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The articles [20], [15], [14], [8], [6], [1], [18], [13], [19], [17], [3], [11], [4], [12], [2],
[10], [16], [5], and [7] provide the notation and terminology for this paper.

1. Lower Topology

Let T be a non empty FR-structure. We say that T is lower if and only if:

(Def. 1) {−↑x : x ranges over elements of T} is a prebasis of T .

Let us note that every non empty reflexive topological space-like FR-structure
which is trivial is also lower.

One can verify that there exists a top-lattice which is lower, trivial, complete,
and strict.

We now state the proposition

(1) For every non empty relational structure L1 holds there exists a strict
correct topological augmentation of L1 which is lower.

We now state the proposition

(2) Let L2, L3 be topological space-like lower non empty FR-structures.
Suppose the relational structure of L2 = the relational structure of L3.
Then the topology of L2 = the topology of L3.

1This work has been partially supported by KBN grant 8 T11C 018 12 and NATO CRG
951368 grant.
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Let R be a non empty relational structure. The functor ω(R) yielding a
family of subsets of R is defined by:

(Def. 2) For every lower correct topological augmentation T of R holds ω(R) =
the topology of T .

Next we state a number of propositions:

(3) Let R1, R2 be non empty relational structures. Suppose the relational
structure of R1 = the relational structure of R2. Then ω(R1) = ω(R2).

(4) For every lower non empty FR-structure T and for every point x of T

holds −↑x is open and ↑x is closed.

(5) For every transitive lower non empty FR-structure T and for every subset
A of T such that A is open holds A is lower.

(6) For every transitive lower non empty FR-structure T and for every subset
A of T such that A is closed holds A is upper.

(7) Let T be a non empty topological space-like FR-structure. Then T is
lower if and only if {−↑F ; F ranges over subsets of T : F is finite} is a
basis of T .

(8) Let S, T be lower complete top-lattices and f be a map from S into T .
Suppose that for every non empty subset X of S holds f preserves inf of
X. Then f is continuous.

(9) Let S, T be lower complete top-lattices and f be a map from S into T .
If f is infs-preserving, then f is continuous.

(10) Let T be a lower complete top-lattice, B1 be a prebasis of T , and F be a
non empty filtered subset of T . Suppose that for every subset A of T such
that A ∈ B1 and inf F ∈ A holds F meets A. Then inf F ∈ F.

(11) Let S, T be lower complete top-lattices and f be a map from S into T .
If f is continuous, then f is filtered-infs-preserving.

(12) Let S, T be lower complete top-lattices and f be a map from S into
T . Suppose f is continuous and for every finite subset X of S holds f

preserves inf of X. Then f is infs-preserving.

(13) Let T be a lower topological space-like reflexive transitive non empty
FR-structure and x be a point of T . Then {x} = ↑x.

A top-poset is a topological space-like reflexive transitive antisymmetric FR-
structure.

One can check that every non empty top-poset which is lower is also T0.
Let R be a lower-bounded non empty relational structure. One can verify

that every topological augmentation of R is lower-bounded.
We now state four propositions:

(14) Let S, T be non empty relational structures, s be an element of S, and t

be an element of T . Then −↑〈〈s, t〉〉 = [:−↑s, the carrier of T :]∪ [: the carrier
of S, −↑t :].
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(15) Let S, T be lower-bounded non empty posets, S′ be a lower correct
topological augmentation of S, and T ′ be a lower correct topological au-
gmentation of T . Then ω([:S, T :]) = the topology of [:S′, (T ′ qua non
empty topological space) :].

(16) Let S, T be lower lower-bounded non empty top-posets. Then ω([: S,

(T qua poset) :]) = the topology of [:S, (T qua non empty topological
space) :].

(17) Let T , T2 be lower complete top-lattices. Suppose T2 is a topological
augmentation of [:T, (T qua lattice) :]. Let f be a map from T2 into T . If
f = uT , then f is continuous.

2. Refinements Revisited

The scheme TopInd deals with a top-lattice A and and states that:
For every subset A of A such that A is open holds P[A]

provided the following conditions are met:
• There exists a prebasis K of A such that for every subset A of A

such that A ∈ K holds P[A],
• For every family F of subsets of A such that for every subset A

of A such that A ∈ F holds P[A] holds P[
⋃

F ],
• For all subsets A1, A2 of A such that P[A1] and P[A2] holds
P[A1 ∩A2], and

• P[ΩA].
One can prove the following proposition

(18) Let L2, L3 be up-complete antisymmetric non empty reflexive relational
structures. Suppose that

(i) the relational structure of L2 = the relational structure of L3, and
(ii) for every element x of L2 holds ↓↓x is directed and non empty.

If L2 satisfies axiom of approximation, then L3 satisfies axiom of approxi-
mation.

Let T be a continuous non empty poset. One can verify that every topological
augmentation of T is continuous.

The following propositions are true:

(19) Let T , S be topological spaces, R be a refinement of T and S, and W be
a subset of R. If W ∈ the topology of T or W ∈ the topology of S, then
W is open.

(20) Let T , S be topological spaces, R be a refinement of T and S, V be a
subset of T , and W be a subset of R. If W = V, then if V is open, then
W is open.
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(21) Let T , S be topological spaces. Suppose the carrier of T = the carrier
of S. Let R be a refinement of T and S, V be a subset of T , and W be a
subset of R. If W = V, then if V is closed, then W is closed.

(22) Let T be a non empty topological space and K, O be sets such that
K ⊆ O and O ⊆ the topology of T . Then

(i) if K is a basis of T , then O is a basis of T , and
(ii) if K is a prebasis of T , then O is a prebasis of T .

(23) Let T1, T2 be non empty topological spaces. Suppose the carrier of T1 =
the carrier of T2. Let T be a refinement of T1 and T2, B2 be a prebasis of
T1, and B3 be a prebasis of T2. Then B2 ∪B3 is a prebasis of T .

(24) Let T1, S1, T2, S2 be non empty topological spaces, R1 be a refinement of
T1 and S1, R2 be a refinement of T2 and S2, f be a map from T1 into T2, g

be a map from S1 into S2, and h be a map from R1 into R2. Suppose h = f

and h = g. If f is continuous and g is continuous, then h is continuous.

(25) Let T be a non empty topological space, K be a prebasis of T , N be a
net in T , and p be a point of T . Suppose that for every subset A of T such
that p ∈ A and A ∈ K holds N is eventually in A. Then p ∈ Lim N.

(26) Let T be a non empty topological space, N be a net in T , and S be a
subset of T . If N is eventually in S, then Lim N ⊆ S.

(27) Let R be a non empty relational structure and X be a non empty subset
of R. Then the mapping of 〈X; id〉 = idX and the mapping of 〈Xop; id〉 =
idX .

(28) For every reflexive antisymmetric non empty relational structure R and
for every element x of R holds ↑x ∩ ↓x = {x}.

3. Lawson Topology

Let T be a reflexive non empty FR-structure. We say that T is Lawson if
and only if:

(Def. 3) ω(T ) ∪ σ(T ) is a prebasis of T .

Next we state the proposition

(29) Let R be a complete lattice, L1 be a lower correct topological augmenta-
tion of R, S be a Scott topological augmentation of R, and T be a correct
topological augmentation of R. Then T is Lawson if and only if T is a
refinement of S and L1.

Let R be a complete lattice. One can check that there exists a topological
augmentation of R which is Lawson, strict, and correct.
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Let us observe that there exists a top-lattice which is Scott, complete, and
strict and there exists a complete strict top-lattice which is Lawson and conti-
nuous.

We now state three propositions:

(30) For every Lawson complete top-lattice T holds σ(T ) ∪ {−↑x : x ranges
over elements of T} is a prebasis of T .

(31) Let T be a Lawson complete top-lattice. Then σ(T )∪{W \↑x; W ranges
over subsets of T , x ranges over elements of T : W ∈ σ(T )} is a prebasis
of T .

(32) Let T be a Lawson complete top-lattice. Then {W \ ↑F ;W ranges over
subsets of T , F ranges over subsets of T : W ∈ σ(T ) ∧ F is finite} is a
basis of T .

Let T be a complete lattice. The functor λ(T ) yields a family of subsets of
T and is defined as follows:

(Def. 4) For every Lawson correct topological augmentation S of T holds λ(T ) =
the topology of S.

We now state a number of propositions:

(33) For every complete lattice R holds λ(R) = UniCl(FinMeetCl(σ(R) ∪
ω(R))).

(34) Let R be a complete lattice, T be a lower correct topological augmenta-
tion of R, S be a Scott correct topological augmentation of R, and M be
a refinement of S and T . Then λ(R) = the topology of M .

(35) For every lower up-complete top-lattice T and for every subset A of T

such that A is open holds A has the property (S).

(36) For every Lawson complete top-lattice T and for every subset A of T

such that A is open holds A has the property (S).

(37) Let S be a Scott complete top-lattice, T be a Lawson correct topological
augmentation of S, and A be a subset of S. If A is open, then for every
subset C of T such that C = A holds C is open.

(38) Let T be a Lawson complete top-lattice and x be an element of T . Then
↑x is closed and ↓x is closed and {x} is closed.

(39) For every Lawson complete top-lattice T and for every element x of T

holds −↑x is open and −↓x is open and −{x} is open.

(40) For every Lawson complete continuous top-lattice T and for every ele-
ment x of T holds ↑↑x is open and −↑↑x is closed.

(41) Let S be a Scott complete top-lattice, T be a Lawson correct topological
augmentation of S, and A be an upper subset of T . If A is open, then for
every subset C of S such that C = A holds C is open.

(42) Let T be a Lawson complete top-lattice and A be a lower subset of T .
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Then A is closed if and only if A is closed under directed sups.

(43) For every Lawson complete top-lattice T and for every non empty filtered
subset F of T holds Lim〈F op; id〉 = {inf F}.

Let us observe that every complete top-lattice which is Lawson is also T1

and compact.
Let us observe that every complete continuous top-lattice which is Lawson

is also Hausdorff.
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Summary. This article completes the Mizar formalization of Chapter I,
Section 2 from [12]. After presenting some preliminary material (not all of which
is later used in this article) we give the proof of theorem 2.7 (i), p.60. We do
not follow the hint from [12] suggesting using the equations 2.3, p. 58. The proof
is taken directly from the definition of continuous lattice. The goal of the last
section is to prove the correspondence between the set of all congruences of a
continuous lattice and the set of all kernel operators of the lattice which preserve
directed sups (Corollary 2.13).
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The terminology and notation used here are introduced in the following articles:
[23], [19], [18], [7], [8], [6], [1], [2], [21], [13], [20], [17], [24], [25], [22], [11], [16],
[4], [10], [5], [3], [14], [26], [15], and [9].

1. Preliminaries

The following two propositions are true:

(1) For every set X and for every subset S of 4X holds π1(S) = π2(S).
(2) For all non empty sets X, Y and for every function f from X into Y

holds [: f, f :]−1(4Y ) is an equivalence relation of X.

Let L1, L2, T1, T2 be relational structures, let f be a map from L1 into T1,
and let g be a map from L2 into T2. Then [: f, g :] is a map from [:L1, L2 :] into
[:T1, T2 :].

One can prove the following propositions:
1This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.
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(3) For all functions f , g and for every set X holds π1([: f, g :]◦X) ⊆ f◦π1(X)
and π2([: f, g :]◦X) ⊆ g◦π2(X).

(4) For all functions f , g and for every set X such that X ⊆ [: dom f, dom g :]
holds π1([: f, g :]◦X) = f◦π1(X) and π2([: f, g :]◦X) = g◦π2(X).

(5) For every non empty antisymmetric relational structure S such that inf
∅ exists in S holds S is upper-bounded.

(6) For every non empty antisymmetric relational structure S such that sup
∅ exists in S holds S is lower-bounded.

(7) Let L1, L2 be antisymmetric non empty relational structures and D be
a subset of [:L1, L2 :]. If inf D exists in [:L1, L2 :], then inf D = 〈〈 inf π1(D),
inf π2(D)〉〉.

(8) Let L1, L2 be antisymmetric non empty relational structures and D be a
subset of [:L1, L2 :]. If sup D exists in [:L1, L2 :], then sup D = 〈〈 sup π1(D),
sup π2(D)〉〉.

(9) Let L1, L2, T1, T2 be antisymmetric non empty relational structures, f

be a map from L1 into T1, and g be a map from L2 into T2. Suppose f is
infs-preserving and g is infs-preserving. Then [: f, g :] is infs-preserving.

(10) Let L1, L2, T1, T2 be antisymmetric reflexive non empty relational struc-
tures, f be a map from L1 into T1, and g be a map from L2 into T2. Suppose
f is filtered-infs-preserving and g is filtered-infs-preserving. Then [: f, g :]
is filtered-infs-preserving.

(11) Let L1, L2, T1, T2 be antisymmetric non empty relational structures, f

be a map from L1 into T1, and g be a map from L2 into T2. Suppose f is
sups-preserving and g is sups-preserving. Then [: f, g :] is sups-preserving.

(12) Let L1, L2, T1, T2 be antisymmetric reflexive non empty relational struc-
tures, f be a map from L1 into T1, and g be a map from L2 into T2. Suppose
f is directed-sups-preserving and g is directed-sups-preserving. Then [: f,

g :] is directed-sups-preserving.

(13) Let L be an antisymmetric non empty relational structure and X be a
subset of [:L, L :]. Suppose X ⊆ 4the carrier of L and inf X exists in [: L,

L :]. Then inf X ∈ 4the carrier of L.

(14) Let L be an antisymmetric non empty relational structure and X be a
subset of [:L, L :]. Suppose X ⊆ 4the carrier of L and sup X exists in [: L,

L :]. Then sup X ∈ 4the carrier of L.

(15) Let L, M be non empty relational structures. If L and M are isomorphic
and L is reflexive, then M is reflexive.

(16) Let L, M be non empty relational structures. If L and M are isomorphic
and L is transitive, then M is transitive.

(17) Let L, M be non empty relational structures. Suppose L and M are
isomorphic and L is antisymmetric. Then M is antisymmetric.
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(18) Let L, M be non empty relational structures. If L and M are isomorphic
and L is complete, then M is complete.

