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and Technology
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Summary. I have formalized the BCI-algebras closely following the book

[6], sections 1.1 to 1.3, 1.6, 2.1 to 2.3, and 2.7. In this article the general theory

of BCI-algebras and several classes of BCI-algebras are given.

MML identifier: BCIALG 1, version: 7.8.04 4.81.962

The articles [10], [4], [13], [9], [3], [12], [2], [11], [5], [7], [8], [1], and [14] provide

the notation and terminology for this paper.

1. The Basics of General Theory of BCI-algebras

We introduce BCI structures which are extensions of 1-sorted structure and

are systems

〈 a carrier, an internal complement 〉,
where the carrier is a set and the internal complement is a binary operation on

the carrier.

Let us note that there exists a BCI structure which is non empty and strict.

Let A be a BCI structure and let x, y be elements of A. The functor x \ y
yielding an element of A is defined by:

(Def. 1) x \ y = (the internal complement of A)(x, y).

We introduce BCI structures with 0 which are extensions of BCI structure

and zero structure and are systems

〈 a carrier, an internal complement, a zero 〉,
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2 yuzhong ding

where the carrier is a set, the internal complement is a binary operation on the

carrier, and the zero is an element of the carrier.

Let us note that there exists a BCI structure with 0 which is non empty and

strict.

Let I1 be a non empty BCI structure with 0 and let x be an element of I1.

The functor xc yields an element of I1 and is defined by:

(Def. 2) xc = 0(I1) \ x.
Let I1 be a non empty BCI structure with 0. We say that I1 is B if and only

if:

(Def. 3) For all elements x, y, z of I1 holds x \ y \ (z \ y) \ (x \ z) = 0(I1).

We say that I1 is C if and only if:

(Def. 4) For all elements x, y, z of I1 holds x \ y \ z \ (x \ z \ y) = 0(I1).

We say that I1 is I if and only if:

(Def. 5) For every element x of I1 holds x \ x = 0(I1).

We say that I1 is K if and only if:

(Def. 6) For all elements x, y of I1 holds x \ y \ x = 0(I1).

We say that I1 is BCI-4 if and only if:

(Def. 7) For all elements x, y of I1 such that x \ y = 0(I1) and y \ x = 0(I1) holds

x = y.

We say that I1 is BCK-5 if and only if:

(Def. 8) For every element x of I1 holds xc = 0(I1).

The BCI structure BCI-EXAMPLE with 0 is defined as follows:

(Def. 9) BCI-EXAMPLE = 〈{∅}, op2, op0〉.
Let us note that BCI-EXAMPLE is strict and non empty.

One can verify that there exists a non empty BCI structure with 0 which is

strict, B, C, I, and BCI-4.

A BCI-algebra is B C I BCI-4 non empty BCI structure with 0.

Let X be a BCI-algebra. A BCI-algebra is called a subalgebra of X if it

satisfies the conditions (Def. 10).

(Def. 10)(i) 0it = 0X ,

(ii) the carrier of it ⊆ the carrier of X, and

(iii) the internal complement of it = (the internal complement of X) � (the

carrier of it).

The following proposition is true

(1) Let X be a non empty BCI structure with 0. Then X is a BCI-algebra

if and only if the following conditions are satisfied:

(i) X is I and BCI-4, and

(ii) for all elements x, y, z of X holds x \ y \ (x \ z) \ (z \ y) = 0X and

x \ (x \ y) \ y = 0X .
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One can check that there exists a BCI-algebra which is strict and BCK-5.

A BCK-algebra is BCK-5 BCI-algebra.

Let I1 be a non empty BCI structure with 0 and let x, y be elements of I1.

The predicate x ≤ y is defined as follows:

(Def. 11) x \ y = 0(I1).

We use the following convention: X denotes a BCI-algebra, x, y, z, u, a, b

denote elements of X, and I1 denotes a non empty subset of X.

We now state a number of propositions:

(2) x \ 0X = x.

(3) If x \ y = 0X and y \ z = 0X , then x \ z = 0X .

(4) If x \ y = 0X , then x \ z \ (y \ z) = 0X and z \ y \ (z \ x) = 0X .

(5) If x ≤ y, then x \ z ≤ y \ z and z \ y ≤ z \ x.
(6) If x \ y = 0X , then (y \ x)c = 0X .

(7) x \ y \ z = x \ z \ y.
(8) x \ (x \ (x \ y)) = x \ y.
(9) (x \ y)c = xc \ yc.

(10) x \ (x \ y) \ (y \ x) \ (x \ (x \ (y \ (y \ x)))) = 0X .

(11) Let X be a non empty BCI structure with 0. Then X is a BCI-algebra

if and only if the following conditions are satisfied:

(i) X is BCI-4, and

(ii) for all elements x, y, z of X holds x \ y \ (x \ z) \ (z \ y) = 0X and

x \ 0X = x.

(12) If for every BCI-algebra X and for all elements x, y ofX holds x\(x\y) =

y \ (y \ x), then X is a BCK-algebra.

(13) If for every BCI-algebra X and for all elements x, y of X holds x\y\y =

x \ y, then X is a BCK-algebra.

(14) If for every BCI-algebra X and for all elements x, y ofX holds x\(y\x) =

x, then X is a BCK-algebra.

(15) If for every BCI-algebra X and for all elements x, y, z of X holds (x \
y) \ y = x \ z \ (y \ z), then X is a BCK-algebra.

(16) If for every BCI-algebra X and for all elements x, y of X holds x \ y \
(y \ x) = x \ y, then X is a BCK-algebra.

(17) If for every BCI-algebra X and for all elements x, y of X holds x \ y \
(x \ y \ (y \ x)) = 0X , then X is a BCK-algebra.

