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The articles [20], [15], [14], [8], [6], [1], [18], [13], [19], [17], [3], [11], [4], [12], [2],
[10], [16], [5], and [7] provide the notation and terminology for this paper.

1. LowER TOPOLOGY

Let T be a non empty FR-structure. We say that T is lower if and only if:
(Def. 1) {—Tx : x ranges over elements of T} is a prebasis of T'.

Let us note that every non empty reflexive topological space-like FR-structure
which is trivial is also lower.

One can verify that there exists a top-lattice which is lower, trivial, complete,
and strict.

We now state the proposition

(1) For every non empty relational structure L; holds there exists a strict
correct topological augmentation of L; which is lower.

We now state the proposition

(2) Let Lo, L3 be topological space-like lower non empty FR-structures.
Suppose the relational structure of Lo = the relational structure of Ls.
Then the topology of Lo = the topology of Ls.

IThis work has been partially supported by KBN grant 8 T11C 018 12 and NATO CRG
951368 grant.
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Let R be a non empty relational structure. The functor w(R) yielding a
family of subsets of R is defined by:

(Def. 2) For every lower correct topological augmentation 7" of R holds w(R) =
the topology of T'.

Next we state a number of propositions:

(3) Let Ry, Ry be non empty relational structures. Suppose the relational
structure of Ry = the relational structure of Ry. Then w(R;) = w(R2).

(4) For every lower non empty FR-structure 7" and for every point x of T’
holds —Tx is open and Tz is closed.

(5) For every transitive lower non empty FR-structure 7" and for every subset
A of T such that A is open holds A is lower.

(6) For every transitive lower non empty FR-structure 7" and for every subset
A of T such that A is closed holds A is upper.

(7) Let T be a non empty topological space-like FR-structure. Then T is
lower if and only if {—TF; F ranges over subsets of T F' is finite} is a
basis of T'.

(8) Let S, T be lower complete top-lattices and f be a map from S into T
Suppose that for every non empty subset X of S holds f preserves inf of
X. Then f is continuous.

(9) Let S, T be lower complete top-lattices and f be a map from S into T
If f is infs-preserving, then f is continuous.
(10) Let T be a lower complete top-lattice, By be a prebasis of T', and F' be a

non empty filtered subset of T'. Suppose that for every subset A of T such
that A € By and inf F € A holds F meets A. Then inf F € F.

(11) Let S, T be lower complete top-lattices and f be a map from S into 7.
If f is continuous, then f is filtered-infs-preserving.

(12) Let S, T be lower complete top-lattices and f be a map from S into
T. Suppose f is continuous and for every finite subset X of S holds f
preserves inf of X. Then f is infs-preserving.

(13) Let T be a lower topological space-like reflexive transitive non empty
FR-structure and x be a point of 7. Then {z} = T=z.

A top-poset is a topological space-like reflexive transitive antisymmetric FR-
structure.
One can check that every non empty top-poset which is lower is also Tj.
Let R be a lower-bounded non empty relational structure. One can verify
that every topological augmentation of R is lower-bounded.
We now state four propositions:
(14) Let S, T be non empty relational structures, s be an element of S, and ¢
be an element of 7. Then —1(s, t) = [ —1s, the carrier of T'JU[ the carrier
of S, —1t].
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(15) Let S, T be lower-bounded non empty posets, S’ be a lower correct
topological augmentation of S, and 7" be a lower correct topological au-
gmentation of 7. Then w(} S, T']) = the topology of [S’, (T” qua non
empty topological space) ].

(16) Let S, T be lower lower-bounded non empty top-posets. Then w(} S,
(T qua poset) ]) = the topology of [ S, (T qua non empty topological
space) .

(17) Let T, Ty be lower complete top-lattices. Suppose T5 is a topological
augmentation of [T, (T qua lattice) ]. Let f be a map from 7% into T'. If
f =7, then f is continuous.

2. REFINEMENTS REVISITED

The scheme TopInd deals with a top-lattice A and and states that:
For every subset A of A such that A is open holds P[A]
provided the following conditions are met:
e There exists a prebasis K of A such that for every subset A of A
such that A € K holds P[A],
e For every family F' of subsets of A such that for every subset A
of A such that A € F holds P[A] holds P[ F],
e For all subsets A;, Az of A such that P[A;] and P[A3] holds
P[Al N AQ], and
o PlQ4l.
One can prove the following proposition
(18) Let Lo, L3 be up-complete antisymmetric non empty reflexive relational
structures. Suppose that
(i)  the relational structure of Ly = the relational structure of L3, and
(i)  for every element x of Ly holds |z is directed and non empty.
If Lo satisfies axiom of approximation, then L3 satisfies axiom of approxi-
mation.

Let T be a continuous non empty poset. One can verify that every topological
augmentation of 1" is continuous.
The following propositions are true:
(19) Let T, S be topological spaces, R be a refinement of 7" and S, and W be
a subset of R. If W € the topology of T' or W € the topology of S, then
W is open.
(20) Let T, S be topological spaces, R be a refinement of 7" and S, V be a
subset of T, and W be a subset of R. If W = V, then if V is open, then
W is open.
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(21) Let T, S be topological spaces. Suppose the carrier of T' = the carrier
of S. Let R be a refinement of T" and S, V be a subset of T, and W be a
subset of R. If W =V, then if V is closed, then W is closed.

(22) Let T be a non empty topological space and K, O be sets such that
K C O and O C the topology of T. Then
(i) if K is a basis of T, then O is a basis of T', and
(ii) if K is a prebasis of T', then O is a prebasis of T'.

(23) Let T1, T3 be non empty topological spaces. Suppose the carrier of T} =
the carrier of 7. Let T be a refinement of 77 and T, By be a prebasis of
T1, and Bs be a prebasis of T5. Then Bs U Bj is a prebasis of T

(24) Let T3, S1, To, S2 be non empty topological spaces, Ry be a refinement of
T7 and S7, Ro be a refinement of T5 and So, f be a map from T} into 15, ¢
be a map from S7 into S9, and h be a map from Ry into Ro. Suppose h = f
and h = g. If f is continuous and g is continuous, then h is continuous.

(25) Let T be a non empty topological space, K be a prebasis of T, N be a
net in T', and p be a point of T'. Suppose that for every subset A of T" such
that p € A and A € K holds N is eventually in A. Then p € Lim N.

(26) Let T be a non empty topological space, N be a net in T, and S be a
subset of T. If N is eventually in S, then Lim N C S.

(27) Let R be a non empty relational structure and X be a non empty subset
of R. Then the mapping of (X;id) = idy and the mapping of (X°P;id) =
idy.

(28) For every reflexive antisymmetric non empty relational structure R and
for every element x of R holds Tz N |z = {z}.

3. LAWSON TOPOLOGY

Let T be a reflexive non empty FR-structure. We say that T is Lawson if
and only if:

(Def. 3) w(T)Uo(T) is a prebasis of T
Next we state the proposition

(29) Let R be a complete lattice, L1 be a lower correct topological augmenta-
tion of R, S be a Scott topological augmentation of R, and 1" be a correct
topological augmentation of R. Then T is Lawson if and only if T is a
refinement of S and Lq.

Let R be a complete lattice. One can check that there exists a topological
augmentation of R which is Lawson, strict, and correct.
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Let us observe that there exists a top-lattice which is Scott, complete, and
strict and there exists a complete strict top-lattice which is Lawson and conti-
nuous.

We now state three propositions:

(30) For every Lawson complete top-lattice 7' holds o(7T") U {—1z : = ranges
over elements of T'} is a prebasis of 7.

(31) Let T be a Lawson complete top-lattice. Then o(T)U{W \ Tx; W ranges
over subsets of T', = ranges over elements of T: W € ¢(T)} is a prebasis
of T.

(32) Let T be a Lawson complete top-lattice. Then {W \ TF; W ranges over
subsets of T, F' ranges over subsets of T: W € o(T) A F is finite} is a
basis of T'.

Let T' be a complete lattice. The functor A(T') yields a family of subsets of
T and is defined as follows:

(Def. 4) For every Lawson correct topological augmentation .S of 7" holds A\(T") =
the topology of S.

We now state a number of propositions:
(33) For every complete lattice R holds A(R) = UniCl(FinMeetCl(c(R) U
w(R))).
(34) Let R be a complete lattice, T be a lower correct topological augmenta-

tion of R, S be a Scott correct topological augmentation of R, and M be
a refinement of S and 7. Then A(R) = the topology of M.

(35) For every lower up-complete top-lattice 7' and for every subset A of T
such that A is open holds A has the property (S).

(36) For every Lawson complete top-lattice T and for every subset A of T’
such that A is open holds A has the property (S).

(37) Let S be a Scott complete top-lattice, T' be a Lawson correct topological
augmentation of S, and A be a subset of S. If A is open, then for every
subset C of T such that C' = A holds C is open.

(38) Let T be a Lawson complete top-lattice and = be an element of T'. Then
Tz is closed and |z is closed and {x} is closed.

(39) For every Lawson complete top-lattice T" and for every element x of T
holds —Tx is open and — |« is open and —{z} is open.

(40) For every Lawson complete continuous top-lattice 7" and for every ele-
ment x of T" holds fx is open and —fx is closed.

(41) Let S be a Scott complete top-lattice, T' be a Lawson correct topological

augmentation of S, and A be an upper subset of T'. If A is open, then for
every subset C' of S such that C' = A holds C is open.

(42) Let T be a Lawson complete top-lattice and A be a lower subset of T
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Then A is closed if and only if A is closed under directed sups.
(43) For every Lawson complete top-lattice 7" and for every non empty filtered
subset F' of T holds Lim(F°P;id) = {inf F'}.
Let us observe that every complete top-lattice which is Lawson is also T}
and compact.
Let us observe that every complete continuous top-lattice which is Lawson
is also Hausdorff.
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The terminology and notation used here are introduced in the following articles:
(23], [19], [18], [7], [8], 6], [1], [2], [21], [13], [20], [17], [24], [25], [22], [11], [16],
[4], [10], [5], [3], [14], [26], [15], and [9].

1. PRELIMINARIES

The following two propositions are true:
(1) For every set X and for every subset S of Ax holds 71(S) = m2(S5).
(2) For all non empty sets X, Y and for every function f from X into Y
holds | f, f]7'(Ay) is an equivalence relation of X.

Let Ly, Lo, T1, T be relational structures, let f be a map from L; into 717,
and let g be a map from Ly into T. Then [ f, g is a map from [ Ly, L2 | into
FTh, To .

One can prove the following propositions:

!This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.
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(3) For all functions f, g and for every set X holds m(} f, ¢1°X) C fomi(X)
and mo(f f, g1°X) C ¢°ma(X).

(4) For all functions f, g and for every set X such that X C [dom f, domg ]
holds 7 (E £, 91°X) = fom(X) and ma(E £, 91°X) = g°ma(X).

(5) For every non empty antisymmetric relational structure S such that inf
() exists in S holds S is upper-bounded.

(6) For every non empty antisymmetric relational structure S such that sup
() exists in S holds S is lower-bounded.

(7) Let L1, Ly be antisymmetric non empty relational structures and D be
asubset of [ Ly, Lo ). If inf D exists in [ Ly, Lo ], then inf D = (inf w1 (D),
inf 2 (D )) .

(8) Let Ly, Ly be antisymmetric non empty relational structures and D be a
subset of [ L1, Lo . If sup D exists in | L1, L2 {, then sup D = (sup 71 (D),
sup ma(D)).

(9) Let Ly, Lo, T, T> be antisymmetric non empty relational structures, f
be a map from L; into 71, and g be a map from Ly into T5. Suppose f is
infs-preserving and g is infs-preserving. Then [ f, g ] is infs-preserving.

(10) Let Ly, Lo, Ty, T be antisymmetric reflexive non empty relational struc-
tures, f be a map from Lq into 77, and g be a map from L into T5. Suppose
f is filtered-infs-preserving and ¢ is filtered-infs-preserving. Then | f, g ]
is filtered-infs-preserving.

(11) Let Ly, Lo, T1, T» be antisymmetric non empty relational structures, f
be a map from L; into 77, and g be a map from Lo into T5. Suppose f is
sups-preserving and g is sups-preserving. Then [ f, g is sups-preserving.

(12) Let Ly, Lo, Th, T be antisymmetric reflexive non empty relational struc-
tures, f be a map from L4 into T, and g be a map from Lo into T5. Suppose
f is directed-sups-preserving and ¢ is directed-sups-preserving. Then | f,
g1 is directed-sups-preserving.

(13) Let L be an antisymmetric non empty relational structure and X be a
subset of [ L, L]. Suppose X C Athe carrier of  and inf X exists in [ L,
L ] Then inf X € Athe carrier of L-

(14) Let L be an antisymmetric non empty relational structure and X be a
subset of [ L, L]. Suppose X C Athe carrier of  and sup X exists in [ L,
L ] Then SupX S Athe carrier of L-

(15) Let L, M be non empty relational structures. If L and M are isomorphic
and L is reflexive, then M is reflexive.

(16) Let L, M be non empty relational structures. If L and M are isomorphic
and L is transitive, then M is transitive.

(17) Let L, M be non empty relational structures. Suppose L and M are
isomorphic and L is antisymmetric. Then M is antisymmetric.



KERNEL PROJECTIONS AND QUOTIENT LATTICES

(18) Let L, M be non empty relational structures. If L and M are isomorphic
and L is complete, then M is complete.

(19) Let L be a non empty transitive relational structure and k£ be a map
from L into L. If k is infs-preserving, then k° is infs-preserving.

(20) Let L be a non empty transitive relational structure and k be a map from
L into L. If k is filtered-infs-preserving, then k° is filtered-infs-preserving.

(21) Let L be a non empty transitive relational structure and k£ be a map
from L into L. If k is sups-preserving, then k° is sups-preserving.

(22) Let L be a non empty transitive relational structure and k be a map
from L into L. If k is directed-sups-preserving, then k° is directed-sups-
preserving.

(23) Let S, T be reflexive antisymmetric non empty relational structures and
f be a map from S into T. If f is directed-sups-preserving, then f is
monotone.

(24) Let S, T be reflexive antisymmetric non empty relational structures and
f be a map from S into T If f is filtered-infs-preserving, then f is mono-
tone.

(25) Let S, T be non empty relational structures and f be a map from S into
T. Suppose f is monotone. Let X be a subset of S. If X is filtered, then
f°X is filtered.

(26) Let Ly, Lo, L3 be non empty relational structures, f be a map from L;
into Lo, and g be a map from Lo into L3. Suppose f is infs-preserving and
g is infs-preserving. Then g - f is infs-preserving.

(27) Let Ly, Lo, L3 be non empty reflexive antisymmetric relational structu-
res, f be a map from L; into Lo, and g be a map from Lo into Ls. Suppose
f is filtered-infs-preserving and g is filtered-infs-preserving. Then g - f is
filtered-infs-preserving.

(28) Let Ly, Lo, L3 be non empty relational structures, f be a map from L
into Lg, and g be a map from Ls into L3. Suppose f is sups-preserving
and g is sups-preserving. Then ¢ - f is sups-preserving.

(29) Let Ly, Lo, L3 be non empty reflexive antisymmetric relational structu-
res, f be a map from L; into Lo, and g be a map from Lo into L. Suppose
f is directed-sups-preserving and g is directed-sups-preserving. Then g - f
is directed-sups-preserving.

171
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2. SOME REMARKS ON LATTICE PRODUCT

We now state several propositions:

(30) Let I be a non empty set and J be a relational structure yielding no-
nempty many sorted set indexed by I. Suppose that for every element ¢ of
I holds J(7) is a lower-bounded antisymmetric relational structure. Then
[ is lower-bounded.

(31) Let I be a non empty set and J be a relational structure yielding no-
nempty many sorted set indexed by I. Suppose that for every element ¢
of I holds J(i) is an upper-bounded antisymmetric relational structure.
Then [] J is upper-bounded.

(32) Let I be a non empty set and J be a relational structure yielding no-
nempty many sorted set indexed by I. Suppose that for every element ¢
of I holds J(7) is a lower-bounded antisymmetric relational structure. Let
i be an element of I. Then 1@ ;(i) = L@

(33) Let I be a non empty set and J be a relational structure yielding no-
nempty many sorted set indexed by I. Suppose that for every element i of
I holds J(7) is an upper-bounded antisymmetric relational structure. Let
i be an element of 1. Then TR ;(i) = T16)-

(34) Let I be a non empty set and J be a relational structure yielding no-
nempty reflexive-yielding many sorted set indexed by I. Suppose that for
every element ¢ of I holds J(i) is a continuous complete lattice. Then [ .J
is continuous.

3. KERNEL PROJECTIONS AND QUOTIENT LATTICES

We now state the proposition
(35) Let L, T be continuous complete lattices, g be a CLHomomorphism
of L, T, and S be a subset of the carrier of [ L, L]. Suppose S = |y,
917 H(Athe carrier of ) Then sub(S) is a continuous subframe of [ L, L.
Let L be a relational structure and let R be a subset of the carrier of [ L, L.
Let us assume that R is an equivalence relation of the carrier of L. The functor
EqRel(R) yields an equivalence relation of the carrier of L and is defined by:
(Def. 1) EqRel(R) = R.
Let L be a non empty relational structure and let R be a subset of [ L, L.
We say that R is a continuous lattice congruence if and only if:

(Def. 2) R is an equivalence relation of the carrier of L and sub(R) is a continuous
subframe of [ L, L.
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We now state the proposition
(36) Let L be a complete lattice and R be a non empty subset of [ L, L.
Suppose R is a continuous lattice congruence. Let x be an element of the
carrier of L. Then (inf([z]g pe(r)): z) € R.

Let L be a complete lattice and let R be a non empty subset of [ L, L. Let
us assume that R is a continuous lattice congruence. The kernel operation of R
yields a kernel map from L into L and is defined by:

(Def. 3) For every element x of L holds (the kernel operation of R)(z) =
inf([x]EqRel(R))'

Next we state three propositions:

(37) Let L be a complete lattice and R be a non empty subset of [ L, L.
Suppose R is a continuous lattice congruence. Then
(i)  the kernel operation of R is directed-sups-preserving, and
(i) R = [the kernel operation of R, the kernel operation of
R ﬂ_l(Athe carrier of L)'
(38) Let L be a continuous complete lattice, R be a subset of [ L, L], and k
be a kernel map from L into L. Suppose k is directed-sups-preserving and
R = [k, k] (Athe carrier of 1) Then there exists a continuous complete
strict lattice L4 such that
(i)  the carrier of Ly = Classes EqRel(R),
(i)  the internal relation of Ly = {([z]gqrei(r): [Y]Eqrel(r)); ¢ Tanges over
elements of L, y ranges over elements of L: k(x) < k(y)}, and
(ili) for every map ¢ from L into L4 such that for every element x of L holds
9(x) = [2]pqrei(r) holds g is a CLHomomorphism of L, Ly.
(39) Let L be a continuous complete lattice and R be a subset of [ L, L.
Suppose that
(i) R is an equivalence relation of the carrier of L, and
(ii)  there exists a continuous complete lattice Ly such that the carrier of
L4 = Classes EqRel(R) and for every map ¢ from L into Ly such that for
every element z of L holds g(x) = [x]EqRel( R) holds g is a CLHomomor-
phism of L, Ly.
Then sub(R) is a continuous subframe of [ L, L].

Let L be a non empty reflexive relational structure. Observe that there exists
a map from L into L which is directed-sups-preserving and kernel.

Let L be a non empty reflexive relational structure and let k be a kernel
map from L into L. The kernel congruence of k yields a non empty subset of
FL, L] and is defined by:

(Def. 4) The kernel congruence of k = [k, k71 (Athe carrier of L)-

We now state two propositions:
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(40) Let L be a non empty reflexive relational structure and k be a kernel
map from L into L. Then the kernel congruence of k is an equivalence
relation of the carrier of L.

(41) Let L be a continuous complete lattice and k be a directed-sups-
preserving kernel map from L into L. Then the kernel congruence of k
is a continuous lattice congruence.

Let L be a continuous complete lattice and let R be a non empty subset of
FL, L]. Let us assume that R is a continuous lattice congruence. The functor
L /g yielding a continuous complete strict lattice is defined by:

(Def. 5) The carrier of ©/p = Classes EqRel(R) and for all elements x, y of £/g
holds = < y iff [ [pz < [ |ry.

The following propositions are true:

(42) Let L be a continuous complete lattice and R be a non empty subset
of [ L, L. Suppose R is a continuous lattice congruence. Let x be a set.
Then z is an element of '/ if and only if there exists an element gy of L
such that @ = [Y]prei(r)-

(43) Let L be a continuous complete lattice and R be a non empty subset

of [ L, L. Suppose R is a continuous lattice congruence. Then R = the
kernel congruence of the kernel operation of R.

(44) Let L be a continuous complete lattice and k be a directed-sups-
preserving kernel map from L into L. Then k = the kernel operation
of the kernel congruence of k.

(45) Let L be a continuous complete lattice and p be a projection map from
L into L. Suppose p is infs-preserving. Then Imp is a continuous lattice
and Im p is infs-inheriting.
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[14], and [5] provide the terminology and notation for this paper.

1. SEMILATTICE HOMOMORPHISM AND INHERITANCE

Let S, T be semilattices. Let us assume that if S is upper-bounded, then T’
is upper-bounded. A map from S into T is said to be a semilattice morphism
from S into T if:

(Def. 1) For every finite subset X of S holds it preserves inf of X.

Let S, T be semilattices. One can check that every map from .S into 7" which
is meet-preserving is also monotone.

Let S be a semilattice and let T" be an upper-bounded semilattice. One can
check that every semilattice morphism from S into 7' is meet-preserving.

Next we state a number of propositions:

(1) For all upper-bounded semilattices S, T and for every semilattice mor-
phism f from S into T holds f(Tg) = Tr.

(2) Let S, T be semilattices and f be a map from S into T. Suppose f is
meet-preserving. Let X be a finite non empty subset of S. Then f preserves
inf of X.
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(3) Let S, T be upper-bounded semilattices and f be a meet-preserving map
from S into T. If f(Tg) = Ty, then f is a semilattice morphism from S
into T

(4) Let S, T be semilattices and f be a map from S into T'. Suppose f is
meet-preserving and for every filtered non empty subset X of S holds f

preserves inf of X. Let X be a non empty subset of S. Then f preserves
inf of X.

(5) Let S, T be semilattices and f be a map from S into T'. Suppose f is
infs-preserving. Then f is a semilattice morphism from S into 7.
(6) Let Sy, T1, Sa, To be non empty relational structures. Suppose that
(i)  the relational structure of S; = the relational structure of S, and
(ii)  the relational structure of T} = the relational structure of Tb.
Let fi; be a map from S; into 77 and fo be a map from S into 75 such
that f; = fs. Then
(iii)  if fy is infs-preserving, then f5 is infs-preserving, and
(iv) if f1 is directed-sups-preserving, then f; is directed-sups-preserving.
(7) Let Sy, Ty, S2, T» be non empty relational structures. Suppose that
(i)  the relational structure of S; = the relational structure of Sz, and
(ii)  the relational structure of T = the relational structure of T.

Let fi be a map from Sy into 77 and fo be a map from Ss into 75 such
that f1 = f2. Then

(iii)  if fy is sups-preserving, then f; is sups-preserving, and

(iv) if fi is filtered-infs-preserving, then f; is filtered-infs-preserving.

(8) Let T be a complete lattice and S be an infs-inheriting full non empty
relational substructure of T'. Then incl(S,T") is infs-preserving.

(9) Let T be a complete lattice and S be a sups-inheriting full non empty
relational substructure of T'. Then incl(S,T) is sups-preserving.

(10) Let T be an up-complete non empty poset and S be a directed-sups-
inheriting full non empty relational substructure of 7'. Then incl(S,T) is
directed-sups-preserving.

(11) Let T be a complete lattice and S be a filtered-infs-inheriting full
non empty relational substructure of 7. Then incl(S,T") is filtered-infs-
preserving.

(12) Let T1, T», R be relational structures and S be a relational substructure
of T1. Suppose that

(i)  the relational structure of T = the relational structure of 7%, and

(ii)  the relational structure of S = the relational structure of R.
Then R is a relational substructure of Ty and if .S is full, then R is a full
relational substructure of T5.
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(13) Every non empty relational structure 7' is an infs-inheriting sups-
inheriting full relational substructure of 7'

Let T be a complete lattice. Observe that there exists a continuous subframe
of T' which is complete.
We now state a number of propositions:
(14) Let T be a semilattice and S be a full non empty relational substructure

of T. Then S is meet-inheriting if and only if for every finite non empty
subset X of S holds [ |rX € the carrier of S.

(15) Let T be a sup-semilattice and S be a full non empty relational sub-
structure of T'. Then S is join-inheriting if and only if for every finite non
empty subset X of S holds | | X € the carrier of S.

(16) Let T be an upper-bounded semilattice and S be a meet-inheriting full
non empty relational substructure of T'. Suppose T € the carrier of S
and S is filtered-infs-inheriting. Then S is infs-inheriting.

(17) Let T be a lower-bounded sup-semilattice and S be a join-inheriting full
non empty relational substructure of T'. Suppose Lp € the carrier of S
and S is directed-sups-inheriting. Then S is sups-inheriting.

(18) Let T be a complete lattice and S be a full non empty relational sub-
structure of T'. If S is infs-inheriting, then S is complete.

(19) Let T be a complete lattice and S be a full non empty relational sub-
structure of T'. If S is sups-inheriting, then .S is complete.

(20) Let T1, T> be non empty relational structures, S; be a non empty full
relational substructure of 77, and Sy be a non empty full relational sub-
structure of T5. Suppose that

(i)  the relational structure of 77 = the relational structure of T3, and
(ii)  the carrier of S; = the carrier of Ss.
If S; is infs-inheriting, then S5 is infs-inheriting.

(21) Let Ty, T> be non empty relational structures, S; be a non empty full
relational substructure of 77, and S5 be a non empty full relational sub-
structure of T5. Suppose that

(i)  the relational structure of 77 = the relational structure of 75, and
(ii)  the carrier of S; = the carrier of Ss.
If S is sups-inheriting, then S5 is sups-inheriting.

(22) Let T1, T» be non empty relational structures, S; be a non empty full
relational substructure of 77, and Sy be a non empty full relational sub-
structure of T5. Suppose that

(i)  the relational structure of 77 = the relational structure of Ts, and
(ii)  the carrier of S; = the carrier of Ss.
If Sy is directed-sups-inheriting, then Ss is directed-sups-inheriting.
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(23) Let T1, T» be non empty relational structures, S; be a non empty full
relational substructure of 737, and S5 be a non empty full relational sub-
structure of T5. Suppose that

(i)  the relational structure of 71 = the relational structure of T, and
(ii)  the carrier of Sy = the carrier of Ss.
If S, is filtered-infs-inheriting, then S5 is filtered-infs-inheriting.

2. NETS AND LIMITS

The following proposition is true

(24) Let S, T be non empty topological spaces, N be a net in S, and f be a
map from S into 7. If f is continuous, then f°Lim N C Lim(f - N).

Let T be a non empty relational structure and let NV be a non empty net
structure over T'. Let us observe that N is antitone if and only if:

(Def. 2) For all elements i, j of N such that ¢ < j holds N(i) > N(j).

Let T be a non empty reflexive relational structure and let x be an element
of T. Observe that ({z}°P;id) is transitive directed monotone and antitone.

Let T be a non empty reflexive relational structure. Note that there exists
a net in 7" which is monotone, antitone, reflexive, and strict.

Let T be a non empty relational structure and let F' be a non empty subset
of T. Note that (F°P;id) is antitone.

Let S, T be non empty reflexive relational structures, let f be a monotone
map from S into 7', and let N be an antitone non empty net structure over S.
Note that f - N is antitone.

We now state a number of propositions:

(25) Let S be a complete lattice and N be a net in S. Then {[ Js{N(i);?
ranges over elements of the carrier of N: ¢ > j} : j ranges over elements
of the carrier of N} is a directed non empty subset of S.

(26) Let S be a non empty poset and N be a monotone reflexive net in S.
Then {[ |s{N(i);i ranges over elements of the carrier of N: i > j} : j
ranges over elements of the carrier of N} is a directed non empty subset
of S.

(27) Let S be a non empty 1-sorted structure, N be a non empty net struc-
ture over S, and X be a set. If rng (the mapping of N) C X, then N is
eventually in X.

(28) For every inf-complete non empty poset R and for every non empty
filtered subset F' of R holds liminf(F°P;id) = inf F.



LAWSON TOPOLOGY IN CONTINUOUS LATTICES 181

(29) Let S, T be inf-complete non empty posets, X be a non empty filtered
subset of S, and f be a monotone map from S into 7. Then liminf(f -
(X°P:id)) = inf(f°X).

(30) Let S, T be non empty top-posets, X be a non empty filtered subset of
S, f be a monotone map from S into T, and Y be a non empty filtered
subset of T. If Y = f°X, then f - (X°P;id) is a subnet of (Y°P;id).

(31) Let S, T be non empty top-posets, X be a non empty filtered subset of
S, f be a monotone map from S into T, and Y be a non empty filtered
subset of T. If Y = f°X, then Lim(Y°P;id) C Lim(f - (X°P;id)).

(32) Let S be a non empty reflexive relational structure and D be a non
empty subset of S. Then the mapping of NetStr(D) = idp and the carrier
of NetStr(D) = D and NetStr(D) is a full relational substructure of S.

(33) Let S, T be up-complete non empty posets, f be a monotone map from
S into T, and D be a non empty directed subset of S. Then liminf(f -
NetStr(D)) = sup(f°D).

(34) Let S be a non empty reflexive relational structure, D be a non empty
directed subset of S, and i, j be elements of NetStr(D). Then ¢ < j if and
only if (NetStr(D)) (i) < (NetStr(D))(j).

(35) For every Lawson complete top-lattice T and for every directed non
empty subset D of T holds sup D € Lim NetStr(D).

Let T be a non empty 1-sorted structure, let N be a net in 7', and let M
be a non empty net structure over T'. Let us assume that M is a subnet of V.
A map from M into N is said to be a embedding of M into IV if it satisfies the
conditions (Def. 3).
(Def. 3)(i) The mapping of M = (the mapping of N) -it, and
(ii)  for every element m of N there exists an element n of M such that for
every element p of M such that n < p holds m < it(p).

One can prove the following propositions:

(36) Let T be a non empty 1-sorted structure, N be a net in 7', M be a non
empty subnet of N, e be a embedding of M into IV, and ¢ be an element
of M. Then M (i) = N(e(7)).

(37) For every complete lattice T and for every net N in T and for every
subnet M of N holds liminf N < lim inf M.

(38) Let T be a complete lattice, N be a net in T', M be a subnet of N, and e
be a embedding of M into N. Suppose that for every element i of N and
for every element j of M such that e(j) < i there exists an element j' of
M such that j' > j and N (i) > M(j'). Then liminf N = lim inf M.

(39) Let T be a non empty relational structure, N be a net in T, and M be a
non empty full structure of a subnet of N. Suppose that for every element
i of N there exists an element j of N such that j > i and j € the carrier
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of M. Then M is a subnet of N and incl(M, N) is a embedding of M into
N.

(40) Let T be a non empty relational structure, N be a net in 7', and ¢ be an
element of N. Then N[i is a subnet of N and incl(N[i, N) is a embedding
of N|i into N.

(41) For every complete lattice T and for every net N in 7' and for every
element i of N holds liminf(N[i) = liminf N.

(42) Let T be a non empty relational structure, N be a net in T, and X be
a set. Suppose N is eventually in X. Then there exists an element 7 of N
such that N(i) € X and rng (the mapping of N|i) C X.