(19) Let L be a non empty transitive relational structure and k be a map
from L into L. If k is infs-preserving, then k◦ is infs-preserving.

(20) Let L be a non empty transitive relational structure and k be a map from
L into L. If k is filtered-infs-preserving, then k◦ is filtered-infs-preserving.

(21) Let L be a non empty transitive relational structure and k be a map
from L into L. If k is sups-preserving, then k◦ is sups-preserving.

(22) Let L be a non empty transitive relational structure and k be a map
from L into L. If k is directed-sups-preserving, then k◦ is directed-sups-
preserving.

(23) Let S, T be reflexive antisymmetric non empty relational structures and
f be a map from S into T . If f is directed-sups-preserving, then f is
monotone.

(24) Let S, T be reflexive antisymmetric non empty relational structures and
f be a map from S into T . If f is filtered-infs-preserving, then f is mono-
tone.

(25) Let S, T be non empty relational structures and f be a map from S into
T . Suppose f is monotone. Let X be a subset of S. If X is filtered, then
f◦X is filtered.

(26) Let L1, L2, L3 be non empty relational structures, f be a map from L1

into L2, and g be a map from L2 into L3. Suppose f is infs-preserving and
g is infs-preserving. Then g · f is infs-preserving.

(27) Let L1, L2, L3 be non empty reflexive antisymmetric relational structu-
res, f be a map from L1 into L2, and g be a map from L2 into L3. Suppose
f is filtered-infs-preserving and g is filtered-infs-preserving. Then g · f is
filtered-infs-preserving.

(28) Let L1, L2, L3 be non empty relational structures, f be a map from L1

into L2, and g be a map from L2 into L3. Suppose f is sups-preserving
and g is sups-preserving. Then g · f is sups-preserving.

(29) Let L1, L2, L3 be non empty reflexive antisymmetric relational structu-
res, f be a map from L1 into L2, and g be a map from L2 into L3. Suppose
f is directed-sups-preserving and g is directed-sups-preserving. Then g · f
is directed-sups-preserving.
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2. Some Remarks on Lattice Product

We now state several propositions:

(30) Let I be a non empty set and J be a relational structure yielding no-
nempty many sorted set indexed by I. Suppose that for every element i of
I holds J(i) is a lower-bounded antisymmetric relational structure. Then∏

J is lower-bounded.

(31) Let I be a non empty set and J be a relational structure yielding no-
nempty many sorted set indexed by I. Suppose that for every element i

of I holds J(i) is an upper-bounded antisymmetric relational structure.
Then

∏
J is upper-bounded.

(32) Let I be a non empty set and J be a relational structure yielding no-
nempty many sorted set indexed by I. Suppose that for every element i

of I holds J(i) is a lower-bounded antisymmetric relational structure. Let
i be an element of I. Then ⊥Q J(i) = ⊥J(i).

(33) Let I be a non empty set and J be a relational structure yielding no-
nempty many sorted set indexed by I. Suppose that for every element i of
I holds J(i) is an upper-bounded antisymmetric relational structure. Let
i be an element of I. Then >Q J(i) = >J(i).

(34) Let I be a non empty set and J be a relational structure yielding no-
nempty reflexive-yielding many sorted set indexed by I. Suppose that for
every element i of I holds J(i) is a continuous complete lattice. Then

∏
J

is continuous.

3. Kernel Projections and Quotient Lattices

We now state the proposition

(35) Let L, T be continuous complete lattices, g be a CLHomomorphism
of L, T , and S be a subset of the carrier of [:L, L :]. Suppose S = [: g,

g :]−1(4the carrier of T ). Then sub(S) is a continuous subframe of [:L, L :].
Let L be a relational structure and let R be a subset of the carrier of [:L, L :].

Let us assume that R is an equivalence relation of the carrier of L. The functor
EqRel(R) yields an equivalence relation of the carrier of L and is defined by:

(Def. 1) EqRel(R) = R.

Let L be a non empty relational structure and let R be a subset of [:L, L :].
We say that R is a continuous lattice congruence if and only if:

(Def. 2) R is an equivalence relation of the carrier of L and sub(R) is a continuous
subframe of [:L, L :].
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We now state the proposition

(36) Let L be a complete lattice and R be a non empty subset of [:L, L :].
Suppose R is a continuous lattice congruence. Let x be an element of the
carrier of L. Then 〈〈 inf([x]EqRel(R)), x〉〉 ∈ R.

Let L be a complete lattice and let R be a non empty subset of [:L, L :]. Let
us assume that R is a continuous lattice congruence. The kernel operation of R

yields a kernel map from L into L and is defined by:

(Def. 3) For every element x of L holds (the kernel operation of R)(x) =
inf([x]EqRel(R)).

Next we state three propositions:

(37) Let L be a complete lattice and R be a non empty subset of [:L, L :].
Suppose R is a continuous lattice congruence. Then

(i) the kernel operation of R is directed-sups-preserving, and
(ii) R = [: the kernel operation of R, the kernel operation of

R :]−1(4the carrier of L).

(38) Let L be a continuous complete lattice, R be a subset of [:L, L :], and k

be a kernel map from L into L. Suppose k is directed-sups-preserving and
R = [: k, k :]−1(4the carrier of L). Then there exists a continuous complete
strict lattice L4 such that

(i) the carrier of L4 = Classes EqRel(R),
(ii) the internal relation of L4 = {〈〈[x]EqRel(R), [y]EqRel(R)〉〉; x ranges over

elements of L, y ranges over elements of L: k(x) ¬ k(y)}, and
(iii) for every map g from L into L4 such that for every element x of L holds

g(x) = [x]EqRel(R) holds g is a CLHomomorphism of L, L4.

(39) Let L be a continuous complete lattice and R be a subset of [:L, L :].
Suppose that

(i) R is an equivalence relation of the carrier of L, and
(ii) there exists a continuous complete lattice L4 such that the carrier of

L4 = Classes EqRel(R) and for every map g from L into L4 such that for
every element x of L holds g(x) = [x]EqRel(R) holds g is a CLHomomor-
phism of L, L4.
Then sub(R) is a continuous subframe of [:L, L :].

Let L be a non empty reflexive relational structure. Observe that there exists
a map from L into L which is directed-sups-preserving and kernel.

Let L be a non empty reflexive relational structure and let k be a kernel
map from L into L. The kernel congruence of k yields a non empty subset of
[:L, L :] and is defined by:

(Def. 4) The kernel congruence of k = [: k, k :]−1(4the carrier of L).

We now state two propositions:
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(40) Let L be a non empty reflexive relational structure and k be a kernel
map from L into L. Then the kernel congruence of k is an equivalence
relation of the carrier of L.

(41) Let L be a continuous complete lattice and k be a directed-sups-
preserving kernel map from L into L. Then the kernel congruence of k

is a continuous lattice congruence.

Let L be a continuous complete lattice and let R be a non empty subset of
[:L, L :]. Let us assume that R is a continuous lattice congruence. The functor
L/R yielding a continuous complete strict lattice is defined by:

(Def. 5) The carrier of L/R = Classes EqRel(R) and for all elements x, y of L/R

holds x ¬ y iff d−eLx ¬ d−eLy.

The following propositions are true:

(42) Let L be a continuous complete lattice and R be a non empty subset
of [:L, L :]. Suppose R is a continuous lattice congruence. Let x be a set.
Then x is an element of L/R if and only if there exists an element y of L

such that x = [y]EqRel(R).

(43) Let L be a continuous complete lattice and R be a non empty subset
of [:L, L :]. Suppose R is a continuous lattice congruence. Then R = the
kernel congruence of the kernel operation of R.

(44) Let L be a continuous complete lattice and k be a directed-sups-
preserving kernel map from L into L. Then k = the kernel operation
of the kernel congruence of k.

(45) Let L be a continuous complete lattice and p be a projection map from
L into L. Suppose p is infs-preserving. Then Im p is a continuous lattice
and Im p is infs-inheriting.
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The articles [8], [7], [1], [16], [10], [13], [17], [15], [11], [6], [3], [4], [12], [2], [18],
[14], and [5] provide the terminology and notation for this paper.

1. Semilattice Homomorphism and Inheritance

Let S, T be semilattices. Let us assume that if S is upper-bounded, then T

is upper-bounded. A map from S into T is said to be a semilattice morphism
from S into T if:

(Def. 1) For every finite subset X of S holds it preserves inf of X.

Let S, T be semilattices. One can check that every map from S into T which
is meet-preserving is also monotone.

Let S be a semilattice and let T be an upper-bounded semilattice. One can
check that every semilattice morphism from S into T is meet-preserving.

Next we state a number of propositions:

(1) For all upper-bounded semilattices S, T and for every semilattice mor-
phism f from S into T holds f(>S) = >T .

(2) Let S, T be semilattices and f be a map from S into T . Suppose f is
meet-preserving. Let X be a finite non empty subset of S. Then f preserves
inf of X.

1Partially supported by NATO Grant CRG 951368, NSERC OGP 9207 grant and KBN
grant 8 T11C 018 12.
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(3) Let S, T be upper-bounded semilattices and f be a meet-preserving map
from S into T . If f(>S) = >T , then f is a semilattice morphism from S

into T .

(4) Let S, T be semilattices and f be a map from S into T . Suppose f is
meet-preserving and for every filtered non empty subset X of S holds f

preserves inf of X. Let X be a non empty subset of S. Then f preserves
inf of X.

(5) Let S, T be semilattices and f be a map from S into T . Suppose f is
infs-preserving. Then f is a semilattice morphism from S into T .

(6) Let S1, T1, S2, T2 be non empty relational structures. Suppose that
(i) the relational structure of S1 = the relational structure of S2, and
(ii) the relational structure of T1 = the relational structure of T2.

Let f1 be a map from S1 into T1 and f2 be a map from S2 into T2 such
that f1 = f2. Then

(iii) if f1 is infs-preserving, then f2 is infs-preserving, and
(iv) if f1 is directed-sups-preserving, then f2 is directed-sups-preserving.

(7) Let S1, T1, S2, T2 be non empty relational structures. Suppose that
(i) the relational structure of S1 = the relational structure of S2, and
(ii) the relational structure of T1 = the relational structure of T2.

Let f1 be a map from S1 into T1 and f2 be a map from S2 into T2 such
that f1 = f2. Then

(iii) if f1 is sups-preserving, then f2 is sups-preserving, and
(iv) if f1 is filtered-infs-preserving, then f2 is filtered-infs-preserving.

(8) Let T be a complete lattice and S be an infs-inheriting full non empty
relational substructure of T . Then incl(S, T ) is infs-preserving.

(9) Let T be a complete lattice and S be a sups-inheriting full non empty
relational substructure of T . Then incl(S, T ) is sups-preserving.

(10) Let T be an up-complete non empty poset and S be a directed-sups-
inheriting full non empty relational substructure of T . Then incl(S, T ) is
directed-sups-preserving.

(11) Let T be a complete lattice and S be a filtered-infs-inheriting full
non empty relational substructure of T . Then incl(S, T ) is filtered-infs-
preserving.

(12) Let T1, T2, R be relational structures and S be a relational substructure
of T1. Suppose that

(i) the relational structure of T1 = the relational structure of T2, and
(ii) the relational structure of S = the relational structure of R.

Then R is a relational substructure of T2 and if S is full, then R is a full
relational substructure of T2.
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(13) Every non empty relational structure T is an infs-inheriting sups-
inheriting full relational substructure of T .

Let T be a complete lattice. Observe that there exists a continuous subframe
of T which is complete.

We now state a number of propositions:

(14) Let T be a semilattice and S be a full non empty relational substructure
of T . Then S is meet-inheriting if and only if for every finite non empty
subset X of S holds d−eT X ∈ the carrier of S.

(15) Let T be a sup-semilattice and S be a full non empty relational sub-
structure of T . Then S is join-inheriting if and only if for every finite non
empty subset X of S holds

⊔
T X ∈ the carrier of S.

(16) Let T be an upper-bounded semilattice and S be a meet-inheriting full
non empty relational substructure of T . Suppose >T ∈ the carrier of S

and S is filtered-infs-inheriting. Then S is infs-inheriting.

(17) Let T be a lower-bounded sup-semilattice and S be a join-inheriting full
non empty relational substructure of T . Suppose ⊥T ∈ the carrier of S

and S is directed-sups-inheriting. Then S is sups-inheriting.

(18) Let T be a complete lattice and S be a full non empty relational sub-
structure of T . If S is infs-inheriting, then S is complete.

(19) Let T be a complete lattice and S be a full non empty relational sub-
structure of T . If S is sups-inheriting, then S is complete.

(20) Let T1, T2 be non empty relational structures, S1 be a non empty full
relational substructure of T1, and S2 be a non empty full relational sub-
structure of T2. Suppose that

(i) the relational structure of T1 = the relational structure of T2, and
(ii) the carrier of S1 = the carrier of S2.

If S1 is infs-inheriting, then S2 is infs-inheriting.

(21) Let T1, T2 be non empty relational structures, S1 be a non empty full
relational substructure of T1, and S2 be a non empty full relational sub-
structure of T2. Suppose that

(i) the relational structure of T1 = the relational structure of T2, and
(ii) the carrier of S1 = the carrier of S2.

If S1 is sups-inheriting, then S2 is sups-inheriting.

(22) Let T1, T2 be non empty relational structures, S1 be a non empty full
relational substructure of T1, and S2 be a non empty full relational sub-
structure of T2. Suppose that

(i) the relational structure of T1 = the relational structure of T2, and
(ii) the carrier of S1 = the carrier of S2.

If S1 is directed-sups-inheriting, then S2 is directed-sups-inheriting.
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(23) Let T1, T2 be non empty relational structures, S1 be a non empty full
relational substructure of T1, and S2 be a non empty full relational sub-
structure of T2. Suppose that

(i) the relational structure of T1 = the relational structure of T2, and
(ii) the carrier of S1 = the carrier of S2.

If S1 is filtered-infs-inheriting, then S2 is filtered-infs-inheriting.