(18) For every BCI-algebra X holds X is K iff X is a BCK-algebra.

Let X be a BCI-algebra. The functor BCK-partX yielding a non empty

subset of X is defined by:

(Def. 12) BCK-partX = {x;x ranges over elements of X: 0X ≤ x}.
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Next we state the proposition

(19) 0X ∈ BCK-partX.

Let us consider X. Note that 0X
Next we state three propositions:

(20) For all elements x, y of BCK-partX holds x \ y ∈ BCK-partX.

(21) For every element x of X and for every element y of BCK-partX holds

x \ y ≤ x.
(22) X is a subalgebra of X.

Let X be a BCI-algebra and let I1 be a subalgebra of X. We say that I1 is

proper if and only if:

(Def. 13) I1 6= X.

Let us consider X. Note that there exists a subalgebra of X which is non

proper.

Let X be a BCI-algebra and let I1 be an element of X. We say that I1 is

atom if and only if:

(Def. 14) For every element z of X such that z \ I1 = 0X holds z = I1.

Let X be a BCI-algebra. The functor AtomSetX yields a non empty subset

of X and is defined by:

(Def. 15) AtomSetX = {x;x ranges over elements of X: x is atom}.
One can prove the following propositions:

(23) 0X ∈ AtomSetX.

(24) For every element x of X holds x ∈ AtomSetX iff for every element z

of X holds z \ (z \ x) = x.

(25) For every element x of X holds x ∈ AtomSetX iff for all elements u, z

of X holds z \ u \ (z \ x) = x \ u.
(26) For every element x of X holds x ∈ AtomSetX iff for all elements y, z

of X holds x \ (z \ y) ≤ y \ (z \ x).

(27) For every element x of X holds x ∈ AtomSetX iff for all elements y, z,

u of X holds (x \ u) \ (z \ y) ≤ y \ u \ (z \ x).

(28) For every element x of X holds x ∈ AtomSetX iff for every element z

of X holds zc \ xc = x \ z.
(29) For every element x of X holds x ∈ AtomSetX iff (xc)c = x.

(30) For every element x of X holds x ∈ AtomSetX iff for every element z

of X holds (z \ x)c = x \ z.
(31) For every element x of X holds x ∈ AtomSetX iff for every element z

of X holds ((x \ z)c)c = x \ z.
(32) For every element x of X holds x ∈ AtomSetX iff for all elements z, u

of X holds z \ (z \ (x \ u)) = x \ u.
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(33) For every element a of AtomSetX and for every element x of X holds

a \ x ∈ AtomSetX.

Let X be a BCI-algebra and let a, b be elements of AtomSetX. Then a \ b
is an element of AtomSetX.

One can prove the following propositions:

(34) For every element x of X holds xc ∈ AtomSetX.

(35) For every element x of X there exists an element a of AtomSetX such

that a ≤ x.
Let X be a BCI-algebra. We say that X is generated by atom if and only if:

(Def. 16) For every element x of X there exists an element a of AtomSetX such

that a ≤ x.
Let X be a BCI-algebra and let a be an element of AtomSetX. The functor

BranchV a yields a non empty subset of X and is defined as follows:

(Def. 17) BranchV a = {x;x ranges over elements of X: a ≤ x}.
We now state several propositions:

(36) Every BCI-algebra is generated by atom.

(37) For all elements a, b of AtomSetX and for every element x of BranchV b

holds a \ x = a \ b.
(38) For every element a of AtomSetX and for every element x of

BCK-partX holds a \ x = a.

(39) For all elements a, b of AtomSetX and for every element x of BranchV a

and for every element y of BranchV b holds x \ y ∈ BranchV(a \ b).
(40) For every element a of AtomSetX and for all elements x, y of BranchV a

holds x \ y ∈ BCK-partX.

(41) For all elements a, b of AtomSetX and for every element x of BranchV a

and for every element y of BranchV b such that a 6= b holds x \ y /∈
BCK-partX.

(42) For all elements a, b of AtomSetX such that a 6= b holds BranchV a ∩
BranchV b = ∅.

Let X be a BCI-algebra. A non empty subset of X is said to be an ideal of

X if:

(Def. 18) 0X ∈ it and for all elements x, y of X such that x \ y ∈ it and y ∈ it

holds x ∈ it.

Let X be a BCI-algebra and let I1 be an ideal of X. We say that I1 is closed

if and only if:

(Def. 19) For every element x of I1 holds xc ∈ I1.

Let us consider X. Note that there exists an ideal of X which is closed.

Next we state four propositions:

(43) {0X} is a closed ideal of X.
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(44) The carrier of X is a closed ideal of X.

(45) BCK-partX is a closed ideal of X.

(46) If I1 is an ideal of X, then for all elements x, y of X such that x ∈ I1

and y ≤ x holds y ∈ I1.

2. Associative BCI-algebras

Let I1 be a BCI-algebra. We say that I1 is associative if and only if:

(Def. 20) For all elements x, y, z of I1 holds (x \ y) \ z = x \ (y \ z).
We say that I1 is quasi-associative if and only if:

(Def. 21) For every element x of I1 holds (xc)c = xc.

We say that I1 is positive-implicative if and only if:

(Def. 22) For all elements x, y of I1 holds (x\(x\y))\(y\x) = x\(x\(y\(y\x))).

We say that I1 is weakly-positive-implicative if and only if:

(Def. 23) For all elements x, y, z of I1 holds (x \ y) \ z = x \ z \ z \ (y \ z).
We say that I1 is implicative if and only if:

(Def. 24) For all elements x, y of I1 holds (x \ (x \ y)) \ (y \ x) = y \ (y \ x).