(43) Let T be a Lawson complete top-lattice and N be an eventually-filtered
net in 7. Then rng (the mapping of N) is a filtered non empty subset of
T.

(44) For every Lawson complete top-lattice T" and for every eventually-filtered
net N in T holds Lim N = {inf N}.

3. LAWSON TOoPOLOGY REVISITED

One can prove the following propositions:

(45) Let S, T be Lawson complete top-lattices and f be a meet-preserving
map from S into 7. Then f is continuous if and only if the following
conditions are satisfied:

(i)  f is directed-sups-preserving, and
(ii)  for every non empty subset X of S holds f preserves inf of X.

(46) Let S, T be Lawson complete top-lattices and f be a semilattice mor-
phism from S into T'. Then f is continuous if and only if f is infs-preserving
and directed-sups-preserving.

Let S, T be non empty relational structures and let f be a map from S into
T. We say that f is liminfs-preserving if and only if:

(Def. 4) For every net N in S holds f(liminf N) = liminf(f - N).
One can prove the following propositions:

(47) Let S, T be Lawson complete top-lattices and f be a semilattice mor-
phism from S into 7. Then f is continuous if and only if f is liminfs-
preserving.

(48) Let T be a Lawson complete continuous top-lattice and S be a meet-
inheriting full non empty relational substructure of T'. Suppose Tt € the
carrier of S and there exists a subset X of T such that X = the carrier of
S and X is closed. Then S is infs-inheriting.
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(49) Let T be a Lawson complete continuous top-lattice and S be a full non
empty relational substructure of 7. Given a subset X of T such that
X = the carrier of S and X is closed. Then S is directed-sups-inheriting.

(50) Let T be a Lawson complete continuous top-lattice and S be an infs-
inheriting directed-sups-inheriting full non empty relational substructure
of T. Then there exists a subset X of T" such that X = the carrier of S
and X is closed.

(51) Let T be a Lawson complete continuous top-lattice, S be an infs-
inheriting directed-sups-inheriting full non empty relational substructure
of T, and N be a net in T. If N is eventually in the carrier of S, then
liminf N € the carrier of S.

(52) Let T be a Lawson complete continuous top-lattice and S be a meet-

inheriting full non empty relational substructure of T. Suppose that

(i)  Tr € the carrier of S, and

(ii)  for every net N in T such that rng (the mapping of V) C the carrier of
S holds liminf N € the carrier of S.
Then S is infs-inheriting.

(53) Let T be a Lawson complete continuous top-lattice and S be a full non
empty relational substructure of T. Suppose that for every net N in T
such that rng (the mapping of N) C the carrier of S holds liminf N € the
carrier of S. Then S is directed-sups-inheriting.

(54) Let T be a Lawson complete continuous top-lattice, S be a meet-
inheriting full non empty relational substructure of 7', and X be a subset
of T. Suppose X = the carrier of S and Ty € X. Then X is closed if
and only if for every net N in T such that N is eventually in X holds
liminf N € X.
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1. PRELIMINARIES

The following propositions are true:
(1) For every upper-bounded semilattice L and for every non empty directed
subset F' of (Filt(L),C) holds sup F' = |J F.

(2) Let L, S, T be complete non empty posets, f be a CLHomomorphism
of L, S, and g be a CLHomomorphism of S, T". Then ¢ - f is a CLHomo-
morphism of L, T.

(3) For every non empty relational structure L holds idy, is infs-preserving.

(4) For every non empty relational structure L holds idy, is directed-sups-
preserving.

(5) For every complete non empty poset L holds idy, is a CLHomomorphism
of L, L.
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(6) For every upper-bounded non empty poset L with g.l.b.’s holds
(Filt(L), C) is a continuous subframe of 2the carrier of L
Let L be an upper-bounded non empty poset with g.l.b.’s. Observe that
(Filt(L), C) is continuous.
Let L be an upper-bounded non empty poset. One can check that every
element of the carrier of (Filt(L), C) is non empty.

2. FREE GENERATORS OF CONTINUOUS LATTICES

Let S be a continuous complete non empty poset and let A be a set. We say
that A is a set of free generators of S if and only if the condition (Def. 1) is
satisfied.

(Def. 1) Let T be a continuous complete non empty poset and f be a function
from A into the carrier of T. Then there exists a CLHomomorphism A of
S, T such that h|A = f and for every CLHomomorphism h’ of S, T such
that h'/[|A = f holds h/ = h.

Next we state two propositions:

(7) Let S be a continuous complete non empty poset and A be a set. If A is
a set of free generators of S, then A is a subset of S.
(8) Let S be a continuous complete non empty poset and A be a set. Suppose

A is a set of free generators of S. Let ' be a CLHomomorphism of S, S.
If WA = id4, then A/ = idg.

3. REPRESENTATION THEOREM FOR FREE CONTINUOUS LATTICES

In the sequel X is a set, F' is a filter of Q}C(, z is an element of Q}C(, and z is
an element of X. - -

Let us consider X. The fixed ultrafilters of X is a family of subsets of 2&
and is defined as follows: -

(Def. 2) The fixed ultrafilters of X = {1z :\/, =z = {z}}.
One can prove the following three propositions:
(9) The fixed ultrafilters of X C Filt(2é).
(10) the fixed ultrafilters of X = X.
(D) F = Ugrneex)op Ul rie).oplle: Ve (z= {2} A 2 € Y)Y ranges
over subsets of X: Y € F'}.

Let us consider X, let L be a continuous complete non empty poset, and let f
be a function from the fixed ultrafilters of X into the carrier of L. The extension
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of f to homomorphism is a map from (Filt(2%), C) into L and is defined by the
condition (Def. 3). -
(Def. 3) Let F} be an element of the carrier of ((Filt(2%),C)). Then (the exten-
sion of f to homomorphism)(Fy) = | |, {[L{f(Tz): V. (x = {2} A z¢€
Y)}; Y ranges over subsets of X: Y € Fi}.
One can prove the following propositions:

(12) Let L be a continuous complete non empty poset and f be a function
from the fixed ultrafilters of X into the carrier of L. Then the extension
of f to homomorphism is monotone.

(13) Let L be a continuous complete non empty poset and f be a function
from the fixed ultrafilters of X into the carrier of L. Then (the extension
of f to homomorphism)(T<Fﬂt(2>cc)’9) =Tp.

Let us consider X, let L be a continuous complete non empty poset, and let
f be a function from the fixed ultrafilters of X into the carrier of L. Observe
that the extension of f to homomorphism is directed-sups-preserving.

Let us consider X, let L be a continuous complete non empty poset, and let
f be a function from the fixed ultrafilters of X into the carrier of L. Note that
the extension of f to homomorphism is infs-preserving.

The following propositions are true:

(14) Let L be a continuous complete non empty poset and f be a function
from the fixed ultrafilters of X into the carrier of L. Then (the extension
of f to homomorphism)|[(the fixed ultrafilters of X) = f.

(15) Let L be a continuous complete non empty poset, f be a function from
the fixed ultrafilters of X into the carrier of L, and h be a CLHomomor-
phism of (Filt(2&), C), L. Suppose h[the fixed ultrafilters of X = f. Then
h = the extension of f to homomorphism.

(16) The fixed ultrafilters of X is a set of free generators of <Filt(2é), Q).

(17) Let L, M be continuous complete lattices and F'; G be sets. Suppose F'
is a set of free generators of L and G is a set of free generators of M and
F = G. Then L and M are isomorphic.

(18) Let L be a continuous complete lattice and G' be a set. Suppose G is

a set of free generators of L and G = X. Then L and <Filt(2é ),C) are
isomorphic.
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Summary. In [5] we introduced a number of notions about vertex sequ-
ences associated with undirected chains of edges in graphs. In this article, we
introduce analogous concepts for oriented chains and use them to prove pro-
perties of cutting and glueing of oriented chains, and the existence of a simple
oriented chain in an oriented chain.

MML Identifier: GRAPH_4.

The notation and terminology used here are introduced in the following papers:
[6], 8], 2], [3], [4], [5], (1], [9], and [7].

1. ORIENTED VERTEX SEQUENCES

For simplicity, we adopt the following rules: p, ¢ denote finite sequences, m,
n denote natural numbers, G denotes a graph, x, y, v, v1, v2, v3, Vg4 denote
elements of the vertices of GG, e denotes a set, and X denotes a set.
Let us consider G, let us consider x, y, and let us consider e. We say that e
orientedly joins z, y if and only if:
(Def. 1) (The source of G)(e) = x and (the target of G)(e) = y.
We now state the proposition
(1) If e orientedly joins vy, ve, then e joins v; with vs.
Let us consider G and let x, y be elements of the vertices of G. We say that
x, y are orientedly incident if and only if:
(Def. 2) There exists a set v such that v € the edges of G and v orientedly joins
T, y.
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One can prove the following proposition
(2) If e orientedly joins v1, v and e orientedly joins vs, vy, then v; = v3 and
V2 = V4.
We follow the rules: vs, vg, v7 are finite sequences of elements of the vertices
of G and ¢, ¢1, ¢y are oriented chains of G.
We now state the proposition
(3) € is an oriented chain of G.

Let us consider G. Observe that there exists a chain of G which is empty
and oriented.
Let us consider G, X. The functor G-SVSet X yields a set and is defined
by:
(Def. 3)  G-SVSet X = {v : V.. clement of the edges of ¢ (€ € X A v = (the source

of G)(e))}.
Let us consider G, X. The functor G-TVSet X yielding a set is defined by:

(Def. 4) G—TVSGtX — {/U . \/e:element of the edges of G (6 S X /\ v = (the target
of G)(e))}.

Next we state the proposition
(4) If X =0, then G-SVSet X = ) and G-TVSet X = 0.

Let us consider G, vs and let ¢ be a finite sequence. We say that vs is oriented
vertex seq of ¢ if and only if:

(Def. 5) lenvs = lenc + 1 and for every n such that 1 < n and n < lenc holds
c¢(n) orientedly joins m,vs, T 4105.

One can prove the following propositions:

(@)
~

If v5 is oriented vertex seq of ¢, then vy is vertex sequence of c.

If vs is oriented vertex seq of ¢, then G-SVSetrng ¢ C rng vs.

D
=

If vs is oriented vertex seq of ¢, then G-TVSetrngc C rng vs.

~—~ N
-3
~—

8) If ¢ # € and v5 is oriented vertex seq of ¢, then rngvs C (G -SVSet rng ¢)U
(G-TVSetrngc).

2. CUTTING AND GLUEING OF ORIENTED CHAINS

One can prove the following propositions:
(9) (v) is oriented vertex seq of .
(10) There exists vs such that v is oriented vertex seq of c.

(11) 1If ¢ # ¢ and vg is oriented vertex seq of ¢ and v7 is oriented vertex seq
of ¢, then vg = vry.
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Let us consider G, c¢. Let us assume that ¢ # ¢e. The functor
oriented-vertex-seq ¢ yielding a finite sequence of elements of the vertices of
G is defined as follows:

(Def. 6) oriented-vertex-seq ¢ is oriented vertex seq of c.

Next we state several propositions:

(12) If v is oriented vertex seq of ¢ and ¢; = ¢| Segn and vg = v5] Seg(n+1),
then vg is oriented vertex seq of c;.

(13) If1 <mand m <nandn <lencand g = (¢c(m),...,c(n)), then ¢ is
an oriented chain of G.

(14) Suppose 1 < m and m < n and n < lenc and ¢; = (¢(m),...,c(n)) and
v is oriented vertex seq of ¢ and vg = (vs(m),...,vs(n + 1)). Then vg is
oriented vertex seq of c.

(15) Suppose vg is oriented vertex seq of ¢; and vy is oriented vertex seq of
¢y and vg(lenvg) = v7(1). Then ¢ ™ ¢y is an oriented chain of G.

(16) Suppose vg is oriented vertex seq of ¢; and vy is oriented vertex seq of
co and vg(lenvg) = v7(1) and ¢ = ¢; 7 ¢g and vs = vg ~ v7. Then vs is
oriented vertex seq of c.

3. ORIENTED SIMPLE CHAINS IN ORIENTED CHAINS

Let us consider G and let I1 be an oriented chain of G. We say that I is
Simple if and only if the condition (Def. 7) is satisfied.

(Def. 7) There exists vs such that vs is oriented vertex seq of I; and for all n,
m such that 1 < n and n < m and m < lenwvs and vs(n) = vs(m) holds
n =1 and m = len vs.

Let us consider G. Note that there exists an oriented chain of G which is
Simple.

Let us consider G. One can verify that there exists a chain of G which is
oriented and simple.

Next we state two propositions:

(17) Every oriented simple chain of G is an oriented chain of G.
(18) For every oriented chain ¢q of G holds ¢[ Segn is an oriented chain of G.

In the sequel s; is an oriented simple chain of G.
Next we state several propositions:

(19) s1]Segn is an oriented simple chain of G.
20) For every oriented chain s} of G such that s} = s; holds s} is Simple.
1 1 1

(21) Every Simple oriented chain of G is an oriented simple chain of G.
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(22) Suppose c is not Simple and w5 is oriented vertex seq of ¢. Then there
exists a FinSubsequence f1 of ¢ and there exists a FinSubsequence f5 of
vs and there exist c1, vg such that lenc; < lenc and vg is oriented vertex
seq of ¢; and lenvg < lenwvs and v5(1) = vg(1) and vs(lenvs) = vg(len vg)
and Seq f1 = ¢ and Seq fo = vg.

(23) Suppose vs is oriented vertex seq of ¢. Then there exists a FinSubsequ-
ence fi of ¢ and there exists a FinSubsequence fy of v5 and there exist sq,
vg such that Seq fi = s1 and Seq fo = vg and vg is oriented vertex seq of
s1 and v5(1) = vg(1) and vs(lenwvs) = vg(len vg).

Let us consider GG. Observe that every oriented chain of G which is empty is
also oriented.
Next we state three propositions:

(24) 1If p is an oriented path of G, then p[ Segn is an oriented path of G.
(25) s is an oriented path of G.

(26) Let ¢ be a finite sequence. Then
(i) ¢1 is a Simple oriented chain of G iff ¢; is an oriented simple chain of
G, and
(ii)  if ¢; is an oriented simple chain of G, then ¢; is an oriented path of G.
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Summary. We define a graph on an abstract set, edges of which are pairs of
any two elements. For any finite sequence of a plane, we give a definition of nodic,
which means that edges by a finite sequence are crossed only at terminals. If the
first point and the last point of a finite sequence differs, simpleness as a chain and
nodic condition imply unfoldedness and s.n.c. condition. We generalize Goboard
Theorem, proved by us before, to a continuous case. We call this Fashoda Meet
Theorem, which was taken from Fashoda incident of 100 years ago.

MML Identifier: JGRAPH_1.

The articles [23], [21], [27], [8], [10], [2], [25], [5], [6], [17], [16], [20], [14], [18],
[19], [15], [1], [4], [22], [7], [13], [28], [24], [26], [11], [12], [9], and [3] provide the
terminology and notation for this paper.

1. A GrRAPH BY CARTESIAN PrRODUCT

For simplicity, we adopt the following convention: G denotes a graph, v
denotes a finite sequence of elements of the vertices of G, I; denotes an oriented
chain of G, n, m, k, i, j denote natural numbers, and r, 71, ro denote real

numbers.
Next we state four propositions:
W -0

(2) V24?2 <|ri| + |l
(3) |ril < VriZ + 192 and |ro| < V2 + o2
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(4) Let given v;. Suppose I is Simple and v; is oriented vertex seq of I.
Let given n, m. If 1 < n and n < m and m < lenv; and vi(n) = vi(m),
then n =1 and m = lenwv;.

Let X be a set. The functor PGraph X yields a multi graph structure and
is defined by:

(Def. 1) PGraph X = (X, [ X, X |,m (X x X), m(X x X)).
We now state two propositions:
(5) For every non empty set X holds PGraph X is a graph.
(6) For every non empty set X holds the vertices of PGraph X = X.

Let f be a finite sequence. The functor PairF f yielding a finite sequence is
defined by:

(Def. 2) lenPairF f =len f —' 1 and for every natural number ¢ such that 1 <
and ¢ < len f holds (PairF f)(¢) = (f(4), f(i + 1)).
In the sequel X is a non empty set.
Let X be a non empty set. Then PGraph X is a graph.
The following propositions are true:
(7) Every finite sequence of elements of X is a finite sequence of elements of
the vertices of PGraph X.
(8) For every finite sequence f of elements of X holds PairF f is a finite
sequence of elements of the edges of PGraph X.
Let X be a non empty set and let f be a finite sequence of elements of X.
Then PairF f is a finite sequence of elements of the edges of PGraph X.
We now state two propositions:
(9) Let n be a natural number and f be a finite sequence of elements of X.
If 1 <n and n < lenPairF f, then (PairF f)(n) € the edges of PGraph X.
(10) For every finite sequence f of elements of X holds PairF f is an oriented
chain of PGraph X.
Let X be a non empty set and let f be a finite sequence of elements of X.
Then PairF f is an oriented chain of PGraph X.
The following proposition is true
(11) Let f be a finite sequence of elements of X and f; be a finite sequence
of elements of the vertices of PGraph X. If len f > 1 and f = fi, then f;
is oriented vertex seq of PairF f.

2. SHORTCUTS OF FINITE SEQUENCES IN PLANE

Let X be a non empty set and let f, g be finite sequences of elements of X.
We say that g is Shortcut of f if and only if the conditions (Def. 3) are satisfied.
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(Def. 3)(3) (1) = g(2),
(i)  f(len f) = g(leng), and
(iii)  there exists a FinSubsequence f2 of PairF f and there exists a FinSub-
sequence f3 of f and there exists an oriented simple chain s; of PGraph X
and there exists a finite sequence g; of elements of the vertices of PGraph X
such that Seq fo = s1 and Seq f3 = g and g1 = g and ¢; is oriented vertex
seq of s7.
We now state four propositions:
(12) For all finite sequences f, g of elements of X such that g is Shortcut of
f holds 1 <leng and leng < len f.
(13) Let f be a finite sequence of elements of X. Suppose len f > 1. Then
there exists a finite sequence g of elements of X such that g is Shortcut of
I
(14) For all finite sequences f, g of elements of X such that g is Shortcut of
f holds rng PairF g C rng PairF f.
(15) Let f, g be finite sequences of elements of X. Suppose f(1) # f(len f)
and g is Shortcut of f. Then g is one-to-one and rng PairF g C rng PairF f
and ¢g(1) = f(1) and g(leng) = f(len f).
Let us consider n and let I; be a finite sequence of elements of £F. We say
that I; is nodic if and only if the condition (Def. 4) is satisfied.

(Def. 4) Let given 4, j. Suppose L(I1,7) N L(I1,7) # 0. Then L(I1,1) N L(I1,]) =
{h()} but [1(i) = Li(j) or L1(2) = L(j+ 1) or L(I1,4) N L(L,]) =
{51(i+1)} but I1 (i+1) = L1(j) or I (i+1) = Li(j+1) or L(I1,1) = L(I1, ).

One can prove the following propositions:

(16) For every finite sequence f of elements of £2 such that f is s.n.c. holds
f is s.c.c..

(17) For every finite sequence f of elements of 5% such that f is s.c.c. and
L(f,1)NL(flenf—"1) =0 holds f is s.n.c..

(18) For every finite sequence f of elements of £% such that f is nodic and
PairF f is Simple holds f is s.c.c..

(19) For every finite sequence f of elements of £% such that f is nodic and
PairF f is Simple and f(1) # f(len f) holds f is s.n.c..

(20) For all points p1, p2, ps of £ such that there exists a set x such that
x # p2 and x € L(p1,p2) N L(p2,p3) holds p1 € L(p2,p3) or p3 € L(p1,p2).

(21) Let f be a finite sequence of elements of E%. Suppose f is s.n.c. and
LIL)NL(f,14+1) C {ms1f} and L(f,lenf =" 2) N L(f,len f —" 1) C
{Tlen f—1f}. Then f is unfolded.

(22) For every finite sequence f of elements of X such that PairF f is Simple
and f(1) # f(len f) holds f is one-to-one and len f # 1.
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(23) For every finite sequence f of elements of X such that f is one-to-one
and len f > 1 holds PairF f is Simple and f(1) # f(len f).

(24) Let f be a finite sequence of elements of £%. If f is nodic and PairF f is
Simple and f(1) # f(len f), then f is unfolded.

(25) Let f, g be finite sequences of elements of 5% and given ¢. Suppose g is
Shortcut of f and 1 < ¢ and i + 1 < leng. Then there exists a natural
number k; such that 1 < k; and k1 + 1 < len f and 7, f = mg and
Ty +1f = mit1g and f(k1) = g(i) and f(k1 +1) = g(i + 1).

(26) For all finite sequences f, g of elements of £2 such that g is Shortcut of
f bholds rng g C rng f.

(27) For all finite sequences f, g of elements of EZ such that g is Shortcut of
f holds L(g) € L(f).

(28) Let f, g be finite sequences of elements of €. If f is special and g is
Shortcut of f, then g is special.

(29) Let f be a finite sequence of elements of 5%. Suppose f is special and
2 <lenf and f(1) # f(len f). Then there exists a finite sequence g of
elements of 6’% such that 2 < leng and g is special and one-to-one and

L(g) C L(f) and f(1) = g(1) and f(len f) = g(len ) and rngg C rng f.
(30) Let fi1, f1 be finite sequences of elements of £2. Suppose that

(i)  fi1 is special,
(ii)  fa is special,
(i) 2 <lenf,
(iv) 2 <len fy,
(v)  fi(1) # fi(len f1),
(vi)  fa(1) # fa(len fy),
(vii)  X-coordinate(f1) lies between (X-coordinate(f1))(1) and

)
(X-coordinate(f1))(len f1),
(viii)  X-coordinate(fy) lies between (X-coordinate(f1))(1) and
(X-coordinate(f1))(len f1),
(ix) Y-coordinate(f;) lies between (Y-coordinate(fy))(1) and
(Y-coordinate(fs))(len fy), and
(x)  Y-coordinate(fy) lies between (Y-coordinate(fs))(1) and
(Y-coordinate(f4))(len fy).
Then £(f1) N L(f1) # 0.
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3. NORM OF POINTS IN &F

The following proposition is true

(31) For all real numbers a, b, r1, r9 such that a < r; and r; < b and a < ro
and 79 < b holds |r; — ra| < b —a.

Let us consider n and let p be a point of £}. The functor [p| yields a real
number and is defined by:

(Def. 5) For every element w of R"™ such that p = w holds [p| = |w|.

In the sequel p, p1, p2 are points of £7.
We now state a number of propositions:

(32) |Ogn| =0.

(33) If [p| = 0, then p = Ogx.

(34) [p[>0.

(35) |=pl = Ipl.

(36) [r-pl=Irl-Ip|.

(37)  [p1 + p2| < |p1| + |p2l-

(38) [p1 —p2| < p1| + |p2l-

(39)  [p1] = Ip2| < p1 + p2l-

(40)  [p1] = [p2| < |p1 — p2l-

(41) |p1 — p2| = 0 iff p1 = po.

(42) If p1 # po, then |p1 — pa| > 0.
(43) |p1 —p2| = |p2 — p1l-

(44) |p1 —p2| < |p1 —pl + |p — p2l.
(45) For all points 1, z2 of " such that 1 = p; and x2 = py holds |p1 —p2| =

p(x1,2).

For every point p of £2 holds |p|? = |p1|? + |p2|2.

For every point p of % holds |p| = /|p1]2 + |p2|?.

For every point p of £2 holds |p| < [p1]| + |p2|-

N
(@)

N N N N N N
IS IS
Nej -~

N e e N N N

For all points p1, pa of £F holds |p1—p2| < |(p1)1—(2)1]+](p1)2— (p2)2]-
For every point p of £% holds |p1] < |p| and |p2| < |p].
<

Ip1 — p2| and |(p1)2 —

ot Ot
_ O

For all points py, p2 of £2 holds |(p1)1 — (p2)1]
(p2)2| < [p1 — p2l.
(52) If p € L(p1,p2), then there exists r such that 0 < r and » < 1 and
p=(1~-7)-p1+7-p
(53) If p € L(p1,p2), then |p —p1| < [p1 — po| and [p — pa| < [p1 — p2l.
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4. EXTENDED GOBOARD THEOREM AND FASHODA MEET THEOREM

In the sequel M denotes a metric space.
Next we state several propositions:

(54) For all subsets P, @ of M, such that P # () and P is compact and
Q # () and Q is compact holds dist™%(P,Q) > 0.
(55) Let P, @ be subsets of M;op. Suppose P # () and P is compact and
Q # 0 and Q is compact. Then PN Q = () if and only if dist™?(P, Q) > 0.
(56) Let f be a finite sequence of elements of €2 and a, ¢, d be real numbers.
Suppose that
(i) 1<lenf,
(i)  X-coordinate(f) lies between (X-coordinate(f))(1) and
(X-coordinate(f))(len f),
(ili)  Y-coordinate(f) lies between ¢ and d,
(iv) a>0,and
(v)  for every i such that 1 <i and i+ 1 <len f holds |m; f — mi+1f| < a.
Then there exists a finite sequence g of elements of 6'% such that
(vi) g is special,
(vii) (1) = £(1),
(vii)  glleng) = f(len /),
(ix) leng > lenf,
(x) X-coordinate(g) lies between (X-coordinate(f))(1) and
(X-coordinate(f))(len f),
(xi)  Y-coordinate(g) lies between ¢ and d,
(xii) for every j such that j € dom g there exists k such that & € dom f and
|7j9 — T f| < a, and
(xiii)  for every j such that 1 < j and j + 1 <leng holds |7jg — mj119] < a.
(57) Let f be a finite sequence of elements of 5% and a, ¢, d be real numbers.
Suppose that
(i) 1<lenf,
(ii)  Y-coordinate(f) lies between (Y-coordinate(f))(1) and
(Y-coordinate(f))(len f),
(ili)  X-coordinate(f) lies between ¢ and d,
(iv) a>0,and
(v)  for every i such that 1 <i and i+ 1 <len f holds |m;f — w41 f| < a.
Then there exists a finite sequence g of elements of £2 such that

(vi) g is special,

(vii) g(1) = f(1),

(viii)  glleng) = f(len f),
(ix) leng > len f,
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(x)  Y-coordinate(g) lies between (Y-coordinate(f))(1) and
(Y-coordinate(f))(len f),
(xi)  X-coordinate(g) lies between ¢ and d,

(xii)  for every j such that j € dom g there exists k such that k& € dom f and
|mjg — T f| < a, and

(xiii)  for every j such that 1 < j and j 4+ 1 <leng holds |79 — 74+19| < a.

(58) For every subset P of the carrier of 5% and for all points p;, po of E%
such that P is an arc from p; to po holds p; # ps.

(59) For every finite sequence f of elements of €% such that 1 < len f
holds len X-coordinate(f) = len f and (X-coordinate(f))(1) = (m1f)1 and
(X-coordinate(f))(len f) = (Mien £ f)1-

(60) For every finite sequence f of elements of €% such that 1 < lenf
holds len Y-coordinate(f) = len f and (Y-coordinate(f))(1) = (71 f)2 and
(Y-coordinate(f))(len f) = (Tien £.f)2-

(61) For every finite sequence f of elements of £2 and for every i such that i €
dom f holds (X-coordinate(f))(i) = (m;f)1 and (Y-coordinate(f))(i) =
(mif)2.

(62) Let P, @ be non empty subsets of the carrier of 5% and p1, p2, q1, g2 be
points of 5%. Suppose that

(i

(i) @ is an arc from ¢ to ¢o,

P is an arc from p; to po,

(iv)  for every point p of €% such that p € Q holds (p1)1 < p1 and p1 < (p2)1,

(v)  for every point p of 2 such that p € P holds (q1)2 < p2 and pa < (g2)2,
and

(vi)  for every point p of £2 such that p € Q holds (q1)2 < p2 and p2 < (g2)2-
Then PN Q # 0.

In the sequel X, Y are non empty topological spaces.
We now state three propositions:

)
)
(iii)  for every point p of £2 such that p € P holds (p1)1 < p1 and p1 < (p2)1,
)
)

(63) Let f be a map from X into Y, P be a non empty subset of the carrier
of Y, and f; be a map from X into Y[P. If f = f; and f is continuous,
then f; is continuous.

(64) Let f beamap from X into Y and P be a non empty subset of the carrier
of Y. Suppose X is compact and Y is a T5 space and f is continuous and
one-to-one and P = rng f. Then there exists a map fi; from X into Y [P
such that f = f; and f; is a homeomorphism.

(65) Let f, g be maps from I into E%, a, b, ¢, d be real numbers, and O, I be
points of I. Suppose that

(i) 0=0,
(i) =1,
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(iii)  f is continuous and one-to-one,
(iv) g is continuous and one-to-one,
(v)  f(Oh=a,
(vi)  fI)1 =0,
(vii)  9(0)2 = ¢,
(viii)  g()2 =d, and
)

for every point 7 of I holds a < f(r)1 and f(r)1 < band a < g(r)1 and
g(r)1 <band ¢ < f(r)2 and f(r)2 < d and ¢ < g(r)2 and g(r)2 < d.
Then rng f Nrng g # 0.
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Summary. In this article, an algebraic group on fixed-length bit integer
is constructed and its adaptation to IDEA cryptography is discussed. In the
first section, we present some selected theorems on integers. In the continuous
section, we construct an algebraic group on fixed-length integer. In the third
section, operations of IDEA Cryptograms are defined and some theorems on
these operations are proved. In the fourth section, we define sequences of IDEA
Cryptogram’s operations and discuss their nature. Finally, we make a model of
IDEA Cryptogram and prove that the ciphertext that is encrypted by IDEA
encryption algorithm can be decrypted by the IDEA decryption algorithm.

MML Identifier: IDEA_1.

The articles [11], [2], [4], [5], [6], [3], [10], [14], [8], [1], [7], [15], [12], [13], and [9]

provide the notation and terminology for this paper.

1. SOME SELECTED THEOREMS ON INTEGERS

We adopt the following rules: i, j, k, n are natural numbers and z, y, z are
tuples of n and Boolean.
Next we state several propositions:
(1) For all 4, j, k such that j is prime and ¢ < j and k < j and i # 0 there
exists a natural number a such that a-imod j =k and a < j.
(2) For all natural numbers n, ki, k2 such that n # 0 and kymodn = komodn
and k1 < k9 there exists a natural number ¢ such that ko — k1 =n - ¢.
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203 ISSN 1426-2630
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(3) For all natural numbers a, b holds a — b < a.
(4) For all natural numbers by, by, ¢ such that b < ¢ holds by — by < c.

(5) For all natural numbers a, b, ¢ such that 0 < a and 0 < b and a < ¢ and
b < ¢ and ¢ is prime holds a - b mod ¢ # 0.

(6) For every non empty natural number n holds the n-th power of 2 # 1.

2. Basic OPERATORS OF IDEA CRYPTOGRAMS

Let us consider n. The functor ZERO n yielding a tuple of n and Boolean is
defined by:

(Def. 1) ZEROn = n +— false.

Let us consider n and let x, y be tuples of n and Boolean. The functor x ®y
yields a tuple of n and Boolean and is defined by:

(Def. 2) For every i such that ¢ € Segn holds m;(x & y) = mz & my.
The following propositions are true:
(7) For all n, z holds = & x = ZEROn.
(8) Forallmn, z, y holds x @y =y & x.

Let us consider n and let x, y be tuples of n and Boolean. Let us observe
that the functor = @ y is commutative.
One can prove the following propositions:

(9) For all n, x holds ZEROn @ x = x.
(10) Forallm, z,y, zholds (z®y) B2z=2® (y & 2).