2. Nets and Limits

The following proposition is true

(24) Let S, T be non empty topological spaces, N be a net in S, and f be a
map from S into T . If f is continuous, then f◦ Lim N ⊆ Lim(f ·N).

Let T be a non empty relational structure and let N be a non empty net
structure over T . Let us observe that N is antitone if and only if:

(Def. 2) For all elements i, j of N such that i ¬ j holds N(i) ­ N(j).

Let T be a non empty reflexive relational structure and let x be an element
of T . Observe that 〈{x}op; id〉 is transitive directed monotone and antitone.

Let T be a non empty reflexive relational structure. Note that there exists
a net in T which is monotone, antitone, reflexive, and strict.

Let T be a non empty relational structure and let F be a non empty subset
of T . Note that 〈F op; id〉 is antitone.

Let S, T be non empty reflexive relational structures, let f be a monotone
map from S into T , and let N be an antitone non empty net structure over S.
Note that f ·N is antitone.

We now state a number of propositions:

(25) Let S be a complete lattice and N be a net in S. Then {d−eS{N(i); i
ranges over elements of the carrier of N : i ­ j} : j ranges over elements
of the carrier of N} is a directed non empty subset of S.

(26) Let S be a non empty poset and N be a monotone reflexive net in S.
Then {d−eS{N(i); i ranges over elements of the carrier of N : i ­ j} : j

ranges over elements of the carrier of N} is a directed non empty subset
of S.

(27) Let S be a non empty 1-sorted structure, N be a non empty net struc-
ture over S, and X be a set. If rng (the mapping of N) ⊆ X, then N is
eventually in X.

(28) For every inf-complete non empty poset R and for every non empty
filtered subset F of R holds lim inf〈F op; id〉 = inf F.
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(29) Let S, T be inf-complete non empty posets, X be a non empty filtered
subset of S, and f be a monotone map from S into T . Then lim inf(f ·
〈Xop; id〉) = inf(f◦X).

(30) Let S, T be non empty top-posets, X be a non empty filtered subset of
S, f be a monotone map from S into T , and Y be a non empty filtered
subset of T . If Y = f◦X, then f · 〈Xop; id〉 is a subnet of 〈Y op; id〉.

(31) Let S, T be non empty top-posets, X be a non empty filtered subset of
S, f be a monotone map from S into T , and Y be a non empty filtered
subset of T . If Y = f◦X, then Lim〈Y op; id〉 ⊆ Lim(f · 〈Xop; id〉).

(32) Let S be a non empty reflexive relational structure and D be a non
empty subset of S. Then the mapping of NetStr(D) = idD and the carrier
of NetStr(D) = D and NetStr(D) is a full relational substructure of S.

(33) Let S, T be up-complete non empty posets, f be a monotone map from
S into T , and D be a non empty directed subset of S. Then lim inf(f ·
NetStr(D)) = sup(f◦D).

(34) Let S be a non empty reflexive relational structure, D be a non empty
directed subset of S, and i, j be elements of NetStr(D). Then i ¬ j if and
only if (NetStr(D))(i) ¬ (NetStr(D))(j).

(35) For every Lawson complete top-lattice T and for every directed non
empty subset D of T holds sup D ∈ Lim NetStr(D).

Let T be a non empty 1-sorted structure, let N be a net in T , and let M

be a non empty net structure over T . Let us assume that M is a subnet of N .
A map from M into N is said to be a embedding of M into N if it satisfies the
conditions (Def. 3).

(Def. 3)(i) The mapping of M = (the mapping of N) · it, and
(ii) for every element m of N there exists an element n of M such that for

every element p of M such that n ¬ p holds m ¬ it(p).
One can prove the following propositions:

(36) Let T be a non empty 1-sorted structure, N be a net in T , M be a non
empty subnet of N , e be a embedding of M into N , and i be an element
of M . Then M(i) = N(e(i)).

(37) For every complete lattice T and for every net N in T and for every
subnet M of N holds lim inf N ¬ lim inf M.

(38) Let T be a complete lattice, N be a net in T , M be a subnet of N , and e

be a embedding of M into N . Suppose that for every element i of N and
for every element j of M such that e(j) ¬ i there exists an element j′ of
M such that j′ ­ j and N(i) ­M(j′). Then lim inf N = lim inf M.

(39) Let T be a non empty relational structure, N be a net in T , and M be a
non empty full structure of a subnet of N . Suppose that for every element
i of N there exists an element j of N such that j ­ i and j ∈ the carrier
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of M . Then M is a subnet of N and incl(M, N) is a embedding of M into
N .

(40) Let T be a non empty relational structure, N be a net in T , and i be an
element of N . Then N¹i is a subnet of N and incl(N¹i,N) is a embedding
of N¹i into N .

(41) For every complete lattice T and for every net N in T and for every
element i of N holds lim inf(N¹i) = lim inf N.

(42) Let T be a non empty relational structure, N be a net in T , and X be
a set. Suppose N is eventually in X. Then there exists an element i of N

such that N(i) ∈ X and rng (the mapping of N¹i) ⊆ X.

(43) Let T be a Lawson complete top-lattice and N be an eventually-filtered
net in T . Then rng (the mapping of N) is a filtered non empty subset of
T .

(44) For every Lawson complete top-lattice T and for every eventually-filtered
net N in T holds Lim N = {inf N}.

3. Lawson Topology Revisited

One can prove the following propositions:

(45) Let S, T be Lawson complete top-lattices and f be a meet-preserving
map from S into T . Then f is continuous if and only if the following
conditions are satisfied:

(i) f is directed-sups-preserving, and
(ii) for every non empty subset X of S holds f preserves inf of X.

(46) Let S, T be Lawson complete top-lattices and f be a semilattice mor-
phism from S into T . Then f is continuous if and only if f is infs-preserving
and directed-sups-preserving.

Let S, T be non empty relational structures and let f be a map from S into
T . We say that f is liminfs-preserving if and only if:

(Def. 4) For every net N in S holds f(lim inf N) = lim inf(f ·N).
One can prove the following propositions:

(47) Let S, T be Lawson complete top-lattices and f be a semilattice mor-
phism from S into T . Then f is continuous if and only if f is liminfs-
preserving.

(48) Let T be a Lawson complete continuous top-lattice and S be a meet-
inheriting full non empty relational substructure of T . Suppose >T ∈ the
carrier of S and there exists a subset X of T such that X = the carrier of
S and X is closed. Then S is infs-inheriting.
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(49) Let T be a Lawson complete continuous top-lattice and S be a full non
empty relational substructure of T . Given a subset X of T such that
X = the carrier of S and X is closed. Then S is directed-sups-inheriting.

(50) Let T be a Lawson complete continuous top-lattice and S be an infs-
inheriting directed-sups-inheriting full non empty relational substructure
of T . Then there exists a subset X of T such that X = the carrier of S

and X is closed.

(51) Let T be a Lawson complete continuous top-lattice, S be an infs-
inheriting directed-sups-inheriting full non empty relational substructure
of T , and N be a net in T . If N is eventually in the carrier of S, then
lim inf N ∈ the carrier of S.

(52) Let T be a Lawson complete continuous top-lattice and S be a meet-
inheriting full non empty relational substructure of T . Suppose that

(i) >T ∈ the carrier of S, and
(ii) for every net N in T such that rng (the mapping of N) ⊆ the carrier of

S holds lim inf N ∈ the carrier of S.
Then S is infs-inheriting.

(53) Let T be a Lawson complete continuous top-lattice and S be a full non
empty relational substructure of T . Suppose that for every net N in T

such that rng (the mapping of N) ⊆ the carrier of S holds lim inf N ∈ the
carrier of S. Then S is directed-sups-inheriting.

(54) Let T be a Lawson complete continuous top-lattice, S be a meet-
inheriting full non empty relational substructure of T , and X be a subset
of T . Suppose X = the carrier of S and >T ∈ X. Then X is closed if
and only if for every net N in T such that N is eventually in X holds
lim inf N ∈ X.
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The papers [1], [6], [7], [15], [2], [17], [12], [10], [19], [20], [18], [16], [9], [14], [4],
[8], [5], [3], and [13] provide the terminology and notation for this paper.

1. Preliminaries

The following propositions are true:

(1) For every upper-bounded semilattice L and for every non empty directed
subset F of 〈Filt(L),⊆〉 holds sup F =

⋃
F.

(2) Let L, S, T be complete non empty posets, f be a CLHomomorphism
of L, S, and g be a CLHomomorphism of S, T . Then g · f is a CLHomo-
morphism of L, T .

(3) For every non empty relational structure L holds idL is infs-preserving.

(4) For every non empty relational structure L holds idL is directed-sups-
preserving.

(5) For every complete non empty poset L holds idL is a CLHomomorphism
of L, L.

1This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.
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(6) For every upper-bounded non empty poset L with g.l.b.’s holds
〈Filt(L),⊆〉 is a continuous subframe of 2the carrier of L

⊆ .

Let L be an upper-bounded non empty poset with g.l.b.’s. Observe that
〈Filt(L),⊆〉 is continuous.

Let L be an upper-bounded non empty poset. One can check that every
element of the carrier of 〈Filt(L),⊆〉 is non empty.

2. Free Generators of Continuous Lattices

Let S be a continuous complete non empty poset and let A be a set. We say
that A is a set of free generators of S if and only if the condition (Def. 1) is
satisfied.

(Def. 1) Let T be a continuous complete non empty poset and f be a function
from A into the carrier of T . Then there exists a CLHomomorphism h of
S, T such that h¹A = f and for every CLHomomorphism h′ of S, T such
that h′¹A = f holds h′ = h.

Next we state two propositions:

(7) Let S be a continuous complete non empty poset and A be a set. If A is
a set of free generators of S, then A is a subset of S.

(8) Let S be a continuous complete non empty poset and A be a set. Suppose
A is a set of free generators of S. Let h′ be a CLHomomorphism of S, S.
If h′¹A = idA, then h′ = idS .

3. Representation Theorem for Free Continuous Lattices

In the sequel X is a set, F is a filter of 2X
⊆ , x is an element of 2X

⊆ , and z is
an element of X.

Let us consider X. The fixed ultrafilters of X is a family of subsets of 2X
⊆

and is defined as follows:

(Def. 2) The fixed ultrafilters of X = {↑x :
∨

z x = {z}}.
One can prove the following three propositions:

(9) The fixed ultrafilters of X ⊆ Filt(2X
⊆ ).

(10) the fixed ultrafilters of X = X .

(11) F =
⊔

(〈Filt(2X
⊆ ),⊆〉){d−e(〈Filt(2X

⊆ ),⊆〉){↑x :
∨

z (x = {z} ∧ z ∈ Y )}; Y ranges

over subsets of X: Y ∈ F}.
Let us consider X, let L be a continuous complete non empty poset, and let f

be a function from the fixed ultrafilters of X into the carrier of L. The extension
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of f to homomorphism is a map from 〈Filt(2X
⊆ ),⊆〉 into L and is defined by the

condition (Def. 3).

(Def. 3) Let F1 be an element of the carrier of (〈Filt(2X
⊆ ),⊆〉). Then (the exten-

sion of f to homomorphism)(F1) =
⊔

L{d−eL{f(↑x) :
∨

z (x = {z} ∧ z ∈
Y )};Y ranges over subsets of X: Y ∈ F1}.

One can prove the following propositions:

(12) Let L be a continuous complete non empty poset and f be a function
from the fixed ultrafilters of X into the carrier of L. Then the extension
of f to homomorphism is monotone.

(13) Let L be a continuous complete non empty poset and f be a function
from the fixed ultrafilters of X into the carrier of L. Then (the extension
of f to homomorphism)(>〈Filt(2X

⊆ ),⊆〉) = >L.

Let us consider X, let L be a continuous complete non empty poset, and let
f be a function from the fixed ultrafilters of X into the carrier of L. Observe
that the extension of f to homomorphism is directed-sups-preserving.

Let us consider X, let L be a continuous complete non empty poset, and let
f be a function from the fixed ultrafilters of X into the carrier of L. Note that
the extension of f to homomorphism is infs-preserving.

The following propositions are true:

(14) Let L be a continuous complete non empty poset and f be a function
from the fixed ultrafilters of X into the carrier of L. Then (the extension
of f to homomorphism)¹(the fixed ultrafilters of X) = f.

(15) Let L be a continuous complete non empty poset, f be a function from
the fixed ultrafilters of X into the carrier of L, and h be a CLHomomor-
phism of 〈Filt(2X

⊆ ),⊆〉, L. Suppose h¹the fixed ultrafilters of X = f. Then
h = the extension of f to homomorphism.

(16) The fixed ultrafilters of X is a set of free generators of 〈Filt(2X
⊆ ),⊆〉.

(17) Let L, M be continuous complete lattices and F , G be sets. Suppose F

is a set of free generators of L and G is a set of free generators of M and
F = G. Then L and M are isomorphic.

(18) Let L be a continuous complete lattice and G be a set. Suppose G is
a set of free generators of L and G = X . Then L and 〈Filt(2X

⊆ ),⊆〉 are
isomorphic.
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Summary. In [5] we introduced a number of notions about vertex sequ-
ences associated with undirected chains of edges in graphs. In this article, we
introduce analogous concepts for oriented chains and use them to prove pro-
perties of cutting and glueing of oriented chains, and the existence of a simple
oriented chain in an oriented chain.
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The notation and terminology used here are introduced in the following papers:
[6], [8], [2], [3], [4], [5], [1], [9], and [7].

1. Oriented Vertex Sequences

For simplicity, we adopt the following rules: p, q denote finite sequences, m,
n denote natural numbers, G denotes a graph, x, y, v, v1, v2, v3, v4 denote
elements of the vertices of G, e denotes a set, and X denotes a set.

Let us consider G, let us consider x, y, and let us consider e. We say that e

orientedly joins x, y if and only if:

(Def. 1) (The source of G)(e) = x and (the target of G)(e) = y.

We now state the proposition

(1) If e orientedly joins v1, v2, then e joins v1 with v2.

Let us consider G and let x, y be elements of the vertices of G. We say that
x, y are orientedly incident if and only if:

(Def. 2) There exists a set v such that v ∈ the edges of G and v orientedly joins
x, y.