We say that I1 is weakly-implicative if and only if:

(Def. 25) For all elements x, y of I1 holds x \ (y \ x) \ (y \ x)c = x.

We say that I1 is p-semisimple if and only if:

(Def. 26) For all elements x, y of I1 holds x \ (x \ y) = y.

We say that I1 is alternative if and only if:

(Def. 27) For all elements x, y of I1 holds x \ (x \ y) = (x \ x) \ y and (x \ y) \ y =

x \ (y \ y).

One can check that there exists a BCI-algebra which is implicative, positive-

implicative, p-semisimple, associative, weakly-implicative, and weakly-positive-

implicative.

Next we state several propositions:

(47) X is associative iff for every element x of X holds xc = x.

(48) For all elements x, y of X holds y \ x = x \ y iff X is associative.

(49) Let X be a non empty BCI structure with 0. Then X is an associative

BCI-algebra if and only if for all elements x, y, z of X holds y\x\(z\x) =

z \ y and x \ 0X = x.

(50) Let X be a non empty BCI structure with 0. Then X is an associative

BCI-algebra if and only if for all elements x, y, z of X holds x\y\(x\z) =

z \ y and xc = x.
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(51) Let X be a non empty BCI structure with 0. Then X is an associative

BCI-algebra if and only if for all elements x, y, z of X holds x\y\(x\z) =

y \ z and x \ 0X = x.

3. p-semisimple BCI-algebras

One can prove the following propositions:

(52) X is p-semisimple iff every element of X is atom.

(53) If X is p-semisimple, then BCK-partX = {0X}.
(54) X is p-semisimple iff for every element x of X holds (xc)c = x.

(55) X is p-semisimple iff for all x, y holds y \ (y \ x) = x.

(56) X is p-semisimple iff for all x, y, z holds z \ y \ (z \ x) = x \ y.
(57) X is p-semisimple iff for all x, y, z holds x \ (z \ y) = y \ (z \ x).

(58) X is p-semisimple iff for all x, y, z, u holds (x\u)\(z \y) = y\u\(z \x).

(59) X is p-semisimple iff for all x, z holds zc \ xc = x \ z.
(60) X is p-semisimple iff for all x, z holds ((x \ z)c)c = x \ z.
(61) X is p-semisimple iff for all x, u, z holds z \ (z \ (x \ u)) = x \ u.
(62) X is p-semisimple iff for every x such that xc = 0X holds x = 0X .

(63) X is p-semisimple iff for all x, y holds x \ yc = y \ xc.

(64) X is p-semisimple iff for all x, y, z, u holds (x\y)\(z \u) = x\z \(y\u).

(65) X is p-semisimple iff for all x, y, z holds x \ y \ (z \ y) = x \ z.
(66) X is p-semisimple iff for all x, y, z holds x \ (y \ z) = (z \ y) \ xc.

(67) X is p-semisimple iff for all x, y, z such that y \ x = z \ x holds y = z.

(68) X is p-semisimple iff for all x, y, z such that x \ y = x \ z holds y = z.

(69) Let X be a non empty BCI structure with 0. Then X is a p-semisimple

BCI-algebra if and only if for all elements x, y, z of X holds x\y\(x\z) =

z \ y and x \ 0X = x.

(70) Let X be a non empty BCI structure with 0. Then X is a p-semisimple

BCI-algebra if and only if X is I and for all elements x, y, z of X holds

x \ (y \ z) = z \ (y \ x) and x \ 0X = x.

4. Quasi-associative BCI-algebras

Next we state several propositions:

(71) X is quasi-associative iff for every element x of X holds xc ≤ x.
(72) X is quasi-associative iff for all elements x, y of X holds (x\y)c = (y\x)c.

(73) X is quasi-associative iff for all elements x, y of X holds xc \y = (x\y)c.
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(74) X is quasi-associative iff for all elements x, y of X holds x \ y \ (y \ x) ∈
BCK-partX.

(75) X is quasi-associative iff for all elements x, y, z of X holds (x \ y) \ z ≤
x \ (y \ z).

5. Alternative BCI-algebras

We now state several propositions:

(76) If X is alternative, then xc = x and x \ (x \ y) = y and x \ y \ y = x.

(77) If X is alternative and x \ a = x \ b, then a = b.

(78) If X is alternative and a \ x = b \ x, then a = b.

(79) If X is alternative and x \ y = 0X , then x = y.

(80) If X is alternative and x \ a \ b = 0X , then a = x \ b and b = x \ a.
One can check the following observations:

∗ every BCI-algebra which is alternative is also associative,

∗ every BCI-algebra which is associative is also alternative, and

∗ every BCI-algebra which is alternative is also implicative.

The following two propositions are true:

(81) If X is alternative, then x \ (x \ y) \ (y \ x) = x.

(82) If X is alternative, then y \ (y \ (x \ (x \ y))) = y.

6. Implicative, Positive-Implicative, and

Weakly-Positive-Implicative BCI-algebras

Let us observe that every BCI-algebra which is associative is also weakly-

positive-implicative and every BCI-algebra which is p-semisimple is also weakly-

positive-implicative.

We now state two propositions:

(83) Let X be a non empty BCI structure with 0. Then X is an implicative

BCI-algebra if and only if for all elements x, y, z of X holds x \ y \ (x \
z) \ (z \ y) = 0X and x \ 0X = x and (x \ (x \ y)) \ (y \ x) = y \ (y \ x).

(84) X is weakly-positive-implicative iff for all elements x, y of X holds x\y =

x \ y \ y \ yc.

One can verify that every BCI-algebra which is positive-implicative is also

weakly-positive-implicative and every BCI-algebra which is alternative is also

weakly-positive-implicative.