Let us consider n and let ¢ be a natural number. We say that ¢ is expressible
by n if and only if:

(Def. 3) i < the n-th power of 2.
The following proposition is true
(11) For every n holds n-BinarySequence(0) = ZERO n.

Let us consider n and let ¢, 7 be natural numbers. The functor

ADD_MOD(i, j,n) yields a natural number and is defined by:
(Def. 4) ADD_MOD(4,j,n) = (i + j) mod (the n-th power of 2).

Let us consider n and let i be a natural number. Let us assume that 7 is
expressible by n. The functor NEG_N(i, n) yielding a natural number is defined
by:

(Def. 5) NEG_N(i,n) = (the n-th power of 2)—i.

Let us consider n and let ¢ be a natural number. Let us assume that ¢ is
expressible by n. The functor NEG_.MOD(i,n) yielding a natural number is
defined as follows:
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(Def. 6) NEG_-MOD(i,n) = NEG_N(¢,n) mod (the n-th power of 2).
We now state several propositions:
(12) For all n, i such that ¢ is expressible by n holds
ADD_MOD (i, NEG_MOD(i, n), n) = 0.
(13) For all n, 4, j holds ADD_MOD(i,j,n) = ADD_MOD(j,7,n).
(14) For all n, i such that ¢ is expressible by n holds ADD_MOD(0,4,n) = i.
(15) For all mn, i, j, k holds ADDMOD(ADD_-MOD(i,j,n),k,n) =
ADD_MOD(i, ADD_MOD(j, k, 1), n).
(16) For all n, ¢, j holds ADD_MOD(4, j,n) is expressible by n.

(17) For all n, i such that 7 is expressible by n holds NEG_-MOD(i,n) is
expressible by n.
Let us consider n and let ¢ be a natural number. The functor
ChangeVal_1(i,n) yields a natural number and is defined by:
the n-th power of 2, if ¢ =0,
i, otherwise.

(Def. 7) ChangeVal_1(i,n) = {

We now state two propositions:

(18) For all n, ¢ such that ¢ is expressible by n holds ChangeVal_1(i,n) < the
n-th power of 2 and ChangeVal_1(i,n) > 0.

(19) Let n, a1, az be natural numbers. Suppose a; is expressible by n and as
is expressible by n and ChangeVal_1(a;,n) = ChangeVal 1(az,n). Then
a1 = ag.

Let us consider n and let ¢ be a natural number. The functor
ChangeVal_2(i,n) yields a natural number and is defined as follows:
0, if ¢ = the n-th power of 2,
1, otherwise.

(Def. 8) ChangeVal 2(i,n) = {

We now state two propositions:

(20) For all n, ¢ such that ¢ is expressible by n holds ChangeVal 2(i,n) is
expressible by n.

(21) For all natural numbers n, aj, az such that a; # 0 and as # 0 and
ChangeVal_2(a;,n) = ChangeVal_2(ag,n) holds a; = as.

Let us consider n and let 4, j be natural numbers. The functor
MUL_MOD(3, j,n) yields a natural number and is defined as follows:

(Def. 9) MUL_MOD(4, j,n) = ChangeVal_2(ChangeVal_1(i,n)-
ChangeVal_1(j,n) mod ((the n-th power of 2)41),n).

Let n be a non empty natural number and let 7 be a natural number. Let
us assume that 7 is expressible by n and (the n-th power of 2)+1 is prime. The
functor INV_MOD(i,n) yielding a natural number is defined as follows:

(Def. 10) MUL-MOD(i, INV_.MOD(i,n),n) = 1 and INV_MOD(i,n) is expressible
by n.
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The following propositions are true:
(22) For all n, ¢, j holds MUL_MOD(¢, j,n) = MUL_MOD(j, ¢, n).
(23) For all n, 7 such that 7 is expressible by n holds MUL_MOD(1,4,n) = i.
(24) Let given n, i, j, k. Suppose that

(i)  (the n-th power of 2)+1 is prime,
(ii) 4 is expressible by n,
(ili) 7 is expressible by n, and
(iv)  k is expressible by n.

Then MUL_.MOD(MUL MOD(i, j, n), k,n) =

MUL_MOD(i, MUL.MOD(j, k, n), n).
(25) For all n, i, j holds MUL_MOD(i, j,n) is expressible by n.
(26) If ChangeVal 2(i,n) =1, then i = 1.

3. OPERATIONS OF IDEA CRYPTOGRAMS

Let us consider n and let m, k be finite sequences of elements of N. The
functor IDEAoperationA(m, k,n) yielding a finite sequence of elements of N is
defined by the conditions (Def. 11).

(Def. 11)(i) lenIDEAoperationA(m, k,n) = lenm, and
(ii)  for every natural number ¢ such that ¢ € domm holds if i = 1, then
(IDEAoperationA(m, k,n))(i) = MUL.MOD(m(1),k(1),n) and if i = 2,
then (IDEAoperationA(m,k,n))(i) = ADD_MOD(m(2),k(2),n) and if
i = 3, then (IDEAoperationA(m,k,n))(i) = ADD_MOD(m(3),k(3),n)
and if i = 4, then (IDEAoperationA(m, k,n))(i) = MUL.MOD(m(4), k(4),n)
and if ¢ # 1 and ¢ # 2 and ¢ # 3 and ¢ F#* 4, then
(IDEAoperationA(m, k,n))(i) = m(q).
In the sequel m, k, k1, ko denote finite sequences of elements of N.
Let n be a non empty natural number and let m, k be finite sequences of
elements of N. The functor IDEAoperationB(m, k,n) yielding a finite sequence
of elements of N is defined by the conditions (Def. 12).

(Def. 12)(i)  lenIDEAoperationB(m, k,n) = lenm, and

(ii)  for every natural number i such that ¢ € domm holds if i = 1, then
(IDEAoperationB(m, k,n))(i) = Absval((n-BinarySequence(m(1))) &
(n-BinarySequence(MUL_MOD(ADD_MOD(MUL_-MOD(Absval
((n-BinarySequence(m(1))) & (n-BinarySequence(m(3)))), k(5), n),
Absval((n -BinarySequence(m(2)))®(n -BinarySequence(m(4)))), n), k(6),
n)))) and if ¢ = 2, then
(IDEAoperationB(m, k,n))(i) = Absval((n-BinarySequence(m(2))) &
(n-BinarySequence(ADD_MOD(MUL_MOD (Absval((n -BinarySequence
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(m(1))) @ (n-BinarySequence(m(3)))), k(5),n), MUL_.MOD(ADD_MOD
(MUL_MOD(Absval((n -BinarySequence
(m(1)))®(n-BinarySequence(m(3)))), k(5), n), Absval((n -BinarySequence(m
(2))) @ (n-BinarySequence(m(4)))),n),k(6),n),n)))) and if i = 3, then
(IDEAoperationB(m, k,n))(i) = Absval((n-BinarySequence(m(3))) &
(n-BinarySequence(MUL_-MOD(ADD_MOD(MUL_-MOD(Absval
((n-BinarySequence(m(1)))®(n-BinarySequence(m(3)))), k(5), n), Absval
((n-BinarySequence(m(2))) @ (n-BinarySequence(m(4)))),n), k(6),n))))
and if i = 4, then (IDEAoperationB(m, k,n))(i) =
Absval((n -BinarySequence(m(4))) & (n-BinarySequence
(ADD_-MOD(MUL_-MOD(Absval((n-BinarySequence(m(1)))®
(n-BinarySequence(m(3)))), k(5),n), MUL.MOD(ADD_MOD(MUL_-MOD
(Absval((n-BinarySequence(m(1)))@®(n -BinarySequence(m(3)))), k(5),n),
Absval((n -BinarySequence(m(2)))&®(n -BinarySequence(m(4)))), n), k(6),
n),n)))) and if ¢ # 1 and ¢ # 2 and i # 3 and ¢ # 4, then
(IDEAoperationB(m, k,n))(i) = m(i).
Let m be a finite sequence of elements of N. The functor IDEAoperationCm
yields a finite sequence of elements of N and is defined as follows:

(Def. 13) lenIDEAoperationCm = lenm and for every natural number i such
that i € domm holds (IDEAoperationCm)(i) = (i =2 — m(3),(i =3 —
m(2), m(i))).
The following propositions are true:
(27) Let given n, m, k. Suppose lenm > 4. Then
(i) (IDEAoperationA(m,k,n))(1) is expressible by n,
(i) (IDEAoperationA(m, k,n))(2) is expressible by n,
(iii) (IDEAoperationA(m,k,n))(3) is expressible by n, and
(iv) (IDEAoperationA(m,k,n))(4) is expressible by n.
(28) Let n be a non empty natural number and given m, k. Suppose lenm > 4.
Then

(i) (IDEAoperationB(m, k,n))(1) is expressible by n,

(ii) (IDEAoperationB(m, k,n))(2) is expressible by n,
(iii) (IDEAoperationB(m,k,n))(3) is expressible by n, and
(iv) (IDEAoperationB(m,k,n))(4) is expressible by n.

(29) Let given m. Suppose that

(i) lenm >4,
(ii)  m(1) is expressible by n,
(ili))  m(2) is expressible by n,
(iv)  m(3) is expressible by n, and
(v) m(4) is expressible by n.

Then
(vi)  (IDEAoperationCm)(1) is expressible by n,
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(vii)  (IDEAoperationCm)(2) is expressible by n,
(viii)  (IDEAoperationCm)(3) is expressible by n, and
(ix) (IDEAoperationCm)(4) is expressible by n.

(30) Let n be a non empty natural number and given m, k1, ko. Suppose that

(i)  (the n-th power of 2)+1 is prime,

(i) lenm >4,

(iii)) m(1) is expressible by n,

(iv)  m(2) is expressible by n,

(v)  m(3) is expressible by n,

(vi)  m(4) is expressible by n,

(vii)  ki(1) is expressible by n,

(viii)  k1(2) is expressible by n,

(ix)  k1(3) is expressible by n,

(x)  ki(4) is expressible by n,

(xi)  ko(1) = INV.MOD(k1(1),n),
(xii)  k2(2) = NEG.MOD(k1(2),n),
(xiii)  k2(3) = NEG.MOD(k1(3),n), and
(xiv)  ka(4) = INV_MOD(k;(4),n).

Then IDEAoperationA (IDEAoperationA(m, ki,n), ka,n) = m.

o

2(1
2(2

INV_MOD(k1(1),n),
NEG_-MOD(k1(3),n),
kz 3 NEG MOD(k’l( ) ), and
ko(4) = INV_MOD (k1 (4),n).
Then IDEAoperationA (IDEAoperationC IDEAoperationA
(IDEAoperationCm, ky,n), ka,n) = m.
(32) Let n be a non empty natural number and given m, k1, ko. Suppose that
) (the n-th power of 2)+1 is prime,
) lenm >4,
(ili)  m(1) is expressible by n,
) m(2) is expressible by n,

T

—~

N

P
o

(31) Let n be a non empty natural number and given m, ki, k2. Suppose that
(i)  (the n-th power of 2)+1 is prime,
(ii) lenm > 4,
(ili)  m(1) is expressible by n,
(iv)  m(2) is expressible by n,
(v)  m(3) is expressible by n,
(vi)  m(4) is expressible by n,
(vil)  k1(1) is expressible by n,
(viii)  k1(2) is expressible by n,
(ix)  k1(3) is expressible by n,
(x)  ki(4) is expressible by n,
) ka(1)
) k2(2)
i) ka(3)
) ka4
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(v

(vi

)
)
(vii)
)
)
)

m(3) is expressible by n,

(
m(

4) is expressible by n,

N‘N‘

)
)
5) is expressible by n,
(viii )
)

k?g ) —kl( ) and

k2(6) = k1(6).
Then IDEAoperationB(IDEAoperationB(m, k1,n), k2, n) = m.

(ix

1(
1(6) is expressible by n,
(

(x (6

(33) For every m such that lenm > 4 holds IDEAoperationC IDEAoperationCm =

m.

4. SEQUENCES OF IDEA CRYPTOGRAM’S OPERATIONS

The set MESSAGES is defined by:
(Def. 14) MESSAGES = N*.

Let us mention that MESSAGES is non empty.

Let us mention that every element of MESSAGES is function-like and
relation-like.

Let us note that every element of MESSAGES is finite sequence-like.

Let n be a non empty natural number and let us consider k. The functor
IDEA _P(k,n) yielding a function from MESSAGES into MESSAGES is defined
as follows:

(Def. 15) For every m holds (IDEA_P(k,n))(m) = IDEAoperationA
(IDEAoperationC IDEAoperationB(m, k,n), k, n).
Let n be a non empty natural number and let us consider k. The func-
tor IDEA_Q(k,n) yields a function from MESSAGES into MESSAGES and is
defined as follows:

(Def. 16) For every m holds (IDEA_Q(k,n))(m) = IDEAoperationB
(IDEAoperationA (IDEAoperationCm, k,n), k,n).
Let r, I; be natural numbers, let n be a non empty natural number, and let
K, be a matrix over N of dimension /; x 6. The functor IDEA_P_F(K1,n,r)
yielding a finite sequence is defined as follows:

(Def. 17) lenIDEA P F(Kj,n,r) = r and for every ¢ such that i €
domIDEA _P_F(Ki,n,r) holds (IDEA_P_F(Ki,n,r))(i) =
IDEA _P(Line(K,1i),n).
Let 7, 1 be natural numbers, let n be a non empty natural number,

and let K7 be a matrix over N of dimension [; x 6. One can verify that
IDEA_P_F(Ki,n,r) is function yielding.
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Let r, [1 be natural numbers, let n be a non empty natural number, and let
K1 be a matrix over N of dimension /3 x 6. The functor IDEA_Q_F(K1,n,r)
yielding a finite sequence is defined as follows:

(Def. 18) lenIDEA_ Q.F(Ki,n,r) = r and for every ¢ such that ¢ €
domIDEA _Q_F(Kj,n,r) holds (IDEA_Q_F(Ky,n,r))(i) =
IDEA_Q(Line(Ky, (r ='"4) + 1),n).

Let r, [1 be natural numbers, let n be a non empty natural number, and let
K7 be a matrix over N of dimension /1 x 6. Observe that IDEA_Q_F(K1,n,r)
is function yielding.

Let us consider k, n. The functor IDEA_PS(k,n) yields a function from
MESSAGES into MESSAGES and is defined as follows:

(Def. 19) For every m holds (IDEA_PS(k,n))(m) = IDEAoperationA(m, k,n).

Let us consider k, n. The functor IDEA_QS(k,n) yields a function from
MESSAGES into MESSAGES and is defined as follows:

(Def. 20) For every m holds (IDEA_QS(k,n))(m) = IDEAoperationA(m, k,n).

Let n be a non empty natural number and let us consider k. The func-
tor IDEA_PE(k, n) yielding a function from MESSAGES into MESSAGES is
defined by:

(Def. 21) For every m holds (IDEA_PE(k,n))(m) = IDEAoperationA
(IDEAoperationB(m, k,n), k,n).

Let n be a non empty natural number and let us consider k. The func-
tor IDEA_QE(k,n) yielding a function from MESSAGES into MESSAGES is
defined by:

(Def. 22) For every m holds (IDEA_QE(k,n))(m) = IDEAoperationB
(IDEAoperationA(m, k,n), k,n).
We now state a number of propositions:

(34) Let n be a non empty natural number and given m, ki, ks. Suppose that

—~
ol
=
e

k1(6) is expressible by n,
ko(1) = INV_MOD(k1(1),n),

(i)  (the n-th power of 2)+1 is prime,
(ii)) lenm > 4,
(ili))  m(1) is expressible by n,
(iv)  m(2) is expressible by n,
(v)  m(3) is expressible by n,
(vi)  m(4) is expressible by n,
(vil)  k1(1) is expressible by n,
(viii)  k1(2) is expressible by n,
(ix)  k1(3) is expressible by n,
(x)  ki1(4) is expressible by n,
(xi)  k1(5) is expressible by n,
i) k1(6)
) k(1)
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(xiv)  k2(2) = NEGMOD(k1(3),n),
(xv)  k2(3) = NEG.MOD(k, (2), 1),
(xvi)  ko(4) = INV_MOD(k1(4),n),
(xvil)  ka(5) = k1(5), and
(xviii)  k2(6) = k1(6).

Then (IDEA_Q(k2,n) - IDEA_P(k1,n))(m) = m.

(the n-th power of 2)+1 is prime,

)

(ii) lenm >4,

(iii)  m(1) is expressible by n,

(iv)  m(2) is expressible by n,

(v)  m(3) is expressible by n,

(vi)  m(4) is expressible by n,

(vii)  ki1(1) is expressible by n,
(viii)  k1(2) is expressible by n,

(ix)  k1(3) is expressible by n,

(x)  ki1(4) is expressible by n,

(xi)  ka(1) = INVMOD(ky (1), ),
(xii)  k2(2) = NEG.MOD(k1(2),n),
(xiii))  k2(3) = NEG_-MOD(%1(3),n), and
(xiv)  ko(4) = INV_MOD(k1(4),n).

Then (IDEA_QS(ks, n) - IDEA_PS(k1,n))(m) = m.

(36) Let n be a non empty natural number and given m, k1, ko.

(i)  (the n-th power of 2)+1 is prime,

(ii) lenm > 4,

(iii)  m(1) is expressible by n,

(iv)  m(2) is expressible by n,

(v)  m(3) is expressible by n,

(vi)  m(4) is expressible by n,
(viil)  k1(1) is expressible by n,
(viii)  k1(2) is expressible by n,

(ix)  k1(3) is expressible by n,

(x)  ki(4) is expressible by n,

(xi)  k1(5) is expressible by n,
(xii)  k1(6) is expressible by n,
(xiii)  k2(1) = INV_MOD(k1(1),n),
(xiv)  k2(2) = NEG-MOD(k1(2),n),
(xv)  k2(3) = NEG_-MOD(k1(3),n),
(xvi)  k2(4) = INV_MOD(k;(4),n),

(xvil)  ka(5) = k1(5), and
(xviil)  k2(6) = k1(6).

(35) Let n be a non empty natural number and given m, ki, ks. Suppose that
(

Suppose that

211
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Then (IDEA_QE(k2,n) - IDEA PE(k1,n))(m) = m.

(37) Let n be a non empty natural number, /; be a natural number, K; be
a matrix over N of dimension /; X 6, and k be a natural number. Then
IDEA P F(Ki,n,k+1) = (IDEA_P_F(Ky,n,k))~ (IDEA_P(Line(K1, k +
1),n)).

(38) Let n be a non empty natural number, /; be a natural number, K
be a matrix over N of dimension [y x 6, and k£ be a natural num-
ber. Then IDEA_Q.F(Ki,n,k + 1) = (IDEA_Q(Line(K1,k + 1),n)) ~
IDEA_Q_F(K1,n, k).

(39) Let n be a non empty natural number, /; be a natural number, K; be
a matrix over N of dimension {; X 6, and k be a natural number. Then
IDEA_P_F(Ki,n, k) is a composable finite sequence.

(40) Let n be a non empty natural number, /; be a natural number, K; be
a matrix over N of dimension /; X 6, and k be a natural number. Then
IDEA_Q_F(K1,n, k) is a composable finite sequence.

(41) Let n be a non empty natural number, /; be a natural number, K7 be a
matrix over N of dimension I; X 6, and k be a natural number. If k& # 0,
then IDEA_P_F(K1,n, k) is a composable sequence from MESSAGES into
MESSAGES.

(42) Let n be a non empty natural number, /; be a natural number, K7 be a
matrix over N of dimension I; X 6, and k be a natural number. If k& # 0,
then IDEA_Q_F(K1,n, k) is a composable sequence from MESSAGES into
MESSAGES.

(43) Let n be a non empty natural number, M be a finite sequence of elements

of N, and given m, k. Suppose M = (IDEA_P(k,n))(m) and lenm > 4.

Then

) lenM >4,

) M(1) is expressible by n,

(iii) M(2) is expressible by n,

) M(3) is expressible by n, and
) M(4) is expressible by n.

(44) Let n be a non empty natural number, {; be a natural number, K;
be a matrix over N of dimension [y x 6, and r be a natural num-
ber. Then rng composeypgsagrs IDEA_P_F(K1,n,r) € MESSAGES and
dom composeypssacrs IDEA_P_F(K7,n,r) = MESSAGES.

(45) Let n be a non empty natural number, {; be a natural number, K;
be a matrix over N of dimension Iy x 6, and r be a natural num-
ber. Then rng composeypssacrs IDEA-Q-F (K7, n,r) C MESSAGES and
dom composeypssacrs IDEA_Q _F(K7,n,r) = MESSAGES.

(46) Let n be a non empty natural number, m be a finite sequence of elements
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of N, [1 be a natural number, K7 be a matrix over N of dimension l; X
6, 7 be a natural number, and M be a finite sequence of elements of N.
If M = (composeypgsagrs IDEA_P F(K1,n,7))(m) and lenm > 4, then
len M > 4.

(47) Let n be a non empty natural number, /; be a natural number, K7 be a
matrix over N of dimension [; X 6, r be a natural number, M be a finite
sequence of elements of N, and given m. Suppose that

M = (composeypssacrs IDEA P F(Kq,n,r))(m),

i)
(i) lenm >4,
(iii) m(1) is expressible by n,
(iv)  m(2) is expressible by n,
(v)  m(3) is expressible by n, and
(vi) m(4) is expressible by n.
Then
(vii) len M > 4,
(viii)  M(1) is expressible by n,
(ix) M(2) is expressible by n,
(x) M(3) is expressible by n, and
(xi) M (4) is expressible by n.

5. MODELING OF IDEA CRYPTOGRAM

One can prove the following propositions:

(48) Let n be a non empty natural number, I; be a natural number, Ko, K3
be matrices over N of dimension [y X 6, r be a natural number, and given
m. Suppose that

h>r,

)
(ii)  (the n-th power of 2)+1 is prime,
(iii) lenm > 4,
(iv)  m(1) is expressible by n,
(v) m(2) is expressible by n,
(vi)  m(3) is expressible by n,
(vii)  m(4) is expressible by n, and

for every natural number ¢ such that ¢ < r holds (K32);1 is expressible
by n and (K3);2 is expressible by n and (K3);3 is expressible by n and
(K2)i4 is expressible by n and (K3);5 is expressible by n and (K2)¢ is
expressible by n and (K3); 1 is expressible by n and (K3); 2 is expressible
by n and (K3);3 is expressible by n and (K3);4 is expressible by n and
(K3)i5 is expressible by n and (K3);6 is expressible by n and (K3);1 =
INV,MOD((KQ)Z'J, n) and (Kg)@g = NEG,NIOD((f(g)@g7 n) and (K3)z‘73 =
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NEG,MOD((KQ)LQ,TZ) and (KS)Z'A = INV,MOD((KQ)ZA, n) and (KQ)Z"E) =
(K33)i5 and (K2)i6 = (K3)i6-
Then (composeypgsagrs (IDEA_P _F(Ka,n, 7)) IDEA_Q_F(K3,n,7)))(m) =
m.

(49) Let n be a non empty natural number, /; be a natural number, Ky, K3
be matrices over N of dimension /1 x 6, r be a natural number, k3, ks, k5,
ke be finite sequences of elements of N, and given m. Suppose that

i) L=
(ii)  (the n-th power of 2)+1 is prime,
(iii) lenm > 4,
(iv)  m(1) is expressible by n,
(v) m(2) is expressible by n,
(vi)  m(3) is expressible by n,
(vii)  m(4) is expressible by n,

for every natural number ¢ such that ¢ < r holds (K3); is expressible
by n and (K3);2 is expressible by n and (K3);3 is expressible by n and
(K2)i4 is expressible by n and (K3);5 is expressible by n and (K2)¢ is
expressible by n and (K3);1 is expressible by n and (K3); 2 is expressible
by n and (K3);3 is expressible by n and (K3);4 is expressible by n and
(K3)is is expressible by n and (K3);¢ is expressible by n and (K3);1 =
INV,MOD((KQ)Z'J,H) and (Kg)@g = NEG,MOD((KQ)Z‘Q), n) and (Kg)@g =
NEG,MOD((KQ)LQ,TL) and (Kg)i74 = INV,MOD((KQ)ZA, n) and (KQ)Z"E) =
(K33)i5 and (K2)i6 = (K3)i6,

) is expressible by n,

k3(2) is expressible by n,

k3(3) is expressible by n,

k3(4) is expressible by n,
4(1) = INV_MOD(k3(1), n),
1(2) = NEG_.MOD(k3(2),n),
1(3) = NEG_MOD(k3(3),n),
4(4) = INV_MOD(k3(4), n),
5(1) is expressible by n,

) ksl

) ks(2)
) ks(3)
) ks(4) i
) ka(1)
) ka(2)
) ka(3)
) ka(4)
) ks(1)

(xviil)  ks5(2) is expressible by n,

) ks(3)
) ks(4)
) ks(5)
R OR
) k(1)
) ke(2)
) ke(3)
) Ke(4)
) ke(5)

T

T

T

T

oy

ks(3) is expressible by n,

(xx)  ks(4) is expressible by n,
(xxi)  ks(5) is expressible by n,
(xxii)  k5(6) is expressible by n,

(xxiii)  kg(1) = INV_MOD(k5(1),n),

o (2
ko (3
o (4
ko (5

NEG_MOD (k5(2),n),
NEG_MOD(ks5(3),n),
);

n),

INV_MOD (ks (4
k5(5), and
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Ks(6) = ks (6).

Then (IDEA_QS(k4,n) - (composeypssacrs IDEA_Q_F(K3,n,r)-
(IDEA_QE(kg,n) - IDEA_PE(ks,n) - (composeypgsagrs IDEA_P_F
(Kg,n,r) - IDEA_PS(k3,n))))))(m) = m.
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The notation and terminology used in this paper are introduced in the following
articles: [11], [5], [9], [2], [3], [8], [13], [14], [10], [16], [15], [17], [6], [18], [1], [7],
[12], and [4].

1. PRELIMINARIES

For simplicity, we follow the rules: S denotes a 1-sorted structure, R denotes
a non empty 1-sorted structure, X denotes a subset of the carrier of R, T" denotes
a non empty topological structure, and x denotes a set.

Let X, Y be sets. One can verify that every function from X into Y which
is bijective is also one-to-one and onto and every function from X into Y which
is one-to-one and onto is also bijective.

Let X be a set. Observe that there exists a function from X into X which
is one-to-one and onto.

Next we state the proposition

(1) rng(ids) = Qs.
Let R be a non empty 1-sorted structure. Note that (idg)~! is one-to-one.
We now state two propositions:
(2) (idg)~! =idg.
(3) (idp)™'(X) = X.
Let S be a 1-sorted structure. One can check that there exists a map from
S into S which is one-to-one and onto.

@ 1998 University of Bialystok
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2. ON THE GROUPS

We use the following convention: H denotes a non empty groupoid, P, Q, P,
Q1 denote subsets of the carrier of H, and h denotes an element of the carrier
of H.

The following propositions are true:

(4) IfPCPrand Q CQq, then P-Q C Py - Q.

(5) PCQ,then P-hCQ-h.

(6) fPCQ,then h-PCh-Q.

In the sequel G denotes a group, A, B denote subsets of the carrier of G,

and a denotes an element of the carrier of G.
One can prove the following propositions:

) ac A tiffal € A.

) (AH =4

) ACBiff A=t Cc B~L
10) GA=A71

) Gl = A

) -51 is one-to-one.

) mg-g' = the carrier of G.

Let G be a group. Observe that -51 is one-to-one and onto.
Next we state two propositions:

(14) '61_1 — _51'
(15) (The multiplication of H)°} P, Q] = P - Q.
Let GG be a non empty groupoid and let a be an element of the carrier of G.
The functor a - [ yielding a map from G into G is defined by:
(Def. 1)  For every element x of the carrier of G holds (a-0)(z) =a - x.

The functor OJ - a yields a map from G into G and is defined as follows:

(Def. 2) For every element z of the carrier of G holds (O - a)(x) =z - a.

Let G be a group and let a be an element of the carrier of G. One can verify
that a - [ is one-to-one and onto and [ - ¢ is one-to-one and onto.
Next we state four propositions:

16) (h-0)°P=h-P.
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3. ON THE TOPOLOGICAL SPACES

Let T be a non empty topological structure. Observe that (idr)~! is conti-
nuous.
Next we state the proposition

(20) idr is a homeomorphism.

Let T be a non empty topological space and let p be a point of T". Observe
that every neighbourhood of p is non empty.
Next we state the proposition

(21) For every non empty topological space T' and for every point p of T" holds
Qrp is a neighbourhood of p.

Let T be a non empty topological space and let p be a point of T'. One can
check that there exists a neighbourhood of p which is non empty and open.
One can prove the following propositions:

(22) Let S, T be non empty topological spaces and f be a map from S into
T. Suppose f is open. Let p be a point of S and P be a neighbourhood of
p. Then there exists an open neighbourhood R of f(p) such that R C f°P.

(23) Let S, T be non empty topological spaces and f be a map from S into
T. Suppose that for every point p of S and for every open neighbourhood
P of p there exists a neighbourhood R of f(p) such that R C f°P. Then
f is open.

(24) Let S, T be non empty topological structures and f be a map from S
into T'. Then f is a homeomorphism if and only if the following conditions
are satisfied:

(i) domf=Qg,
(i) g f=0r,

(iii)  f is one-to-one, and

(iv)  for every subset P of T holds P is closed iff f~1(P) is closed.

(25) Let S, T be non empty topological structures and f be a map from S
into T'. Then f is a homeomorphism if and only if the following conditions
are satisfied:

(i) domf=Qg,
(i) mgf=Qr,
(iii)  f is one-to-one, and

(iv)

(26) Let S, T be non empty topological structures and f be a map from S
into T'. Then f is a homeomorphism if and only if the following conditions
are satisfied:

(i)  dom f=Qsg,

v)  for every subset P of S holds P is open iff f°P is open.
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(i) g f=Qr,
(iii)  f is one-to-one, and
(iv)  for every subset P of T holds P is open iff f~!(P) is open.
(27) Let S be a topological space, T be a non empty topological space, and

f be a map from S into T. Then f is continuous if and only if for every
subset P of the carrier of T holds f~!(Int P) C Int(f~1(P)).

Let T be a non empty topological space. One can verify that there exists a
subset of T" which is non empty and dense.
The following two propositions are true:
(28) Let S, T be non empty topological spaces, f be a map from S into T,
and A be a dense subset of S. If f is a homeomorphism, then f°A is dense.
(29) Let S, T be non empty topological spaces, f be a map from S into T,
and A be a dense subset of T. If f is a homeomorphism, then f~!(A) is
dense.
Let S, T be non empty topological structures. Observe that every map from
S into T which is homeomorphism is also onto, one-to-one, continuous, and
open.
Let T be a non empty topological structure. Observe that there exists a map
from T into T which is homeomorphism.
Let T be a non empty topological structure and let f be homeomorphism
map from 7T into T. Note that f~! is homeomorphism.

