $(f, x, i)$ yielding an element of $\mathcal{R}^{n}$ is defined as follows:
(Def. 14) There exists a partial function $g$ from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and there exists a point $y$ of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $f=g$ and $x=y$ and $\operatorname{partdiff}(f, x, i)=(\operatorname{partdiff}(g, y, i))(\langle 1\rangle)$.
One can prove the following four propositions:
(16) Let $m, n$ be non empty elements of $\mathbb{N}, F$ be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, G$ be a partial function from $\mathcal{R}^{m}$ to $\mathcal{R}^{n}, x$ be a point of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$, and $y$ be an element of $\mathcal{R}^{m}$. Suppose $F=G$ and $x=y$. Then $F$ is partially differentiable in $x$ w.r.t. $i$ if and only if $G$ is partially differentiable in $y$ w.r.t. $i$.
(17) Let $m, n$ be non empty elements of $\mathbb{N}, F$ be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, G$ be a partial function from $\mathcal{R}^{m}$ to $\mathcal{R}^{n}, x$ be a point of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$, and $y$ be an element of $\mathcal{R}^{m}$. Suppose $F=G$ and $x=y$ and $F$ is partially differentiable in $x$ w.r.t. $i$. Then $(\operatorname{partdiff}(F, x, i))(\langle 1\rangle)=$ partdiff $(G, y, i)$.
(18) Let $g_{1}$ be a partial function from $\mathcal{R}^{n}$ to $\mathcal{R}^{1}$. Suppose $g_{1}=\langle g\rangle$. Then $g_{1}$ is partially differentiable in $y$ w.r.t. $i$ if and only if $g$ is partially differentiable in $y$ w.r.t. $i$.
(19) Let $g_{1}$ be a partial function from $\mathcal{R}^{n}$ to $\mathcal{R}^{1}$. Suppose $g_{1}=\langle g\rangle$ and $g_{1}$ is partially differentiable in $y$ w.r.t. $i$. Then $\operatorname{partdiff}\left(g_{1}, y, i\right)=$ $\langle\operatorname{partdiff}(g, y, i)\rangle$.

## 3. Linearity of Partial Differential Operator

For simplicity, we use the following convention: $X$ is a set, $r$ is a real number, $f, f_{1}, f_{2}$ are partial functions from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, g, g_{1}, g_{2}$ are partial functions from $\mathcal{R}^{n}$ to $\mathbb{R}, h$ is a partial function from $\mathcal{R}^{m}$ to $\mathcal{R}^{n}, x$ is a point of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle, y$ is an element of $\mathcal{R}^{n}$, and $z$ is an element of $\mathcal{R}^{m}$.

Let $m, n$ be non empty elements of $\mathbb{N}$, let $i, j$ be elements of $\mathbb{N}$, let $f$ be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and let $x$ be a point of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. We say that $f$ is partially differentiable in $x$ w.r.t. $i$ and $j$ if and only if:
(Def. 15) $\operatorname{Proj}(j, n) \cdot f \cdot \operatorname{reproj}(i, x)$ is differentiable in $(\operatorname{Proj}(i, m))(x)$.
Let $m, n$ be non empty elements of $\mathbb{N}$, let $i, j$ be elements of $\mathbb{N}$, let $f$ be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and let $x$ be a point of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$.