One can prove the following two propositions:

(85) Suppose X is a weakly-positive-implicative BCI-algebra. Let x, y be

elements of X. Then (x \ (x \ y)) \ (y \ x) = y \ (y \ x) \ (y \ x) \ (x \ y).
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(86) Let X be a non empty BCI structure with 0. Then X is a positive-

implicative BCI-algebra if and only if for all elements x, y, z of X holds

x \ y \ (x \ z) \ (z \ y) = 0X and x \ 0X = x and x \ y = x \ y \ y \ yc and

(x \ (x \ y)) \ (y \ x) = y \ (y \ x) \ (y \ x) \ (x \ y).
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Summary. Formal languages are introduced as subsets of the set of all

0-based finite sequences over a given set (the alphabet). Concatenation, the n-th

power and closure are defined and their properties are shown. Finally, it is shown

that the closure of the alphabet (understood here as the language of words of

length 1) equals to the set of all words over that alphabet, and that the alphabet

is the minimal set with this property. Notation and terminology were taken from

[5] and [13].

MML identifier: FLANG 1, version: 7.8.04 4.81.962

The terminology and notation used here are introduced in the following articles:

[10], [4], [11], [8], [9], [2], [14], [3], [1], [6], [12], and [7].

1. Preliminaries

For simplicity, we follow the rules: E is a set, x is a set, A, B, C, D are

subsets of Eω, a, b, c are elements of Eω, e is an element of E, i, n, n1, n2, m

are natural numbers, and p, q, r1, r2 are real numbers.

Let us consider E, a, b. Then a a b is an element of Eω.

Let us consider E. Then 〈〉E is an element of Eω.

Let E be a non empty set and let e be an element of E. Then 〈e〉 is an

element of Eω.

Let us consider E, a. Then {a} is a subset of Eω.

Let us consider E, let f be a function from N into 2E
ω
, and let us consider

n. Then f(n) is a subset of Eω.

One can prove the following propositions:

11
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(1) If {x} 6⊆ X, then {x} misses X.

(2) If n1 > 1 or n2 > 1, then n1 + n2 > 1.

(3) n > 0 iff n ≥ 1.

(4) If r1 + p ≤ r2 + q and p ≥ q, then r1 ≤ r2.

(5) If n1 + n ≤ n2 + 1 and n > 0, then n1 ≤ n2.

(6) n1 + n2 = 1 iff n1 = 1 and n2 = 0 or n1 = 0 and n2 = 1.

(7) a a b = 〈x〉 iff a = 〈〉E and b = 〈x〉 or b = 〈〉E and a = 〈x〉.
(8) For all finite 0-sequences p, q such that a = p a q holds p is an element

of Eω and q is an element of Eω.

(9) If 〈x〉 is an element of Eω, then x ∈ E.
(10) If len b = n+ 1, then there exist c, e such that len c = n and b = c a 〈e〉.
(11) If a a a = a, then a = ∅.

2. Concatenation of Languages

Let us consider E, A, B. The functor A _ B yields a subset of Eω and is

defined by:

(Def. 1) x ∈ A _ B iff there exist a, b such that a ∈ A and b ∈ B and x = a a b.
The following propositions are true:

(12) A _ B = ∅ iff A = ∅ or B = ∅.
(13) A _ {〈〉E} = A and {〈〉E}_ A = A.

(14) A _ B = {〈〉E} iff A = {〈〉E} and B = {〈〉E}.
(15) 〈〉E ∈ A_ B iff 〈〉E ∈ A and 〈〉E ∈ B.
(16) If 〈〉E ∈ B, then A ⊆ A _ B and A ⊆ B _ A.

(17) If A ⊆ C and B ⊆ D, then A _ B ⊆ C _ D.

(18) (A _ B) _ C = A_ (B _ C).

(19) A_ (B ∩C) ⊆ (A_B)∩ (A_C) and (B∩C)_A ⊆ (B_A)∩ (C_A).

(20) A _ B ∪A_ C = A_ (B ∪C) and B _ A ∪ C _ A = (B ∪ C) _ A.

(21) A _ B \ A_ C ⊆ A_ (B \ C) and B _ A \ C _ A ⊆ (B \ C) _ A.

(22) A _ B−. A_ C ⊆ A_ (B−. C) and B _ A−. C _ A ⊆ (B−. C) _ A.

3. n-th Power of a Language

Let us consider E, A, n. The functor An yields a subset of Eω and is defined

by:

(Def. 2) There exists a function c1 from N into 2E
ω

such that An = c1(n) and

c1(0) = {〈〉E} and for every i holds c1(i+ 1) = c1(i) _ A.
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Next we state a number of propositions:

(23) An+1 = (An) _ A.

(24) A0 = {〈〉E}.
(25) A1 = A.

(26) A2 = A_ A.

(27) If n ≥ 1, then (∅Eω)n = ∅.
(28) {〈〉E}n = {〈〉E}.
(29) An = {〈〉E} iff n = 0 or A = {〈〉E}.
(30) If 〈〉E ∈ A, then 〈〉E ∈ An.
(31) (An) _ A = A_ An.

(32) Am+n = (Am) _ An.

(33) (Am)n = Am·n.

(34) If 〈〉E ∈ A and n > 0, then A ⊆ An.
(35) If 〈〉E ∈ A and n > 0 and m > n, then An ⊆ Am.
(36) If A ⊆ B, then An ⊆ Bn.

(37) An ∪Bn ⊆ (A ∪B)n.

(38) (A ∩B)n ⊆ An ∩Bn.

(39) If a ∈ Cm and b ∈ Cn, then a a b ∈ Cm+n.