4. THE GROUP OF HOMOEMORPHISMS

Let T be a non empty topological structure. A map from 7" into T is said to
be a homeomorphism of T’ if:

(Def. 3) Tt is a homeomorphism.
Let T be a non empty topological structure. Then idy is a homeomorphism
of T.
Let T be a non empty topological structure. One can check that every ho-
meomorphism of T is homeomorphism.
We now state two propositions:
(30) For every homeomorphism f of T holds f~! is a homeomorphism of T
(31) For all homeomorphisms f, g of T" holds f - ¢g is a homeomorphism of T'.
Let T be a non empty topological structure. The group of homeomorphisms
of T' is a strict groupoid and is defined by the conditions (Def. 4).
(Def. 4)(i) « € the carrier of the group of homeomorphisms of 7" iff = is a
homeomorphism of T', and
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(ii)  for all homeomorphisms f, g of T" holds (the multiplication of the group
of homeomorphisms of T')(f, g) =g - f.
Let T be a non empty topological structure. Note that the group of home-
omorphisms of T' is non empty.
We now state the proposition
(32) Let f, g be homeomorphisms of 7" and a, b be elements of the group of
homeomorphisms of T. If f =a and g =0, thena-b=g- f.
Let T be a non empty topological structure. Note that the group of home-
omorphisms of T is group-like and associative.
The following two propositions are true:

(33) ldT = 1the group of homeomorphisms of T'-
(34) Let f be a homeomorphism of 7" and a be an element of the group of
homeomorphisms of T. If f = a, then a=! = f~1.
Let T be a non empty topological structure. We say that T' is homogeneous
if and only if:

(Def. 5) For all points p, ¢ of T" there exists a homeomorphism f of T" such that
f(p) =q
Let us note that every non empty topological structure which is trivial is
also homogeneous.
Let us note that there exists a topological space which is strict, trivial, and
non empty.
One can prove the following two propositions:

(35) Let T be a homogeneous non empty topological space. If there exists a
point p of T such that {p} is closed, then T is a T} space.

(36) Let T be a homogeneous non empty topological space. Given a point p
of T such that let A be a subset of T. Suppose A is open and p € A. Then
there exists a subset B of T such that p € B and B is open and B C A.
Then T is a T3 space.

5. ON THE TOPOLOGICAL GROUPS

We consider topological group structures as extensions of groupoid and to-
pological structure as systems

( a carrier, a multiplication, a topology ),
where the carrier is a set, the multiplication is a binary operation on the carrier,
and the topology is a family of subsets of the carrier.

Let A be a non empty set, let R be a binary operation on A, and let T" be a
family of subsets of A. Note that (A, R, T) is non empty.
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Let z be a set, let R be a binary operation on {z}, and let T" be a family of
subsets of {z}. One can verify that ({z}, R,T) is trivial.

Let us observe that every non empty groupoid which is trivial is also group-
like, associative, and commutative.

Let a be a set. Observe that {a}tcp is trivial.

Let us note that there exists a topological group structure which is strict
and non empty.

One can verify that there exists a non empty topological group structure
which is strict, topological space-like, and trivial.

Let G be a group-like associative non empty topological group structure.
Then -51 is a map from G into G.

Let G be a group-like associative non empty topological group structure. We
say that G is inverse-continuous if and only if:

(Def. 6) 5! is continuous.

Let G be a topological space-like topological group structure. We say that
G is continuous if and only if:

(Def. 7) For every map f from [ G, G] into G such that f = the multiplication
of G holds f is continuous.

One can verify that there exists a topological space-like group-like associative
non empty topological group structure which is strict, commutative, trivial,
inverse-continuous, and continuous.

A semi topological group is a topological space-like group-like associative
non empty topological group structure.

A topological group is an inverse-continuous continuous semi topological
group.

Next we state several propositions:

(37) Let T be a continuous non empty topological space-like topological group
structure, a, b be elements of the carrier of 7', and W be a neighbourhood
of a - b. Then there exists an open neighbourhood A of a and there exists
an open neighbourhood B of b such that A- B C W.

(38) Let T be a topological space-like non empty topological group structure.
Suppose that for all elements a, b of the carrier of T' and for every neigh-
bourhood W of a - b there exists a neighbourhood A of a and there exists
a neighbourhood B of b such that A- B C W. Then T is continuous.

(39) Let T be an inverse-continuous semi topological group, a be an element
of the carrier of T, and W be a neighbourhood of a~'. Then there exists
an open neighbourhood A of a such that A=t C W.

(40) Let T be a semi topological group. Suppose that for every element a
of the carrier of T and for every neighbourhood W of a~! there exists a
neighbourhood A of a such that A=! C W. Then T is inverse-continuous.
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(41) Let T be a topological group, a, b be elements of the carrier of 7', and W
be a neighbourhood of a-b~'. Then there exists an open neighbourhood A
of a and there exists an open neighbourhood B of b such that A-B~t C W.

(42) Let T be a semi topological group. Suppose that for all elements a, b of
the carrier of T and for every neighbourhood W of a - b~! there exists a
neighbourhood A of a and there exists a neighbourhood B of b such that
A-B~! CW. Then T is a topological group.

Let G be a continuous non empty topological space-like topological group
structure and let a be an element of the carrier of G. One can check that a - [J
is continuous and [ - a is continuous.

Next we state two propositions:

(43) Let G be a continuous semi topological group and a be an element of
the carrier of G. Then a - [J is a homeomorphism of G.

(44) Let G be a continuous semi topological group and a be an element of
the carrier of G. Then - a is a homeomorphism of G.

The following proposition is true

(45) For every inverse-continuous semi topological group G holds -51 is a
homeomorphism of G.

One can verify that every semi topological group which is continuous is also
homogeneous.
The following two propositions are true:

(46) Let G be a continuous semi topological group, F' be a closed subset of
G, and a be an element of the carrier of G. Then F - a is closed.

(47) Let G be a continuous semi topological group, F' be a closed subset of
G, and a be an element of the carrier of G. Then a - F' is closed.

We now state the proposition

(48) For every inverse-continuous semi topological group G and for every
closed subset F of G holds F~! is closed.

The following two propositions are true:

(49) Let G be a continuous semi topological group, O be an open subset of
G, and a be an element of the carrier of G. Then O - a is open.

(50) Let G be a continuous semi topological group, O be an open subset of
G, and a be an element of the carrier of G. Then a - O is open.

We now state the proposition

(51) For every inverse-continuous semi topological group G and for every open
subset O of G holds O~! is open.

The following two propositions are true:

(52) For every continuous semi topological group G and for all subsets A, O
of GG such that O is open holds O - A is open.
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(53) For every continuous semi topological group G and for all subsets A, O
of G such that O is open holds A - O is open.
One can prove the following propositions:

(54) Let G be an inverse-continuous semi topological group, a be a point of
G, and A be a neighbourhood of a. Then A~! is a neighbourhood of a~!.

(55) Let G be a topological group, a be a point of G, and A be a neighbo-
urhood of a - a~!. Then there exists an open neighbourhood B of a such
that B- B~! C A.

(56) For every inverse-continuous semi topological group G and for every
dense subset A of G holds A™! is dense.

We now state two propositions:

(57) Let G be a continuous semi topological group, A be a dense subset of G,
and a be a point of G. Then a - A is dense.

(58) Let G be a continuous semi topological group, A be a dense subset of G,
and a be a point of G. Then A - a is dense.

We now state two propositions:

(59) Let G be a topological group, B be a basis of 1g, and M be a dense
subset of G. Then {V - z;V ranges over subsets of the carrier of G, x
ranges over points of G: V.€ B A x € M} is a basis of G.

(60) Every topological group is a T3 space.

REFERENCES

[1] Jozef Bialas and Yatsuka Nakamura. Dyadic numbers and T4 topological spaces. Forma-
lized Mathematics, 5(3):361-366, 1996.
[2] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—

65, 1990.

[3] Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.

[4] Czestaw Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,
1990.

[5] Agata Darmochwal. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.

[6] Agata Darmochwal. Families of subsets, subspaces and mappings in topological spaces.

Formalized Mathematics, 1(2):257-261, 1990.

[7] Eugeniusz Kusak, Wojciech Leoniczuk, and Michal Muzalewski. Abelian groups, fields
and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

[8] Michal Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563-571, 1991.

[9] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.

[10] Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223-230, 1990.

[11] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics,
5(2):233-236, 1996.

[12] Andrzej Trybulec. Baire spaces, Sober spaces. Formalized Mathematics, 6(2):289-294,

1997.
[13] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

[14] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics,
1(5):855-864, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.



THE DEFINITION AND BASIC PROPERTIES OF ... 225

[16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

[17] Mirostaw Wysocki and Agata Darmochwal. Subsets of topological spaces. Formalized
Mathematics, 1(1):231-237, 1990.

[18] Mariusz Zynel and Adam Guzowski. Ty topological spaces. Formalized Mathematics,
5(1):75-77, 1996.

Received September 7, 1998



226 ARTUR KORNILOWICZ



FORMALIZED MATHEMATICS

Volume 7, Number 2, 1998
University of Bialystok

The Correspondence Between Lattices of
Subalgebras of
Universal Algebras and Many Sorted
Algebras

Adam Naumowicz Agnieszka Julia Marasik
University of Biatystok Warsaw University of Technology
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MML Identifier: MSSUBLAT.

The articles [16], [5], [1], [6], [7], [8], [10], [14], [4], [9], [13], [2], [17], [15], [12],
[11], and [3] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paper a denotes a set and ¢ denotes a natural number.
We now state several propositions:

(1)

(2)

B) ([Er—a)(2) = (a;q).

(4) 3) = (a,a,a).

(5) For every finite sequence f of elements of {0} holds f = i +— 0 iff
len f = 1.

(6) For every finite sequence f such that f = (O +— 0)(¢) holds len f = .

4
5
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2. SOME PROPERTIES OF SUBALGEBRAS OF UNIVERSAL AND MANY SORTED
ALGEBRAS

We now state the proposition
(7) For all universal algebras Uy, Us such that U; is a subalgebra of U holds
MSSign(U;) = MSSign(Us).
Let Uy be a universal algebra. One can verify that the characteristic of Uy
is function yielding.
One can prove the following propositions:
(8) Let Uy, Uy be universal algebras. Suppose U; is a subalgebra of Us.
Let B be a subset of MSAlg(Usz). Suppose B = the sorts of MSAlg(Uy).
Let o be an operation symbol of MSSign(Usz) and a be an operation
symbol of MSSign(U;). If a = o, then Den(a, MSAlg(U;)) = Den(o,
MSAlg(Us))| Args(a, MSAlg(U1)).
(9) For all universal algebras Uy, Us such that U; is a subalgebra of Us holds
the sorts of MSAlg(Uy) are a subset of MSAlg(Us).
(10) Let Uy, Uy be universal algebras. Suppose Uj is a subalgebra of Us. Let
B be a subset of MSAlg(Us). If B = the sorts of MSAlg(U;), then B is
operations closed.

(11) Let U, Uz be universal algebras. Suppose Uj is a subalgebra of Us. Let
B be a subset of MSAlg(Us). If B = the sorts of MSAlg(U;), then the
characteristics of MSAlg(U;) = Opers(MSAlg(Us), B).

(12) For all universal algebras Uy, Us such that Uy is a subalgebra of Us holds
MSAlg(U;) is a subalgebra of MSAlg(Us).

(13) Let Uy, Uz be universal algebras. Suppose MSAlg(U;) is a subalgebra of
MSAlg(Us). Then the carrier of U; is a subset of the carrier of Us.

(14) Let Uy, Uz be universal algebras. Suppose MSAlg(U7) is a subalgebra of
MSAIlg(Us). Let B be a non empty subset of the carrier of Uy. If B = the
carrier of Uy, then B is operations closed.

(15) Let Uy, Uy be universal algebras. Suppose MSAlg(U;) is a subalgebra of
MSAlg(Us). Let B be a non empty subset of the carrier of Us. If B = the
carrier of Uy, then the characteristic of U; = Opers(Us, B).

(16) For all universal algebras Uy, Us such that MSAlg(U;) is a subalgebra
of MSAlg(Uz) holds U, is a subalgebra of U,.

In the sequel M; is a segmental trivial non void non empty many sorted
signature and A is a non-empty algebra over Mj.
Next we state a number of propositions:

(17) For every non-empty subalgebra B of A holds the carrier of Alg;(B) is

a subset of the carrier of Alg;(A).
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(18) Let B be a non-empty subalgebra of A and S be a non empty subset of
the carrier of Alg; (A). If S = the carrier of Alg,(B), then S is operations
closed.

(19) Let B be a non-empty subalgebra of A and S be a non empty subset of
the carrier of Alg,(A). If S = the carrier of Alg,(B), then the characteri-
stic of Alg; (B) = Opers(Alg,(A4),.5).

(20) For every non-empty subalgebra B of A holds Alg, (B) is a subalgebra
of Alg;(A).

(21) Let S be a non empty non void many sorted signature and A, B be
algebras over S. Then A is a subalgebra of B if and only if A is a subalgebra
of the algebra of B.

(22) For all universal algebras A, B holds signature A = signature B iff
MSSign(A) = MSSign(B).

(23) Let A be a non-empty algebra over M;. Suppose the carrier of M; = {0}.
Then MSSign(Alg; (A)) = the many sorted signature of M.

(24) Let A, B be non-empty algebras over M;. Suppose the carrier of My =
{0} and Alg,(A) = Alg;(B). Then the algebra of A = the algebra of B.

(25) Let A be a non-empty algebra over M;. If the carrier of M; = {0}, then
the sorts of A = the sorts of MSAlg(Alg, (A)).

(26) For every non-empty algebra A over M, such that the carrier of M; = {0}
holds MSAlg(Alg;(A)) = the algebra of A.

(27) Let A be a universal algebra and B be a strict non-empty subalgebra of
MSAlg(A). If the carrier of MSSign(A) = {0}, then Alg,;(B) is a subalge-
bra of A.

3. THE CORRESPONDENCE BETWEEN LATTICES OF SUBALGEBRAS OF
UNIVERSAL AND MANY SORTED ALGEBRAS

We now state three propositions:

(28) Let A be a universal algebra, aj, by be strict non-empty subalgebras
of A, and ag, by be strict non-empty subalgebras of MSAlg(A). Suppose
az = MSAlg(a;) and by = MSAIlg(b1). Then (the sorts of az) U (the sorts
of by) = 0——((the carrier of a;) U (the carrier of by)).

(29) Let A be a universal algebra, aj, by be strict non-empty subalgebras
of A, and ag, by be strict non-empty subalgebras of MSAlg(A). Suppose
as = MSAlg(a;) and by = MSAlg(b;). Then (the sorts of az) N (the sorts
of bg) = 0——(the carrier of a;) N (the carrier of by).
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(30) Let A be a strict universal algebra, a1, b be strict non-empty subalgebras
of A, and ag, by be strict non-empty subalgebras of MSAlg(A). If ay =
MSAlg(al) and bg = MSA]g(bl), then MSAlg(a1 |_| bl) = a |_| b2.

Let A be a universal algebra with constants. One can check that MSSign(A)
is non void strict segmental and trivial and has constant operations.
One can prove the following proposition

(31) Let A be a universal algebra with constants, aj, b; be strict non-empty
subalgebras of A, and ag, by be strict non-empty subalgebras of MSAlg(A).
If ag = MSAlg(aq) and by = MSAlg(by), then MSAlg(a; Nby) = az N bo.

Let A be a quasi total universal algebra structure. One can verify that the
universal algebra structure of A is quasi total.

Let A be a partial universal algebra structure. Observe that the universal
algebra structure of A is partial.

Let A be a non-empty universal algebra structure. Note that the universal
algebra structure of A is non-empty.

Let A be a universal algebra with constants. Note that the universal algebra
structure of A has constants.

We now state the proposition

(32) Let A be a universal algebra with constants. Then the lattice of subalge-
bras of the universal algebra structure of A and the lattice of subalgebras
of MSAlg(the universal algebra structure of A) are isomorphic.
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Summary. In this paper we give Mizar formalization of concept lattices.
Concept lattices stem from the so called formal concept analysis — a part of
applied mathematics that brings mathematical methods into the field of data
anylysis and knowledge processing. Our approach follows the one given in [§].

MML Identifier: CONLAT_1.

The papers [3], [14], [4], (5], [1], [15], [12], [10], 13, [11], (2], [7], [9], amd [g]
provide the notation and terminology for this paper.

1. FOrRMAL CONTEXTS

We consider 2-sorted as systems
( objects, a Attributes ),

where the objects constitute a set and the Attributes is a set.
Let C be a 2-sorted. We say that C' is empty if and only if:

(Def. 1) The objects of C' are empty and the Attributes of C' is empty.
We say that C' is quasi-empty if and only if:
(Def. 2) The objects of C' are empty or the Attributes of C' is empty.

Let us note that there exists a 2-sorted which is strict and non empty and
there exists a 2-sorted which is strict and non quasi-empty.

One can verify that there exists a 2-sorted which is strict, empty, and quasi-
empty.

We consider ContextStr as extensions of 2-sorted as systems

( objects, a Attributes, a Information ),
where the objects constitute a set, the Attributes is a set, and the Information
is a relation between the objects and the Attributes.

@ 1998 University of Bialystok
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One can check that there exists a ContextStr which is strict and non empty
and there exists a ContextStr which is strict and non quasi-empty.

A FormalContext is a non quasi-empty ContextStr.

Let C be a 2-sorted.

(Def. 3) An element of the objects of C is said to be an object of C.
(Def. 4)  An element of the Attributes of C' is said to be a Attribute of C.

Let C be a non quasi-empty 2-sorted. Note that the Attributes of C' is non
empty and the objects of C is non empty.

Let C be a non quasi-empty 2-sorted. One can check that there exists a
subset of the objects of C' which is non empty and there exists a subset of the

Attributes of C' which is non empty.
Let C be a FormalContext, let 0 be an object of C, and let a be a Attribute
of C. We say that o is connected with a if and only if:

(Def. 5) (o, a) € the Information of C.

We introduce o is not connected with a as an antonym of o is connected with a.

2. DERIVATION OPERATORS

Let C be a FormalContext. The functor ObjectDerivation C' yields a func-
tion from 2the objects of C' jpt gthe Attributes of C' 51\ ig defined by the condition
(Def. 6).

(Def. 6) Let O be an element of 2the obiects of € Then (ObjectDerivation C')(0) =
{a; a ranges over Attribute of C: /\ozobject of ¢ (0€ O = o is connected
with a)}.

Let C be a FormalContext. The functor AttributeDerivation C' yields a func-
tion from 2the Attributes of C' 3¢, othe objects of C' 51\ ig defined by the condition
(Def. 7).

(Def. 7) Let A be an element of 2the Attributes of €' Thep (AttributeDerivation C')(A) =
{o0; 0 ranges over objects of C: A, . gttribute of ¢ (@ € A = 0 is connected
with a)}.
The following propositions are true:

(1) Let C be a FormalContext and o be an object of C. Then
(ObjectDerivation C')({o}) = {a;a ranges over Attribute of C: o is con-
nected with a}.

(2) Let C be a FormalContext and a be a Attribute of C. Then
(AttributeDerivation C')({a}) = {o0; 0 ranges over objects of C: o is con-
nected with a}.
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(3) For every FormalContext C' and for all subsets O;, Oy of the ob-
jects of C such that O; C Oz holds (ObjectDerivation C')(O2) C
(ObjectDerivation C')(Oy).

(4) For every FormalContext C' and for all subsets A;, Ao of the Attri-
butes of C' such that A; C A holds (AttributeDerivationC')(As) C
(AttributeDerivation C')(A1).

(5) For every FormalContext C' and for every subset O of the objects of C
holds O C (AttributeDerivation C')((ObjectDerivation C')(O)).

(6) For every FormalContext C and for every subset A of the Attributes of
C holds A C (ObjectDerivation C)((AttributeDerivation C')(A)).

(7) For every FormalContext C' and for every subset O of the objects of C
holds (ObjectDerivation C')(O) = (ObjectDerivation C')
((AttributeDerivation C')((ObjectDerivation C)(0))).

(8) For every FormalContext C' and for every subset A of the Attributes of
C holds (AttributeDerivation C')(A) =
(AttributeDerivation C')((ObjectDerivation C')((AttributeDerivation C')(A))).

(9) Let C be a FormalContext, O be a subset of the objects of C', and A be
a subset of the Attributes of C'. Then O C (AttributeDerivation C)(A) if
and only if [ O, A] C the Information of C.

(10) Let C be a FormalContext, O be a subset of the objects of C, and A
be a subset of the Attributes of C. Then A C (ObjectDerivation C')(0O) if
and only if [ O, A] C the Information of C.

(11) Let C be a FormalContext, O be a subset of the objects of C', and A be
a subset of the Attributes of C'. Then O C (AttributeDerivation C)(A) if
and only if A C (ObjectDerivation C')(O).

Let C be a FormalContext. The functor ¢(C) yielding a map from
QtChe objects of ¢ 4t 2tghe Attributes of C' i3 defined by:

(Def_. 8) ¢(C) = ObjectDerivation C.

Let C' be a FormalContext. The functor psiC yields a map from

gthe Attributes of O g, gfhe objects of €5 g i defined as follows:

(Def. 9) psiC = AttributeDerivation C.
We now state the proposition

(12) For every FormalContext C holds {¢(C), psiC) is a connection between
2tChe objects of C' and 2tche Attributes of c

Let P, R be non empty relational structures and let C; be a connection
between P and R. We say that C} is co-Galois if and only if the condition
(Def. 10) is satisfied.

(Def. 10) There exists a map f from P into R and there exists a map ¢ from R
into P such that
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) Cl = (fa g)a

) f is antitone,
(ili) g is antitone, and

) for all elements pj, pa of P and for all elements r1, 7o of R holds
p1 < g(f(p1)) and r1 < f(g(r1)).

We now state several propositions:

(13) Let P, R be non empty posets, C; be a connection between P and R, f
be a map from P into R, and g be a map from R into P. Suppose C; = (f,
g). Then C} is co-Galois if and only if for every element p of P and for
every element r of R holds p < g(r) iff r < f(p).

(14) Let P, R be non empty posets and C; be a connection between P and
R. Suppose C] is co-Galois. Let f be a map from P into R and g be a
map from R into P. If Cy = (f, g), then f=f-(¢g-f)andg=g9-(f9).

(15) For every FormalContext C holds (¢(C), psiC) is co-Galois.

(16) For every FormalContext C and for all subsets O, Oz of the objects
of C holds (ObjectDerivation C')(O1 U O3) = (ObjectDerivation C')(O1) N
(ObjectDerivation C')(O2).

(17) For every FormalContext C and for all subsets A;, Az of
the Attributes of C holds (AttributeDerivationC)(A; U Ay) =
(AttributeDerivation C')(A;1) N (AttributeDerivation C')(As).

(18) For every FormalContext C holds (ObjectDerivation C')(f)) = the Attri-
butes of C.

(19) For every FormalContext C' holds (AttributeDerivation C')(f)) = the ob-

jects of C.

3. ForMAL CONCEPTS

Let C be a 2-sorted. We introduce ConceptStr over C' which are systems
( a Extent, a Intent ),
where the Extent is a subset of the objects of C' and the Intent is a subset of
the Attributes of C.
Let C be a 2-sorted and let Cy be a ConceptStr over C. We say that C5 is
empty if and only if:
(Def. 11) The Extent of Cs is empty and the Intent of Co is empty.
We say that Cy is quasi-empty if and only if:
(Def. 12) The Extent of C9 is empty or the Intent of Cy is empty.
Let C be a non quasi-empty 2-sorted. Observe that there exists a ConceptStr
over C' which is strict and non empty and there exists a ConceptStr over C which
is strict and quasi-empty.
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Let C be an empty 2-sorted. Observe that every ConceptStr over C' is empty.
Let C be a quasi-empty 2-sorted. Observe that every ConceptStr over C' is
quasi-empty.
Let C be a FormalContext and let Cs be a ConceptStr over C'. We say that
Cs is concept-like if and only if:
(Def. 13) (ObjectDerivation C)(the Extent of C3) = the Intent of Cy and
(AttributeDerivation C') (the Intent of C) = the Extent of Cs.

Let C' be a FormalContext. One can check that there exists a ConceptStr
over C' which is concept-like and non empty.

Let C be a FormalContext. A FormalConcept of C' is a concept-like non
empty ConceptStr over C.

Let C be a FormalContext. Note that there exists a FormalConcept of C
which is strict.

Next we state four propositions:

(20) Let C be a FormalContext and O be a subset of the objects of C'. Then
(i)  {((AttributeDerivation C')((ObjectDerivation C')(O)),
(ObjectDerivation C')(0)) is a FormalConcept of C, and
(ii)  for every subset O’ of the objects of C' and for every subset A’ of the
Attributes of C such that (O’, A’) is a FormalConcept of C and O C O’
holds (AttributeDerivation C')((ObjectDerivation C)(0)) C O'.
(21) Let C be a FormalContext and O be a subset of the ob-
jects of C. Then there exists a subset A of the Attributes of
C such that (O,A) is a FormalConcept of C if and only if
(AttributeDerivation C') ((ObjectDerivation C)(0)) = O.
(22) Let C be a FormalContext and A be a subset of the Attributes of C.
Then
(i)  ((AttributeDerivation C')(A), (ObjectDerivation C)
((AttributeDerivation C')(A))) is a FormalConcept of C, and
(ii)  for every subset O’ of the objects of C and for every subset A’ of the
Attributes of C' such that (O, A’) is a FormalConcept of C' and A C A’
holds (ObjectDerivation C')((AttributeDerivation C)(A)) C A'.
(23) Let C be a FormalContext and A be a subset of the At-
tributes of C. Then there exists a subset O of the objects of
C such that (O,A) is a FormalConcept of C if and only if
(ObjectDerivation C')((AttributeDerivation C)(A)) = A.

Let C be a FormalContext and let Co be a ConceptStr over C'. We say that
Cs is universal if and only if:
(Def. 14) The Extent of Cy = the objects of C.

Let C be a FormalContext and let C5 be a ConceptStr over C'. We say that
Cs is co-universal if and only if:
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(Def. 15) The Intent of Cy = the Attributes of C.

Let C be a FormalContext. Note that there exists a FormalConcept of C
which is strict and universal and there exists a FormalConcept of C' which is
strict and co-universal.

Let C be a FormalContext. The functor Concept — with — all — Objects C'

yields a strict universal FormalConcept of C and is defined by the condition
(Def. 16).

(Def. 16) There exists a subset O of the objects of C' and there exists a subset A of
the Attributes of C' such that Concept — with — all — Objects C' = (O, A)
and O = (AttributeDerivation C')(0)) and A =
(ObjectDerivation C)((AttributeDerivation C')(0)).

Let C be a FormalContext. The functor Concept — with — all — Attributes C

yielding a strict co-universal FormalConcept of C is defined by the condition
(Def. 17).

(Def. 17) There exists a subset O of the objects of C' and there exists a subset A
of the Attributes of C' such that Concept — with — all — Attributes C' =
(O,A) and O = (AttributeDerivation C')((ObjectDerivation C')(())) and
A = (ObjectDerivation C')(0).

One can prove the following propositions:
(24) Let C be a FormalContext. Then the Extent of
Concept — with — all — Objects C' = the objects of C' and the Intent of
Concept — with — all — Attributes C' = the Attributes of C.
(25) Let C be a FormalContext and Co be a FormalConcept of C. Then
(i)  if the Extent of Cy = (), then Cj is co-universal, and
(ii)  if the Intent of Cy = @, then C5 is universal.
(26) Let C be a FormalContext and C3 be a strict FormalConcept of C. Then
(i)  if the Extent of Cy = (), then Cy = Concept — with — all — Attributes C,
and
(ii)  if the Intent of Cy = 0, then C2 = Concept — with — all — Objects C.
(27) Let C be a FormalContext and C3 be a quasi-empty ConceptStr over C.
Suppose Cs is a FormalConcept of C. Then (Y is universal or co-universal.
(28) Let C be a FormalContext and Cy be a quasi-empty Con-
ceptStr over C. If Cy is a strict FormalConcept of C, then Cy =
Concept — with — all — Objects C' or Cy =
Concept — with — all — Attributes C.
Let C be a FormalContext. A non empty set is called a Set of FormalCon-
cepts of C' if:

(Def. 18) For every set X such that X € it holds X is a FormalConcept of C.

Let C be a FormalContext and let F; be a Set of FormalConcepts of C'. We
see that the element of F} is a FormalConcept of C.
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Let C be a FormalContext and let C3, Cy be FormalConcept of C'. We say
that (3 is SubConcept of Cy if and only if:
(Def. 19) The Extent of C5 C the Extent of Cy.
We introduce Cj is SuperConcept of C3 as a synonym of Cs is SubConcept of
Cy.
One can prove the following propositions:
(29) Let C be a FormalContext and C5, Cy be FormalConcept of C. Then C3
is SuperConcept of Cy if and only if Cy is SubConcept of Cj.
(30) Let C be a FormalContext and C3, Cy be FormalConcept of C. Then C3
is SubConcept of C} if and only if the Extent of C3 C the Extent of Cj.
(31) Let C be a FormalContext and C5, Cy be FormalConcept of C. Then Cj
is SubConcept of Cjy if and only if the Intent of Cy C the Intent of Cj.
(32) Let C be a FormalContext and C5, Cy be FormalConcept of C. Then Cj
is SuperConcept of Cy if and only if the Extent of Cy C the Extent of Cs.
(33) Let C be a FormalContext and C5, Cy be FormalConcept of C. Then Cj3
is SuperConcept of Cy if and only if the Intent of C3 C the Intent of Cj.
(34) Let C be a FormalContext and C2 be a FormalConcept of
C. Then Cs is SubConcept of Concept — with — all — Objects C' and
Concept — with — all — Attributes C' is SubConcept of Cs.

4. CONCEPT LATTICES

Let C be a FormalContext. The functor B — carrier C' yielding a non empty
set is defined by the condition (Def. 20).

(Def. 20) B —carrierC = {(E,I); E ranges over subsets of the objects of
C, I ranges over subsets of the Attributes of C: (FE,I) is non
empty A (ObjectDerivation C')(E) = I A (AttributeDerivationC)(I) =

Let C be a FormalContext. Then B — carrier C' is a Set of FormalConcepts
of C.

Let C be a FormalContext. One can check that B — carrier C' is non empty.

One can prove the following proposition

(35) For every FormalContext C' and for every set Cs holds Cy € B — carrier C
iff C5 is a strict FormalConcept of C.
Let C' be a FormalContext. The functor B — meet C' yields a binary operation
on B — carrier C and is defined by the condition (Def. 21).

(Def. 21) Let C5, Cy be strict FormalConcept of C. Then there exists a subset O of
the objects of C and there exists a subset A of the Attributes of C' such that
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(B —meet C)(Cs, Cy) = (O, A) and O = (the Extent of C3) N (the Extent
of Cy) and A = (ObjectDerivation C)((AttributeDerivation C')((the Intent
of C3) U (the Intent of Cy))).
Let C be a FormalContext. The functor B — join C' yielding a binary opera-
tion on B — carrier C' is defined by the condition (Def. 22).

(Def. 22) Let Cs, C4 be strict FormalConcept of C. Then there exists a sub-
set O of the objects of C' and there exists a subset A of the At-
tributes of C' such that (B —joinC)(Cs, Cy) = (0,A) and O =
(AttributeDerivation C')((ObjectDerivation C')((the Extent of C3) U (the
Extent of Cy))) and A = (the Intent of C3) N (the Intent of Cy).

One can prove the following propositions:

(36) For every FormalContext C' and for all strict FormalConcept C3, Cy of
C holds (B — meet C)(C3, Cy) = (B — meet C')(Cy, Cs).

(37) For every FormalContext C' and for all strict FormalConcept C5, Cy of
C holds (B — join C)(C3, Cy) = (B — join C)(Cy, Cs).

(38) For every FormalContext C and for all strict FormalConcept
C3, Cyq, C5 of C holds (B —meetC)(Cs, (B—meetC)(Cy, C5)) =
(B — meet C)((B — meet C')(Cs, Cy), Cs).