189
c© 1998 University of Białystok

ISSN 1426–2630



190 yatsuka nakamura and piotr rudnicki

One can prove the following proposition

(2) If e orientedly joins v1, v2 and e orientedly joins v3, v4, then v1 = v3 and
v2 = v4.

We follow the rules: v5, v6, v7 are finite sequences of elements of the vertices
of G and c, c1, c2 are oriented chains of G.

We now state the proposition

(3) ε is an oriented chain of G.

Let us consider G. Observe that there exists a chain of G which is empty
and oriented.

Let us consider G, X. The functor G -SVSet X yields a set and is defined
by:

(Def. 3) G -SVSet X = {v :
∨

e : element of the edges of G (e ∈ X ∧ v = (the source
of G)(e))}.

Let us consider G, X. The functor G -TVSet X yielding a set is defined by:

(Def. 4) G -TVSet X = {v :
∨

e : element of the edges of G (e ∈ X ∧ v = (the target
of G)(e))}.

Next we state the proposition

(4) If X = ∅, then G -SVSet X = ∅ and G -TVSet X = ∅.
Let us consider G, v5 and let c be a finite sequence. We say that v5 is oriented

vertex seq of c if and only if:

(Def. 5) len v5 = len c + 1 and for every n such that 1 ¬ n and n ¬ len c holds
c(n) orientedly joins πnv5, πn+1v5.

One can prove the following propositions:

(5) If v5 is oriented vertex seq of c, then v5 is vertex sequence of c.

(6) If v5 is oriented vertex seq of c, then G -SVSet rng c ⊆ rng v5.

(7) If v5 is oriented vertex seq of c, then G -TVSet rng c ⊆ rng v5.

(8) If c 6= ε and v5 is oriented vertex seq of c, then rng v5 ⊆ (G -SVSet rng c)∪
(G -TVSet rng c).

2. Cutting and Glueing of Oriented Chains

One can prove the following propositions:

(9) 〈v〉 is oriented vertex seq of ε.

(10) There exists v5 such that v5 is oriented vertex seq of c.

(11) If c 6= ε and v6 is oriented vertex seq of c and v7 is oriented vertex seq
of c, then v6 = v7.
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Let us consider G, c. Let us assume that c 6= ε. The functor
oriented-vertex-seq c yielding a finite sequence of elements of the vertices of
G is defined as follows:

(Def. 6) oriented-vertex-seq c is oriented vertex seq of c.

Next we state several propositions:

(12) If v5 is oriented vertex seq of c and c1 = c¹ Seg n and v6 = v5¹ Seg(n+1),
then v6 is oriented vertex seq of c1.

(13) If 1 ¬ m and m ¬ n and n ¬ len c and q = 〈c(m), . . . , c(n)〉, then q is
an oriented chain of G.

(14) Suppose 1 ¬ m and m ¬ n and n ¬ len c and c1 = 〈c(m), . . . , c(n)〉 and
v5 is oriented vertex seq of c and v6 = 〈v5(m), . . . , v5(n + 1)〉. Then v6 is
oriented vertex seq of c1.

(15) Suppose v6 is oriented vertex seq of c1 and v7 is oriented vertex seq of
c2 and v6(len v6) = v7(1). Then c1

a c2 is an oriented chain of G.

(16) Suppose v6 is oriented vertex seq of c1 and v7 is oriented vertex seq of
c2 and v6(len v6) = v7(1) and c = c1

a c2 and v5 = v6 aa v7. Then v5 is
oriented vertex seq of c.

3. Oriented Simple Chains in Oriented Chains

Let us consider G and let I1 be an oriented chain of G. We say that I1 is
Simple if and only if the condition (Def. 7) is satisfied.

(Def. 7) There exists v5 such that v5 is oriented vertex seq of I1 and for all n,
m such that 1 ¬ n and n < m and m ¬ len v5 and v5(n) = v5(m) holds
n = 1 and m = len v5.

Let us consider G. Note that there exists an oriented chain of G which is
Simple.

Let us consider G. One can verify that there exists a chain of G which is
oriented and simple.

Next we state two propositions:

(17) Every oriented simple chain of G is an oriented chain of G.

(18) For every oriented chain q of G holds q¹ Seg n is an oriented chain of G.

In the sequel s1 is an oriented simple chain of G.
Next we state several propositions:

(19) s1¹ Seg n is an oriented simple chain of G.

(20) For every oriented chain s′1 of G such that s′1 = s1 holds s′1 is Simple.

(21) Every Simple oriented chain of G is an oriented simple chain of G.
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(22) Suppose c is not Simple and v5 is oriented vertex seq of c. Then there
exists a FinSubsequence f1 of c and there exists a FinSubsequence f2 of
v5 and there exist c1, v6 such that len c1 < len c and v6 is oriented vertex
seq of c1 and len v6 < len v5 and v5(1) = v6(1) and v5(len v5) = v6(len v6)
and Seq f1 = c1 and Seq f2 = v6.

(23) Suppose v5 is oriented vertex seq of c. Then there exists a FinSubsequ-
ence f1 of c and there exists a FinSubsequence f2 of v5 and there exist s1,
v6 such that Seq f1 = s1 and Seq f2 = v6 and v6 is oriented vertex seq of
s1 and v5(1) = v6(1) and v5(len v5) = v6(len v6).

Let us consider G. Observe that every oriented chain of G which is empty is
also oriented.

Next we state three propositions:

(24) If p is an oriented path of G, then p¹ Seg n is an oriented path of G.

(25) s1 is an oriented path of G.

(26) Let c1 be a finite sequence. Then
(i) c1 is a Simple oriented chain of G iff c1 is an oriented simple chain of

G, and
(ii) if c1 is an oriented simple chain of G, then c1 is an oriented path of G.
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Summary. We define a graph on an abstract set, edges of which are pairs of
any two elements. For any finite sequence of a plane, we give a definition of nodic,
which means that edges by a finite sequence are crossed only at terminals. If the
first point and the last point of a finite sequence differs, simpleness as a chain and
nodic condition imply unfoldedness and s.n.c. condition. We generalize Goboard
Theorem, proved by us before, to a continuous case. We call this Fashoda Meet
Theorem, which was taken from Fashoda incident of 100 years ago.

MML Identifier: JGRAPH 1.

The articles [23], [21], [27], [8], [10], [2], [25], [5], [6], [17], [16], [20], [14], [18],
[19], [15], [1], [4], [22], [7], [13], [28], [24], [26], [11], [12], [9], and [3] provide the
terminology and notation for this paper.

1. A Graph by Cartesian Product

For simplicity, we adopt the following convention: G denotes a graph, v1

denotes a finite sequence of elements of the vertices of G, I1 denotes an oriented
chain of G, n, m, k, i, j denote natural numbers, and r, r1, r2 denote real
numbers.

Next we state four propositions:

(1) 0
r = 0.

(2)
√

r1
2 + r2

2 ¬ |r1|+ |r2|.
(3) |r1| ¬

√
r1

2 + r2
2 and |r2| ¬

√
r1

2 + r2
2.
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(4) Let given v1. Suppose I1 is Simple and v1 is oriented vertex seq of I1.
Let given n, m. If 1 ¬ n and n < m and m ¬ len v1 and v1(n) = v1(m),
then n = 1 and m = len v1.

Let X be a set. The functor PGraph X yields a multi graph structure and
is defined by:

(Def. 1) PGraph X = 〈X, [:X, X :], π1(X ×X), π2(X ×X)〉.
We now state two propositions:

(5) For every non empty set X holds PGraph X is a graph.

(6) For every non empty set X holds the vertices of PGraph X = X.

Let f be a finite sequence. The functor PairF f yielding a finite sequence is
defined by:

(Def. 2) len PairF f = len f −′ 1 and for every natural number i such that 1 ¬ i

and i < len f holds (PairF f)(i) = 〈〈f(i), f(i + 1)〉〉.
In the sequel X is a non empty set.
Let X be a non empty set. Then PGraph X is a graph.
The following propositions are true:

(7) Every finite sequence of elements of X is a finite sequence of elements of
the vertices of PGraph X.

(8) For every finite sequence f of elements of X holds PairF f is a finite
sequence of elements of the edges of PGraph X.

Let X be a non empty set and let f be a finite sequence of elements of X.
Then PairF f is a finite sequence of elements of the edges of PGraph X.

We now state two propositions:

(9) Let n be a natural number and f be a finite sequence of elements of X.
If 1 ¬ n and n ¬ len PairF f, then (PairF f)(n) ∈ the edges of PGraph X.

(10) For every finite sequence f of elements of X holds PairF f is an oriented
chain of PGraph X.

Let X be a non empty set and let f be a finite sequence of elements of X.
Then PairF f is an oriented chain of PGraph X.

The following proposition is true

(11) Let f be a finite sequence of elements of X and f1 be a finite sequence
of elements of the vertices of PGraph X. If len f ­ 1 and f = f1, then f1

is oriented vertex seq of PairF f.

2. Shortcuts of Finite Sequences in Plane

Let X be a non empty set and let f , g be finite sequences of elements of X.
We say that g is Shortcut of f if and only if the conditions (Def. 3) are satisfied.
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(Def. 3)(i) f(1) = g(1),
(ii) f(len f) = g(len g), and
(iii) there exists a FinSubsequence f2 of PairF f and there exists a FinSub-

sequence f3 of f and there exists an oriented simple chain s1 of PGraph X

and there exists a finite sequence g1 of elements of the vertices of PGraph X

such that Seq f2 = s1 and Seq f3 = g and g1 = g and g1 is oriented vertex
seq of s1.

We now state four propositions:

(12) For all finite sequences f , g of elements of X such that g is Shortcut of
f holds 1 ¬ len g and len g ¬ len f.

(13) Let f be a finite sequence of elements of X. Suppose len f ­ 1. Then
there exists a finite sequence g of elements of X such that g is Shortcut of
f .

(14) For all finite sequences f , g of elements of X such that g is Shortcut of
f holds rng PairF g ⊆ rng PairF f.

(15) Let f , g be finite sequences of elements of X. Suppose f(1) 6= f(len f)
and g is Shortcut of f . Then g is one-to-one and rng PairF g ⊆ rng PairF f

and g(1) = f(1) and g(len g) = f(len f).

Let us consider n and let I1 be a finite sequence of elements of En
T. We say

that I1 is nodic if and only if the condition (Def. 4) is satisfied.

(Def. 4) Let given i, j. Suppose L(I1, i)∩L(I1, j) 6= ∅. Then L(I1, i)∩L(I1, j) =
{I1(i)} but I1(i) = I1(j) or I1(i) = I1(j + 1) or L(I1, i) ∩ L(I1, j) =
{I1(i+1)} but I1(i+1) = I1(j) or I1(i+1) = I1(j+1) or L(I1, i) = L(I1, j).

One can prove the following propositions:

(16) For every finite sequence f of elements of E2
T such that f is s.n.c. holds

f is s.c.c..

(17) For every finite sequence f of elements of E2
T such that f is s.c.c. and

L(f, 1) ∩ L(f, len f −′ 1) = ∅ holds f is s.n.c..

(18) For every finite sequence f of elements of E2
T such that f is nodic and

PairF f is Simple holds f is s.c.c..

(19) For every finite sequence f of elements of E2
T such that f is nodic and

PairF f is Simple and f(1) 6= f(len f) holds f is s.n.c..

(20) For all points p1, p2, p3 of En
T such that there exists a set x such that

x 6= p2 and x ∈ L(p1, p2)∩L(p2, p3) holds p1 ∈ L(p2, p3) or p3 ∈ L(p1, p2).

(21) Let f be a finite sequence of elements of E2
T. Suppose f is s.n.c. and

L(f, 1) ∩ L(f, 1 + 1) ⊆ {π1+1f} and L(f, len f −′ 2) ∩ L(f, len f −′ 1) ⊆
{πlen f−′1f}. Then f is unfolded.

(22) For every finite sequence f of elements of X such that PairF f is Simple
and f(1) 6= f(len f) holds f is one-to-one and len f 6= 1.
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(23) For every finite sequence f of elements of X such that f is one-to-one
and len f > 1 holds PairF f is Simple and f(1) 6= f(len f).

(24) Let f be a finite sequence of elements of E2
T. If f is nodic and PairF f is

Simple and f(1) 6= f(len f), then f is unfolded.

(25) Let f , g be finite sequences of elements of E2
T and given i. Suppose g is

Shortcut of f and 1 ¬ i and i + 1 ¬ len g. Then there exists a natural
number k1 such that 1 ¬ k1 and k1 + 1 ¬ len f and πk1f = πig and
πk1+1f = πi+1g and f(k1) = g(i) and f(k1 + 1) = g(i + 1).

(26) For all finite sequences f , g of elements of E2
T such that g is Shortcut of

f holds rng g ⊆ rng f.

(27) For all finite sequences f , g of elements of E2
T such that g is Shortcut of

f holds L̃(g) ⊆ L̃(f).

(28) Let f , g be finite sequences of elements of E2
T. If f is special and g is

Shortcut of f , then g is special.

(29) Let f be a finite sequence of elements of E2
T. Suppose f is special and

2 ¬ len f and f(1) 6= f(len f). Then there exists a finite sequence g of
elements of E2

T such that 2 ¬ len g and g is special and one-to-one and
L̃(g) ⊆ L̃(f) and f(1) = g(1) and f(len f) = g(len g) and rng g ⊆ rng f.

(30) Let f1, f4 be finite sequences of elements of E2
T. Suppose that

(i) f1 is special,

(ii) f4 is special,

(iii) 2 ¬ len f1,

(iv) 2 ¬ len f4,

(v) f1(1) 6= f1(len f1),

(vi) f4(1) 6= f4(len f4),

(vii) X-coordinate(f1) lies between (X-coordinate(f1))(1) and

(X-coordinate(f1))(len f1),

(viii) X-coordinate(f4) lies between (X-coordinate(f1))(1) and

(X-coordinate(f1))(len f1),

(ix) Y-coordinate(f1) lies between (Y-coordinate(f4))(1) and

(Y-coordinate(f4))(len f4), and

(x) Y-coordinate(f4) lies between (Y-coordinate(f4))(1) and

(Y-coordinate(f4))(len f4).