4. Closure of a Language

Let us consider E, A. The functor A∗ yielding a subset of Eω is defined as

follows:

(Def. 3) A∗ =
⋃{B :

∨
n B = An}.

The following propositions are true:

(40) x ∈ A∗ iff there exists n such that x ∈ An.
(41) An ⊆ A∗.
(42) If x ∈ A, then x ∈ A∗.
(43) A ⊆ A∗.
(44) A _ A ⊆ A∗.
(45) If a ∈ C∗ and b ∈ C∗, then a a b ∈ C∗.
(46) If A ⊆ C∗ and B ⊆ C∗, then A_ B ⊆ C∗.
(47) A∗ = {〈〉E} iff A = ∅ or A = {〈〉E}.
(48) 〈〉E ∈ A∗.
(49) If A∗ = {x}, then x = 〈〉E .
(50) If x ∈ Am+1, then x ∈ (A∗) _ A and x ∈ A_ A∗.

(51) If x ∈ (A∗) _ A or x ∈ A_ A∗, then x ∈ A∗.
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(52) If 〈〉E ∈ A, then A∗ = (A∗) _ A and A∗ = A_ A∗.

(53) If 〈〉E ∈ A, then A∗ = (A∗) _ An and A∗ = (An) _ A∗.

(54) A∗ = {〈〉E} ∪A_ A∗ and A∗ = {〈〉E} ∪ (A∗) _ A.

(55) A _ A∗ = (A∗) _ A.

(56) (An) _ A∗ = (A∗) _ An.

(57) If A ⊆ B∗, then An ⊆ B∗.
(58) If A ⊆ B∗, then A∗ ⊆ B∗.
(59) If A ⊆ B, then A∗ ⊆ B∗.
(60) (A∗)∗ = A∗.

(61) (A∗) _ A∗ = A∗.

(62) (An)∗ ⊆ A∗.
(63) (A∗)n ⊆ A∗.
(64) If n > 0, then (A∗)n = A∗.

(65) If A ⊆ B∗, then B∗ = (B ∪A)∗.

(66) If a ∈ A∗, then A∗ = (A ∪ {a})∗.
(67) A∗ = (A \ {〈〉E})∗.
(68) A∗ ∪B∗ ⊆ (A ∪B)∗.

(69) (A ∩B)∗ ⊆ A∗ ∩B∗.
(70) 〈x〉 ∈ A∗ iff 〈x〉 ∈ A.

5. Alphabet as a Language

Let us consider E. The functor LexE yielding a subset of Eω is defined by:

(Def. 4) x ∈ LexE iff there exists e such that e ∈ E and x = 〈e〉.
Next we state three propositions:

(71) a ∈ (LexE)len a.

(72) (LexE)∗ = Eω.

(73) If A∗ = Eω, then LexE ⊆ A.
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[2] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
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1. The Sign of a Permutation

For simplicity, we use the following convention: x, X denote sets, i, j, k, l,

n, m denote natural numbers, D denotes a non empty set, K denotes a field, a, b

denote elements of K, p1, p, q denote elements of the permutations of n-element

set, P1, P denote permutations of Seg n, F denotes a function from Seg n into

Seg n, p2, p3, q2, p4 denote elements of the permutations of (n+ 2)-element set,

and P2 denotes a permutation of Seg(n+ 2).

Let X be a set. We introduce 2SetX as a synonym of TwoElementSets(X).

The following three propositions are true:

(1) X ∈ 2Set Seg n iff there exist i, j such that i ∈ Seg n and j ∈ Seg n and

i < j and X = {i, j}.
(2) 2Set Seg 0 = ∅ and 2Set Seg 1 = ∅.
(3) For every n such that n ≥ 2 holds {1, 2} ∈ 2Set Seg n.

Let us consider n. Observe that 2Set Seg(n+ 2) is non empty and finite.

Let us consider n, x and let p1 be an element of the permutations of n-

element set. Note that p1(x) is natural.

Let us consider K. One can verify that the multiplication of K is unital and

the multiplication of K is associative.

Let us consider n, K and let p2 be an element of the permutations of (n+2)-

element set. The functor Part-sgn(p2,K) yielding a function from 2Set Seg(n+2)

into the carrier of K is defined by the condition (Def. 1).

(Def. 1) Let i, j be elements of N such that i ∈ Seg(n + 2) and j ∈ Seg(n + 2)

and i < j. Then

(i) if p2(i) < p2(j), then (Part-sgn(p2,K))({i, j}) = 1K , and

(ii) if p2(i) > p2(j), then (Part-sgn(p2,K))({i, j}) = −1K .

One can prove the following proposition

(4) Let X be an element of Fin 2Set Seg(n+2). Suppose that for every x such

that x ∈ X holds (Part-sgn(p3,K))(x) = 1K . Then (the multiplication of

K)-
∑

X Part-sgn(p3,K) = 1K .

In the sequel s denotes an element of 2Set Seg(n+ 2).

The following propositions are true:

(5) (Part-sgn(p3,K))(s) = 1K or (Part-sgn(p3,K))(s) = −1K .

(6) For all i, j such that i ∈ Seg(n + 2) and j ∈ Seg(n + 2) and i < j

and p3(i) = q2(i) and p3(j) = q2(j) holds (Part-sgn(p3,K))({i, j}) =

(Part-sgn(q2,K))({i, j}).
(7) Let X be an element of Fin 2Set Seg(n + 2), given p3, q2, and F be

a finite set such that F = {s : s ∈ X ∧ (Part-sgn(p3,K))(s) 6=
(Part-sgn(q2,K))(s)}. Then
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(i) if cardFmod2 = 0, then (the multiplication ofK)-
∑

X Part-sgn(p3,K) =

(the multiplication of K)-
∑

X Part-sgn(q2,K), and

(ii) if cardFmod2 = 1, then (the multiplication ofK)-
∑

X Part-sgn(p3,K) =

−((the multiplication of K)-
∑

X Part-sgn(q2,K)).