(39) For every FormalContext C and for all strict FormalConcept
Cs3, C4, C5 of C holds (B—joinC)(Cs, (B—joinC)(Cy, C5)) =
(B — join C)((B —jOinC)(Cg, 04), C5>

(40) For every FormalContext C' and for all strict FormalConcept C3, Cy of
C holds (B — join C)((B — meet C)(Cs, Cy), C4) = Cy.

(41) For every FormalContext C' and for all strict FormalConcept C3, Cy of
C holds (B — meet C')(C3, (B — join C)(Cs, Cy)) = Cs.

(42) For every FormalContext C' and for every strict FormalConcept Cy of C
holds (B — meet C)(C3, Concept — with — all — Objects C) = Cs.

(43) For every FormalContext C and for every strict FormalConcept
Cy of C holds (B — joinC)(Csy, Concept — with — all — ObjectsC) =
Concept — with — all — Objects C.

(44) For every FormalContext C and for every strict FormalConcept Cy of C
holds (B — join C')(C3, Concept — with — all — Attributes C') = Cs.

(45) For every FormalContext C and for every strict FormalConcept
Cy of C holds (B — meet C')(Cs, Concept — with — all — Attributes C') =
Concept — with — all — Attributes C.

Let C be a FormalContext. The functor ConceptLattice C' yielding a strict
non empty lattice structure is defined as follows:

(Def. 23) ConceptLattice C' = (B — carrier C, B — join C, B — meet C').

The following proposition is true
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(46) For every FormalContext C holds ConceptLattice C is a lattice.

Let C be a FormalContext. One can verify that ConceptLattice C is strict
non empty and lattice-like.

Let C be a FormalContext and let S be a non empty subset of the carrier
of ConceptLattice C. We see that the element of S is a FormalConcept of C.

Let C' be a FormalContext and let (', be an element of the carrier of
ConceptLattice C. The functor CoT yielding a strict FormalConcept of C' is
defined as follows:

(Def. 24) CyT = Cs.
One can prove the following two propositions:

(47) Let C be a FormalContext and Cs, Cy be elements of the carrier of
ConceptLattice C. Then C3 T Cj if and only if C3" is SubConcept of C, 7.

(48) For every FormalContext C holds ConceptLattice C is a complete lattice.
Let C be a FormalContext. Observe that ConceptLattice C' is complete.
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1. PRELIMINARIES

For simplicity, we use the following convention: Y is a non empty set, P, P>
are partitions of Y, A, B are subsets of Y, ¢ is a natural number, x, y, x1, x2,
zg are sets, and X, V, d, t, S1, So are sets.

The following proposition is true

(1) ¥XePandV ePand X CV, then X =V.

Let us consider S, S3. We introduce S; € Sy and Ss 3 51 as synonyms of
S is finer than Ss.

We now state several propositions:

(2) For every partition P; of Y holds P,  P;.

(3) Ui\ {0}) =US.

(4) For all partitions P, P, of Y such that P, © P, and P» © P; holds
P, C Py

(5) For all partitions P;, P» of Y such that P, P, and P, © P; holds
P =P

@ 1998 University of Bialystok
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(7)! For all partitions Pj, P, of Y such that P; 3 P, holds P is coarser than
Pg.
Let us consider Y, let P; be a partition of Y, and let b be a set. We say that
b is a dependent set of P if and only if:
(Def. 1) There exists a set B such that B C P; and B # () and b = |J B.
Let us consider Y, let Py, P» be partitions of Y, and let b be a set. We say

that b is a minimal dependent set of P, and P» if and only if the conditions
(Def. 2) are satisfied.

(Def. 2)(1) b is a dependent set of P; and a dependent set of P, and
(ii)  for every set d such that d C b and d is a dependent set of P; and a
dependent set of P, holds d = b.

We now state several propositions:

(8) For all partitions Pj, P» of Y such that P; © P and for every set b such
that b € P, holds b is a dependent set of Ps.

(9) For every partition P; of Y holds Y is a dependent set of P;.

(10) Let F be a family of subsets of Y. Suppose Intersect(F') # () and for every
X such that X € F holds X is a dependent set of P;. Then Intersect(F')
is a dependent set of P;.

(11) Let Xg, X1 be subsets of Y. Suppose Xy is a dependent set of P; and X3
is a dependent set of P; and Xy meets X;. Then Xy N X7 is a dependent
set of P.

(12) For every subset X of Y such that X is a dependent set of P; and X # Y
holds X€ is a dependent set of P;.

(13) For every element y of Y there exists a subset X of ¥ such that y € X
and X is a minimal dependent set of P; and Ps.

(14) For every partition P of Y and for every element y of Y there exists a
subset A of Y such that y € A and A € P.

Let Y be a non empty set. One can verify that every partition of Y is non
empty.
Let Y be a set. The functor PARTITIONS(Y') is defined by:
(Def. 3) For every set  holds x € PARTITIONS(Y) iff z is a partition of Y.

Let Y be a set. One can check that PARTITIONS(Y') is non empty.

2. JOIN AND MEET OPERATION BETWEEN PARTITIONS

Let us consider Y and let P, P, be partitions of Y. The functor P, A P»
yielding a partition of Y is defined by:

!The proposition (6) has been removed.
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(Def. 4) PLAPy=Pim P\ {0}.
Let us observe that the functor P; A P, is commutative.
One can prove the following propositions:
15) For every partition P; of Y holds Py A P, = P.
16) For all partitions Py, Pa, P3 of Y holds Py A Py A P3 = Py A Py \ Ps.
17) For all partitions P;, P, of Y holds P,  P; A Ps.
18) For all partitions P;, Py, P3 of Y such that P, © P, and P» 3 P3 holds
P 3 Ps.
Let us consider Y and let P, P, be partitions of Y. The functor P, V P
yielding a partition of Y is defined by:
(Def. 5) For every d holds d € P, V P, iff d is a minimal dependent set of P; and
Ps.

Let us observe that the functor P; V P, is commutative.

(
(
(
(

One can prove the following propositions:
(19) For all partitions Py, P of Y holds P, € P, V Ps.
(20) For every partition P; of Y holds P, V P| = P.
(21) For all partitions P;, P3 of Y such that P} € Ps and « € P3 and zp € P,
and t € x and t € 2o holds 2y C .

(22) For all partitions Py, P, of Y such that z € P, V P, and zp € P; and
t€xandt € zy holds zy C x.

3. PARTITIONS AND EQUIVALENCE RELATIONS

We now state the proposition
(23) Let P; be a partition of Y. Then there exists an equivalence relation Ry
of Y such that for all x, y holds (z, y) € R; if and only if the following
conditions are satisfied:
(i) zeY,
(i) yeY, and
(iii)  there exists A such that A € P; and x € A and y € A.
Let us consider Y. The functor Rel(Y) yields a function and is defined by
the conditions (Def. 6).

(Def. 6)(i) domRel(Y") = PARTITIONS(Y), and
(ii)  for every x such that x € PARTITIONS(Y) there exists an equivalence
relation R; of Y such that (Rel(Y))(z) = R; and for all sets z1, x9 holds
(z1, x2) € Ry iff 21 € Y and z2 € Y and there exists A such that A € x
and z1 € A and x5 € A.

245
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Let Y be a non empty set and let P be a partition of Y. The functor =p,)
yielding an equivalence relation of Y is defined as follows:
(Def. 7)  =(p,) = (Rel(Y))(FP1).
The following propositions are true:
(24) For all partitions Pj, P, of Y holds P, € P» iff =p) € =)
(25) Let Pi, P; be partitions of Y, pg, z, y be sets, and f be a finite sequence
of elements of Y. Suppose that
(i)
(i)
(i) f(1) =,
iv)
(v)
)

(vi

1 <lenf,
for every ¢ such that 1 < ¢ and ¢ < len f there exist sets pa2, p3, u such
that po € P, and ps € P> and f(i) € p2 and u € py and u € p3 and
f(i+1) € p3, and
(vii)  po is a dependent set of P; and a dependent set of Ps.
Then y € pg.
(26) Let R2, Rs3 be equivalence relations of Y, f be a finite sequence of ele-
ments of Y, and x, y be sets. Suppose that
z ey,
yey,
(i) f(1) ==,

(i)
)
)
(iv)  f(enf) =y,
)
)

(ii

(v) 1<lenf, and
(vi)  for every ¢ such that 1 < i and ¢ < len f there exists a set u such that
ueY and (f(i), u) € RoUR3 and (u, f(i +1)) € Ry UR3.
Then (z, y) € Ry U Rs.
For all partitions Py, P, of Y holds =p,vp, = =(p;) U=(p,)-
For all partitions P;, P» of Y holds =p,Ap, = =p) N =(py)-
For all partitions P;, P> of Y such that =p) = =(p) holds P, = P.
For all partitions Py, Po, P3of Y holds P,V P,V P3 =P,V P,V Ps.
For all partitions Py, P, of Y holds P, A P, V P, = P.
For all partitions Py, P, of Y holds P,V Pi A P, = P;.
For all partitions P;, P», P3 of Y such that P € P3 and P, € P3 holds
PV P E Ps.
(34) For all partitions P;, Py, P3 of Y such that P  P3 and P, © P holds
PiANPy,> Ps.
Let us consider Y. The functor Z(Y) yielding a partition of Y is defined as
follows:
(Def. 8) Z(Y) = SmallestPartition(Y).

e e N
w W
= O

S N e e S S N
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Let us consider Y. The functor O(Y) yielding a partition of Y is defined by:

(Def. 9) O(Y) = {Y}.

3

W w

w

N N N N /N /N /N
e~ w

W

The following propositions are true:

5) I(Y) = {B: Ve (B={z} A z€Y)).
6) For every partition P; of Y holds O(Y) © P; and P, 3 Z(Y).
7) =ow)= Vy.
8) =zv) =Ly
9) I(Y) € O(Y).
0) For every partition P; of Y holds O(Y)VP, = O(Y) and O(Y)AP, = P.
1) For every partition P; of Y holds Z(Y)V P, = Py and Z(Y)AN P, = Z(Y).
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Summary. In this paper, we define Boolean valued functions. Some of
their algebraic properties are proved. We also introduce and examine the infi-
mum and supremum of Boolean valued functions and their properties. In the
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MML Identifier: BVFUNC_1.

The terminology and notation used in this paper are introduced in the following
papers: [4], [6], [1], [2], [3], and [5].

1. BOOLEAN OPERATIONS

In this paper Y denotes a non empty set.
Let k, I be elements of Boolean. The functor k = [ is defined by:
(Def. 1) k=1=-kVI
The functor k < [ is defined as follows:
(Def. 2) kel=-(kal).
Let k, [ be elements of Boolean. The predicate k € [ is defined by:
(Def. 3) k= 1= true.
Let us note that the predicate k € [ is reflexive.
One can prove the following three propositions:
(1) For all elements k, [ of Boolean and for all natural numbers n;, ng such
that k = nq and [ = n9 holds k € [ iff n1 < ns.
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(2) For all elements k, [ of Boolean such that k €[ and | € k holds k = .

(3) For all elements k, I, m of Boolean such that k € [ and [ € m holds
k€ m.

2. BOOLEAN VALUED FUNCTIONS

Let us consider Y. The functor BVF(Y) is defined by:
(Def. 4) BVF(Y) = Boolean? .

Let Y be a non empty set. Observe that BVF(Y) is functional and non
empty.

Let us consider Y, let a be an element of BVF(Y'), and let x be an element
of Y. The functor Pj(a,z) yields an element of Boolean and is defined by:

(Def. 5) Pj(a,x) = a(z).
Let us consider Y and let a, b be elements of BVF(Y). The functor a A b
yields an element of BVF(Y') and is defined by:
(Def. 6) For every element z of Y holds Pj(a A b, z) = Pj(a,x) A Pj(b, x).
Let us notice that the functor a A b is commutative.

Let us consider Y and let a, b be elements of BVF(Y'). The functor a V b
yields an element of BVF(Y') and is defined by:
(Def. 7) For every element z of Y holds Pj(a V b,z) = Pj(a,x) V Pj(b, x).
Let us notice that the functor a V b is commutative.

Let us consider Y and let a be an element of BVF(Y'). The functor —a
yielding an element of BVF(Y) is defined as follows:

(Def. 8) For every element z of Y holds Pj(—a,z) = = Pj(a, x).

Let us consider Y and let a, b be elements of BVF(Y). The functor a & b
yields an element of BVF(Y') and is defined as follows:

(Def. 9) For every element z of Y holds Pj(a @ b, z) = Pj(a,x) @ Pj(b, x).
Let us note that the functor a @ b is commutative.

Let us consider Y and let a, b be elements of BVF(Y). The functor a = b
yields an element of BVF(Y') and is defined by:
(Def. 10) For every element = of Y holds Pj(a = b, x) = = Pj(a,z) vV Pj(b, x).
Let us consider Y and let a, b be elements of BVF(Y). The functor a < b
yielding an element of BVF(Y) is defined as follows:
(Def. 11) For every element = of Y holds Pj(a < b, x) = =(Pj(a, z) ® Pj(b, x)).
Let us observe that the functor a < b is commutative.
Let us consider Y. The functor false(Y) yielding an element of BVF(Y) is
defined by:

(Def. 12) For every element = of Y holds Pj(false(Y), x) = false.
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Let us consider Y. The functor true(Y) yielding an element of BVF(Y') is
defined as follows:

(Def. 13) For every element x of Y holds Pj(true(Y), z) = true.
The following propositions are true:
(4) For every element a of BVF(Y') holds =—a = a.

(5) For every element a of BVF(Y) holds —true(Y) = false(Y) and
= false(Y') = true(Y).

(6) For all elements a, b of BVF(Y') holds a A a = a.
(7) For all elements a, b, c of BVF(Y') holds (a Ab) Ac=a A (bAc).
(8) For every element a of BVF(Y') holds a A false(Y') = false(Y).
(9) For every element a of BVF(Y') holds a A true(Y') = a.
(10) For every element a of BVF(Y') holds a V a = a.
(11) For all elements a, b, ¢ of BVF(Y') holds (aVb)Ve=aV (bVec).
(12) For every element a of BVF(Y') holds a V false(Y) = a.
(13) For every element a of BVF(Y') holds a V true(Y') = true(Y).
(14) For all elements a, b, c of BVF(Y) holds a AbVe=(aVe)A(bVec).
(15) For all elements a, b, ¢ of BVF(Y) holds (aVb) Ac=aAcVbAec.
(16) For all elements a, b of BVF(Y') holds —(a V b) = —a A —b.
(17) For all elements a, b of BVF(Y') holds =(a A b) = —a V —b.

Let us consider Y and let a, b be elements of BVF(Y'). The predicate a € b
is defined by:

(Def. 14) For every element z of Y such that Pj(a,x) = true holds Pj(b, x) = true.

Let us note that the predicate a € b is reflexive.
The following four propositions are true:

(18) For all elements a, b, ¢ of BVF(Y) holds if a € b and b € a, then a = b
and if ¢ € b and b € ¢, then a € c.

(19) For all elements a, b of BVF(Y') holds a = b = true(Y) iff a € b.
(20) For all elements a, b of BVF(Y') holds a < b = true(Y') iff a = b.
(21) For every element a of BVF(Y') holds false(Y') € a and a € true(Y).

3. INFIMUM AND SUPREMUM

Let us consider Y and let a be an element of BVF(Y'). The functor INFa
yields an element of BVF(Y') and is defined as follows:
true(Y), if for every element x of Y holds Pj(a, z) = true,
false(Y), otherwise.
The functor SUP a yielding an element of BVF(Y') is defined by:

(Def. 15) INFa = {
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false(Y'), if for every element x of Y holds Pj(a,x) = false,

(Def‘ 16) SUPa = { true(Y), otherwise.

Next we state two propositions:

(22) For every element a of BVF(Y') holds = INF a = SUP —a and ~SUPa =
INF —a.
(23) INF false(Y) = false(Y) and INF true(Y) = true(Y) and
SUP false(Y') = false(Y') and SUP true(Y') = true(Y).
Let us consider Y. Observe that false(Y') is constant.
Let us consider Y. One can verify that true(Y’) is constant.
Let Y be a non empty set. Observe that there exists an element of BVF(Y)
which is constant.
We now state several propositions:
(24) For every constant element a of BVF(Y') holds a = false(Y') or a =
true(Y).
(25) For every constant element d of BVF(Y') holds INF d = d and SUP d = d.

(26) For all elements a, b of BVF(Y) holds INF(a A b) = INFa A INF b and
SUP(a Vv b) = SUPaV SUPb.

(27) For every element a of BVF(Y') and for every constant element d of
BVF(Y) holds INF(d = a) = d = INFa and INF(a = d) = SUPa = d.

(28) For every element a of BVF(Y') and for every constant element d of
BVF(Y) holds INF(d V a) = d VINFa and SUP(d A a) = d A SUP a and
SUP(a A d) = SUPaAd.

(29) For every element a of BVF(Y) and for every element = of Y holds
Pj(INF a, x) € Pj(a, ).

(30) For every element a of BVF(Y) and for every element = of Y holds
Pj(a,x) € Pj(SUP a, x).

4. BOOLEAN VALUED FUNCTIONS AND PARTITIONS

Let us consider Y, let a be an element of BVF(Y'), and let P; be a partition
of Y. We say that a is dependent of P; if and only if:

(Def. 17) For every set F' such that F' € Py and for all sets x1, 9 such that 1 € F
and z € F holds a(x1) = a(z2).
The following two propositions are true:
(31) For every element a of BVF(Y') holds a is dependent of Z(Y').
(32) For every constant element a of BVF(Y') holds a is dependent of O(Y).

Let us consider Y and let P; be a partition of Y. We see that the element
of P is a subset of Y.
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Let us consider Y, let  be an element of Y, and let P; be a partition of Y.
Then EqClass(x, Pp) is an element of P;. We introduce Lift(x, P;) as a synonym
of EqClass(z, P1).

Let us consider Y, let a be an element of BVF(Y'), and let P; be a partition
of Y. The functor INF(a, P;) yields an element of BVF(Y") and is defined by the
condition (Def. 18).

(Def. 18) Let y be an element of Y. Then

(i) if for every element z of Y such that € EqClass(y, P1) holds Pj(a, x) =

true, then Pj(INF(a, P1),y) = true, and

(ii)  if it is not true that for every element x of Y such that x €

EqClass(y, P1) holds Pj(a, z) = true, then Pj(INF(a, P1),y) = false.

Let us consider Y, let a be an element of BVF(Y'), and let P, be a partition
of Y. The functor SUP(a, P;) yielding an element of BVF(Y) is defined by the
condition (Def. 19).

(Def. 19) Let y be an element of Y. Then
(i)  if there exists an element = of Y such that © € EqClass(y, P1) and
Pj(a,z) = true, then Pj(SUP(a, P1),y) = true, and
(ii)  if it is not true that there exists an element z of Y such that z €
EqClass(y, P1) and Pj(a,z) = true, then Pj(SUP(a, P),y) = false.

Next we state a number of propositions:

(33) For every element a of BVF(Y) and for every partition P; of Y holds
INF(a, P;) is dependent of P;.

(34) For every element a of BVF(Y) and for every partition P; of Y holds
SUP(a, P1) is dependent of P;.

(35) For every element a of BVF(Y) and for every partition P; of Y holds
INF(a, P1) € a.

(36) For every element a of BVF(Y) and for every partition P, of Y holds
a SUP(CL, Pl)

(37) For every element a of BVF(Y) and for every partition P, of Y holds
~INF(a, P) = SUP(~a, P,).

For every element a of BVF(Y') holds INF(a, O(Y)) = INF a.
For every element a of BVF(Y') holds SUP(a,O(Y)) = SUP a.
(

(38)
(39)
(40) For every element a of BVF(Y') holds INF(a,Z(Y)) = a.
(41)
(42)

~— — ~— —

For every element a of BVF(Y') holds SUP(a,Z(Y)) = a.

For all elements a, b of BVF(Y') and for every partition P; of Y holds
INF(a A b, Py) = INF(a, P) NINF(b, P)).

(43) For all elements a, b of BVF(Y) and for every partition P; of ¥ holds
SUP(a Vb, P,) = SUP(a, P,) V SUP(b, P,).
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Let us consider Y and let f be an element of BVF(Y'). The functor GPart f
yields a partition of Y and is defined by:

(Def. 20) GPart f = {{x;x ranges over elements of Y: f(x) = true}, {2’; 2’ ranges
over elements of Y: f(z') = false}} \ {0}.

The following propositions are true:
(44) For every element a of BVF(Y') holds a is dependent of GPart a.

(45) For every element a of BVF(Y') and for every partition P; of Y such
that a is dependent of P, holds P; is finer than GPart a.
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Summary. In this article, we defined sinus and cosine as the real part and
the imaginary part of the exponential function on complex, and also give their
series expression. Then we proved the differentiablity of sinus, cosine and the
exponential function of real. Finally, we showed the existence of the circle ratio,
and some formulas of sinus, cosine.
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The papers [11], [3], [1], [10], [17], [14], [15], [4], [5], [2], [12], [16], [6], [20], [21],
8], [9], [7], [13], [18], and [19] provide the terminology and notation for this
paper.

1. SOME DEFINITIONS AND PROPERTIES OF COMPLEX SEQUENCE

For simplicity, we adopt the following rules: p, q, 7, t1, to, t3 are elements of
R, w, z, 21, 29 are elements of C, k, [, m, n are natural numbers, s; is a complex
sequence, and r; is a sequence of real numbers.
Let m, k be natural numbers. Let us assume that k& < m. The functor
PN(m, k) yielding an element of N is defined by:
(Def. 1) PN(m,k) =m — k.
Let m, k be natural numbers. The functor CHK(m, k) yields an element of
C and is defined by:
1c, if m <k,
Oc, otherwise.

(Def. 2) CHK(m, k) = {
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The functor RHK(m, k) yields an element of R and is defined as follows:
1, if m <k,
(Def. 3)  RHK(m, k) = { 0, otherwise.

In this article we present several logical schemes. The scheme ExComplex
CASE deals with a binary functor F yielding an element of C, and states that:
For every k there exists s such that for every n holds if n < k,

then s;(n) = F(k,n) and if n > k, then s;(n) = O¢
for all values of the parameter.
The scheme FzReal CASE deals with a binary functor F yielding an element
of R, and states that:
For every k there exists 71 such that for every n holds if n < k,
then r1(n) = F(k,n) and if n > k, then r1(n) =0
for all values of the parameter.
The complex sequence Prod_complex_n is defined by:

(Def. 4)  (Prod-complex_n)(0) = 1¢ and for every n holds (Prod_complex_n)(n +
1) = (Prod_complexn)(n) - ((n + 1) 4 01).

The sequence Prod_real_n of real numbers is defined by:

(Def. 5) (Prodrealmn)(0) = 1 and for every n holds (Prod_realn)(n + 1) =
(Prod_real n)(n) - (n+ 1).
Let n be a natural number. The functor n!lc yields an element of C and is
defined as follows:

(Def. 6) nlc = (Prod_complex_n)(n).

Let n be a natural number. Then n! is a real number and it can be charac-
terized by the condition:

(Def. 7) n! = (Prod_real.n)(n).

Let z be an element of C. The functor z ExpSeq yields a complex sequence
and is defined as follows:

(Def. 8) For every n holds z ExpSeq(n) = a

m.
Let a be an element of R. The functor a ExpSeq yielding a sequence of real
numbers is defined as follows:

(Def. 9) For every n holds a ExpSeq(n) = o

n!
The following propositions are true:

(1) If 0 < n, then n 4+ 0i # Oc and Olc = 1¢ and nlc # Oc and n + 1le =
nle- ((n+1) + 07).
(2) nl#0and (n+ 1) =n!-(n+1).
(3) For every k such that 0 < k holds PN(k, 1)!c- (k+0i) = k!c and for all m,
k such that & < m holds PN(m, k)lc- (((m+1)—k)+0i) = PN(m+1, k)lc.
Let n be a natural number. The functor Coef n yielding a complex sequence
is defined by:
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(Def. 10) For every natural number %k holds if & < n, then (Coefn)(k) =
W‘(an)'c and if £ > n, then (Coefn)(k) = Oc.

Let n be a natural number. The functor Coef_en yields a complex sequence
and is defined as follows:

(Def. 11) For every natural number k holds if & < n, then (Coef_en)(k) =
wepNe and if & > n, then (Coef_en)(k) = Oc.

Let us consider s1. The functor Sift s; yielding a complex sequence is defined
as follows:

(Def. 12) (Sift s1)(0) = Oc and for every natural number & holds (Sift s;)(k+1) =
Sl(k').

Let us consider n and let z, w be elements of C. The functor Expan(n, z, w)
yields a complex sequence and is defined as follows:

(Def. 13) For every natural number k holds if £ < n, then (Expan(n,z,w))(k) =
(Coef n) (k) - 2& - ng(n’k) and if n < k, then (Expan(n, z,w))(k) = Oc.

Let us consider n and let z, w be elements of C. The functor Expan_e(n, z, w)
yielding a complex sequence is defined by:

(Def. 14) For every natural number k holds if k£ < n, then (Expan_e(n, z,w))(k) =
(Coef_en)(k) - 2 - ng(n’k) and if n < k, then (Expan_e(n, z,w))(k) = Oc.

Let us consider n and let z, w be elements of C. The functor Alfa(n, z,w)
yielding a complex sequence is defined by:

(Def. 15) For every natural number k holds if & < n, then (Alfa(n,z,w))(k) =
zExpSeq(k) - (3>_h_,wExpSeq(a))xen(PN(n,k)) and if n < Fk, then
(Alfa(n, z,w))(k) = Oc.

Let a, b be elements of R and let n be a natural number. The functor
Conj(n, a,b) yielding a sequence of real numbers is defined as follows:

(Def. 16) For every natural number k holds if £ < n, then (Conj(n,a,b))(k) =
aExpSeq(k)-((3a_o bExpSeq(a))nen(n)— (36— bExpSeq(a))nen(PN(n, k)))
and if n < k, then (Conj(n,a,b))(k) = 0.

Let z, w be elements of C and let n be a natural number. The functor
Conj(n, z, w) yielding a complex sequence is defined by:

(Def. 17) For every natural number k holds if k¥ < n, then (Conj(n,z,w))(k) =
2 ExpSeq(k)- (5 w ExpSeq(a) wen(n) — (5 w ExpSeq(a))wen(PN(n, k)))
and if n < k, then (Conj(n, z,w))(k) = Oc.

The following propositions are true:

(4) zExpSeq(n + 1) = %ﬁg}z and zExpSeq(0) = 1¢ and
|z ExpSeq(n)| = |z| ExpSeq(n).

(5) If 0 <k, then (Sift s1)(k) = s1(PN(k, 1)).

(6) (azo(s1)(@))nen(k) = (2a=0(Sift s1)())wen (k) + s1(k).

(1) (z+w)f = Qo= (Expan(n, z, w))(a))sen(n).



258 YUGUANG YANG AND YASUNARI SHIDAMA

(8) Expan_e(n,z,w) = % Expan(n, z, w).

(9) Ct = (i (Expan-e(n, z,w)) (@) ren(n).
(10) Oc ExpSeq is absolutely summable and ) (0c ExpSeq) = 1¢.
Let us consider z. One can verify that z ExpSeq is absolutely summable.
Next we state a number of propositions:

(11) zExpSeq(0) = 1¢ and (Expan(0, z,w))(0) = 1¢.

(12) 1If I < k, then (Alfa(k + 1, z,w))(l) = (Alfa(k, z,w))(l) + (Expan_e(k +
1, z,w))(1).

(13)  (Xa—o(Alfa(k+ 1, z,w))(a))ren(k) = (g—o(Alfalk, 2, w))())xen(k) +
(>a—o(Expan_e(k + 1, z, w))(c))xen (k).

(14) zExpSeq(k) = (Expan_e(k, z,w))(k).

(15)  (Xoa—o 2 + wExpSeq(a))ren(n) = (Fa—o(Alfa(n, z,w))(a))rxen(n).

(16)  (Xa=0 = ExpSeq(a))en(k) - (X oq— w ExpSeq(a))sen(k) — o=z +
wEXpseq(O‘))mEN(k) = (ZZ:O(CODj(kv z,w))(a))ren (k).

(17) 1(326=0 2 ExpSeq())wen(k)| < (>_G0—o 2] ExpSeq(a))xen(k) and
(> a0 Iz ExpSeq(a))xen(k) < 32(]2| ExpSeq) and
|(3-6—0 2 ExpSeq(a))xen(k)| < 32(|2] ExpSeq).

(18) 1< ) (]2| ExpSeq).

(19) 0 < |z| ExpSeq(n).

(20)  |(2_6=0 |2 ExpSeq(a))ren(n)| = (260 |2| ExpSeq(a))sen(n) and if n <
m, then (325 _ 2| ExpSea(a))en(m) — (35 2] ExpSea(a))wen(n)| =
(X a=o |2l ExpSeq(a))ren(m) — (a0 |21 ExpSeq(a))sen(n).

(21)  [(326=0 | Conj(k, z, w)[(@))xen(n)| = (3og—o | Conj(k, 2, w)[(a))xen(n).

(22) For every p such that p > 0 there exists n such that for every k such
that n < k holds |(>_5_, | Conj(k, z,w)|())ken (k)| < p.

(23) For every s; such that for every k holds s;(k) =
(>or _o(Conj(k, z,w))(c))ken(k) holds s; is convergent and lim s; = Oc.

2. DEFINITION OF EXPONENTIAL FUNCTION ON COMPLEX

The partial function exp from C to C is defined as follows:
(Def. 18) domexp = C and for every element z of C holds (exp)(z) =
> (2 ExpSeq).
Let us consider z. The functor exp z yielding an element of C is defined by:
(Def. 19) expz = (exp)(z).
The following proposition is true

(24) For all z1, 2o holds exp z1 + 22 = exp 21 - €xp 22.
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3. DEFINITION OF SINUS, COSINE, AND EXPONENTIAL FUNCTION ON R

The partial function sin from R to R is defined as follows:
(Def. 20) domsin = R and for every real number d holds (sin)(d) = (> (0 +
di ExpSeq)).
Let us consider ¢;. The functor sint; yielding an element of R is defined by:
(Def. 21) sint; = (sin)(¢1).
Next we state the proposition
(25) sin is a function from R into R.
The partial function cos from R to R is defined by:
(Def. 22) domcos = R and for every real number d holds (cos)(d) = R(>_(0 +
di ExpSeq)).
Let us consider t1. The functor cost; yields an element of R and is defined
by:
(Def. 23) cost; = (cos)(t1).

One can prove the following propositions:

(26) cos is a function from R into R.

(27) domsin = R and dom cos = R.

(28) expO0+ t1i = costy + sintyi.

(29) (expO0+t12)* = exp —(0 + £19).

(30) |expO+t1i| =1 and |sint1]| < 1 and |costy| < 1.

(31)  (cos)(t1)2+(sin)(t1)? = 1 and (cos)(t1)-(cos)(t1)+(sin)(¢1)-(sin)(t1) = 1.
(32) (cost1)? 4+ (sint;)? =1 and cost; - costy +sinty -sint; = 1.