The functor partdiff $(f, x, i, j)$ yields a point of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ and is defined by:
(Def. 16) $\operatorname{partdiff}(f, x, i, j)=(\operatorname{Proj}(j, n) \cdot f \cdot \operatorname{reproj}(i, x))^{\prime}((\operatorname{Proj}(i, m))(x))$.
Let $m, n$ be non empty elements of $\mathbb{N}$, let $i, j$ be elements of $\mathbb{N}$, let $h$ be a partial function from $\mathcal{R}^{m}$ to $\mathcal{R}^{n}$, and let $z$ be an element of $\mathcal{R}^{m}$. We say that $h$ is partially differentiable in $z$ w.r.t. $i$ and $j$ if and only if:
(Def. 17) $\operatorname{proj}(j, n) \cdot h \cdot \operatorname{reproj}(i, z)$ is differentiable in $(\operatorname{proj}(i, m))(z)$.
Let $m, n$ be non empty elements of $\mathbb{N}$, let $i, j$ be elements of $\mathbb{N}$, let $h$ be a partial function from $\mathcal{R}^{m}$ to $\mathcal{R}^{n}$, and let $z$ be an element of $\mathcal{R}^{m}$. The functor partdiff $(h, z, i, j)$ yielding a real number is defined as follows:
(Def. 18) $\operatorname{partdiff}(h, z, i, j)=(\operatorname{proj}(j, n) \cdot h \cdot \operatorname{reproj}(i, z))^{\prime}((\operatorname{proj}(i, m))(z))$.
The following propositions are true:
(20) Let $m, n$ be non empty elements of $\mathbb{N}, F$ be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, G$ be a partial function from $\mathcal{R}^{m}$ to $\mathcal{R}^{n}, x$ be a point of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$, and $y$ be an element of $\mathcal{R}^{m}$. Suppose $F=G$ and $x=y$. Then $F$ is differentiable in $x$ if and only if $G$ is differentiable in $y$.
(21) Let $m, n$ be non empty elements of $\mathbb{N}, F$ be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, G$ be a partial function from $\mathcal{R}^{m}$ to $\mathcal{R}^{n}, x$ be a point of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$, and $y$ be an element of $\mathcal{R}^{m}$. If $F=G$ and $x=y$ and $F$ is differentiable in $x$, then $F^{\prime}(x)=G^{\prime}(y)$.
(22) If $f=h$ and $x=z$, then $\operatorname{Proj}(j, n) \cdot f \cdot \operatorname{reproj}(i, x)=\langle\operatorname{proj}(j, n) \cdot h$. $\operatorname{reproj}(i, z)\rangle$.
(23) Suppose $f=h$ and $x=z$. Then $f$ is partially differentiable in $x$ w.r.t. $i$ and $j$ if and only if $h$ is partially differentiable in $z$ w.r.t. $i$ and $j$.
(24) If $f=h$ and $x=z$ and $f$ is partially differentiable in $x$ w.r.t. $i$ and $j$, then $(\operatorname{partdiff}(f, x, i, j))(\langle 1\rangle)=\langle\operatorname{partdiff}(h, z, i, j)\rangle$.
Let $m, n$ be non empty elements of $\mathbb{N}$, let $i$ be an element of $\mathbb{N}$, let $f$ be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and let $X$ be a set. We say that $f$ is partially differentiable on $X$ w.r.t. $i$ if and only if:
(Def. 19) $\quad X \subseteq \operatorname{dom} f$ and for every point $x$ of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $x \in X$ holds $f \upharpoonright X$ is partially differentiable in $x$ w.r.t. $i$.
We now state the proposition
(25) If $f$ is partially differentiable on $X$ w.r.t. $i$, then $X$ is a subset of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$.
Let $m, n$ be non empty elements of $\mathbb{N}$, let $i$ be an element of $\mathbb{N}$, let $f$ be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and let us consider $X$. Let us assume that $f$ is partially differentiable on $X$ w.r.t. $i$. The functor $f \upharpoonright^{i} X$ yielding a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ is defined by:
(Def. 20) $\operatorname{dom}\left(f \upharpoonright^{i} X\right)=X$ and for every point $x$ of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $x \in X$ holds $\left(f \upharpoonright^{i} X\right)_{x}=\operatorname{partdiff}(f, x, i)$.
The following propositions are true:
(26) $\quad\left(f_{1}+f_{2}\right) \cdot \operatorname{reproj}(i, x)=f_{1} \cdot \operatorname{reproj}(i, x)+f_{2} \cdot \operatorname{reproj}(i, x)$ and $\left(f_{1}-f_{2}\right)$. $\operatorname{reproj}(i, x)=f_{1} \cdot \operatorname{reproj}(i, x)-f_{2} \cdot \operatorname{reproj}(i, x)$.
(27) $\quad r(f \cdot \operatorname{reproj}(i, x))=(r f) \cdot \operatorname{reproj}(i, x)$.
(28) Suppose $f_{1}$ is partially differentiable in $x$ w.r.t. $i$ and $f_{2}$ is partially differentiable in $x$ w.r.t. $i$. Then $f_{1}+f_{2}$ is partially differentiable in $x$ w.r.t. $i$ and partdiff $\left(f_{1}+f_{2}, x, i\right)=\operatorname{partdiff}\left(f_{1}, x, i\right)+\operatorname{partdiff}\left(f_{2}, x, i\right)$.
(29) Suppose $g_{1}$ is partially differentiable in $y$ w.r.t. $i$ and $g_{2}$ is partially differentiable in $y$ w.r.t. $i$. Then $g_{1}+g_{2}$ is partially differentiable in $y$ w.r.t. $i$ and partdiff $\left(g_{1}+g_{2}, y, i\right)=\operatorname{partdiff}\left(g_{1}, y, i\right)+\operatorname{partdiff}\left(g_{2}, y, i\right)$.
(30) Suppose $f_{1}$ is partially differentiable in $x$ w.r.t. $i$ and $f_{2}$ is partially differentiable in $x$ w.r.t. $i$. Then $f_{1}-f_{2}$ is partially differentiable in $x$ w.r.t. $i$ and partdiff $\left(f_{1}-f_{2}, x, i\right)=\operatorname{partdiff}\left(f_{1}, x, i\right)-\operatorname{partdiff}\left(f_{2}, x, i\right)$.
(31) Suppose $g_{1}$ is partially differentiable in $y$ w.r.t. $i$ and $g_{2}$ is partially differentiable in $y$ w.r.t. $i$. Then $g_{1}-g_{2}$ is partially differentiable in $y$ w.r.t. $i$ and partdiff $\left(g_{1}-g_{2}, y, i\right)=\operatorname{partdiff}\left(g_{1}, y, i\right)-\operatorname{partdiff}\left(g_{2}, y, i\right)$.
(32) Suppose $f$ is partially differentiable in $x$ w.r.t. $i$. Then $r f$ is partially differentiable in $x$ w.r.t. $i$ and partdiff $(r f, x, i)=r \cdot \operatorname{partdiff}(f, x, i)$.
(33) Suppose $g$ is partially differentiable in $y$ w.r.t. $i$. Then $r g$ is partially differentiable in $y$ w.r.t. $i$ and partdiff $(r g, y, i)=r \cdot \operatorname{partdiff}(g, y, i)$.

## References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[8] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[9] Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[10] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577-580, 2005.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[12] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. Formalized Mathematics, 12(3):321-327, 2004.
[13] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[14] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[16] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[17] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[18] Laurent Schwartz. Cours d'analyse. Hermann, 1981.
[19] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.
[20] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[22] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[23] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[26] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[27] Hiroshi Yamazaki, Yoshinori Fujisawa, and Yatsuka Nakamura. On replace function and swap function for finite sequences. Formalized Mathematics, 9(3):471-474, 2001.
[28] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.

Received June 6, 2007


[^0]:    ${ }^{1}$ This work has been partially supported by the MEXT grant Grant-in-Aid for Young Scientists (B) 16700156.