Then L̃(f1) ∩ L̃(f4) 6= ∅.
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3. Norm of Points in En
T

The following proposition is true

(31) For all real numbers a, b, r1, r2 such that a ¬ r1 and r1 ¬ b and a ¬ r2

and r2 ¬ b holds |r1 − r2| ¬ b− a.

Let us consider n and let p be a point of En
T. The functor |p| yields a real

number and is defined by:

(Def. 5) For every element w of Rn such that p = w holds |p| = |w|.
In the sequel p, p1, p2 are points of En

T.
We now state a number of propositions:

(32) |0En
T
| = 0.

(33) If |p| = 0, then p = 0En
T
.

(34) |p| ­ 0.

(35) |−p| = |p|.
(36) |r · p| = |r| · |p|.
(37) |p1 + p2| ¬ |p1|+ |p2|.
(38) |p1 − p2| ¬ |p1|+ |p2|.
(39) |p1| − |p2| ¬ |p1 + p2|.
(40) |p1| − |p2| ¬ |p1 − p2|.
(41) |p1 − p2| = 0 iff p1 = p2.

(42) If p1 6= p2, then |p1 − p2| > 0.

(43) |p1 − p2| = |p2 − p1|.
(44) |p1 − p2| ¬ |p1 − p|+ |p− p2|.
(45) For all points x1, x2 of En such that x1 = p1 and x2 = p2 holds |p1−p2| =

ρ(x1, x2).

(46) For every point p of E2
T holds |p|2 = |p1|2 + |p2|2.

(47) For every point p of E2
T holds |p| =

√
|p1|2 + |p2|2.

(48) For every point p of E2
T holds |p| ¬ |p1|+ |p2|.

(49) For all points p1, p2 of E2
T holds |p1−p2| ¬ |(p1)1−(p2)1|+|(p1)2−(p2)2|.

(50) For every point p of E2
T holds |p1| ¬ |p| and |p2| ¬ |p|.

(51) For all points p1, p2 of E2
T holds |(p1)1 − (p2)1| ¬ |p1 − p2| and |(p1)2 −

(p2)2| ¬ |p1 − p2|.
(52) If p ∈ L(p1, p2), then there exists r such that 0 ¬ r and r ¬ 1 and

p = (1− r) · p1 + r · p2.

(53) If p ∈ L(p1, p2), then |p− p1| ¬ |p1 − p2| and |p− p2| ¬ |p1 − p2|.
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4. Extended Goboard Theorem and Fashoda Meet Theorem

In the sequel M denotes a metric space.
Next we state several propositions:

(54) For all subsets P , Q of Mtop such that P 6= ∅ and P is compact and
Q 6= ∅ and Q is compact holds distmin

min(P,Q) ­ 0.

(55) Let P , Q be subsets of Mtop. Suppose P 6= ∅ and P is compact and
Q 6= ∅ and Q is compact. Then P ∩Q = ∅ if and only if distmin

min(P, Q) > 0.

(56) Let f be a finite sequence of elements of E2
T and a, c, d be real numbers.

Suppose that
(i) 1 ¬ len f,

(ii) X-coordinate(f) lies between (X-coordinate(f))(1) and
(X-coordinate(f))(len f),

(iii) Y-coordinate(f) lies between c and d,
(iv) a > 0, and
(v) for every i such that 1 ¬ i and i + 1 ¬ len f holds |πif − πi+1f | < a.

Then there exists a finite sequence g of elements of E2
T such that

(vi) g is special,
(vii) g(1) = f(1),
(viii) g(len g) = f(len f),
(ix) len g ­ len f,

(x) X-coordinate(g) lies between (X-coordinate(f))(1) and
(X-coordinate(f))(len f),

(xi) Y-coordinate(g) lies between c and d,
(xii) for every j such that j ∈ dom g there exists k such that k ∈ dom f and
|πjg − πkf | < a, and

(xiii) for every j such that 1 ¬ j and j + 1 ¬ len g holds |πjg − πj+1g| < a.

(57) Let f be a finite sequence of elements of E2
T and a, c, d be real numbers.

Suppose that
(i) 1 ¬ len f,

(ii) Y-coordinate(f) lies between (Y-coordinate(f))(1) and
(Y-coordinate(f))(len f),

(iii) X-coordinate(f) lies between c and d,
(iv) a > 0, and
(v) for every i such that 1 ¬ i and i + 1 ¬ len f holds |πif − πi+1f | < a.

Then there exists a finite sequence g of elements of E2
T such that

(vi) g is special,
(vii) g(1) = f(1),
(viii) g(len g) = f(len f),
(ix) len g ­ len f,
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(x) Y-coordinate(g) lies between (Y-coordinate(f))(1) and
(Y-coordinate(f))(len f),

(xi) X-coordinate(g) lies between c and d,
(xii) for every j such that j ∈ dom g there exists k such that k ∈ dom f and
|πjg − πkf | < a, and

(xiii) for every j such that 1 ¬ j and j + 1 ¬ len g holds |πjg − πj+1g| < a.

(58) For every subset P of the carrier of E2
T and for all points p1, p2 of E2

T
such that P is an arc from p1 to p2 holds p1 6= p2.

(59) For every finite sequence f of elements of E2
T such that 1 ¬ len f

holds len X-coordinate(f) = len f and (X-coordinate(f))(1) = (π1f)1 and
(X-coordinate(f))(len f) = (πlen ff)1.

(60) For every finite sequence f of elements of E2
T such that 1 ¬ len f

holds len Y-coordinate(f) = len f and (Y-coordinate(f))(1) = (π1f)2 and
(Y-coordinate(f))(len f) = (πlen ff)2.

(61) For every finite sequence f of elements of E2
T and for every i such that i ∈

dom f holds (X-coordinate(f))(i) = (πif)1 and (Y-coordinate(f))(i) =
(πif)2.

(62) Let P , Q be non empty subsets of the carrier of E2
T and p1, p2, q1, q2 be

points of E2
T. Suppose that

(i) P is an arc from p1 to p2,
(ii) Q is an arc from q1 to q2,
(iii) for every point p of E2

T such that p ∈ P holds (p1)1 ¬ p1 and p1 ¬ (p2)1,

(iv) for every point p of E2
T such that p ∈ Q holds (p1)1 ¬ p1 and p1 ¬ (p2)1,

(v) for every point p of E2
T such that p ∈ P holds (q1)2 ¬ p2 and p2 ¬ (q2)2,

and
(vi) for every point p of E2

T such that p ∈ Q holds (q1)2 ¬ p2 and p2 ¬ (q2)2.

Then P ∩Q 6= ∅.
In the sequel X, Y are non empty topological spaces.
We now state three propositions:

(63) Let f be a map from X into Y , P be a non empty subset of the carrier
of Y , and f1 be a map from X into Y ¹P. If f = f1 and f is continuous,
then f1 is continuous.

(64) Let f be a map from X into Y and P be a non empty subset of the carrier
of Y . Suppose X is compact and Y is a T2 space and f is continuous and
one-to-one and P = rng f. Then there exists a map f1 from X into Y ¹P
such that f = f1 and f1 is a homeomorphism.

(65) Let f , g be maps from I into E2
T, a, b, c, d be real numbers, and O, I be

points of I. Suppose that
(i) O = 0,

(ii) I = 1,
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(iii) f is continuous and one-to-one,
(iv) g is continuous and one-to-one,
(v) f(O)1 = a,

(vi) f(I)1 = b,

(vii) g(O)2 = c,

(viii) g(I)2 = d, and
(ix) for every point r of I holds a ¬ f(r)1 and f(r)1 ¬ b and a ¬ g(r)1 and

g(r)1 ¬ b and c ¬ f(r)2 and f(r)2 ¬ d and c ¬ g(r)2 and g(r)2 ¬ d.

Then rng f ∩ rng g 6= ∅.
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Summary. In this article, an algebraic group on fixed-length bit integer
is constructed and its adaptation to IDEA cryptography is discussed. In the
first section, we present some selected theorems on integers. In the continuous
section, we construct an algebraic group on fixed-length integer. In the third
section, operations of IDEA Cryptograms are defined and some theorems on
these operations are proved. In the fourth section, we define sequences of IDEA
Cryptogram’s operations and discuss their nature. Finally, we make a model of
IDEA Cryptogram and prove that the ciphertext that is encrypted by IDEA
encryption algorithm can be decrypted by the IDEA decryption algorithm.

MML Identifier: IDEA 1.

The articles [11], [2], [4], [5], [6], [3], [10], [14], [8], [1], [7], [15], [12], [13], and [9]
provide the notation and terminology for this paper.

1. Some Selected Theorems on Integers

We adopt the following rules: i, j, k, n are natural numbers and x, y, z are
tuples of n and Boolean.

Next we state several propositions:

(1) For all i, j, k such that j is prime and i < j and k < j and i 6= 0 there
exists a natural number a such that a · i mod j = k and a < j.

(2) For all natural numbers n, k1, k2 such that n 6= 0 and k1modn = k2modn

and k1 ¬ k2 there exists a natural number t such that k2 − k1 = n · t.
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(3) For all natural numbers a, b holds a− b ¬ a.

(4) For all natural numbers b1, b2, c such that b2 ¬ c holds b2 − b1 ¬ c.

(5) For all natural numbers a, b, c such that 0 < a and 0 < b and a < c and
b < c and c is prime holds a · b mod c 6= 0.

(6) For every non empty natural number n holds the n-th power of 2 6= 1.

2. Basic Operators of IDEA Cryptograms

Let us consider n. The functor ZERO n yielding a tuple of n and Boolean is
defined by:

(Def. 1) ZERO n = n 7→ false.

Let us consider n and let x, y be tuples of n and Boolean. The functor x⊕ y

yields a tuple of n and Boolean and is defined by:

(Def. 2) For every i such that i ∈ Seg n holds πi(x⊕ y) = πix⊕ πiy.

The following propositions are true:

(7) For all n, x holds x⊕ x = ZERO n.

(8) For all n, x, y holds x⊕ y = y ⊕ x.

Let us consider n and let x, y be tuples of n and Boolean. Let us observe
that the functor x⊕ y is commutative.

One can prove the following propositions:

(9) For all n, x holds ZERO n⊕ x = x.

(10) For all n, x, y, z holds (x⊕ y)⊕ z = x⊕ (y ⊕ z).
Let us consider n and let i be a natural number. We say that i is expressible

by n if and only if:

(Def. 3) i < the n-th power of 2.

The following proposition is true

(11) For every n holds n -BinarySequence(0) = ZERO n.

Let us consider n and let i, j be natural numbers. The functor
ADD MOD(i, j, n) yields a natural number and is defined by:

(Def. 4) ADD MOD(i, j, n) = (i + j) mod (the n-th power of 2).

Let us consider n and let i be a natural number. Let us assume that i is
expressible by n. The functor NEG N(i, n) yielding a natural number is defined
by:

(Def. 5) NEG N(i, n) = (the n-th power of 2)−i.

Let us consider n and let i be a natural number. Let us assume that i is
expressible by n. The functor NEG MOD(i, n) yielding a natural number is
defined as follows:
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(Def. 6) NEG MOD(i, n) = NEG N(i, n) mod (the n-th power of 2).

We now state several propositions:

(12) For all n, i such that i is expressible by n holds
ADD MOD(i, NEG MOD(i, n), n) = 0.

(13) For all n, i, j holds ADD MOD(i, j, n) = ADD MOD(j, i, n).
(14) For all n, i such that i is expressible by n holds ADD MOD(0, i, n) = i.

(15) For all n, i, j, k holds ADD MOD(ADD MOD(i, j, n), k, n) =
ADD MOD(i, ADD MOD(j, k, n), n).

(16) For all n, i, j holds ADD MOD(i, j, n) is expressible by n.

(17) For all n, i such that i is expressible by n holds NEG MOD(i, n) is
expressible by n.

Let us consider n and let i be a natural number. The functor
ChangeVal 1(i, n) yields a natural number and is defined by:

(Def. 7) ChangeVal 1(i, n) =
{

the n-th power of 2, if i = 0,

i, otherwise.
We now state two propositions:

(18) For all n, i such that i is expressible by n holds ChangeVal 1(i, n) ¬ the
n-th power of 2 and ChangeVal 1(i, n) > 0.

(19) Let n, a1, a2 be natural numbers. Suppose a1 is expressible by n and a2

is expressible by n and ChangeVal 1(a1, n) = ChangeVal 1(a2, n). Then
a1 = a2.

Let us consider n and let i be a natural number. The functor
ChangeVal 2(i, n) yields a natural number and is defined as follows:

(Def. 8) ChangeVal 2(i, n) =
{

0, if i = the n-th power of 2,

i, otherwise.
We now state two propositions:

(20) For all n, i such that i is expressible by n holds ChangeVal 2(i, n) is
expressible by n.

(21) For all natural numbers n, a1, a2 such that a1 6= 0 and a2 6= 0 and
ChangeVal 2(a1, n) = ChangeVal 2(a2, n) holds a1 = a2.

Let us consider n and let i, j be natural numbers. The functor
MUL MOD(i, j, n) yields a natural number and is defined as follows:

(Def. 9) MUL MOD(i, j, n) = ChangeVal 2(ChangeVal 1(i, n)·
ChangeVal 1(j, n) mod ((the n-th power of 2)+1), n).

Let n be a non empty natural number and let i be a natural number. Let
us assume that i is expressible by n and (the n-th power of 2)+1 is prime. The
functor INV MOD(i, n) yielding a natural number is defined as follows:

(Def. 10) MUL MOD(i, INV MOD(i, n), n) = 1 and INV MOD(i, n) is expressible
by n.
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The following propositions are true:

(22) For all n, i, j holds MUL MOD(i, j, n) = MUL MOD(j, i, n).
(23) For all n, i such that i is expressible by n holds MUL MOD(1, i, n) = i.

(24) Let given n, i, j, k. Suppose that
(i) (the n-th power of 2)+1 is prime,
(ii) i is expressible by n,
(iii) j is expressible by n, and
(iv) k is expressible by n.