(33) (cos)(0) = 1 and (sin)(0) = 0 and (cos)(—t1) = (cos)(t1) and

(sin)(—t1) = —(sin)(¢1).
(34) cos0 =1 and sin0 = 0 and cos —t; = cost; and sin —t; = —sint;.
Let t; be an element of R. The functor £; P_sin yielding a sequence of real
numbers is defined by:

D : _ (DRt
(Def. 24) For every n holds t; P_sin(n) = T

Let t; be an element of R. The functor ¢; P_cos yielding a sequence of real
numbers is defined by:

(Def. 25) For every n holds ¢; P_cos(n) = %ﬁ.
The following propositions are true:
(35) For all 2, k holds 2&* = (2£)2 and 4% = (z3)k.
(36) For all k, t; holds (0 + t13)3% = ((=1)k) - t44% + 0i and (0 + tli)QN'kH =
0+ ((=1)F) -6y i

(37) For every n holds nlc = n! + 0i.
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(38) For all ¢, n holds (Y h_,tiPsin(a))ken(n) = (h_ S0 +
t11 ExpSeq) () ren(2-n+1) and (35 _ t1 P_cos(a))ren(n) = (> n_, R(0+
t1i ExpSeq)(e))ren(2 - n).

(39) Forevery t; holds (35 _ t1 P_sin(a)).en is convergent and ) (¢; P_sin) =
S(>2(0 + tiiExpSeq)) and (D n_t1 P_cos(a))xen is convergent and
> (t1 P_cos) = R(D_(0 + t1i ExpSeq)).

(40) For every t; holds (cos)(t1) = > _(t1 P_cos) and (sin)(t1) = > _(t1 P_sin).

(41) For all p, t1, r1 such that 7 is convergent and limr; = ¢; and for every
n holds 71(n) > p holds t; > p.

(42) For all n, k, m such that n < k holds m! > 0 and n! < k!

(43) For all t1, n, k such that 0 < ¢; and ¢; < 1 and n < k holds tl{{; <ty
(44) For all ¢, n holds (t1 + 0i)f = (t15y) + 0i.

(45) For all £1, n holds ot — 11l 4 ;.

(46) (> (p + 0i ExpSeq)) = 0.

(47)  (cos)(1) > 0 and (sin)(1) > 0 and (cos)(1) < (sin)(1).

(48) For every t; holds t; ExpSeq = R(t1 + 0i ExpSeq).

(49) For every t; holds t1 ExpSeq is summable and > (¢; ExpSeq) = R(>_(t1+

0i ExpSeq)).

(50) For all p, ¢ holds > (p + g ExpSeq) = > (p ExpSeq) - > (¢ ExpSeq).
The partial function exp from R to R is defined by:

(Def. 26) domexp = R and for every real number d holds (exp)(d) =
> (d ExpSeq).
Let us consider ¢;. The functor expt; yields an element of R and is defined
as follows:

(Def. 27) expt1 = (exp)(t1).

We now state a number of propositions:

(51) domexp =R.

(52) For every element d of R holds (exp)(d) = > (d ExpSeq).

(53) For every t; holds (exp)(t1) = R(>_(t1 + 0i ExpSeq)).

(54) expty + 0i = expty + 0i.

(55) expp+q=expp-expq.

(56) exp0=1.

(57) For every t; such that t; > 0 holds (exp)(t1) > 1.

(58) For every t; such that ¢; < 0 holds 0 < (exp)(¢1) and (exp)(t1) < 1.
(59) For every t; holds (exp)(t1) > 0.

(60) For every t; holds expt; > 0.
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(Def. 29) For every n holds zP_t(n) =
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4. DIFFERENTIAL OF SINUS, COSINE, AND EXPONENTIAL FUNCTION

Let z be an element of C. The functor z P_dt yields a complex sequence and
is defined as follows:

n+1
N
n+2lc’
Let z be an element of C. The functor z P_t yielding a complex sequence is
defined by:

Gt
EEwi
Next we state a number of propositions:
(61) For every z holds z P_dt is absolutely summable.
(62) For every z holds z - > (2 P_dt) = > (2 ExpSeq) — 1¢ — 2.

(63) For every p such that p > 0 there exists r such that » > 0 and for every
z such that |z| < r holds | Y (2 P_dt)| < p.

(64) For all z, z; holds Y (21 + z ExpSeq) — > (21 ExpSeq) = > (21 ExpSeq) -
z4 z-> (zP_dt) - > (21 ExpSeq).
(65) For all p, ¢ holds (cos)(p + q) — (cos)(p) = —q - (sin)(p) — ¢ - IO_(0 +
qi P_dt) - ((cos)(p) + (sin)(p)i)).
(66) For all p, ¢ holds (sin)(p + ¢) — (sin)(p) = ¢ - (cos)(p) + ¢ - RO_(0 +
i P-dt) - ((cos)(p) + (5in) (1))
)

(67) For all p, ¢ holds (exp)(p + q) — (exp)(p) = q - (exp)(p) + q - (exp)(p) -
RO (g + 0iP_dt)).

(68) For every p holds cos is differentiable in p and (cos)'(p) = —(sin)(p).
(69) For every p holds sin is differentiable in p and (sin)’(p) = (cos)(p).

(70) For every p holds exp is differentiable in p and (exp)’(p) = (exp)(p).
(71) exp is differentiable on R and for every t; such that ¢; € R holds

(exp)’(t1) = (exp)(t1)-
(72) cos is differentiable on R and for every t; such that ¢; € R holds

(cos) (t1) = —(sin)(ty).
(73) sin is differentiable on R and for every t; holds (sin)(t1) = (cos)(¢1).
(74) For every t; such that ¢; € [0,1] holds 0 < (cos)(t;) and (cos)(t1) > 1.
(75) [0,1] € dom(E2) and ]0,1][ C dom(&R),
(76)
(77)

COos Ccos

s g continuous on [0, 1].
COs

For all t, t3 such that ¢, € ]0,1[ and t3 € ]0,1[ and (£2)(¢5) = (22)(t3)
holds t2 = t3.
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5. EXISTENCE OF CIRCLE RATIO

The element Pai of R is defined as follows:
(Def. 30) (S2)(Eal) = 1 and Pai € ]0,4].

We now state the proposition
(78)  (sin)(5g) = (cos) ().

6. FORMULAS OF SINUS, COSINE

Next we state several propositions:

(79)  (sin)(te+t3) = (sin)(t2)-(cos)(t3)+(cos)(t2)-(sin)(t3) and (cos)(ta+t3) =
(cos)(t2) - (cos)(ts) — (sin)(t2) - (sin)(t3).

(80) sintg + t3 = sinty - costs + costy - sintsg and costy + t3 = costy - costs —
sinty - sin t3.

(81) (cos)(Pa‘) =0 and (sm)(Pal) = 1 and (cos)(Pai) = —1 and (sin)(Pai) = 0
and (cos)(Pai+2) = 0 and (sin)(Pai +52) = —1 and (cos)(2 - Pai) = 1
and (sin)(2 - Pai) = 0.

(82) cos P;“ = 0 and sin P;“ = 1 and cosPai = —1 and sinPai = 0 and
cos Pai —I—Pal = 0 and sin Pa1+P3“ = —1 and cos2-Pai = 1 and sin2-Pai =
0.
(83)(1)  (sin)(t1 + 2 - Pai) = (sin)(t1),
(ii)  (cos)(t1 + 2 - Pai) = (cos)(t1),
(i) (sin)(E2 —t1) = (cos)(t1),
(iv)  (cos)(5 —t1) = (sin)(t1),
(v)  (sin) (B2 + 1) = (cos)(tr),
(Vi) (cos)(E2 + 1) = —(sin) (1),
(vii)  (sin)(Pai-+t1) = —(sin)(¢1), and
(viii)  (cos)(Pai+t1) = —(cos)(t1).
(84) sinty+2-Pai =sint; and costy +2-Pai = cost; and sin = Pal —t1 = costy
and cos =2 Pal —t1 = sint; and sin *& Pal +t1 = costy and cos Pal 4+t = —sinty
and sin Pal +t1 = —sint; and cos Pal +t1 = —cost.

or every t1 such that ¢; € ,% olds (cos)(t1) > 0.
85) F h th 0, 44[ hold 0
(86) For every t1 such that ; € ]0, 22| holds cost; > 0.
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1. PRELIMINARIES

In this paper 4, j, k, n are natural numbers.
The following propositions are true:

(1) For all sets A, B, C such that A misses B holds AN (BUC)=AnC.

(2) For all sets A, B, C, p such that A C Band BNC = {p} and p € A
holds AN C = {p}.

(3) For all real numbers ¢, r, s, t such that ¢ > 0 and ¢t < 1 and s =
(1—t)-q+t-rand ¢ <sandr <sholdst=0.

(4) For all real numbers ¢, v, s, t such that ¢ > 0 and ¢ < 1 and s =
(1—t)-gq+t-rand g>sandr>sholdst=0.

(5) Ifi—"k <y, theni<j+k.
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(6) Ifi<j+k, theni—"k<j.

(7) Ifi<j—"kandk<j theni+k <j.

(8) Ifj+k<i,then k <i—'j.

(9) Ifk<iandi<j, theni—"k<j—'k.

(10) Ifi<jand k< j, theni—"k<j—"k.

(11) Let D be a non empty set, f be a non empty finite sequence of elements

of D, and g be a finite sequence of elements of D. Then m, o~ )(9 ™ f) =
Ten ff

(12) For all sets a, b, ¢, d holds the indices of ( Z Z > ={(1, 1), (1, 2), (2,
1),(2, 2)}.

2. EUCLIDEAN SPACE

We now state four propositions:

(13) For all points p, g of E} and for every real number r such that 0 < r and
p=(1—7r)-p+r-qholdsp=gq.

(14) For all points p, g of £} and for every real number 7 such that r < 1 and
p=(1—r)-q+r-pholdsp=gq.

(15) For all points p, g of £} such that p = % - (p+ q) holds p = q.

(16) For all points p, ¢, r of £} such that ¢ € L(p,r) and r € L(p, q) holds
qg=r.

3. EUCLIDEAN PLANE

One can prove the following propositions:

(17) Let A be a non empty subset of £2, p be an element of the carrier of £2,
and 7 be a real number. If A = Ball(p, ), then A is connected.

(18) For all subsets A, B of E% such that A is open and B is a component of
A holds B is open.

(19) For all points p, g, r of % such that £(p, q) is horizontal and r € L(p, q)
holds pa = ra.

(20) For all points p, g, r of £2 such that L(p,q) is vertical and r € L(p, q)
holds pP1=rnr1.

(21) For all points p, g, r, s of £ such that £(p,q) is horizontal and L(r, s)
is horizontal and L(p, ¢) meets L(r, s) holds pa = ra.
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(22) For all points p, g, r of €% such that L(p,q) is vertical and L(g,r) is
horizontal holds L(p, q) N L(q,r) = {q}.

(23) For all points p, q, 7, s of £% such that £(p, q) is horizontal and L(s,r)
is vertical and r € L(p, q) holds L(p,q) N L(s,r) = {r}.

4. MISCELLANEOUS

In the sequel p, ¢ denote points of 8% and G denotes a Go-board.
Next we state two propositions:

(24) If 1 < jand j < kand k£ < widthG and 1 < ¢ and ¢ < lenG, then
(Gij)z2 < (Gig)e-

(25) If 1 < jand j < widthG and 1 < 7 and 7 < k and k£ < lenG, then
(Gij) < (G-

In the sequel C denotes a subset of 5%.
We now state a number of propositions:

(26) L£(NW-corner C, NE-corner C') C £(SpStSeqC).

(27) N-most C' C L(NW-corner C, NE-corner C).

(28) For every non empty compact subset C of €% holds N-minC €
L(NW-corner C, NE-corner C).

(29) L(NW-corner C, NE-corner C) is horizontal.

(30) Let f be a finite sequence of elements of 5% and 7, j be natural numbers.
Suppose f is a special sequence and 1 < ¢ and ¢ < j and j < len f. Then
LE mif, 7if L(f), T1f, Tentf-

(31) Let g be a finite sequence of elements of 5% and p be a point of S%.
Suppose m1g # p and (7119)1 = p1 or (mg)2 = p2 and g is a special
sequence and L(p,m19) N L(g) = {m1g}. Then (p) " g is a special sequence.

(32) Let g be a finite sequence of elements of £2 and p be a point of £2.
Suppose Tengg 7# P and (Mengg)1 = p1 O (Mengg)2 = p2 and g is a
special sequence and L(p, Tengg) N L(g) = {Mengg}. Then g =~ (p) is a
special sequence.

(33) Let f be a S-sequence in R? and p be a point of EZ2. Ifl<jandj<lenf
and p € E(mld(f, 1,7)), then LE p, 7; f, E(f) 71fs Ten 1 f-

(34) For every finite sequence h of elements of £2 such that i € domh and
j € dom h holds £L(mid(h,1,7)) C L(h).

(35) If1 <iandi < j, then for every finite sequence [ of elements of 5% such
that 7 <len f holds [,(mld(f,z 7)) =L(f,i)U E(rmd(f,z +1,7)).

(36) Let f be a finite sequence of elements of 2. If 1 < 4, then if i < j and

< len f, then ﬁ(mld(f,z,j)) (mld(f, i,j—="1)UL(f,7-"1).
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(37) Let g be a finite sequence of elements of £2 and p be a point of £2.
Suppose ¢ is a special sequence and p; = (m1g)1 or p2 = (m1g)2 and
L(p,m19)N Z(g) = {myg} and p # mg. Then (p) " g is a special sequence.

(38) Let f, g be finite sequences of elements of £2. Suppose that

) f is a special sequence,

) g is a special sequence,

(ili)  (Mien £ f)1 = (m19)1 OF (Tien 7 f)2 = (T19)2,

) L(f) misses L(g),

) L(Tien g fom19) N L(f) = {mien s £}, and
) L(menrf,mg) NL(9) = {mg}.

Then f 7 g is a special sequence.

(39) For every S-sequence f in R? and for every point p of £2 such that
p € L(f) holds 71 | f,p=m1f.

(40) Let f be a S-sequence in R? and p, ¢ be points of 2. If 1 < j and
j <lenf and p € L(f,j) and q € L(m;f,p), then LE q, p, L(f), m1f,
Ten ff

5. SPECIAL CIRCULAR SEQUENCES

Next we state the proposition

(41) For every non constant standard special circular sequence f holds
LeftComp(f) is open and RightComp(f) is open.

Let f be a non constant standard special circular sequence. One can verify
the following observations:

« L(f) is non vertical and non horizontal,
*  LeftComp(f) is region, and

*  RightComp(f) is region.

One can prove the following propositions:

(42) For every non constant standard special circular sequence f holds
RightComp( f) misses L£(f).

(43) For every non constant standard special circular sequence f holds

LeftComp(f) misses L(f).

(44) For every non constant standard special circular sequence f holds
iwn f <1gn [

(45) Let f be a non constant standard special circular sequence. Then there
exists ¢ such that 1 < ¢ and i < lenthe Go-board of f and N-min L(f) =
(the Go-board of f); widththe Go-board of f-
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(46) Let f be a clockwise oriented non constant standard special circular
sequence. Suppose i € domthe Go-board of f and mf = (the Go-
board of f); width the Go-board of f and m1 f = N-min £(f). Then 73 f = (the
Go-board of f )i+1,widththe Go-board of f and ey f—r1 f = (the Go-board of
[)i,width the Go-board of f—

(47) Let f be a non constant standard special circular sequence. If 1 < ¢ and
i1<jand j<lenf and m f € E(mld(f,z,j)), then ¢ =1 or j = len f.
(48) Let f be a clockwise oriented non constant standard special circular
sequence. If 7y f = N-min £(f), then L(mif, mof) C L(SpStSeq L(f)).

6. RECTANGULAR SEQUENCES

We now state the proposition

(49) Let f be a rectangular finite sequence of elements of S% and p be a point
of E2. If p € L(f), then py = W-bound £(f) or p1 = E-bound £(f) or
p2 = S-bound L(f) or pa = N-bound L(f).
One can check that there exists a special circular sequence which is rectan-
gular.
The following propositions are true:

(50) Let f be a rectangular special circular sequence and g be a S-sequence in
R? . If m1g € LeftComp(f) and me gg € RightComp(f), then £(f) meets
L(g)-

(51) For every rectangular special circular sequence f holds SpStSeq E( f) =
f

(52) Let f be a rectangular special circular sequence. Then L( f)
ranges over points of £2: p; = W-bound E( f) A p2 < N-bound £(
S-bound £(f) V p1 < E-boundZ(f) A p1 > W-bound L(f)
N-bound £(f) V p1 < E-bound £(f) A p1 > W-bound L(f)
S-bound £(f) V p1 = E-bound £(f) A pz < N-bound L(Jf)
S-bound E(f)}

(53) For every rectangular special circular sequence f holds the Go-board of
o < maf mf )

m3f mf )

(54) Let f be a rectangular special circular sequence. Then LeftComp(f) =
{p : W-bound £(f) £ pr V p1 £ E-boundZ(f) V S-bound £(f) £
p2 V pz £ N-bound £(f)} and RightComp(f) = {q : W-bound £(f) <
N @< E—boundZ(f) A S—boundZ(f) <q2 N g2 < N—boundZ(f)}.

One can check that there exists a rectangular special circular sequence which

VN
>

S N

VARV

is clockwise oriented.



270 ANDRZEJ TRYBULEC AND YATSUKA NAKAMURA

One can check that every rectangular special circular sequence is clockwise
oriented.
Next we state four propositions:

(55) Let f be a rectangular special circular sequence and g be a S-sequence
in R* . If mg € LeftComp(f) and mengg € RightComp(f), then
LPoint(£(g), ™19, Men g9, L(f)) # NW-corner L(f).

(56) Let f be a rectangular special circular sequence and g be a S-sequence
in R? . If mg € LeftComp(f) and Tengg € RightComp(f), then

LPoint(£(g), ™19, Men g9, L(f)) # SE-corner L(f).

(57) Let f be a Eectangular special circular sequence and p be a point of E%.
If W-bound L(f) > p1 or p1 > E-bound L(f) or S-bound L(f) > p2 or

p2 > N-bound L(f), then p € LeftComp(f).

(58) For every clockwise oriented non constant standard special circular se-
quence f such that 71 f = N-min £(f) holds LeftComp(SpStSeq L(f)) C
LeftComp( f).

7. IN THE AREA

Next we state a number of propositions:

(59) Let f be a finite sequence of elements of 5% and p, g be points of 5%.
Then (p, q) is in the area of f if and only if (p) is in the area of f and (g)
is in the area of f.

(60) Let f be a rectangular finite sequence of elements of 5% and p be a
point of £%. Suppose (p) is in the area of f but p; = W-bound Z(f) or
p1 = E-bound L(f) or pa = S-bound £(f) or pz = N-bound £(f). Then
p € L(f).

(61) Let f be a finite sequence of elements of S%, p, ¢ be points of 2, and r
be a real number. Suppose 0 < r and < 1 and (p, ¢) is in the area of f.
Then ((1 —7)-p+r-q) is in the area of f.

(62) Let f, g be finite sequences of elements of £2. If g is in the area of f and
i € dom g, then (m;g) is in the area of f.

(63) Let f, g be finite sequences of elements of £2 and p be a point of £2. If
g is in the area of f and p € L£(g), then (p) is in the area of f.

(64) Let f be arectangular finite sequence of elements of 5% and p, ¢ be points
of E2.If g ¢ L(f) and (p,q) is in the area of f, then £(p,q) N L(f) C {p}.

(65) Let f be a rectangular finite sequence of elements of 5% and p, g be
points of £3. If p € L(f) and ¢ ¢ L(f) and (g) is in the area of f, then

L(p,q) N L(f) = {p}-
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(66) Let f be anon constant standard special circular sequence. Suppose 1 < 4
and 7 < lenthe Go-board of f and 1 < j and j < width the Go-board of
f. Then ((the Go-board of f); ;) is in the area of f.

67) Let g be a finite sequence of elements of £2 and p, ¢ be points of £2. If
T T
(p,q) is in the area of g, then (% - (p+ q)) is in the area of g.

(68) For all finite sequences f, g of elements of 5% such that ¢ is in the area
of f holds Rev(g) is in the area of f.
(69) Let f, g be finite sequences of elements of £% and p be a point of £2.
Suppose that
(i) g is in the area of f,
(ii)  (p) is in the area of f,
(ili) g is a special sequence, and
(iv)  there exists a natural number i such that 1 < i and i+ 1 < leng and

p € L(g,1).
Then | g, p is in the area of f.

(70) Let f be a non constant standard special circular sequence and g be a
finite sequence of elements of 8%. Then g is in the area of f if and only if
g is in the area of SpStSeq L(f).

(71) Let f be a rectangular special circular sequence and g be a S-sequence
in R2 . If mg € LeftComp(f) and mengg € RightComp(f), then

| LPoint(L(g), T19, Men g9, £(f)), ¢ is in the area of f.

(72) Let f be a non constant standard special circular sequence. Suppose 1 < 4
and ¢ < lenthe Go-board of f and 1 < j and j < widththe Go-board of
f- Then Int cell(the Go-board of f, i,7) misses L£(SpStSeq L(f)).
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1. CONVEX AND INTERNAL METRIC SPACES

Let V be a non empty metric structure. We say that V' is convex if and only
if the condition (Def. 1) is satisfied.

(Def. 1) Let x, y be elements of the carrier of V' and r be a real number. Suppose
0 < r and r < 1. Then there exists an element z of the carrier of V such
that p(z,2) = 7 - plx, y) and p(z,y) = (1 - 1) - plz,y).

Let V be a non empty metric structure. We say that V is internal if and
only if the condition (Def. 2) is satisfied.

(Def. 2) Let z, y be elements of the carrier of V and p, ¢ be real numbers. Suppose
p > 0 and ¢ > 0. Then there exists a finite sequence f of elements of the
carrier of V' such that

(i) ™ 1f =,
(11) 7T1enff =Y,
(iii)  for every natural number i such that 1 < ¢ and ¢ < len f — 1 holds
p(mif, miy1f) < p, and
(iv)  for every finite sequence F' of elements of R such that len F' =len f — 1
and for every natural number ¢ such that 1 < ¢ and 7 < len F holds
miF" = p(mi f, i1 f) holds |p(z,y) — > F| <q.
One can prove the following proposition
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(1) Let V be a non empty metric space. Suppose V is convex. Let x, y be
elements of the carrier of V' and p be a real number. Suppose p > 0. Then
there exists a finite sequence f of elements of the carrier of V' such that

i) mf=uz,

(ii) Wlenff =Y,

(ili)  for every natural number i such that 1 < ¢ and ¢ < len f — 1 holds
p(mif, mit1f) < p, and

(iv)  for every finite sequence F' of elements of R such that len F = len f — 1
and for every natural number ¢ such that 1 < ¢ and ¢ < len F' holds
il = p(mi f, miy1 f) holds p(z,y) = > F.

Let us observe that every non empty metric space which is convex is also
internal.

One can verify that there exists a non empty metric space which is convex.

A Geometry is a Reflexive discernible symmetric triangle internal non empty
metric structure.

2. ISOMETRIC FUNCTIONS

Let V' be a non empty metric structure and let f be a map from V into V.
We say that f is isometric if and only if:

(Def. 3) rng f = the carrier of V' and for all elements z, y of the carrier of V'
holds p(z,y) = p(f(x), f(y))-
Let V' be a non empty metric structure. The functor ISOMV yields a set
and is defined as follows:

(Def. 4) For every set = holds x € ISOM V iff there exists a map f from V into
V such that f =z and f is isometric.
Let V be a non empty metric structure. Then ISOM V is a subset of (the
carrier of V)the carrier of V.
One can prove the following proposition
(2) Let V be a discernible Reflexive non empty metric structure and f be a
map from V into V. If f is isometric, then f is one-to-one.

Let V be a discernible Reflexive non empty metric structure. One can check
that every map from V into V which is isometric is also one-to-one.
Let V be a non empty metric structure. Observe that there exists a map
from V into V which is isometric.
The following three propositions are true:
(3) Let V be a discernible Reflexive non empty metric structure and f be
an isometric map from V into V. Then f~! is isometric.
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(4) For every non empty metric structure V' and for all isometric maps f, g
from V into V holds f - g is isometric.

(5) For every non empty metric structure V holds idy is isometric.

Let V' be a non empty metric structure. Note that ISOM V' is non empty.

3. REAL LINEAR-METRIC SPACES

We introduce RLSMetrStruct which are extensions of RLS structure and
metric structure and are systems

( a carrier, a distance, a zero, an addition, an external multiplication ),
where the carrier is a set, the distance is a function from [ the carrier, the carrier ]
into R, the zero is an element of the carrier, the addition is a binary operation on
the carrier, and the external multiplication is a function from [ R, the carrier ]
into the carrier.

One can verify that there exists a RLSMetrStruct which is non empty and
strict.

Let X be a non empty set, let F' be a function from [ X, X ] into R, let O
be an element of X, let B be a binary operation on X, and let G be a function
from [R, X ] into X. One can verify that (X, F, O, B,G) is non empty.

Let V be a non empty RLSMetrStruct. We say that V' is homogeneous if
and only if:

(Def. 5) For every real number r and for all elements v, w of the carrier of V'
holds p(r - v,r-w) = |r| - p(v,w).

Let V be a non empty RLSMetrStruct. We say that V' is translatible if and
only if:

(Def. 6) For all elements u, w, v of the carrier of V holds p(v, w) = p(v+u, w+u).

Let V be a non empty RLSMetrStruct and let v be an element of the carrier
of V. The functor Norm v yielding a real number is defined as follows:

(Def. 7) Normwv = p(0y,v).

Let us note that there exists a non empty RLSMetrStruct which is strict,
Abelian, add-associative, right zeroed, right complementable, real linear space-
like, Reflexive, discernible, symmetric, triangle, homogeneous, and translatible.

A RealLinearMetrSpace is an Abelian add-associative right zeroed right com-
plementable real linear space-like Reflexive discernible symmetric triangle ho-
mogeneous translatible non empty RLSMetrStruct.

We now state three propositions:

(6) Let V be a homogeneous Abelian add-associative right zeroed right com-
plementable real linear space-like non empty RLSMetrStruct, r be a real
number, and v be an element of the carrier of V. Then Norm(r - v) =
|r| - Norm v.
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(7) Let V be a translatible Abelian add-associative right zeroed right com-
plementable triangle non empty RLSMetrStruct and v, w be elements of
the carrier of V. Then Norm(v + w) < Norm v + Norm w.

(8) Let V be a translatible add-associative right zeroed right complementa-
ble non empty RLSMetrStruct and v, w be elements of the carrier of V.
Then p(v,w) = Norm(w — v).

Let n be a natural number. The functor RLMSpacen yielding a strict Real-
LinearMetrSpace is defined by the conditions (Def. 8).

(Def. 8)(i) The carrier of RLMSpacen = R",

(ii)  the distance of RLMSpacen = p",
(ili)  the zero of RLMSpacen = (0,...,0),
——

(iv)  for all elements z, y of R™ holds (the addition of RLMSpacen)(z,
y) =z +y, and
(v)  for every element x of R"™ and for every element r of R holds (the
external multiplication of RLMSpacen)(r, z) =7 - .
Next we state the proposition

(9) For every natural number n and for every isometric map f from
RLMSpacen into RLMSpacen holds rng f = R".

4. GROUPS OF ISOMETRIC FUNCTIONS

Let n be a natural number. The functor IsomGroup n yielding a strict gro-
upoid is defined by the conditions (Def. 9).

(Def. 9)(i)  The carrier of IsomGroup n = ISOM RLMSpace n, and
(i)  for all functions f, g such that f € ISOMRLMSpacen and g €
ISOM RLMSpace n holds (the multiplication of IsomGroupn)(f, g) = f-g.
Let n be a natural number. Note that IsomGroupn is non empty.
Let n be a natural number. Note that IsomGroup n is associative and group-
like.
The following two propositions are true:
(10) For every natural number n holds lisomGroupn = idRI.MSpacen-
(11) Let n be a natural number, f be an element of IsomGroupn, and g be
a map from RLMSpacen into RLMSpacen. If f = g, then f~! = ¢~ L

Let n be a natural number and let G be a subgroup of IsomGroupn.
The functor SublsomGroupRel G yielding a binary relation on the carrier of
RLMSpacen is defined by the condition (Def. 10).
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(Def. 10) Let A, B be elements of RLMSpace n. Then (A, B) € SublsomGroupRel G
if and only if there exists a function f such that f € the carrier of G and
f(A) = B.
Let n be a natural number and let G be a subgroup of IsomGroup n. Observe
that SubIsomGroupRel G is equivalence relation-like.
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1. PRELIMINARIES

Let S be a finite 1-sorted structure. One can verify that the carrier of S is
finite.

Let S be a trivial 1-sorted structure. One can check that the carrier of S is
trivial.

One can check that every set which is trivial is also finite.

One can verify that every 1-sorted structure which is trivial is also finite.

Let us mention that every 1-sorted structure which is non trivial is also non
empty.

One can check the following observations:

* there exists a 1-sorted structure which is strict, non empty, and trivial,

* there exists a relational structure which is strict, non empty, and trivial,

and
* there exists a FR-structure which is strict, non empty, and trivial.
We now state the proposition

(1) For every T} non empty topological space T holds every finite subset of
T is closed.

1 This work has been supported by KBN Grant 8 T11C 018 12.
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Let T be a compact topological structure. Observe that Q7 is compact.

Let us observe that there exists a topological space which is strict, non
empty, and trivial.

Let us mention that every non empty topological space which is finite and
T is also discrete.

Let us observe that every topological space which is finite is also compact.
One can prove the following propositions:

2) Every discrete non empty topological space is a T space.

3) Every discrete non empty topological space is a T5 space.

4) Every discrete non empty topological space is a Tb space.

(
(
(
(5) Every discrete non empty topological space is a T} space.

One can check that every non empty topological space which is Ty and T} is

also T5.

Let us observe that every non empty topological space which is T3 and 17 is
also T5.

Let us note that every topological space which is T is also 1.
One can check that every topological space which is T} is also Tp.

Next we state three propositions:

(6) Let S be a reflexive relational structure, T' be a reflexive transitive rela-
tional structure, f be a map from S into T, and X be a subset of S. Then

L(fex) c L(fo1X).
(7) Let S be a reflexive relational structure, T' be a reflexive transitive rela-

tional structure, f be a map from S into 7', and X be a subset of S. If f
is monotone, then [(f°X) = [(f°]X).

(8) For every non empty poset N holds IdsMap(/N) is one-to-one.

One can prove the following proposition

(9) For every finite lattice N holds SupMap(NN) is one-to-one.

We now state three propositions:
(10) For every finite lattice NV holds NV and (Ids(/V), C) are isomorphic.

(11) Let N be a complete non empty poset,  be an element of N, and X be
a non empty subset of N. Then x M preserves inf of X.

(12) For every complete non empty poset N and for every element x of N
holds = M [ is meet-preserving.
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2. ON THE BASIS OF TOPOLOGICAL SPACES

Next we state several propositions:

(13) Let T be an anti-discrete non empty topological structure and p be a
point of T'. Then {the carrier of T'} is a basis of p.

(14) Let T be an anti-discrete non empty topological structure, p be a point
of T, and D be a basis of p. Then D = {the carrier of T'}.

(15) Let T be a non empty topological space, P be a basis of T', and p be a
point of T. Then {A; A ranges over subsets of T: A€ P A p€ A} is a
basis of p.

(16) Let T be a non empty topological structure, A be a subset of T', and p
be a point of T. Then p € A if and only if for every basis K of p and for
every subset @ of T' such that @ € K holds AN Q # 0.

(17) Let T be a non empty topological structure, A be a subset of T', and p
be a point of T. Then p € A if and only if there exists a basis K of p such
that for every subset ) of T' such that Q € K holds AN Q # 0.

Let T be a topological structure and let p be a point of T'. A family of subsets
of T is said to be a generalized basis of p if:

(Def. 1) For every subset A of T such that p € Int A there exists a subset P of T
such that P € it and p € Int P and P C A.