(8) Let P be a permutation of Seg n. Suppose P is a transposition. Let given

i, j. Suppose i < j. Then P (i) = j if and only if the following conditions

are satisfied:

(i) i ∈ domP,

(ii) j ∈ domP,

(iii) P (i) = j,

(iv) P (j) = i, and

(v) for every k such that k 6= i and k 6= j and k ∈ domP holds P (k) = k.

(9) Let given p3, q2, p4, i, j. Suppose p4 = p3 · q2 and q2 is a transpo-

sition and q2(i) = j and i < j. Let given s. If (Part-sgn(p3,K))(s) 6=
(Part-sgn(p4,K))(s), then i ∈ s or j ∈ s.

(10) Let given p3, q2, p4, i, j, K. Suppose p4 = p3 ·q2 and q2 is a transposition

and q2(i) = j and i < j and 1K 6= −1K . Then

(i) (Part-sgn(p3,K))({i, j}) 6= (Part-sgn(p4,K))({i, j}), and

(ii) for every k such that k ∈ Seg(n + 2) and i 6= k and

j 6= k holds (Part-sgn(p3,K))({i, k}) 6= (Part-sgn(p4,K))({i, k}) iff

(Part-sgn(p3,K))({j, k}) 6= (Part-sgn(p4,K))({j, k}).
Let us consider n, K and let p2 be an element of the permutations of (n+2)-

element set. The functor sgn(p2,K) yielding an element of K is defined by:

(Def. 2) sgn(p2,K) = (the multiplication of K)-
∑

Ωf
2Set Seg(n+2)

Part-sgn(p2,K).

The following propositions are true:

(11) sgn(p3,K) = 1K or sgn(p3,K) = −1K .

(12) For every element I1 of the permutations of (n+2)-element set such that

I1 = idseq(n+ 2) holds sgn(I1,K) = 1K .

(13) For all p3, q2, p4 such that p4 = p3 · q2 and q2 is a transposition holds

sgn(p4,K) = −sgn(p3,K).

(14) For every element t1 of the permutations of (n+2)-element set such that

t1 is a transposition holds sgn(t1,K) = −1K .

(15) Let P be a finite sequence of elements of An+2 and p3 be an element of

the permutations of (n+ 2)-element set such that p3 =
∏
P and for every

i such that i ∈ domP there exists an element t2 of the permutations of

(n+ 2)-element set such that P (i) = t2 and t2 is a transposition. Then

(i) if lenP mod 2 = 0, then sgn(p3,K) = 1K , and

(ii) if lenP mod 2 = 1, then sgn(p3,K) = −1K .

(16) Let given i, j, n. Suppose i < j and i ∈ Segn and j ∈ Segn. Then there

exists an element t1 of the permutations of n-element set such that t1 is a



20 karol pa̧k

transposition and t1(i) = j.

(17) Let p be an element of the permutations of (k+ 1)-element set. Suppose

p(k + 1) 6= k + 1. Then there exists an element t1 of the permutations of

(k+ 1)-element set such that t1 is a transposition and t1(p(k+ 1)) = k+ 1

and (t1 · p)(k + 1) = k + 1.

(18) Let given X, x. Suppose x /∈ X. Let p5 be a permutation of X ∪ {x}. If

p5(x) = x, then there exists a permutation p of X such that p5�X = p.

(19) Let p, q be permutations of X and p5, q1 be permutations of X ∪{x}. If

p5�X = p and q1�X = q and p5(x) = x and q1(x) = x, then (p5 · q1)�X =

p · q and (p5 · q1)(x) = x.

(20) For every element t1 of the permutations of k-element set such that t1
is a transposition holds t1 · t1 = idseq(k) and t1 = t1

−1.

(21) Let given p1. Then there exists a finite sequence P of elements of An
such that

(i) p1 =
∏
P, and

(ii) for every i such that i ∈ domP there exists an element t2 of the

permutations of n-element set such that P (i) = t2 and t2 is a transposition.

(22) K is Fanoian iff 1K 6= −1K .

(23) For every Fanoian field K holds p2 is even iff sgn(p2,K) = 1K and p2 is

odd iff sgn(p2,K) = −1K .

(24) For all p3, q2, p4 such that p4 = p3 · q2 holds sgn(p4,K) = sgn(p3,K) ·
sgn(q2,K).

(25) p is even and q is even or p is odd and q is odd iff p · q is even.

(26) (−1)sgn(p2)a = sgn(p2,K) · a.
(27) For every element t1 of the permutations of (n+2)-element set such that

t1 is a transposition holds t1 is odd.

Let us consider n. Observe that there exists a permutation of Seg(n + 2)

which is odd.

2. The Determinant of a Linear Combination of Lines

For simplicity, we follow the rules: p6 denotes a finite sequence of elements

of D, M denotes a matrix over D of dimension n × m, p7, q3 denote finite

sequences of elements of K, and A, B denote matrices over K of dimension n.

Let us consider l, n, m, D, let M be a matrix over D of dimension n×m, and

let p6 be a finite sequence of elements of D. The functor ReplaceLine(M, l, p6)

yields a matrix over D of dimension n × m and is defined as follows:

(Def. 3)(i) len ReplaceLine(M, l, p6) = lenM and width ReplaceLine(M, l, p6) =

widthM and for all i, j such that 〈〈i, j〉〉 ∈ the indices of M holds
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if i 6= l, then (ReplaceLine(M, l, p6))i,j = Mi,j and if i = l, then

(ReplaceLine(M, l, p6))l,j = p6(j) if len p6 = widthM,

(ii) ReplaceLine(M, l, p6) = M, otherwise.