Then MUL MOD(MUL MOD(i, j, n), k, n) =
MUL MOD(i, MUL MOD(j, k, n), n).

(25) For all n, i, j holds MUL MOD(i, j, n) is expressible by n.

(26) If ChangeVal 2(i, n) = 1, then i = 1.

3. Operations of IDEA Cryptograms

Let us consider n and let m, k be finite sequences of elements of N. The
functor IDEAoperationA(m, k, n) yielding a finite sequence of elements of N is
defined by the conditions (Def. 11).

(Def. 11)(i) len IDEAoperationA(m, k, n) = len m, and
(ii) for every natural number i such that i ∈ dom m holds if i = 1, then

(IDEAoperationA(m, k, n))(i) = MUL MOD(m(1), k(1), n) and if i = 2,

then (IDEAoperationA(m, k, n))(i) = ADD MOD(m(2), k(2), n) and if
i = 3, then (IDEAoperationA(m, k, n))(i) = ADD MOD(m(3), k(3), n)
and if i = 4, then (IDEAoperationA(m, k, n))(i) = MUL MOD(m(4), k(4), n)
and if i 6= 1 and i 6= 2 and i 6= 3 and i 6= 4, then
(IDEAoperationA(m, k, n))(i) = m(i).

In the sequel m, k, k1, k2 denote finite sequences of elements of N.
Let n be a non empty natural number and let m, k be finite sequences of

elements of N. The functor IDEAoperationB(m, k, n) yielding a finite sequence
of elements of N is defined by the conditions (Def. 12).

(Def. 12)(i) len IDEAoperationB(m, k, n) = len m, and
(ii) for every natural number i such that i ∈ dom m holds if i = 1, then

(IDEAoperationB(m, k, n))(i) = Absval((n -BinarySequence(m(1))) ⊕
(n -BinarySequence(MUL MOD(ADD MOD(MUL MOD(Absval
((n -BinarySequence(m(1)))⊕ (n -BinarySequence(m(3)))), k(5), n),
Absval((n -BinarySequence(m(2)))⊕(n -BinarySequence(m(4)))), n), k(6),
n)))) and if i = 2, then
(IDEAoperationB(m, k, n))(i) = Absval((n -BinarySequence(m(2))) ⊕
(n -BinarySequence(ADD MOD(MUL MOD(Absval((n -BinarySequence
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(m(1)))⊕ (n -BinarySequence(m(3)))), k(5), n), MUL MOD(ADD MOD
(MUL MOD(Absval((n -BinarySequence
(m(1)))⊕(n -BinarySequence(m(3)))), k(5), n), Absval((n -BinarySequence(m
(2))) ⊕ (n -BinarySequence(m(4)))), n), k(6), n), n)))) and if i = 3, then
(IDEAoperationB(m, k, n))(i) = Absval((n -BinarySequence(m(3))) ⊕
(n -BinarySequence(MUL MOD(ADD MOD(MUL MOD(Absval
((n -BinarySequence(m(1)))⊕(n -BinarySequence(m(3)))), k(5), n), Absval
((n -BinarySequence(m(2)))⊕ (n -BinarySequence(m(4)))), n), k(6), n))))
and if i = 4, then (IDEAoperationB(m, k, n))(i) =
Absval((n -BinarySequence(m(4)))⊕ (n -BinarySequence
(ADD MOD(MUL MOD(Absval((n -BinarySequence(m(1)))⊕
(n -BinarySequence(m(3)))), k(5), n), MUL MOD(ADD MOD(MUL MOD
(Absval((n -BinarySequence(m(1)))⊕(n -BinarySequence(m(3)))), k(5), n),
Absval((n -BinarySequence(m(2)))⊕(n -BinarySequence(m(4)))), n), k(6),
n), n)))) and if i 6= 1 and i 6= 2 and i 6= 3 and i 6= 4, then
(IDEAoperationB(m, k, n))(i) = m(i).

Let m be a finite sequence of elements of N. The functor IDEAoperationC m

yields a finite sequence of elements of N and is defined as follows:

(Def. 13) len IDEAoperationC m = len m and for every natural number i such
that i ∈ dom m holds (IDEAoperationC m)(i) = (i = 2→ m(3), (i = 3→
m(2),m(i))).

The following propositions are true:

(27) Let given n, m, k. Suppose len m ­ 4. Then
(i) (IDEAoperationA(m, k, n))(1) is expressible by n,
(ii) (IDEAoperationA(m, k, n))(2) is expressible by n,
(iii) (IDEAoperationA(m, k, n))(3) is expressible by n, and
(iv) (IDEAoperationA(m, k, n))(4) is expressible by n.

(28) Let n be a non empty natural number and given m, k. Suppose len m ­ 4.

Then
(i) (IDEAoperationB(m, k, n))(1) is expressible by n,
(ii) (IDEAoperationB(m, k, n))(2) is expressible by n,
(iii) (IDEAoperationB(m, k, n))(3) is expressible by n, and
(iv) (IDEAoperationB(m, k, n))(4) is expressible by n.

(29) Let given m. Suppose that
(i) len m ­ 4,

(ii) m(1) is expressible by n,
(iii) m(2) is expressible by n,
(iv) m(3) is expressible by n, and
(v) m(4) is expressible by n.

Then
(vi) (IDEAoperationC m)(1) is expressible by n,
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(vii) (IDEAoperationC m)(2) is expressible by n,
(viii) (IDEAoperationC m)(3) is expressible by n, and
(ix) (IDEAoperationC m)(4) is expressible by n.

(30) Let n be a non empty natural number and given m, k1, k2. Suppose that
(i) (the n-th power of 2)+1 is prime,
(ii) len m ­ 4,

(iii) m(1) is expressible by n,
(iv) m(2) is expressible by n,
(v) m(3) is expressible by n,
(vi) m(4) is expressible by n,
(vii) k1(1) is expressible by n,
(viii) k1(2) is expressible by n,
(ix) k1(3) is expressible by n,
(x) k1(4) is expressible by n,
(xi) k2(1) = INV MOD(k1(1), n),
(xii) k2(2) = NEG MOD(k1(2), n),
(xiii) k2(3) = NEG MOD(k1(3), n), and
(xiv) k2(4) = INV MOD(k1(4), n).

Then IDEAoperationA(IDEAoperationA(m, k1, n), k2, n) = m.

(31) Let n be a non empty natural number and given m, k1, k2. Suppose that
(i) (the n-th power of 2)+1 is prime,
(ii) len m ­ 4,

(iii) m(1) is expressible by n,
(iv) m(2) is expressible by n,
(v) m(3) is expressible by n,
(vi) m(4) is expressible by n,
(vii) k1(1) is expressible by n,
(viii) k1(2) is expressible by n,
(ix) k1(3) is expressible by n,
(x) k1(4) is expressible by n,
(xi) k2(1) = INV MOD(k1(1), n),
(xii) k2(2) = NEG MOD(k1(3), n),
(xiii) k2(3) = NEG MOD(k1(2), n), and
(xiv) k2(4) = INV MOD(k1(4), n).

Then IDEAoperationA(IDEAoperationC IDEAoperationA
(IDEAoperationC m, k1, n), k2, n) = m.

(32) Let n be a non empty natural number and given m, k1, k2. Suppose that
(i) (the n-th power of 2)+1 is prime,
(ii) len m ­ 4,

(iii) m(1) is expressible by n,
(iv) m(2) is expressible by n,
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(v) m(3) is expressible by n,
(vi) m(4) is expressible by n,
(vii) k1(5) is expressible by n,
(viii) k1(6) is expressible by n,
(ix) k2(5) = k1(5), and
(x) k2(6) = k1(6).

Then IDEAoperationB(IDEAoperationB(m, k1, n), k2, n) = m.

(33) For every m such that len m ­ 4 holds IDEAoperationC IDEAoperationC m =
m.

4. Sequences of IDEA Cryptogram’s Operations

The set MESSAGES is defined by:

(Def. 14) MESSAGES = N∗.
Let us mention that MESSAGES is non empty.
Let us mention that every element of MESSAGES is function-like and

relation-like.
Let us note that every element of MESSAGES is finite sequence-like.
Let n be a non empty natural number and let us consider k. The functor

IDEA P(k, n) yielding a function from MESSAGES into MESSAGES is defined
as follows:

(Def. 15) For every m holds (IDEA P(k, n))(m) = IDEAoperationA
(IDEAoperationC IDEAoperationB(m, k, n), k, n).

Let n be a non empty natural number and let us consider k. The func-
tor IDEA Q(k, n) yields a function from MESSAGES into MESSAGES and is
defined as follows:

(Def. 16) For every m holds (IDEA Q(k, n))(m) = IDEAoperationB
(IDEAoperationA(IDEAoperationC m, k, n), k, n).

Let r, l1 be natural numbers, let n be a non empty natural number, and let
K1 be a matrix over N of dimension l1 × 6. The functor IDEA P F(K1, n, r)
yielding a finite sequence is defined as follows:

(Def. 17) len IDEA P F(K1, n, r) = r and for every i such that i ∈
dom IDEA P F(K1, n, r) holds (IDEA P F(K1, n, r))(i) =
IDEA P(Line(K1, i), n).

Let r, l1 be natural numbers, let n be a non empty natural number,
and let K1 be a matrix over N of dimension l1 × 6. One can verify that
IDEA P F(K1, n, r) is function yielding.
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Let r, l1 be natural numbers, let n be a non empty natural number, and let
K1 be a matrix over N of dimension l1 × 6. The functor IDEA Q F(K1, n, r)
yielding a finite sequence is defined as follows:

(Def. 18) len IDEA Q F(K1, n, r) = r and for every i such that i ∈
dom IDEA Q F(K1, n, r) holds (IDEA Q F(K1, n, r))(i) =
IDEA Q(Line(K1, (r −′ i) + 1), n).

Let r, l1 be natural numbers, let n be a non empty natural number, and let
K1 be a matrix over N of dimension l1 × 6. Observe that IDEA Q F(K1, n, r)
is function yielding.

Let us consider k, n. The functor IDEA PS(k, n) yields a function from
MESSAGES into MESSAGES and is defined as follows:

(Def. 19) For every m holds (IDEA PS(k, n))(m) = IDEAoperationA(m, k, n).
Let us consider k, n. The functor IDEA QS(k, n) yields a function from

MESSAGES into MESSAGES and is defined as follows:

(Def. 20) For every m holds (IDEA QS(k, n))(m) = IDEAoperationA(m, k, n).
Let n be a non empty natural number and let us consider k. The func-

tor IDEA PE(k, n) yielding a function from MESSAGES into MESSAGES is
defined by:

(Def. 21) For every m holds (IDEA PE(k, n))(m) = IDEAoperationA
(IDEAoperationB(m, k, n), k, n).

Let n be a non empty natural number and let us consider k. The func-
tor IDEA QE(k, n) yielding a function from MESSAGES into MESSAGES is
defined by:

(Def. 22) For every m holds (IDEA QE(k, n))(m) = IDEAoperationB
(IDEAoperationA(m, k, n), k, n).

We now state a number of propositions:

(34) Let n be a non empty natural number and given m, k1, k2. Suppose that
(i) (the n-th power of 2)+1 is prime,
(ii) len m ­ 4,

(iii) m(1) is expressible by n,
(iv) m(2) is expressible by n,
(v) m(3) is expressible by n,
(vi) m(4) is expressible by n,
(vii) k1(1) is expressible by n,
(viii) k1(2) is expressible by n,
(ix) k1(3) is expressible by n,
(x) k1(4) is expressible by n,
(xi) k1(5) is expressible by n,
(xii) k1(6) is expressible by n,
(xiii) k2(1) = INV MOD(k1(1), n),
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(xiv) k2(2) = NEG MOD(k1(3), n),
(xv) k2(3) = NEG MOD(k1(2), n),
(xvi) k2(4) = INV MOD(k1(4), n),
(xvii) k2(5) = k1(5), and
(xviii) k2(6) = k1(6).

Then (IDEA Q(k2, n) · IDEA P(k1, n))(m) = m.

(35) Let n be a non empty natural number and given m, k1, k2. Suppose that
(i) (the n-th power of 2)+1 is prime,
(ii) len m ­ 4,

(iii) m(1) is expressible by n,
(iv) m(2) is expressible by n,
(v) m(3) is expressible by n,
(vi) m(4) is expressible by n,
(vii) k1(1) is expressible by n,
(viii) k1(2) is expressible by n,
(ix) k1(3) is expressible by n,
(x) k1(4) is expressible by n,
(xi) k2(1) = INV MOD(k1(1), n),
(xii) k2(2) = NEG MOD(k1(2), n),
(xiii) k2(3) = NEG MOD(k1(3), n), and
(xiv) k2(4) = INV MOD(k1(4), n).

Then (IDEA QS(k2, n) · IDEA PS(k1, n))(m) = m.

(36) Let n be a non empty natural number and given m, k1, k2. Suppose that
(i) (the n-th power of 2)+1 is prime,
(ii) len m ­ 4,

(iii) m(1) is expressible by n,
(iv) m(2) is expressible by n,
(v) m(3) is expressible by n,
(vi) m(4) is expressible by n,
(vii) k1(1) is expressible by n,
(viii) k1(2) is expressible by n,
(ix) k1(3) is expressible by n,
(x) k1(4) is expressible by n,
(xi) k1(5) is expressible by n,
(xii) k1(6) is expressible by n,
(xiii) k2(1) = INV MOD(k1(1), n),
(xiv) k2(2) = NEG MOD(k1(2), n),
(xv) k2(3) = NEG MOD(k1(3), n),
(xvi) k2(4) = INV MOD(k1(4), n),
(xvii) k2(5) = k1(5), and
(xviii) k2(6) = k1(6).
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Then (IDEA QE(k2, n) · IDEA PE(k1, n))(m) = m.

(37) Let n be a non empty natural number, l1 be a natural number, K1 be
a matrix over N of dimension l1 × 6, and k be a natural number. Then
IDEA P F(K1, n, k + 1) = (IDEA P F(K1, n, k)) a 〈IDEA P(Line(K1, k +
1), n)〉.