Let T be a non empty topological space and let p be a point of T'. Let us note
that the generalized basis of p can be characterized by the following (equivalent)
condition:

(Def. 2) For every neighbourhood A of p there exists a neighbourhood P of p
such that P € it and P C A.

The following propositions are true:

(18) Let T be a topological structure and p be a point of 7. Then

gthe carrier of T 35 o generalized basis of p.

(19) For every non empty topological space T" and for every point p of T" holds
every generalized basis of p is non empty.
Let T be a topological structure and let p be a point of T. Observe that
there exists a generalized basis of p which is non empty.
Let T be a topological structure, let p be a point of 7', and let P be a
generalized basis of p. We say that P is correct if and only if:

(Def. 3) For every subset A of T holds A € P iff p € Int A.
Let T be a topological structure and let p be a point of T. Note that there
exists a generalized basis of p which is correct.
One can prove the following proposition
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(20) Let T be a topological structure and p be a point of 7. Then {A; A
ranges over subsets of T: p € Int A} is a correct generalized basis of p.

Let T be a non empty topological space and let p be a point of T". Observe
that there exists a generalized basis of p which is non empty and correct.
One can prove the following three propositions:

(21) Let T be an anti-discrete non empty topological structure and p be a
point of T'. Then {the carrier of T'} is a correct generalized basis of p.

(22) Let T be an anti-discrete non empty topological structure, p be a point
of T, and D be a correct generalized basis of p. Then D = {the carrier of
T}.

(23) For every non empty topological space T" and for every point p of T" holds
every basis of p is a generalized basis of p.

Let T be a topological structure. A family of subsets of T is said to be a
generalized basis of T if:

(Def. 4) For every point p of T" holds it is a generalized basis of p.

Next we state two propositions:

2the carrier of T

(24) For every topological structure 7" holds is a generalized

basis of T'.
(25) For every non empty topological space T' holds every generalized basis
of T is non empty.

Let T be a topological structure. Note that there exists a generalized basis
of T" which is non empty.
Next we state two propositions:

(26) For every non empty topological space T" and for every generalized basis
P of T holds the topology of T' C UniCl(Int P).

(27) For every topological space T holds every basis of T' is a generalized basis
of T.

Let T be a non empty topological space-like FR-structure. We say that T is
topological semilattice if and only if:

(Def. 5) For every map f from [T, (T qua topological space) ] into 7" such that
f =Tr holds f is continuous.
Let us note that every non empty topological space-like FR-structure which
is reflexive and trivial is also topological semilattice.
Let us mention that there exists a FR-structure which is reflexive, trivial,
non empty, and topological space-like.
We now state the proposition
(28) Let T be a topological semilattice non empty topological space-like FR-
structure and x be an element of 1. Then x M [ is continuous.
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1. PRELIMINARIES

The following proposition is true

(1) For every non empty poset L and for every element x of L holds
compactbelow(z) = o N the carrier of CompactSublatt(L).
Let L be a non empty reflexive transitive relational structure and let X be
a subset of (Ids(L),C). Then |J X is a subset of L.
The following propositions are true:

(2) For every non empty relational structure L and for all subsets X, Y of
the carrier of L such that X C Y holds finsups(X) C finsups(Y).

(3) Let L be a non empty transitive relational structure, S be a sups-
inheriting non empty full relational substructure of L, X be a subset of
the carrier of L, and Y be a subset of the carrier of S. If X =Y, then
finsups(X) C finsups(Y).

(4) Let L be a complete transitive antisymmetric non empty relational struc-
ture, S be a sups-inheriting non empty full relational substructure of L,
X be a subset of the carrier of L, and Y be a subset of the carrier of S. If
X =Y, then finsups(X) = finsups(Y).

1 This work has been supported by KBN Grant 8 T11C 018 12.
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(5) Let L be a complete sup-semilattice and S be a join-inheriting non empty
full relational substructure of L. Suppose L; € the carrier of S. Let X
be a subset of L and Y be a subset of S. If X =Y, then finsups(Y) C
finsups(X).

(6) For every lower-bounded sup-semilattice L and for every subset X of
(Ids(L), €) holds sup X = [finsups(|J X).

(7) For every reflexive transitive relational structure L and for every subset
X of L holds || X = | X.

(8) For every reflexive transitive relational structure L and for every subset
X of L holds 71X = TX.

(9) For every non empty reflexive transitive relational structure L and for
every element x of L holds ||z = |=x.

(10) For every non empty reflexive transitive relational structure L and for
every element x of L holds TTx = Tz.

(11) Let L be a non empty relational structure, S be a non empty relational
substructure of L, X be a subset of L, and Y be a subset of S. If X =Y,
then |Y C | X.

(12) Let L be a non empty relational structure, S be a non empty relational
substructure of L, X be a subset of L, and Y be a subset of S. If X =Y,
then 1Y C 17X.

(13) Let L be a non empty relational structure, S be a non empty relational
substructure of L, x be an element of L, and y be an element of S. If
xz =y, then |y C |z.

(14) Let L be a non empty relational structure, S be a non empty relational
substructure of L, x be an element of L, and y be an element of S. If
x =1y, then Ty C Tx.

2. RELATIONAL SUBSETS

Let L be a non empty relational structure and let S be a subset of L. We
say that S is meet-closed if and only if:
(Def. 1) sub(S) is meet-inheriting.
Let L be a non empty relational structure and let S be a subset of L. We
say that S is join-closed if and only if:
(Def. 2) sub(S) is join-inheriting.
Let L be a non empty relational structure and let S be a subset of L. We
say that S is infs-closed if and only if:
(Def. 3) sub(S) is infs-inheriting.
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Let L be a non empty relational structure and let .S be a subset of L. We
say that S is sups-closed if and only if:

(Def. 4) sub(S) is sups-inheriting.

Let L be a non empty relational structure. Observe that every subset of L
which is infs-closed is also meet-closed and every subset of L which is sups-closed
is also join-closed.

Let L be a non empty relational structure. One can verify that there exists
a subset of L which is infs-closed, sups-closed, and non empty.

One can prove the following propositions:

(15) Let L be a non empty relational structure and S be a subset of L. Then
S is meet-closed if and only if for all elements x, y of L such that x € S
and y € S and inf {z,y} exists in L holds inf{z,y} € S.

(16) Let L be a non empty relational structure and S be a subset of L. Then
S is join-closed if and only if for all elements z, y of L such that x € S
and y € S and sup {z,y} exists in L holds sup{z,y} € S.

(17) Let L be an antisymmetric relational structure with g.1.b.’s and S be a
subset of L. Then S is meet-closed if and only if for all elements x, y of L
such that z € S and y € S holds inf{z,y} € S.

(18) Let L be an antisymmetric relational structure with Lu.b.’s and S be a
subset of L. Then S is join-closed if and only if for all elements x, y of L
such that z € S and y € S holds sup{z,y} € S.

(19) Let L be a non empty relational structure and S be a subset of L. Then
S is infs-closed if and only if for every subset X of S such that inf X exists
in L holds [ | X € S.

(20) Let L be a non empty relational structure and S be a subset of L. Then
S is sups-closed if and only if for every subset X of S such that sup X
exists in L holds | |, X € S.

(21) Let L be a non empty transitive relational structure, S be an infs-closed
non empty subset of L, and X be a subset of S. If inf X exists in L, then
inf X exists in sub(S) and [ L)X = [ L X.

(22) Let L be a non empty transitive relational structure, S be a sups-closed
non empty subset of L, and X be a subset of S. If sup X exists in L, then
sup X exists in sub(S) and [ |6y X = [ X.

(23) Let L be a non empty transitive relational structure, S be a meet-closed
non empty subset of L, and x, y be elements of S. Suppose inf {z, y} exists
in L. Then inf {z,y} exists in sub(S) and [ kunsy{z, v} = [ Io{z, v}

(24) Let L be a non empty transitive relational structure, S be a join-closed

non empty subset of L, and x, y be elements of S. Suppose sup {z, y} exists
in L. Then sup {z,y} exists in sub(S) and [ |, sy {2, y} = L, {z, y}.
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(25) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and S be a non empty meet-closed subset of L. Then sub(S) has g.1.b.’s.

(26) Let L be an antisymmetric transitive relational structure with lL.u.b.’s
and S be a non empty join-closed subset of L. Then sub(S) has L.u.b.’s.

Let L be an antisymmetric transitive relational structure with g.l.b.’s and
let S be a non empty meet-closed subset of L. Observe that sub(S) has g.1.b.’s.

Let L be an antisymmetric transitive relational structure with l.u.b.’s and
let S be a non empty join-closed subset of L. Observe that sub(S) has Lu.b.’s.

The following four propositions are true:

(27) Let L be a complete transitive antisymmetric non empty relational struc-
ture, S be an infs-closed non empty subset of L, and X be a subset of S.

Then ﬂsub(S)X = HLX

(28) Let L be a complete transitive antisymmetric non empty relational struc-
ture, S be a sups-closed non empty subset of L, and X be a subset of S.
Then |_|sub(S) X=X

(29) For every semilattice L holds every meet-closed subset of L is filtered.

(30) For every sup-semilattice L holds every join-closed subset of L is directed.

Let L be a semilattice. Observe that every subset of L which is meet-closed
is also filtered.

Let L be a sup-semilattice. One can check that every subset of L which is
join-closed is also directed.
The following propositions are true:

(31) Let L be a semilattice and S be an upper non empty subset of L. Then
S is a filter of L if and only if S is meet-closed.

(32) Let L be a sup-semilattice and S be a lower non empty subset of L.
Then S is an ideal of L if and only if S is join-closed.

(33) For every non empty relational structure L and for all join-closed subsets
S1, So of L holds S N .Sy is join-closed.

(34) For every non empty relational structure L and for all meet-closed sub-
sets S1, So of L holds 51 N Sy is meet-closed.

(35) For every sup-semilattice L and for every element x of the carrier of L
holds |« is join-closed.

(36) For every semilattice L and for every element = of the carrier of L holds
|z is meet-closed.

(37) For every sup-semilattice L and for every element z of the carrier of L
holds Tz is join-closed.

(38) For every semilattice L and for every element z of the carrier of L holds
Tx is meet-closed.



BASES OF CONTINUOUS LATTICES 289

Let L be a sup-semilattice and let & be an element of L. Observe that |z is
join-closed and Tz is join-closed.
Let L be a semilattice and let « be an element of L. Note that |x is meet-
closed and Tz is meet-closed.
Next we state three propositions:
(39) For every sup-semilattice L and for every element z of L holds |z is
join-closed.
(40) For every semilattice L and for every element x of L holds |z is meet-
closed.
(41) For every sup-semilattice L and for every element z of L holds fz is
join-closed.
Let L be a sup-semilattice and let = be an element of L. Note that |z is
join-closed and 1z is join-closed.
Let L be a semilattice and let 2 be an element of L. Observe that |z is
meet-closed.

3. ABOUT BASES OF CONTINUOUS LATTICES

Let T be a topological structure. The functor weightT' yields a cardinal
number and is defined as follows:

(Def. 5)  weight T = ﬂ{f : B ranges over bases of T'}.
Let T be a topological structure. We say that T is second-countable if and
only if:
(Def. 6) weight T C w.
Let L be a continuous sup-semilattice. A subset of L is called a CLbasis of
L if:
(Def. 7) It is join-closed and for every element z of L holds z = sup({z N it).

Let L be a non empty relational structure and let .S be a subset of L. We
say that S has bottom if and only if:

(Def. 8) L, €S.

Let L be a non empty relational structure and let .S be a subset of L. We

say that S has top if and only if:
(Def.9) T es.

Let L be a non empty relational structure. Note that every subset of L which
has bottom is non empty.

Let L be a non empty relational structure. Observe that every subset of L
which has top is non empty.

Let L be a non empty relational structure. Note that there exists a subset
of L which has bottom and there exists a subset of L which has top.
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Let L be a continuous sup-semilattice. One can verify that there exists a
CLbasis of L which has bottom and there exists a CLbasis of L which has top.
One can prove the following proposition

(42) Let L be a lower-bounded antisymmetric non empty relational structure
and S be a subset of L with bottom. Then sub(S) is lower-bounded.

Let L be a lower-bounded antisymmetric non empty relational structure and
let S be a subset of L with bottom. One can verify that sub(.9) is lower-bounded.

Let L be a continuous sup-semilattice. Observe that every CLbasis of L is
join-closed.

One can check that there exists a continuous lattice which is bounded and
non trivial.

Let L be a lower-bounded non trivial continuous sup-semilattice. One can
verify that every CLbasis of L is non empty.

One can prove the following propositions:

(43) For every sup-semilattice L holds the carrier of CompactSublatt(L) is a
join-closed subset of L.

(44) For every algebraic lower-bounded lattice L holds the carrier of
CompactSublatt(L) is a CLbasis of L with bottom.

(45) Let L be a continuous lower-bounded sup-semilattice. If the carrier of
CompactSublatt(L) is a CLbasis of L, then L is algebraic.

(46) Let L be a continuous lower-bounded lattice and B be a join-closed
subset of L. Then B is a CLbasis of L if and only if for all elements z, y
of L such that y £ x there exists an element b of L such that b € B and
b€ x and b < y.

(47) Let L be a continuous lower-bounded lattice and B be a join-closed
subset of L. Suppose L € B. Then B is a CLbasis of L if and only if for
all elements z, y of L such that x < y there exists an element b of L such
that b€ B and = < b and b < y.

(48) Let L be a continuous lower-bounded lattice and B be a join-closed
subset of L. Suppose L € B. Then B is a CLbasis of L if and only if the
following conditions are satisfied:

(i)  the carrier of CompactSublatt(L) C B, and
(ii)  for all elements z, y of L such that y £ x there exists an element b of
L such that b € B and b £ z and b < y.

(49) Let L be a continuous lower-bounded lattice and B be a join-closed
subset of L. Suppose L € B. Then B is a CLbasis of L if and only if for
all elements z, y of L such that y £ x there exists an element b of L such
that b€ B and b € x and b < y.

(50) Let L be a lower-bounded sup-semilattice and S be a non empty full
relational substructure of L. Suppose L, € the carrier of .S and the carrier
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of S is a join-closed subset of L. Let = be an element of L. Then |z N the
carrier of S is an ideal of S.

Let L be a non empty reflexive transitive relational structure and let S be
a non empty full relational substructure of L. The functor supMap S yielding a
map from (Ids(S), C) into L is defined by:

(Def. 10) For every ideal I of S holds (supMap S)(I) = | |; I.

Let L be a non empty reflexive transitive relational structure and let S be a
non empty full relational substructure of L. The functor idsMap S yields a map
from (Ids(.S), C) into (Ids(L), C) and is defined by:

(Def. 11) For every ideal I of S there exists a subset J of L such that I = J and
(idsMap S)(I) = | J.

Let L be a non empty relational structure and let B be a non empty subset
of the carrier of L. Observe that sub(B) is non empty.

Let L be a reflexive relational structure and let B be a subset of the carrier
of L. Note that sub(B) is reflexive.

Let L be a transitive relational structure and let B be a subset of the carrier
of L. Note that sub(B) is transitive.

Let L be an antisymmetric relational structure and let B be a subset of the
carrier of L. Observe that sub(B) is antisymmetric.

Let L be a lower-bounded continuous sup-semilattice and let B be a CLba-

sis of L with bottom. The functor baseMap B yielding a map from L into
(Ids(sub(B)), C) is defined as follows:

(Def. 12) For every element z of L holds (baseMap B)(z) = |z N B.
We now state a number of propositions:

(51) Let L be a non empty reflexive transitive relational structure and S be a
non empty full relational substructure of L. Then dom supMap S = Ids(.S)
and rngsupMap S is a subset of L.

(52) Let L be a non empty reflexive transitive relational structure, S be a
non empty full relational substructure of L, and = be a set. Then x €
dom supMap S if and only if z is an ideal of S.

(53) Let L be a non empty reflexive transitive relational structure and S be a
non empty full relational substructure of L. Then domidsMap S = Ids(.S)
and rngidsMap S is a subset of Ids(L).

(54) Let L be a non empty reflexive transitive relational structure, S be a
non empty full relational substructure of L, and x be a set. Then = €
domidsMap S if and only if = is an ideal of S.

(55) Let L be a non empty reflexive transitive relational structure, S be a non
empty full relational substructure of L, and = be a set. If € rngidsMap S,
then x is an ideal of L.
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(56) Let L be a lower-bounded continuous sup-semilattice and B be a CLba-
sis of L with bottom. Then dombaseMap B = the carrier of L and
rng baseMap B is a subset of Ids(sub(B)).

(57) Let L be a lower-bounded continuous sup-semilattice, B be a CLbasis of
L with bottom, and x be a set. If € rngbaseMap B, then x is an ideal
of sub(B).

(58) For every up-complete non empty poset L and for every non empty full
relational substructure S of L holds supMap .S is monotone.

(59) Let L be a non empty reflexive transitive relational structure and S be a
non empty full relational substructure of L. Then idsMap S is monotone.

(60) For every lower-bounded continuous sup-semilattice L and for every
CLbasis B of L with bottom holds baseMap B is monotone.

Let L be an up-complete non empty poset and let S be a non empty full
relational substructure of L. Observe that supMap .S is monotone.
Let L be a non empty reflexive transitive relational structure and let S be
a non empty full relational substructure of L. One can check that idsMap S is
monotone.
Let L be a lower-bounded continuous sup-semilattice and let B be a CLbasis
of L with bottom. One can check that baseMap B is monotone.
The following propositions are true:
(61) Let L be alower-bounded continuous sup-semilattice and B be a CLbasis
of L with bottom. Then idsMap sub(B) is sups-preserving.

(62) For every up-complete non empty poset L and for every non empty full
relational substructure S of L holds supMap S = SupMap(L) - idsMap S.

(63) For every lower-bounded continuous sup-semilattice L and for every
CLbasis B of L with bottom holds (supMapsub(B), baseMap B) is Ga-
lois.

(64) Let L be alower-bounded continuous sup-semilattice and B be a CLbasis
of L with bottom. Then supMap sub(B) is upper adjoint and baseMap B
is lower adjoint.

(65) Let L be a lower-bounded continuous sup-semilattice and B be a CLbasis
of L with bottom. Then rng supMap sub(B) = the carrier of L.

(66) Let L be a lower-bounded continuous sup-semilattice and B be a CLba-
sis of L with bottom. Then supMapsub(B) is infs-preserving and sups-
preserving.

(67) Let L be a lower-bounded continuous sup-semilattice and B be a CLbasis
of L with bottom. Then baseMap B is sups-preserving.

Let L be a lower-bounded continuous sup-semilattice and let B be a CLbasis
of L with bottom. One can verify that supMapsub(B) is infs-preserving and
sups-preserving and baseMap B is sups-preserving.
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One can prove the following propositions:

(69)% Let L be a lower-bounded continuous sup-semilattice and B be a CLba-
sis of L with bottom. Then the carrier of CompactSublatt((Ids(sub(B)), C
)) = {lb: b ranges over elements of sub(B)}.

(70) Let L be a lower-bounded continuous sup-semilattice and B be a CLbasis
of L with bottom. Then CompactSublatt({Ids(sub(B)),C)) and sub(B)
are isomorphic.

(71) Let L be a continuous lower-bounded lattice and B be a CLbasis of L
with bottom. Suppose that for every CLbasis By of L with bottom holds
B C By. Let J be an element of (Ids(sub(B)),C). Then J = |||, J N B.

(72) Let L be a continuous lower-bounded lattice. Then L is algebraic if and
only if the following conditions are satisfied:
(i)  the carrier of CompactSublatt(L) is a CLbasis of L with bottom, and
(i)  for every CLbasis B of L with bottom holds the carrier of
CompactSublatt(L) C B.

(73) Let L be a continuous lower-bounded lattice. Then L is algebraic if and
only if there exists a CLbasis B of L with bottom such that for every
CLbasis By of L with bottom holds B C Bj.
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The terminology and notation used in this paper have been introduced in the
following articles: [6], [11], [2], [3], [9], [4], [5], [7], [1], [10], and [8].

For simplicity, we follow the rules: ¢, k are natural numbers, [ is an element
of Zg, i1 is an element of Instr-Locgcn, di is an element of Data-Locgcnm, and
S is a non empty 1-sorted structure.

Let us observe that every non empty loop structure which is trivial is also
Abelian, add-associative, right zeroed, and right complementable and every non
empty double loop structure which is trivial is also right unital and right-
distributive.

Let us note that every element of Data-Locgcy is natural.

One can check the following observations:

% Data-Locgcon is non trivial,
* Instrgoy is non trivial, and
* Instr-Locgcoy is non trivial.

Let S be a non empty 1-sorted structure. The functor Instrgcn(S) yields
a subset of [Zs, (|J{the carrier of S} UN)*] and is defined by the condition
(Def. 1).

(Def. 1) Instrscm(S) = {(0, ) }U{(I, (a,b)); I ranges over elements of Zg, a ran-
ges over elements of Data-Locgca, b ranges over elements of Data-Locgom:
Ie{1,2,3,4}} U{(6, (i)) : i ranges over elements of Instr-Locgcm } U {(7,
(1,a)) : i ranges over elements of Instr-Locgcnm, a ranges over elements of
Data-Locgem } U {(5, (a,r)) : a ranges over elements of Data-Locgom,
ranges over elements of the carrier of S}.

Let S be a non empty l-sorted structure. Note that Instrgcn(S) is non
trivial.
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Let S be a non empty 1-sorted structure. We say that .S is good if and only
if:

(Def. 2) The carrier of S # Instr-Locgcy and the carrier of S # Instrgen(S).

One can verify that every non empty 1-sorted structure which is trivial is
also good.

Let us observe that there exists a 1-sorted structure which is strict, trivial,
and non empty.

Let us observe that there exists a double loop structure which is strict,
trivial, and non empty.

One can check that there exists a ring which is strict and trivial.

In the sequel G denotes a good non empty 1-sorted structure.

Let S be a non empty 1-sorted structure. The functor OKgcn(.S) yielding a
function from N into {the carrier of S} U {Instrgcam(5), Instr-Locgem} is defined
as follows:

(Def. 3) (OKgscm(5))(0) = Instr-Locgeom and for every natural number & holds
(OKsem(9))(2 - k + 1) = the carrier of S and (OKgom(95))(2 -k +2) =
Instrgom (.S).

Let S be a non empty 1-sorted structure. An SCM-state over S is an element
of [T OKscm(S).

Next we state several propositions:

oo

7dy | [ OKsem(G) = the carrier of G.
iy | | OKsem(G) = Instrsem(G).

Let S be a non empty 1-sorted structure and let s be an SCM-state over S.
The functor IC; yielding an element of Instr-Locgcn is defined by:

(Def. 4) IC, = s(0).
Let R be a good non empty 1-sorted structure, let s be an SCM-state over

R, and let u be an element of Instr-Locgonm. The functor Chggen (s, v) yielding
an SCM-state over R is defined by:

(Def. 5)  Chggep(s, u) = s+-(0——u).

The following three propositions are true:

(1) Instr-Locgcom # Instrsem(S).

(2) (OKscm(G))(3) = Instr-Locgom iff ¢ =0

(3) (OKscm(G))(7) = the carrier of G iff there exists k such that i = 2-k+1
(4) (OKscm(G))(7) = Instrgem(G) iff there exists k such that ¢ =2 - k + 2.
(5) (OKscm(G))(dy) = the carrier of G.

(6) (OKscm(G))(i1) = Instrsem(G).

(7) 7o ] OKscm(S) = Instr-Locgom

(8)

(9)

Ne)

(10) For every SCM-state s over G and for every element u of Instr-Locgom
holds (Chggon(s,u))(0) = u.
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(11) For every SCM-state s over G and for every element u of Instr-Locgom
and for every element m; of Data-Locgom holds (Chggen(s,w))(my) =
s(my).

(12) For every SCM-state s over G and for all elements u, v of Instr-Locgcy
holds (Chggey(s, u))(v) = s(v).

Let R be a good non empty 1-sorted structure, let s be an SCM-state over
R, let t be an element of Data-Locscy, and let w be an element of the carrier
of R. The functor Chggcy(s,t,u) yielding an SCM-state over R is defined as
follows:

(Def. 6) Chggon(s, t,u) = s+ (t——u).

One can prove the following propositions:

(13) Let s be an SCM-state over GG, t be an element of Data-Locgcyy, and u
be an element of the carrier of G. Then (Chggcn(s,t,u))(0) = s(0).

(14) Let s be an SCM-state over G, t be an element of Data-Locgcy, and u
be an element of the carrier of G. Then (Chggon (s, t,u))(t) = u.

(15) Let s be an SCM-state over G, t be an element of Data-Locgcm, u be
an element of the carrier of G, and mq be an element of Data-Locgcn. If
my # t, then (Chggen(s,t,u))(my) = s(mq).

(16) Let s be an SCM-state over G, t be an element of Data-Locgcm, u be
an element of the carrier of G, and v be an element of Instr-Locgcy. Then
(Chgson (s, T, u))(v) = s(v).

Let R be a good non empty 1-sorted structure, let s be an SCM-state over
R, and let a be an element of Data-Locgon. Then s(a) is an element of R.

Let S be a non empty l-sorted structure and let = be an element of
Instrgom(S). Let us assume that there exist elements mq, mo of Data-Locgom
and I such that x = (I, (m1, ma)). The functor z address; yielding an element
of Data-Locgcm is defined by:

(Def. 7) There exists a finite sequence f of elements of Data-Locgonm such that
f =2 and x address; = 7 f.
The functor z addresss yields an element of Data-Locgcoy and is defined by:

(Def. 8) There exists a finite sequence f of elements of Data-Locgon such that
f = x2 and z addressy = mo f.
One can prove the following proposition
(17) For every element z of Instrgenm(S) and for all elements my, mo of
Data-Locgom such that @ = (I, (m1, mg)) holds xaddress; = m; and
x addressg = ms.

Let R be a non empty 1-sorted structure and let x be an element of
Instrgom(R). Let us assume that there exist an element m; of Instr-Locgom
and I such that z = (I, (m1)). The functor x address; yielding an element of
Instr-Locgcn is defined as follows:
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(Def. 9) There exists a finite sequence f of elements of Instr-Locgom such that
[ = x2 and x address; = 7 f.
Next we state the proposition
(18) For every element x of Instrgcm(S) and for every element mg of
Instr-Locgcenm such that @ = (I, (m1)) holds = address; = m;.

Let S be a non empty 1l-sorted structure and let z be an element of
Instrgem(S). Let us assume that there exist an element m; of Instr-Locsc,
an element my of Data-Locgcowm, and I such that = (I, (m1, mg)). The functor
x address; yields an element of Instr-Locscy and is defined as follows:

(Def. 10) There exists an element m; of Instr-Locgcy and there exists an element
myo of Data-Locgcm such that (mi,mo) = x2 and xaddress; = 7 (my,
m2>.

The functor z address. yields an element of Data-Locgcy and is defined as
follows:

(Def. 11) There exists an element m; of Instr-Locgonm and there exists an element
mgy of Data-Locgonm such that (mg,mo) = x2 and zaddress, = ma(mq,
m2>.

We now state the proposition

(19) Let « be an element of Instrson(.S), mi1 be an element of Instr-Locgc,
and mg be an element of Data-Locgcy. If * = (I, (m1,ms)), then
x address; = m; and x address, = mo.

Let S be a non empty 1-sorted structure, let d be an element of Data-Locgcwm,
and let s be an element of the carrier of S. Then (d, s) is a finite sequence of
elements of Data-Locgcy U the carrier of S.

Let S be a non empty l-sorted structure and let x be an element of
Instrgom(S). Let us assume that there exist an element m; of Data-Locgow,
an element r of the carrier of S, and I such that x = (I, (m1,r)). The functor
x const_address yields an element of Data-Locgcy and is defined as follows:

(Def. 12) There exists a finite sequence f of elements of Data-Locgcnm Uthe carrier
of S such that f = x2 and z const_address = m f.
The functor x const_value yields an element of the carrier of S and is defined
by:
(Def. 13) There exists a finite sequence f of elements of Data-Locgcy Uthe carrier
of S such that f = x2 and z const_value = ma f.
We now state the proposition
(20) Let = be an element of Instrgcn(S), m1 be an element of Data-Locsc,
and 7 be an element of the carrier of S. If © = (I, (my,r)), then
x const_address = my and z const_value = r.

Let R be a good ring, let  be an element of Instrgonm(R), and let s be an
SCM-state over R. The functor Exec-Resgom(z, s) yields an SCM-state over
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R and is defined by:

(Def. 14) Exec-Resscm(z, s) =

Chggom (Chggonm (s, z addressy, s(x addressg)), Next(ICy)), if there

exist elements mq, mg of Data-Locgcy such that = (1, (mq,ma)),
Chggcon(Chggen (s, x addressy, s(x address; ) + s(z addressg)), Next(ICy)),

if there exist elements m;j, mo of Data-Locgoym such that x = (2, (mg, ma)),
Chggon (Chggen (s,  addressy, s(x address; ) — s(z addressy)), Next(ICs)),

if there exist elements mj, mo of Data-Locgom such that x = (3, (m1, ma)),
Chggonm (Chggen (s, v addressy, s(x address; ) - s(z addressg)), Next(ICs)),

if there exist elements my, mg of Data-Locgonm such that x = (4, (m1, ma)),
Chggon (s, z address;), if there exists an element my of Instr-Locsom

such that = (6, (m1)),
Chggcm(s, (s(x address.) = Op — x address;j, Next(ICy))), if there exists

an element m; of Instr-Locgcon and there exists an element mo

of Data-Locgcm such that z = (7, (mq, ma)),
Chggcon (Chggen (s, « const_address, o const_value), Next(ICy)), if there

exists an element mj of Data-Locgcoy and there exists an element r

of the carrier of R such that z = (5, (mq,7)),
s, otherwise.

\
Let S be a non empty 1-sorfed structure, let f be a function from

Instrgem(S) into ([] OKsem(S)) OKscm(%) and let # be an element of
Instrgonm(S). One can check that f(x) is function-like and relation-like.

Let R be a good ring. The functor Execgopm(R) yielding a function from
Instrscum(R) into (] OKscm(R))  OKsom(B) is defined as follows:

(Def. 15) For every element x of Instrgcon(R) and for every SCM-state y over R

holds (Execscm(R))(z)(y) = Exec-Resscm(z, y)-

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

[2] Grzegorz Bancerek. Konig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[4] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

[5] Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.

[6] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241-250, 1992.

[7] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathe-
matics, 2(5):623-627, 1991.

[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.

[9] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,
1990.

[10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.



300 ARTUR KORNILOWICZ

[11] Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

Received November 29, 1998



FORMALIZED MATHEMATICS

Volume 7, Number 2, 1998
University of Bialystok

The Basic Properties of SCM over Ring

Artur Kornitowicz
University of Bialystok

MML Identifier: SCMRING2.

The articles [6], [7], [12], [1], [8], [2], [3], [10], [4], [11], [9], and [5] provide the
terminology and notation for this paper.

1. SCM OVER RING

In this paper [ is an element of Zg, S is a non empty 1-sorted structure, t is
an element of the carrier of S, and x is a set.

Let R be a good ring. The functor SCM(R) yields a strict AMI over {the
carrier of R} and is defined by the conditions (Def. 1).

(Def. 1)(i)  The objects of SCM(R) = N,
(ii)  the instruction counter of SCM(R) = 0,
(ili)  the instruction locations of SCM(R) = Instr-Locgcom,
(iv)  the instruction codes of SCM(R) = Zg,
(v)  the instructions of SCM(R) = Instrscm(R),
(vi)  the object kind of SCM(R) = OKgcm(R), and
(vii)  the execution of SCM(R) = Execscm(R).