Let us consider l, n, m, D, let M be a matrix over D of dimension n × m,

and let p6 be a finite sequence of elements of D. We introduce RLine(M, l, p6)

as a synonym of ReplaceLine(M, l, p6).

The following propositions are true:

(28) For all l, M , p6, i such that i ∈ Seg n holds if i = l and

len p6 = widthM, then Line(RLine(M, l, p6), i) = p6 and if i 6= l, then

Line(RLine(M, l, p6), i) = Line(M, i).

(29) For all M , p6 such that len p6 = widthM and for every element p′ of D∗

such that p6 = p′ holds RLine(M, l, p6) = Replace(M, l, p′).

(30) M = RLine(M, l,Line(M, l)).

(31) Let given l, p7, q3, p1. Suppose l ∈ Seg n and len p7 = n and

len q3 = n. Let M be a matrix over K of dimension n. Then (the mul-

tiplication of K) ~ (p1 -Path RLine(M, l, a · p7 + b · q3)) = a · ((the mul-

tiplication of K)~ (p1 -Path RLine(M, l, p7))) + b · ((the multiplication of

K)~ (p1 -Path RLine(M, l, q3))).

(32) Let given l, p7, q3, p1. Suppose l ∈ Seg n and len p7 = n and len q3 =

n. Let M be a matrix over K of dimension n. Then (the product on

paths of RLine(M, l, a · p7 + b · q3))(p1) = a · (the product on paths of

RLine(M, l, p7))(p1) + b · (the product on paths of RLine(M, l, q3))(p1).

(33) Let given l, p7, q3. Suppose l ∈ Seg n and len p7 = n and len q3 = n. Let

M be a matrix over K of dimension n. Then Det RLine(M, l, a·p7+b·q3) =

a · Det RLine(M, l, p7) + b ·Det RLine(M, l, q3).

(34) If l ∈ Segn and len p7 = n, then Det RLine(A, l, a · p7) = a ·
Det RLine(A, l, p7).

(35) If l ∈ Seg n, then Det RLine(A, l, a · Line(A, l)) = a · DetA.

(36) If l ∈ Segn and len p7 = n and len q3 = n, then Det RLine(A, l, p7 +q3) =

Det RLine(A, l, p7) + Det RLine(A, l, q3).

3. The Determinant of a Matrix with Permutated Lines and with

a Repeated Line

Let us consider n, m, D, let F be a function from Seg n into Seg n, and let

M be a matrix over D of dimension n × m. Then M · F is a matrix over D of

dimension n × m and it can be characterized by the condition:

(Def. 4) len(M ·F ) = lenM and width(M ·F ) = widthM and for all i, j, k such

that 〈〈i, j〉〉 ∈ the indices of M and F (i) = k holds (M · F )i,j = Mk,j.

The following propositions are true:
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(37)(i) The indices of M = the indices of M · F, and

(ii) for all i, j such that 〈〈i, j〉〉 ∈ the indices of M there exists k such that

F (i) = k and 〈〈k, j〉〉 ∈ the indices of M and (M · F )i,j = Mk,j.

(38) For every matrix M over D of dimension n × m and for every F and

for every k such that k ∈ Seg n holds Line(M · F, k) = M(F (k)).

(39) M · idseq(n) = M.

(40) For all p, P1, q such that q = p·P1
−1 holds p -PathA·P1 = (q -PathA)·P1.

(41) For all p, P1, q such that q = p · P1
−1 holds (the multiplication of

K)~ (p -PathA · P1) = (the multiplication of K)~ (q -PathA).

(42) For all p3, q2 such that q2 = p3
−1 holds sgn(p3,K) = sgn(q2,K).

(43) Let M be a matrix over K of dimension n+2 and given p2, P2. Suppose

p2 = P2. Let given p3, q2. Suppose q2 = p3 · P2
−1. Then (the product on

paths of M)(q2) = sgn(p2,K) · (the product on paths of M · P2)(p3).

(44) Let given p1. Then there exists a permutation P of the permutations

of n-element set such that for every element p of the permutations of

n-element set holds P (p) = p · p1.

(45) For every matrix M over K of dimension n+ 2 × n+ 2 and for all p2,

P2 such that p2 = P2 holds Det(M · P2) = sgn(p2,K) · DetM.

(46) For every matrix M over K of dimension n and for all p1, P1 such that

p1 = P1 holds Det(M · P1) = (−1)sgn(p1) DetM.

(47) Let P3 be a permutation of the permutations of n-element set and given

p1. If p1 is odd and for every p holds P3(p) = p · p1, then P3
◦{p : p is

even} = {q : q is odd}.
(48) Let given n. Suppose n ≥ 2. Then there exist finite sets O1, E1 such

that E1 = {p : p is even} and O1 = {q : q is odd} and E1 ∩ O1 = ∅ and

E1 ∪O1 = the permutations of n-element set and cardE1 = cardO1.

(49) Let given i, j. Suppose i ∈ Seg n and j ∈ Seg n and i < j. Let M be a

matrix over K of dimension n. Suppose Line(M, i) = Line(M, j). Let p,

q, t1 be elements of the permutations of n-element set. Suppose q = p · t1
and t1 is a transposition and t1(i) = j. Then (the product on paths of

M)(q) = −(the product on paths of M)(p).