(38) Let n be a non empty natural number, l1 be a natural number, K1

be a matrix over N of dimension l1 × 6, and k be a natural num-
ber. Then IDEA Q F(K1, n, k + 1) = 〈IDEA Q(Line(K1, k + 1), n)〉 a

IDEA Q F(K1, n, k).

(39) Let n be a non empty natural number, l1 be a natural number, K1 be
a matrix over N of dimension l1 × 6, and k be a natural number. Then
IDEA P F(K1, n, k) is a composable finite sequence.

(40) Let n be a non empty natural number, l1 be a natural number, K1 be
a matrix over N of dimension l1 × 6, and k be a natural number. Then
IDEA Q F(K1, n, k) is a composable finite sequence.

(41) Let n be a non empty natural number, l1 be a natural number, K1 be a
matrix over N of dimension l1 × 6, and k be a natural number. If k 6= 0,

then IDEA P F(K1, n, k) is a composable sequence from MESSAGES into
MESSAGES.

(42) Let n be a non empty natural number, l1 be a natural number, K1 be a
matrix over N of dimension l1 × 6, and k be a natural number. If k 6= 0,

then IDEA Q F(K1, n, k) is a composable sequence from MESSAGES into
MESSAGES.

(43) Let n be a non empty natural number, M be a finite sequence of elements
of N, and given m, k. Suppose M = (IDEA P(k, n))(m) and len m ­ 4.

Then
(i) len M ­ 4,

(ii) M(1) is expressible by n,
(iii) M(2) is expressible by n,
(iv) M(3) is expressible by n, and
(v) M(4) is expressible by n.

(44) Let n be a non empty natural number, l1 be a natural number, K1

be a matrix over N of dimension l1 × 6, and r be a natural num-
ber. Then rng composeMESSAGES IDEA P F(K1, n, r) ⊆ MESSAGES and
dom composeMESSAGES IDEA P F(K1, n, r) = MESSAGES .

(45) Let n be a non empty natural number, l1 be a natural number, K1

be a matrix over N of dimension l1 × 6, and r be a natural num-
ber. Then rng composeMESSAGES IDEA Q F(K1, n, r) ⊆ MESSAGES and
dom composeMESSAGES IDEA Q F(K1, n, r) = MESSAGES .

(46) Let n be a non empty natural number, m be a finite sequence of elements
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of N, l1 be a natural number, K1 be a matrix over N of dimension l1 ×
6, r be a natural number, and M be a finite sequence of elements of N.
If M = (composeMESSAGES IDEA P F(K1, n, r))(m) and len m ­ 4, then
len M ­ 4.

(47) Let n be a non empty natural number, l1 be a natural number, K1 be a
matrix over N of dimension l1 × 6, r be a natural number, M be a finite
sequence of elements of N, and given m. Suppose that

(i) M = (composeMESSAGES IDEA P F(K1, n, r))(m),
(ii) len m ­ 4,

(iii) m(1) is expressible by n,
(iv) m(2) is expressible by n,
(v) m(3) is expressible by n, and
(vi) m(4) is expressible by n.

Then
(vii) len M ­ 4,

(viii) M(1) is expressible by n,
(ix) M(2) is expressible by n,
(x) M(3) is expressible by n, and
(xi) M(4) is expressible by n.

5. Modeling of IDEA Cryptogram

One can prove the following propositions:

(48) Let n be a non empty natural number, l1 be a natural number, K2, K3

be matrices over N of dimension l1 × 6, r be a natural number, and given
m. Suppose that

(i) l1 ­ r,

(ii) (the n-th power of 2)+1 is prime,
(iii) len m ­ 4,

(iv) m(1) is expressible by n,
(v) m(2) is expressible by n,
(vi) m(3) is expressible by n,
(vii) m(4) is expressible by n, and
(viii) for every natural number i such that i ¬ r holds (K2)i,1 is expressible

by n and (K2)i,2 is expressible by n and (K2)i,3 is expressible by n and
(K2)i,4 is expressible by n and (K2)i,5 is expressible by n and (K2)i,6 is
expressible by n and (K3)i,1 is expressible by n and (K3)i,2 is expressible
by n and (K3)i,3 is expressible by n and (K3)i,4 is expressible by n and
(K3)i,5 is expressible by n and (K3)i,6 is expressible by n and (K3)i,1 =
INV MOD((K2)i,1, n) and (K3)i,2 = NEG MOD((K2)i,3, n) and (K3)i,3 =
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NEG MOD((K2)i,2, n) and (K3)i,4 = INV MOD((K2)i,4, n) and (K2)i,5 =
(K3)i,5 and (K2)i,6 = (K3)i,6.

Then (composeMESSAGES((IDEA P F(K2, n, r))aIDEA Q F(K3, n, r)))(m) =
m.

(49) Let n be a non empty natural number, l1 be a natural number, K2, K3

be matrices over N of dimension l1 × 6, r be a natural number, k3, k4, k5,
k6 be finite sequences of elements of N, and given m. Suppose that

(i) l1 ­ r,

(ii) (the n-th power of 2)+1 is prime,
(iii) len m ­ 4,

(iv) m(1) is expressible by n,
(v) m(2) is expressible by n,
(vi) m(3) is expressible by n,
(vii) m(4) is expressible by n,
(viii) for every natural number i such that i ¬ r holds (K2)i,1 is expressible

by n and (K2)i,2 is expressible by n and (K2)i,3 is expressible by n and
(K2)i,4 is expressible by n and (K2)i,5 is expressible by n and (K2)i,6 is
expressible by n and (K3)i,1 is expressible by n and (K3)i,2 is expressible
by n and (K3)i,3 is expressible by n and (K3)i,4 is expressible by n and
(K3)i,5 is expressible by n and (K3)i,6 is expressible by n and (K3)i,1 =
INV MOD((K2)i,1, n) and (K3)i,2 = NEG MOD((K2)i,3, n) and (K3)i,3 =
NEG MOD((K2)i,2, n) and (K3)i,4 = INV MOD((K2)i,4, n) and (K2)i,5 =
(K3)i,5 and (K2)i,6 = (K3)i,6,

(ix) k3(1) is expressible by n,
(x) k3(2) is expressible by n,
(xi) k3(3) is expressible by n,
(xii) k3(4) is expressible by n,
(xiii) k4(1) = INV MOD(k3(1), n),
(xiv) k4(2) = NEG MOD(k3(2), n),
(xv) k4(3) = NEG MOD(k3(3), n),
(xvi) k4(4) = INV MOD(k3(4), n),
(xvii) k5(1) is expressible by n,
(xviii) k5(2) is expressible by n,
(xix) k5(3) is expressible by n,
(xx) k5(4) is expressible by n,
(xxi) k5(5) is expressible by n,
(xxii) k5(6) is expressible by n,
(xxiii) k6(1) = INV MOD(k5(1), n),
(xxiv) k6(2) = NEG MOD(k5(2), n),
(xxv) k6(3) = NEG MOD(k5(3), n),
(xxvi) k6(4) = INV MOD(k5(4), n),
(xxvii) k6(5) = k5(5), and
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(xxviii) k6(6) = k5(6).
Then (IDEA QS(k4, n) · (composeMESSAGES IDEA Q F(K3, n, r)·
(IDEA QE(k6, n) · (IDEA PE(k5, n) · (composeMESSAGES IDEA P F
(K2, n, r) · IDEA PS(k3, n))))))(m) = m.
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[12], and [4].

1. Preliminaries

For simplicity, we follow the rules: S denotes a 1-sorted structure, R denotes
a non empty 1-sorted structure, X denotes a subset of the carrier of R, T denotes
a non empty topological structure, and x denotes a set.

Let X, Y be sets. One can verify that every function from X into Y which
is bijective is also one-to-one and onto and every function from X into Y which
is one-to-one and onto is also bijective.

Let X be a set. Observe that there exists a function from X into X which
is one-to-one and onto.

Next we state the proposition

(1) rng(idS) = ΩS .

Let R be a non empty 1-sorted structure. Note that (idR)−1 is one-to-one.
We now state two propositions:

(2) (idR)−1 = idR.

(3) (idR)−1(X) = X.

Let S be a 1-sorted structure. One can check that there exists a map from
S into S which is one-to-one and onto.
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2. On the Groups

We use the following convention: H denotes a non empty groupoid, P , Q, P1,
Q1 denote subsets of the carrier of H, and h denotes an element of the carrier
of H.

The following propositions are true:

(4) If P ⊆ P1 and Q ⊆ Q1, then P ·Q ⊆ P1 ·Q1.

(5) If P ⊆ Q, then P · h ⊆ Q · h.

(6) If P ⊆ Q, then h · P ⊆ h ·Q.

In the sequel G denotes a group, A, B denote subsets of the carrier of G,
and a denotes an element of the carrier of G.

One can prove the following propositions:

(7) a ∈ A−1 iff a−1 ∈ A.

(8) (A−1)−1 = A.

(9) A ⊆ B iff A−1 ⊆ B−1.

(10) ·−1
G

◦
A = A−1.

(11) ·−1
G
−1(A) = A−1.

(12) ·−1
G is one-to-one.

(13) rng ·−1
G = the carrier of G.

Let G be a group. Observe that ·−1
G is one-to-one and onto.

Next we state two propositions:

(14) ·−1
G
−1 = ·−1

G .

(15) (The multiplication of H)◦[:P, Q :] = P ·Q.

Let G be a non empty groupoid and let a be an element of the carrier of G.
The functor a ·¤ yielding a map from G into G is defined by:

(Def. 1) For every element x of the carrier of G holds (a ·¤)(x) = a · x.

The functor ¤ · a yields a map from G into G and is defined as follows:

(Def. 2) For every element x of the carrier of G holds (¤ · a)(x) = x · a.

Let G be a group and let a be an element of the carrier of G. One can verify
that a ·¤ is one-to-one and onto and ¤ · a is one-to-one and onto.

Next we state four propositions:

(16) (h ·¤)◦P = h · P.

(17) (¤ · h)◦P = P · h.

(18) (a ·¤)−1 = a−1 ·¤.

(19) (¤ · a)−1 = ¤ · a−1.
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3. On the Topological Spaces

Let T be a non empty topological structure. Observe that (idT )−1 is conti-
nuous.

Next we state the proposition

(20) idT is a homeomorphism.

Let T be a non empty topological space and let p be a point of T . Observe
that every neighbourhood of p is non empty.

Next we state the proposition

(21) For every non empty topological space T and for every point p of T holds
ΩT is a neighbourhood of p.

Let T be a non empty topological space and let p be a point of T . One can
check that there exists a neighbourhood of p which is non empty and open.

One can prove the following propositions:

(22) Let S, T be non empty topological spaces and f be a map from S into
T . Suppose f is open. Let p be a point of S and P be a neighbourhood of
p. Then there exists an open neighbourhood R of f(p) such that R ⊆ f◦P.

(23) Let S, T be non empty topological spaces and f be a map from S into
T . Suppose that for every point p of S and for every open neighbourhood
P of p there exists a neighbourhood R of f(p) such that R ⊆ f◦P. Then
f is open.

(24) Let S, T be non empty topological structures and f be a map from S

into T . Then f is a homeomorphism if and only if the following conditions
are satisfied:

(i) dom f = ΩS ,

(ii) rng f = ΩT ,

(iii) f is one-to-one, and
(iv) for every subset P of T holds P is closed iff f−1(P ) is closed.

(25) Let S, T be non empty topological structures and f be a map from S

into T . Then f is a homeomorphism if and only if the following conditions
are satisfied:

(i) dom f = ΩS ,

(ii) rng f = ΩT ,

(iii) f is one-to-one, and
(iv) for every subset P of S holds P is open iff f◦P is open.

(26) Let S, T be non empty topological structures and f be a map from S

into T . Then f is a homeomorphism if and only if the following conditions
are satisfied:

(i) dom f = ΩS ,
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(ii) rng f = ΩT ,

(iii) f is one-to-one, and
(iv) for every subset P of T holds P is open iff f−1(P ) is open.

(27) Let S be a topological space, T be a non empty topological space, and
f be a map from S into T . Then f is continuous if and only if for every
subset P of the carrier of T holds f−1(Int P ) ⊆ Int(f−1(P )).

Let T be a non empty topological space. One can verify that there exists a
subset of T which is non empty and dense.

The following two propositions are true:

(28) Let S, T be non empty topological spaces, f be a map from S into T ,
and A be a dense subset of S. If f is a homeomorphism, then f◦A is dense.

(29) Let S, T be non empty topological spaces, f be a map from S into T ,
and A be a dense subset of T . If f is a homeomorphism, then f−1(A) is
dense.

Let S, T be non empty topological structures. Observe that every map from
S into T which is homeomorphism is also onto, one-to-one, continuous, and
open.

Let T be a non empty topological structure. Observe that there exists a map
from T into T which is homeomorphism.

Let T be a non empty topological structure and let f be homeomorphism
map from T into T . Note that f−1 is homeomorphism.

4. The Group of Homoemorphisms

Let T be a non empty topological structure. A map from T into T is said to
be a homeomorphism of T if:

(Def. 3) It is a homeomorphism.

Let T be a non empty topological structure. Then idT is a homeomorphism
of T .

Let T be a non empty topological structure. One can check that every ho-
meomorphism of T is homeomorphism.

We now state two propositions:

(30) For every homeomorphism f of T holds f−1 is a homeomorphism of T .

(31) For all homeomorphisms f , g of T holds f · g is a homeomorphism of T .

Let T be a non empty topological structure. The group of homeomorphisms
of T is a strict groupoid and is defined by the conditions (Def. 4).

(Def. 4)(i) x ∈ the carrier of the group of homeomorphisms of T iff x is a
homeomorphism of T , and
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(ii) for all homeomorphisms f , g of T holds (the multiplication of the group
of homeomorphisms of T )(f, g) = g · f.

Let T be a non empty topological structure. Note that the group of home-
omorphisms of T is non empty.

We now state the proposition

(32) Let f , g be homeomorphisms of T and a, b be elements of the group of
homeomorphisms of T . If f = a and g = b, then a · b = g · f.