Let R be a good ring, let s be a state of SCM(R), and let a be an element
of Data-Locgcy. Then s(a) is an element of R.

Let R be a good ring. An object of SCM(R) is called a Data-Location of R
if:

(Def. 2) It € (the objects of SCM(R)) \ (Instr-Locgcom U {0}).

For simplicity, we use the following convention: R is a good ring, r is an
element of the carrier of R, a, b, ¢, di, do are Data-Location of R, and 47 is an
instruction-location of SCM(R).

Next we state the proposition
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(1) =z is a Data-Location of R iff x € Data-Locsc.

Let R be a good ring, let s be a state of SCM(R), and let a be a Data-
Location of R. Then s(a) is an element of R.
We now state several propositions:

(2) (0, &) € Instrscm(S).

(3) (0, &) is an instruction of SCM(R).

(4) Ifz € {1,2,3,4}, then (z, (d1,d2)) € Instrscm(S).
(5) (5, (d1,t)) € Instrsom(.5).

(6) (6, (i1)) € Instrsem(S).

(7) (7, (i1,d1)) € Instrgom(S).

Let R be a good ring and let a, b be Data-Location of R. The functor a:=b
yielding an instruction of SCM(R) is defined by:
(Def. 3) a:=b= (1, (a,b)).
The functor AddTo(a, b) yielding an instruction of SCM(R) is defined by:
(Def. 4) AddTo(a,b) = (2, (a,b)).
The functor SubFrom(a, b) yielding an instruction of SCM(R) is defined by:
(Def. 5) SubFrom(a,b) = (3, (a,b)).
The functor MultBy(a,b) yielding an instruction of SCM(R) is defined as fol-
lows:
(Def. 6) MultBy(a,b) = (4, (a,b)).
Let R be a good ring, let a be a Data-Location of R, and let r be an element

of the carrier of R. The functor a:=r yields an instruction of SCM(R) and is
defined by:
(Def. 7)  a:=r = (5, (a,r)).
Let R be a good ring and let [ be an instruction-location of SCM(R). The
functor goto [ yielding an instruction of SCM(R) is defined by:
(Def. 8) goto I = (6, (I)).
Let R be a good ring, let [ be an instruction-location of SCM(R), and let
a be a Data-Location of R. The functor if ¢ = 0 goto [ yielding an instruction
of SCM(R) is defined as follows:
(Def. 9) if a =0 goto [ = (7, (l,a)).
One can prove the following proposition
(8) Let I be a set. Then I is an instruction of SCM(R) if and only if one
of the following conditions is satisfied:
(i) I=1(0,¢€),or
(ii)  there exist a, b such that I = a:=b, or
(iii)  there exist a, b such that I = AddTo(a,b), or
)

(iv)  there exist a, b such that I = SubFrom(a, b), or
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(v)  there exist a, b such that I = MultBy(a,b), or

(vi)  there exists i¢; such that I = goto i;, or

(vii)  there exist a, i1 such that I =if a = 0 goto i1, or
(viii)  there exist a, r such that [ = a:=r.

In the sequel s denotes a state of SCM(R).
Let us consider R. Observe that SCM(R) is von Neumann.
The following two propositions are true:

(9) ICscm(r) =0.
(10) For every SCM-state S over R such that S = s holds IC; = ICg.

Let R be a good ring and let ¢; be an instruction-location of SCM(R). The
functor Next(i;) yields an instruction-location of SCM(R) and is defined by:

(Def. 10) There exists an element m; of Instr-Locgcy such that m; = 4; and
Next(i1) = Next(my).
The following propositions are true:

(11) For every instruction-location i; of SCM(R) and for every element m;
of Instr-Locgcnm such that my = 47 holds Next(m;) = Next(iy).

(12) Let I be an instruction of SCM(R) and i be an element of Instrgcn (R).
If ¢ = I, then for every SCM-state S over R such that S = s holds
Exec(I, s) = Exec-Resgcm (i, S).

2. USERS GUIDE

Next we state several propositions:

(13) (Exec(a:=b,s))(ICscm(r)) = Next(IC;) and (Exec(a:=b, s))(a) = s(b)
and for every ¢ such that ¢ # a holds (Exec(a:=b, s))(c) = s(c).

(14) (Exec(AddTo(a,b),s))(ICscm(r)) = Next(IC;) and
(Exec(AddTo(a,b),s))(a) = s(a) 4+ s(b) and for every ¢ such that ¢ # a
holds (Exec(AddTo(a,b), s))(c) = s(c).

(15) (Exec(SubFrom(a,b),s))(ICscm(r)) = Next(IC;) and
(Exec(SubFrom(a,b), s))(a) = s(a) — s(b) and for every ¢ such that ¢ # a
holds (Exec(SubFrom(a,b), s))(c) = s(c).

(16) (Exec(MultBy(a,b), s))(ICscm(r)) = Next(ICs) and
(Exec(MultBy(a, b), s))(a) = s(a) - s(b) and for every ¢ such that ¢ # a
holds (Exec(MultBy(a,b), s))(c) = s(c).

(17)  (Exec(goto i1, s))(ICscm(r)) = i1 and (Exec(goto i1, s))(c) = s(c).

(18) If s(a) = Og, then (Exec(if a = 0 goto i1, 5))(ICscm(r)) = 41 and if
s(a) # Og, then (Exec(if a = 0 goto i1, s))(ICscm(r)) = Next(ICs) and
(Exec(if a = 0 goto i1, 5))(c) = s(c).
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(19) (Exec(a:=r,5))(ICscm(r)) = Next(ICs) and (Exec(a:=r,s))(a) = r
and for every ¢ such that ¢ # a holds (Exec(a:=r,s))(c) = s(c).

3. HALT INSTRUCTION

The following two propositions are true:
(20) For every instruction I of SCM(R) such that there exists s such that
(Exec(, s))(ICscm(r)) = Next(ICs) holds I is non halting.
(21) For every instruction I of SCM(R) such that I = (0, ¢) holds I is
halting.
Let us consider R, a, b. One can check the following observations:
* @a:=b is non halting,
% AddTo(a,b) is non halting,
* SubFrom(a, b) is non halting, and
*  MultBy(a, b) is non halting.

Let us consider R, ;. Observe that goto ¢; is non halting.

Let us consider R, a, 1. Observe that if a = 0 goto i; is non halting.

Let us consider R, a, r. Note that a:=r is non halting.

Let us consider R. One can check that SCM(R) is halting definite data-
oriented steady-programmed and realistic.

One can prove the following propositions:

(29)!  For every instruction I of SCM(R) such that I is halting holds I =
haltSCM(R).
(30) haltscmr) = (0, €).
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The articles [8], [2], [6], [5], [1], [3], [9], [4], and [7] provide the terminology and
notation for this paper.

1. PRELIMINARIES

In this paper Y denotes a non empty set and G denotes a subset of
PARTITIONS(Y).

Let X be a set. Then PARTITIONS(X) is a partition family of X.

Let X be a set and let F' be a non empty partition family of X. We see that
the element of F'is a partition of X.

The following proposition is true

(1) Let y be an element of Y. Then there exists a subset X of Y such that
(i) ye X, and
(ii)  there exists a function h and there exists a family F' of subsets of Y’
such that domh = G and rngh = F' and for every set d such that d € G
holds h(d) € d and X = Intersect(F) and X # 0.
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Let us consider Y and let G be a subset of PARTITIONS(Y"). The functor
N\ G yielding a partition of Y is defined by the condition (Def. 1).

(Def. 1) Let x be a set. Then z € A G if and only if there exists a function h and
there exists a family F' of subsets of Y such that domh = G and rngh = F
and for every set d such that d € G holds h(d) € d and = = Intersect(F’)
and x # ().

Let us consider Y, let G be a subset of PARTITIONS(Y), and let b be a set.
We say that b is upper min depend of G if and only if the conditions (Def. 2)
are satisfied.

(Def. 2)(i)  For every partition d of Y such that d € G holds b is a dependent set
of d, and

(ii)  for every set e such that e C b and for every partition d of Y such that
d € G holds e is a dependent set of d holds e = b.
One can prove the following proposition
(2) For every element y of Y such that G # () there exists a subset X of Y
such that y € X and X is upper min depend of G.
Let us consider Y and let G be a subset of PARTITIONS(Y'). The functor
\/ G yielding a partition of Y is defined by:
(Def. 3)(i) For every set « holds z € \/ G iff z is upper min depend of G if G # (),
(i) VG =Z(Y), otherwise.
The following propositions are true:
(3) For every subset G of PARTITIONS(Y') and for every partition P; of Y
such that P, € G holds P  \G.
(4) For every subset G of PARTITIONS(Y') and for every partition P; of Y
such that P € G holds P, € \/ G.

2. COORDINATE AND QUANTIFIERS

Let us consider Y and let G be a subset of PARTITIONS(Y). We say that
G is a generating family of partitions if and only if:
(Def. 4) NG =Z(Y).
Let us consider Y and let G be a subset of PARTITIONS(Y). We say that
G is an independent family of partitions if and only if the condition (Def. 5) is
satisfied.

(Def. 5) Let h be a function and F' be a family of subsets of Y. Suppose dom h =
G and rng h = F and for every set d such that d € G holds h(d) € d. Then
Intersect(F) # 0.

Let us consider Y and let G be a subset of PARTITIONS(Y). We say that
G is a coordinate if and only if the conditions (Def. 6) are satisfied.
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(Def. 6)(i) G is an independent family of partitions ,
(ii) G is a generating family of partitions, and
(iii)  for all partitions dj, dg of Y such that d; € G and ds € G and d; # da
holds dy Vdes = O(Y).

Let us consider Y and let P; be a partition of Y. Then {P;} is a subset of
PARTITIONS(Y).

Let us consider Y, let P; be a partition of Y, and let G be a subset of
PARTITIONS(Y). The functor CompF(Py, G) yielding a partition of YV is defi-
ned by:

(Def. 7) CompF(P;,G) = NG\ {P1}.

Let us consider Y, let a be an element of BVF(Y), let G be a subset of
PARTITIONS(Y), and let P; be a partition of Y. We say that a is independent
of P, G if and only if:

(Def. 8) a is dependent of CompF(Py,G).

Let us consider Y, let a be an element of BVF(Y), let G be a subset of
PARTITIONS(Y), and let P; be a partition of Y. The functor V, p, G yielding
an element of BVF(Y') is defined by:

(Def. 9) V4 p, G = INF(a, CompF (P, G)).

Let us consider Y, let a be an element of BVF(Y), let G be a subset of
PARTITIONS(Y), and let P; be a partition of Y. The functor 3, p, G yielding
an element of BVF(Y) is defined as follows:

(Def. 10) 34 p, G = SUP(a, CompF (P, G)).

One can prove the following propositions:

(5) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y),
and P be a partition of Y. If G is a coordinate and P; € G, then V, p, G
is dependent of CompF (P, G).

(6) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y),
and P be a partition of Y. If G is a coordinate and Py € G, then 3, p G
is dependent of CompF (P, G).

(7) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
Py be a partition of Y. If G is a coordinate and Py € G, then V. ey p, G =
true(Y').

(8) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
Py be a partition of Y. If G is a coordinate and Py € G, then 3¢y, p,G =
true(Y').

(9) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
Py be a partition of Y. If G is a coordinate and P, € G, then Vyse(vy,p, G =
false(Y').

(10) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
Py be a partition of Y. If G is a coordinate and P € G, then Jy5¢(vy),p, G =
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false(Y').

(11) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
Py be a partition of Y. If G is a coordinate and P; € G, then V, pG € a.

(12) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
Py be a partition of Y. If G is a coordinate and P; € G, then a € 3, p,G.

(13) Let a, b be elements of BVF(Y'), G be a subset of PARTITIONS(Y'), and
Py be a partition of Y. If G is a coordinate and P; € G, then Voa, p G =
VmplG AN Vb’plG.

(14) Let a, b be elements of BVF(Y'), G be a subset of PARTITIONS(Y),
and P; be a partition of Y. If G is a coordinate and P; € G, then V, p GV
Vb,plG (& VaVb,Pl G.

(15) Let a, b be elements of BVF(Y'), G be a subset of PARTITIONS(Y'), and
Py be a partition of Y. If G is a coordinate and P; € G, then V,—p p G €
Va’plG = Vb,plG.

(16) Let a, b be elements of BVF(Y'), G be a subset of PARTITIONS(Y'), and
Py be a partition of Y. If G is a coordinate and P; € G, then 3,y p, G =
E|a7p1G \Y 3b7p1G.

(17) Let a, b be elements of BVF(Y'), G be a subset of PARTITIONS(Y'), and
Py be a partition of Y. If G is a coordinate and Py € G, then 3,0, p, G €
E|a7p1G A Hb’plG.

(18) Let a, b be elements of BVF(Y), G be a subset of PARTITIONS(Y'),
and P; be a partition of Y. If G is a coordinate and P; € G, then 3, p G®
b,p, G € Jagb,p, G-

(19) Let a, b be elements of BVF(Y'), G be a subset of PARTITIONS(Y'), and
Py be a partition of Y. If G is a coordinate and P; € G, then 3, p G =
Jp,p, G € Juzp,p, G-

(20) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
Py be a partition of Y. If G is a coordinate and P; € G, then =V, p G =
0. G.

(21) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
Py be a partition of Y. If G is a coordinate and P; € G, then —3, p G =
Vea,p G.

(22) Let a, u be elements of BVF(Y'), G be a subset of PARTITIONS(Y'),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of P, G. Then Vy—, p,G = u = ¥, p,G.

(23) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of Pi, G. Then Vo= p,G = 34, p,G = u.

(24) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
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is independent of P;, G. Then V4 pG =uV VY, p G.

(25) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y'),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of Py, G. Then Vg p,G = VYo, p, G V u.

(26) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of Pi, G. Then V,yy,p, G € 34 p,G V u.

(27) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of P;, G. Then Vyrq p,G = u AV, p,G.

(28) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of Pi, G. Then Vory,p,G = Vo p,G A u.

(29) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of P;, G. Then Vop, pG € 4. p,G A u.

(30) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of P;, G. Then Vygqp,G € u @ VY, p,G.

(31) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P; be a partition of Y. Suppose G is a coordinate and P, € G and u
is independent of P;, G. Then Vg, p, G € V4 p, G © u.

(32) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y'),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of Pi, G. Then Ve, p,G € u <V, p,G.

(33) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of Pi, G. Then Ve p,G € Vo p, G & .

(34) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y'),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of Py, G. Then 3,yq,p,G = vV 34, p,G.

(35) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of Pi, G. Then Jyyy,p, G = 34, p,G V u.

(36) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P, be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of P;, G. Then Jyrq G = u A 34 p,G.

(37) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of Py, G. Then Jopny,p, G = 30,p, G A u.

311
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(38) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of P;, G. Then u = 3, pG € Jy=q pr,G.

(39) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of P;, G. Then 3, pG = u € 4=, p,G.

(40) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y'),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of P, G. Then u ® 3, p,G € Jygq,p, G-

(41) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of P;, G. Then 3, pG ® u € Jypu.p, G.
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Summary. In this paper, we have proved some elementary predicate calcu-
lus formulae containing the quantifiers of Boolean valued functions with respect
to partitions. Such a theory is an analogy of usual predicate logic.
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The terminology and notation used here are introduced in the following articles:
1], [2], [3], and [4].

For simplicity, we adopt the following convention: Y denotes a non empty set,
G denotes a subset of PARTITIONS(Y), a, b, ¢, u denote elements of BVF(Y),
and P; denotes a partition of Y.

The following propositions are true:

(1) a=b€eVqp,G= I} pG.
(2) Va,PIG/\ngplG@a/\b.
(3) aNb&d,pGAIpG.
(4) ﬁ(va,PIG A Vb,plG) =d.,p GV Iy pG.
(5) ﬁ(ﬂa,plG A HbjplG) =Voopr GV VﬁbyplG.
(6) VaprGVVypGeEaVb.
(7) a\/b@Ela,plG\/Hb,plG.
(8) a®b€=(F-0.p,G®IppG)V(Fup GO IuppG).
(9) Vavor,G €V p, GV 3 pG.

(10) Vave,p,G € 34, GV Yy p,G.

(11) Vavb,PlG c Ha’plG Vv 3b7p1G.

(12) Ha,plG /\Vb’plG c Ela/\b,PlG-
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—
w

Va,p,G ATy p,G € ynpp, G.

va:>b,P1G S VaJDlG = Hb’plG.

Va:>b7p1G S 3a7p1G = Hb’plG.

3a,PlcTY = Vb7P1G < Va:>b,P1G-

a=b€Ca= 3 pG.

a=bEV,pG=0>

Ha:>b7P1G S VaJDlG = Hb’plG.

Va,p,G € 3y, p,G = Japp,p, G-

If w is independent of Py, G, then 3—, p,G € u = 3, p,G.
If u is independent of Py, G, then 34—, p,G € Vo p,G = u.
Va,p,G = 3pp,G = 3a=p,p, G-

Va,p,G = Vp pG €V p,G= 3 pG.

Jo.pG = Jp.p,G EVop G = 3y pG.

N DN DN NN = = ===
DD O W NP O © 0 ~J O Ut

Va=b,p,G = Voqup,p, G.

If G is a coordinate and P € G, then V- p,G = =Jgr-b.p, G.
340,p.G € 7(Vamb,P, G N Vo, p, G).

34,p, G € =(=3anb,p, G A = Fapn-b,p, G).

0, PG AVa=p, PG € Fopb,p, G-

o, G AN =Fanp,p G € “Voupp, G.

Va=e,p,G AVemsp PG € Vot P, G.

Vesb,p,G A Jane,p G € Janp,p, G-

Vosae, P, G AV ame,p, G € Vs p, G.
Vo=e,p, G ANVomae,p, G € Ve p, G.
Vo=—c,, G A Jane,p, G € Jan-b,p, G-
Vo=e,p, G A Jan-e,p G € Jan—b,p,G.

e p G AVemb G AVema,p G € Janp, P, G-
vb:>c,P1G A vc:>—|a,P1G S Vaéﬂb,Pl G.

F6.P. G AVpmse. PG AV s, G € Japn,p, G-
e, P G A Ve, PG AVema,p, G € Jopn-b,p, G-

N N N N~ N~ o~~~ o~~~ o~~~ o~~~ o~~~ o~~~ o~~~ o~~~ —~ —
=W W W W W W W W W WY NN
S © 00 J O O = W Nk O © 0o 3

N s N N N s N N 2N N N N s N S N NI A N N N

W
—
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Summary. In this article, we have proved the correctness of the Public-
Key Cryptography and the Pepin’s Test for the Primality of Fermat Numbers
(F(n) = 2%" +1). It is a very important result in the IDEA Cryptography that
F(4) is a prime number. At first, we prepared some useful theorems. Then, we
proved the correctness of the Public-Key Cryptography. Next, we defined the
Order’s function and proved some properties. This function is very important in
the proof of the Pepin’s Test. Next, we proved some theorems about the Fermat
Number. And finally, we proved the Pepin’s Test using some properties of the
Order’s Function. And using the obtained result we have proved that F(1), F(2),
F(3) and F(4) are prime number.

MML Identifier: PEPIN.

The terminology and notation used in this paper are introduced in the following
papers: [8], [6], [2], [3], [9], (5], [1], [4], [7], and [10].

1. SOME USEFUL THEOREMS

We adopt the following convention: d, i, j, k, m, n, p, q, k1, ko are natural
numbers and a, b, ¢, i1, 12, i3, 14, i5 are integers.
One can prove the following four propositions:
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(1) For every i holds i and i + 1 are relative prime.

(2) For every p such that p is prime holds m and p are relative prime or
ged(m, p) = p.

(3) If k| n-m and n and k are relative prime, then & | m.

(4) If n|m and k | m and n and k are relative prime, then n - k | m.

Let n be a natural number. Then n? is a natural number.
We now state a number of propositions:

(5) If ¢>1, then 1modec=1.

(6) For every i such that ¢ # 0 holds i | n iff n mod ¢ = 0.

(7) If m# 0 and m | n mod m, then m | n.

(8) If 0 <nand mmodn =k, then n | m — k.

(9) Ifi-p#0and pis prime and kmodi-p < p, then kmodi-p = kmod p.
(10) If p#0, then (a-p+ 1) mod p =1 mod p.
(11) If 1 < m and n-kmod m = kmod m and k and m are relative prime,

then n mod m = 1.

(12) If m # 0, then (pf) mod m = ((p mod m)&) mod m.
(13) 1If i # 0, then 2 mod (i + 1) = 1.

(14) If j # 0 and k2 < j and i mod j = k, then i mod j = k2.
(15) If p is prime and i mod p = —1, then 2 mod p = 1.
(16) If n is even, then n+ 1 is odd.

(17) 1If p > 2 and p is prime, then p is odd.

(18) If n > 0, then the n-th power of 2 is even.

(19) Ifiis odd and j is odd, then i - j is odd.

(20) For every k such that i is odd holds i¥ is odd.

(21) If k>0 and i is even, then if is even.

(22) 2| niff nis even.

(23) If m-n is even, then m is even or n is even.

(24) n¥ =n2

(25) 2F = the k-th power of 2.

(26) If m > 1 and n > 0, then mg > 1.

(27) If n# 0 and p # 0, then n% =n- nﬁl_ll.

(28) For all n, m such that m mod 2 = 0 holds (n7*%)2 = nf.
(29) Ifn#0and 1 <k, then (nf) +n= ng_ll.

(30) 2pt! = (2p) + 2%

(31) If k> 1 and kg = k', then n =m.

(32) m < niff 27 | 2.
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(33) If p is prime and ¢ | pg, then @ = 1 or there exists a natural number &
such that ¢ =p- k.

(34) For every n such that n # 0 and p is prime and n < p{{fl holds n | p{{frl

iff n | pk.
(35) For every k such that p is prime and d | p{% and d # 0 there exists a
natural number ¢ such that d = p§ and ¢ < k.

(36) If p>1and imodp =1, then (i) mod p = 1.

(37) If m >0 and n > 0, then (ng') modn = 0.

(38) If p is prime and n and p are relative prime, then (nﬁf/l) mod p = 1.
(39) If pis prime and d > 1 and d | p§ and d f (pk) + p, then d = pk.

Let a be an integer. Then a? is a natural number.

We now state several propositions:
(40) For every n such that n > 1 holds m mod n =1 iff m = 1(modn).
(41) If @ = b(mod c), then a? = b%(mod c).

(42) 1If i5 = i3 - i4 and i = i2(modis), then iy = ig(modis) and i3 =
i2(modiy).

43) 1If iy = i2(modis) and i1 = iz(mod is), then ia = i3(mod is).

44) 3 is prime.

If n # 0, then Eulern # 0.

If n #0, then —n < n.

For all m, n such that n > 0 and n > m holds m +n = 0.
Ifn#0,thenn+n=1.

2. PuBLIC-KEY CRYPTOGRAPHY

Let us consider k, m, n. The functor Crypto(m,n,k) yielding a natural
number is defined as follows:

(Def. 1) Crypto(m,n, k) = (mk%) mod n.
One can prove the following proposition

(49) Suppose p is prime and ¢ is prime and p # ¢ and n = p- ¢ and k; and
Euler n are relative prime and k; - ko mod Eulern = 1. Let m be a natural
number. If m < n, then Crypto(Crypto(m,n, k1), n, ks) = m.
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3. ORDER’S FUNCTION

Let us consider 7, p. Let us assume that p > 1 and ¢ and p are relative prime.
The functor order(7, p) yields a natural number and is defined as follows:

(Def. 2) order(i,p) > 0 and (iONrder(i’p)) mod p = 1 and for every k such that £ > 0
and (i) mod p = 1 holds 0 < order(i, p) and order(i, p) < k.
One can prove the following propositions:
(50) If p > 1, then order(1,p) = 1.
(51) If p > 1 and ¢ and p are relative prime, then order(i,p) # 0.

(52) If p>1andn >0 and (ifj) mod p =1 and ¢ and p are relative prime,
then order(i, p) | n.

(63) If p>1 and i and p are relative prime and order(%, p) | n, then (if) mod
p=1.
(54) 1If p is prime and i and p are relative prime, then order(i,p) | p —' 1.

4. FERMAT NUMBER

Let n be a natural number. The functor Fermat n yielding a natural number
is defined as follows:

(Def. 3) Fermatn = (2§§) + 1.
Next we state several propositions:
(55) Fermat 0 = 3.
(56) Fermatl = 5.
(57) Fermat2 = 17.
(58) Fermat 3 = 257.
(59) Fermat4 = 256 - 256 + 1.
(60) Fermatn > 2.
(61)

If p is prime and p > 2 and p | Fermatn, then there exists a natural
number k such that p =k - 2&“ + 1.

(62) If n# 0, then 3 and Fermatn are relative prime.
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5. PEPIN’S TEST

We now state several propositions:
(Fermatn—'1)+2

(63) If n > 0 and 3y = —1(mod Fermatn), then Fermatn is
prime.

(64) 5 is prime.

(65) 17 is prime.

(66) 257 is prime.

(67) 256256 + 1 is prime.
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1. PRELIMINARIES

We adopt the following convention: V', C, x are sets and A, B are elements
of SubstitutionSet(V, C).

Let a, b be sets. Note that {(a, b)} is function-like and relation-like.

Let A, B be sets. Observe that A—- B is functional.

Next we state several propositions:

(1) For all non empty sets V', C there exists an element f of V—C such that
f#0.

(2) For all sets a, b such that b € SubstitutionSet(V, C) and a € b holds a is
a finite function.

(3) For every element f of V--C and for every set g such that g C f holds
geV-C.

(4) VSO C2tvoi,

(5) If V is finite and C' is finite, then V-—-C' is finite.

One can check that there exists a set which is functional, finite, and non
empty.
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2. SOME PROPERTIES OF SETS OF SUBSTITUTIONS

One can prove the following four propositions:
(6) For every finite element a of V—-C holds {a} € SubstitutionSet(V, C).

(7) If A~ B = A, then for every set a such that a € A there exists a set b
such that b € B and b C a.

(8) If (A~ B) = A, then for every set a such that a € A there exists a set
b such that b € B and b C a.

(9) If for every set a such that a € A there exists a set b such that b € B
and b C a, then u(A~ B) = A.

Let V be a set, let C be a finite set, and let A be an element of Fin(V—-C).
The functor Involved A is defined by:

(Def. 1) z € Involved A iff there exists a finite function f such that f € A and
x € dom f.

In the sequel C' denotes a finite set.
The following propositions are true:

(10) For every set V and for every finite set C' and for every element A of
Fin(V—-C) holds Involved A C V.

(11) For every set V and for every finite set C' and for every element A of
Fin(V—=C) such that A = () holds Involved A = {).

(12) For every set V and for every finite set C' and for every element A of
Fin(V—C) holds Involved A is finite.

(13) For every finite set C' and for every element A of Fin(—C') holds
Involved A = .

Let V be a set, let C be a finite set, and let A be an element of Fin(V—-C).
The functor —A yielding an element of Fin(V—-C) is defined as follows:

(Def. 2) —A = {f; f ranges over elements of Involved A=C": A\ joment of V¢ (9 €
A= f#g)}

One can prove the following propositions:
(14) A~ —A=0.
(15) If A=0, then —A = {0}.
(16) If A= {0}, then —A = 0.
(17)

17) For every set V and for every finite set C' and for every element A of

SubstitutionSet(V, C') holds u(A~ —A) = LsubstLatt(v,C)-

(18) For every non empty set V' and for every finite non empty set C' and for
every element A of SubstitutionSet(V, C') such that A = () holds u(—A4) =

TSubstLatt(V,C) :
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(19) Let V be a set, C be a finite set, A be an element of
SubstitutionSet(V, C'), a be an element of V--C, and B be an element
of SubstitutionSet(V, C). Suppose B = {a}. If A~ B = 0, then there
exists a finite set b such that b € —A and b C a.

Let V be a set, let C be a finite set, and let A, B be elements of Fin(V=-C).
The functor A — B yielding an element of Fin(V-—-C) is defined as follows:

(Def. 3) A — B = (VSC) N {U{f(@@) \ 4;7 ranges over elements of V—-C :
i € A}; f ranges over elements of A>B : dom f = A}.
Next we state two propositions:

(20) Let A, B be elements of Fin(V—C') and s be a set. Suppose s € A — B.
Then there exists a partial function f from A to B such that s = [J{f(7)\
i;1 ranges over elements of V—-C': i € A} and dom f = A.

(21) For every set V and for every finite set C' and for every element A of
Fin(V—-C) such that A = () holds A — A = {0}.

We adopt the following convention: u, v are elements of the carrier
of SubstLatt(V,C), a is an element of V-—-C, and K, L are elements of
SubstitutionSet(V, C').

The following proposition is true

(22) For every set X such that X C u holds X is an element of the carrier of
SubstLatt(V, C).

3. LATTICE OF SUBSTITUTIONS IS IMPLICATIVE

Let us consider V, C. The functor pseudo_compl(V,C) yielding a unary
operation on the carrier of SubstLatt(V, C) is defined as follows:

(Def. 4) For every element u' of SubstitutionSet(V,C) such that v’ = u holds
(pseudo_compl(V, C))(u) = p(—u').

The functor Stronglmpl(V,C) yielding a binary operation on the carrier of
SubstLatt(V, C) is defined by:

(Def. 5) For all elements ', v of SubstitutionSet(V,C) such that «' = u and
v = v holds (StrongImpl(V, C))(u, v) = u(u' — o).

Let us consider uw. The functor 2" yielding an element of Fin (the carrier of
SubstLatt(V, C)) is defined by:

(Def. 6) 2" = 2.

The functor O\, O yielding a unary operation on the carrier of SubstLatt(V, C)
is defined by:

(Def. 7) (O\.O)(v) = u\ v.
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Let us consider V', C. The functor Atom(V, C') yielding a function from V--C
into the carrier of SubstLatt(V, C) is defined as follows:

(Def. 8) For every element a of V-—-C holds (Atom(V,C))(a) = uf{a}.

Next we state a number of propositions:

(23) L]ﬁ( Atom(V, C') = FinUnion(K, singletony, -, ).

(24) For every element u of SubstitutionSet(V, C') holds u = |_|fL Atom(V,C).
(25) (O\u O)(v) C .

(26) For every element a of V—-C such that a is finite and for every set ¢

such that ¢ € (Atom(V,C))(a) holds ¢ = a.

(27) For every element a of V—-C such that K = {a} and L = wand L™K =)
holds (Atom(V, C))(a) C (pseudo_compl(V, C))(u).

(28) For every finite element a of V—-C holds a € (Atom(V,C))(a).

(29) Let u, v be elements of SubstitutionSet(V, C'). Suppose that for every set
¢ such that ¢ € u there exists a set b such that b € v and b C cU a. Then
there exists a set b such that b € u — v and b C a.

(30) Let a be a finite element of V-—-C. Suppose for every element b of
V—=C such that b € w holds b = a and u M (Atom(V,C))(a) C v. Then
(Atom(V, C))(a) C (StrongImpl(V, C))(u, v).

(31) ull (pseudo,compl(V, C))(’LL) = J—SubstLatt(V,C)'

(32) M (Stronglmpl(V,C))(u, v) C v.

Let us consider V', C. Observe that SubstLatt(V, C') is implicative.
One can prove the following proposition

(33) u=v= |_|£u ((the meet operation of SubstLatt(V, C))°(pseudo_compl(V, C),
(StrongImpl(V, C))°(0 \ O, v))).
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