(50) Let given i, j. Suppose i ∈ Seg n and j ∈ Seg n and i < j. Let M

be a matrix over K of dimension n. If Line(M, i) = Line(M, j), then

DetM = 0K .

(51) For all i, j such that i ∈ Seg n and j ∈ Seg n and i 6= j holds

Det RLine(A, i,Line(A, j)) = 0K .

(52) For all i, j such that i ∈ Seg n and j ∈ Seg n and i 6= j holds

Det RLine(A, i, a · Line(A, j)) = 0K .

(53) For all i, j such that i ∈ Seg n and j ∈ Seg n and i 6= j holds DetA =
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Det RLine(A, i,Line(A, i) + a · Line(A, j)).

(54) If F /∈ the permutations of n-element set, then Det(A · F ) = 0K .

4. The Determinant of a Product of Two Square Matrices

Let K be a non empty loop structure. The functor addFinSK yielding a

binary operation on (the carrier of K)∗ is defined as follows:

(Def. 5) For all elements p5, p3 of (the carrier of K)∗ holds (addFinSK)(p5,

p3) = p5 + p3.

LetK be an Abelian non empty loop structure. One can verify that addFinSK

is commutative.

Let K be an add-associative non empty loop structure. Note that addFinSK

is associative.

The following propositions are true:

(55) Let A, B be matrices over K. Suppose widthA = lenB and lenB > 0.

Let given i. Suppose i ∈ Seg lenA. Then there exists a finite sequence P

of elements of (the carrier of K)∗ such that lenP = lenB and Line(A ·
B, i) = addFinSK � P and for every j such that j ∈ Seg lenB holds

P (j) = Ai,j · Line(B, j).

(56) Let A, B, C be matrices over K of dimension n and given i. Sup-

pose i ∈ Seg n. Then there exists a finite sequence P of elements of

K such that lenP = n and Det RLine(C, i,Line(A · B, i)) = the ad-

dition of K � P and for every j such that j ∈ Seg n holds P (j) =

Ai,j · Det RLine(C, i,Line(B, j)).

(57) Let X be a set, Y be a non empty set, and given x. Suppose x /∈ X.
Then there exists a function B1 from [: Y X , Y :] into Y X∪{x} such that

(i) B1 is bijective, and

(ii) for every function f from X into Y and for every function F from

X ∪ {x} into Y such that F �X = f holds B1(〈〈f, F (x)〉〉) = F.

(58) Let X be a finite set, Y be a non empty finite set, and given x. Suppose

x /∈ X. Let F be a binary operation on D. Suppose F is commutative and

associative and has a unity and an inverse operation. Let f be a function

from Y X into D and g be a function from Y X∪{x} into D. Suppose that for

every function H from X into Y and for every element S1 of Fin(Y X∪{x})
such that S1 = {h;h ranges over functions from X∪{x} into Y : h�X = H}
holds F -

∑
S1
g = f(H). Then F -

∑
Ωf
Y X

f = F -
∑

Ωf

Y X∪{x}
g.

(59) Let A, B be matrices over D of dimension n × m and given i. Suppose

i ≤ n and 0 < n. Let F be a function from Seg i into Seg n. Then there

exists a matrix M over D of dimension n × m such that M = A+·(B ·
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(idseq(n)+·F ))� Seg i and for every j holds if j ∈ Seg i, then M(j) =

B(F (j)) and if j /∈ Seg i, then M(j) = A(j).

(60) Let A, B be matrices over K of dimension n. Suppose 0 < n. Then there

exists a function P from (Seg n)Seg n into the carrier of K such that

(i) for every function F from Seg n into Seg n there exists a finite sequence

P4 of elements of K such that lenP4 = n and for all natural numbers F1, j

such that j ∈ Segn and F1 = F (j) holds P4(j) = Aj,F1 and P (F ) = ((the

multiplication of K)~ (P4)) · Det(B · F ), and

(ii) Det(A · B) = (the addition of K)-
∑

Ωf
(Seg n)Seg n

P.

(61) Let A, B be matrices over K of dimension n. Suppose 0 < n. Then

there exists a function P from the permutations of n-element set into the

carrier of K such that

(i) Det(A · B) = (the addition of K)-
∑

Ωf
the permutations of n-element set

P, and

(ii) for every element p1 of the permutations of n-element set holds P (p1) =

((the multiplication of K)~ (p1 -PathA)) · (−1)sgn(p1) DetB.

(62) For all matrices A, B over K of dimension n such that 0 < n holds

Det(A · B) = DetA · DetB.
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[4] Czes law Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
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[11] Czes law Byliński. Semigroup operations on finite subsets. Formalized Mathematics,

1(4):651–656, 1990.
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[16] Eugeniusz Kusak, Wojciech Leończuk, and Micha l Muzalewski. Abelian groups, fields

and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
[17] Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137–144,

1996.
[18] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.



basic properties of determinants . . . 25

[19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329–334, 1990.

[20] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics,
1(2):369–376, 1990.

[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[22] Andrzej Trybulec and Agata Darmochwa l. Boolean domains. Formalized Mathematics,
1(1):187–190, 1990.

[23] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics,
1(5):979–981, 1990.

[24] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[25] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–

296, 1990.
[26] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized

Mathematics, 2(1):41–47, 1991.
[27] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[29] Hiroshi Yamazaki, Yoshinori Fujisawa, and Yatsuka Nakamura. On replace function and

swap function for finite sequences. Formalized Mathematics, 9(3):471–474, 2001.
[30] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matri-

ces. Formalized Mathematics, 13(4):541–547, 2005.
[31] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field.

Formalized Mathematics, 3(2):205–211, 1992.
[32] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a

field. Formalized Mathematics, 4(1):1–8, 1993.

Received March 21, 2007