Let T be a non empty topological structure. Note that the group of home-
omorphisms of T is group-like and associative.

The following two propositions are true:

(33) idT = 1the group of homeomorphisms of T .

(34) Let f be a homeomorphism of T and a be an element of the group of
homeomorphisms of T . If f = a, then a−1 = f−1.

Let T be a non empty topological structure. We say that T is homogeneous
if and only if:

(Def. 5) For all points p, q of T there exists a homeomorphism f of T such that
f(p) = q.

Let us note that every non empty topological structure which is trivial is
also homogeneous.

Let us note that there exists a topological space which is strict, trivial, and
non empty.

One can prove the following two propositions:

(35) Let T be a homogeneous non empty topological space. If there exists a
point p of T such that {p} is closed, then T is a T1 space.

(36) Let T be a homogeneous non empty topological space. Given a point p

of T such that let A be a subset of T . Suppose A is open and p ∈ A. Then
there exists a subset B of T such that p ∈ B and B is open and B ⊆ A.

Then T is a T3 space.

5. On the Topological Groups

We consider topological group structures as extensions of groupoid and to-
pological structure as systems
〈 a carrier, a multiplication, a topology 〉,

where the carrier is a set, the multiplication is a binary operation on the carrier,
and the topology is a family of subsets of the carrier.

Let A be a non empty set, let R be a binary operation on A, and let T be a
family of subsets of A. Note that 〈A,R, T 〉 is non empty.
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Let x be a set, let R be a binary operation on {x}, and let T be a family of
subsets of {x}. One can verify that 〈{x}, R, T 〉 is trivial.

Let us observe that every non empty groupoid which is trivial is also group-
like, associative, and commutative.

Let a be a set. Observe that {a}top is trivial.
Let us note that there exists a topological group structure which is strict

and non empty.
One can verify that there exists a non empty topological group structure

which is strict, topological space-like, and trivial.
Let G be a group-like associative non empty topological group structure.

Then ·−1
G is a map from G into G.

Let G be a group-like associative non empty topological group structure. We
say that G is inverse-continuous if and only if:

(Def. 6) ·−1
G is continuous.

Let G be a topological space-like topological group structure. We say that
G is continuous if and only if:

(Def. 7) For every map f from [:G, G :] into G such that f = the multiplication
of G holds f is continuous.

One can verify that there exists a topological space-like group-like associative
non empty topological group structure which is strict, commutative, trivial,
inverse-continuous, and continuous.

A semi topological group is a topological space-like group-like associative
non empty topological group structure.

A topological group is an inverse-continuous continuous semi topological
group.

Next we state several propositions:

(37) Let T be a continuous non empty topological space-like topological group
structure, a, b be elements of the carrier of T , and W be a neighbourhood
of a · b. Then there exists an open neighbourhood A of a and there exists
an open neighbourhood B of b such that A ·B ⊆W.

(38) Let T be a topological space-like non empty topological group structure.
Suppose that for all elements a, b of the carrier of T and for every neigh-
bourhood W of a · b there exists a neighbourhood A of a and there exists
a neighbourhood B of b such that A ·B ⊆W. Then T is continuous.

(39) Let T be an inverse-continuous semi topological group, a be an element
of the carrier of T , and W be a neighbourhood of a−1. Then there exists
an open neighbourhood A of a such that A−1 ⊆W.

(40) Let T be a semi topological group. Suppose that for every element a

of the carrier of T and for every neighbourhood W of a−1 there exists a
neighbourhood A of a such that A−1 ⊆W. Then T is inverse-continuous.
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(41) Let T be a topological group, a, b be elements of the carrier of T , and W

be a neighbourhood of a ·b−1. Then there exists an open neighbourhood A

of a and there exists an open neighbourhood B of b such that A·B−1 ⊆W.

(42) Let T be a semi topological group. Suppose that for all elements a, b of
the carrier of T and for every neighbourhood W of a · b−1 there exists a
neighbourhood A of a and there exists a neighbourhood B of b such that
A ·B−1 ⊆W. Then T is a topological group.

Let G be a continuous non empty topological space-like topological group
structure and let a be an element of the carrier of G. One can check that a ·¤
is continuous and ¤ · a is continuous.

Next we state two propositions:

(43) Let G be a continuous semi topological group and a be an element of
the carrier of G. Then a ·¤ is a homeomorphism of G.

(44) Let G be a continuous semi topological group and a be an element of
the carrier of G. Then ¤ · a is a homeomorphism of G.

The following proposition is true

(45) For every inverse-continuous semi topological group G holds ·−1
G is a

homeomorphism of G.

One can verify that every semi topological group which is continuous is also
homogeneous.

The following two propositions are true:

(46) Let G be a continuous semi topological group, F be a closed subset of
G, and a be an element of the carrier of G. Then F · a is closed.

(47) Let G be a continuous semi topological group, F be a closed subset of
G, and a be an element of the carrier of G. Then a · F is closed.

We now state the proposition

(48) For every inverse-continuous semi topological group G and for every
closed subset F of G holds F−1 is closed.

The following two propositions are true:

(49) Let G be a continuous semi topological group, O be an open subset of
G, and a be an element of the carrier of G. Then O · a is open.

(50) Let G be a continuous semi topological group, O be an open subset of
G, and a be an element of the carrier of G. Then a ·O is open.

We now state the proposition

(51) For every inverse-continuous semi topological group G and for every open
subset O of G holds O−1 is open.

The following two propositions are true:

(52) For every continuous semi topological group G and for all subsets A, O

of G such that O is open holds O ·A is open.
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(53) For every continuous semi topological group G and for all subsets A, O

of G such that O is open holds A ·O is open.

One can prove the following propositions:

(54) Let G be an inverse-continuous semi topological group, a be a point of
G, and A be a neighbourhood of a. Then A−1 is a neighbourhood of a−1.

(55) Let G be a topological group, a be a point of G, and A be a neighbo-
urhood of a · a−1. Then there exists an open neighbourhood B of a such
that B ·B−1 ⊆ A.

(56) For every inverse-continuous semi topological group G and for every
dense subset A of G holds A−1 is dense.

We now state two propositions:

(57) Let G be a continuous semi topological group, A be a dense subset of G,
and a be a point of G. Then a ·A is dense.

(58) Let G be a continuous semi topological group, A be a dense subset of G,
and a be a point of G. Then A · a is dense.

We now state two propositions:

(59) Let G be a topological group, B be a basis of 1G, and M be a dense
subset of G. Then {V · x; V ranges over subsets of the carrier of G, x

ranges over points of G: V ∈ B ∧ x ∈M} is a basis of G.

(60) Every topological group is a T3 space.
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The articles [16], [5], [1], [6], [7], [8], [10], [14], [4], [9], [13], [2], [17], [15], [12],
[11], and [3] provide the notation and terminology for this paper.

1. Preliminaries

In this paper a denotes a set and i denotes a natural number.
We now state several propositions:

(1) (¤ 7−→ a)(0) = ε.

(2) (¤ 7−→ a)(1) = 〈a〉.
(3) (¤ 7−→ a)(2) = 〈a, a〉.
(4) (¤ 7−→ a)(3) = 〈a, a, a〉.
(5) For every finite sequence f of elements of {0} holds f = i 7→ 0 iff

len f = i.

(6) For every finite sequence f such that f = (¤ 7−→ 0)(i) holds len f = i.

227
c© 1998 University of Białystok

ISSN 1426–2630



228 adam naumowicz and agnieszka julia marasik

2. Some Properties of Subalgebras of Universal and Many Sorted
Algebras

We now state the proposition

(7) For all universal algebras U1, U2 such that U1 is a subalgebra of U2 holds
MSSign(U1) = MSSign(U2).

Let U0 be a universal algebra. One can verify that the characteristic of U0

is function yielding.
One can prove the following propositions:

(8) Let U1, U2 be universal algebras. Suppose U1 is a subalgebra of U2.
Let B be a subset of MSAlg(U2). Suppose B = the sorts of MSAlg(U1).
Let o be an operation symbol of MSSign(U2) and a be an operation
symbol of MSSign(U1). If a = o, then Den(a, MSAlg(U1)) = Den(o,
MSAlg(U2))¹ Args(a, MSAlg(U1)).

(9) For all universal algebras U1, U2 such that U1 is a subalgebra of U2 holds
the sorts of MSAlg(U1) are a subset of MSAlg(U2).

(10) Let U1, U2 be universal algebras. Suppose U1 is a subalgebra of U2. Let
B be a subset of MSAlg(U2). If B = the sorts of MSAlg(U1), then B is
operations closed.

(11) Let U1, U2 be universal algebras. Suppose U1 is a subalgebra of U2. Let
B be a subset of MSAlg(U2). If B = the sorts of MSAlg(U1), then the
characteristics of MSAlg(U1) = Opers(MSAlg(U2), B).

(12) For all universal algebras U1, U2 such that U1 is a subalgebra of U2 holds
MSAlg(U1) is a subalgebra of MSAlg(U2).

(13) Let U1, U2 be universal algebras. Suppose MSAlg(U1) is a subalgebra of
MSAlg(U2). Then the carrier of U1 is a subset of the carrier of U2.

(14) Let U1, U2 be universal algebras. Suppose MSAlg(U1) is a subalgebra of
MSAlg(U2). Let B be a non empty subset of the carrier of U2. If B = the
carrier of U1, then B is operations closed.

(15) Let U1, U2 be universal algebras. Suppose MSAlg(U1) is a subalgebra of
MSAlg(U2). Let B be a non empty subset of the carrier of U2. If B = the
carrier of U1, then the characteristic of U1 = Opers(U2, B).

(16) For all universal algebras U1, U2 such that MSAlg(U1) is a subalgebra
of MSAlg(U2) holds U1 is a subalgebra of U2.

In the sequel M1 is a segmental trivial non void non empty many sorted
signature and A is a non-empty algebra over M1.

Next we state a number of propositions:

(17) For every non-empty subalgebra B of A holds the carrier of Alg1(B) is
a subset of the carrier of Alg1(A).
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(18) Let B be a non-empty subalgebra of A and S be a non empty subset of
the carrier of Alg1(A). If S = the carrier of Alg1(B), then S is operations
closed.

(19) Let B be a non-empty subalgebra of A and S be a non empty subset of
the carrier of Alg1(A). If S = the carrier of Alg1(B), then the characteri-
stic of Alg1(B) = Opers(Alg1(A), S).

(20) For every non-empty subalgebra B of A holds Alg1(B) is a subalgebra
of Alg1(A).

(21) Let S be a non empty non void many sorted signature and A, B be
algebras over S. Then A is a subalgebra of B if and only if A is a subalgebra
of the algebra of B.

(22) For all universal algebras A, B holds signature A = signature B iff
MSSign(A) = MSSign(B).

(23) Let A be a non-empty algebra over M1. Suppose the carrier of M1 = {0}.
Then MSSign(Alg1(A)) = the many sorted signature of M1.

(24) Let A, B be non-empty algebras over M1. Suppose the carrier of M1 =
{0} and Alg1(A) = Alg1(B). Then the algebra of A = the algebra of B.

(25) Let A be a non-empty algebra over M1. If the carrier of M1 = {0}, then
the sorts of A = the sorts of MSAlg(Alg1(A)).

(26) For every non-empty algebra A over M1 such that the carrier of M1 = {0}
holds MSAlg(Alg1(A)) = the algebra of A.

(27) Let A be a universal algebra and B be a strict non-empty subalgebra of
MSAlg(A). If the carrier of MSSign(A) = {0}, then Alg1(B) is a subalge-
bra of A.

3. The Correspondence Between Lattices of Subalgebras of
Universal and Many Sorted Algebras

We now state three propositions:

(28) Let A be a universal algebra, a1, b1 be strict non-empty subalgebras
of A, and a2, b2 be strict non-empty subalgebras of MSAlg(A). Suppose
a2 = MSAlg(a1) and b2 = MSAlg(b1). Then (the sorts of a2) ∪ (the sorts
of b2) = 07−→. ((the carrier of a1) ∪ (the carrier of b1)).

(29) Let A be a universal algebra, a1, b1 be strict non-empty subalgebras
of A, and a2, b2 be strict non-empty subalgebras of MSAlg(A). Suppose
a2 = MSAlg(a1) and b2 = MSAlg(b1). Then (the sorts of a2) ∩ (the sorts
of b2) = 07−→. (the carrier of a1) ∩ (the carrier of b1).



230 adam naumowicz and agnieszka julia marasik

(30) Let A be a strict universal algebra, a1, b1 be strict non-empty subalgebras
of A, and a2, b2 be strict non-empty subalgebras of MSAlg(A). If a2 =
MSAlg(a1) and b2 = MSAlg(b1), then MSAlg(a1

⊔
b1) = a2

⊔
b2.

Let A be a universal algebra with constants. One can check that MSSign(A)
is non void strict segmental and trivial and has constant operations.

One can prove the following proposition

(31) Let A be a universal algebra with constants, a1, b1 be strict non-empty
subalgebras of A, and a2, b2 be strict non-empty subalgebras of MSAlg(A).
If a2 = MSAlg(a1) and b2 = MSAlg(b1), then MSAlg(a1 ∩ b1) = a2 ∩ b2.

Let A be a quasi total universal algebra structure. One can verify that the
universal algebra structure of A is quasi total.

Let A be a partial universal algebra structure. Observe that the universal
algebra structure of A is partial.

Let A be a non-empty universal algebra structure. Note that the universal
algebra structure of A is non-empty.

Let A be a universal algebra with constants. Note that the universal algebra
structure of A has constants.

We now state the proposition

(32) Let A be a universal algebra with constants. Then the lattice of subalge-
bras of the universal algebra structure of A and the lattice of subalgebras
of MSAlg(the universal algebra structure of A) are isomorphic.
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Summary. In this paper we give Mizar formalization of concept lattices.
Concept lattices stem from the so called formal concept analysis — a part of
applied mathematics that brings mathematical methods into the field of data
anylysis and knowledge processing. Our approach follows the one given in [8].

MML Identifier: CONLAT 1.

The papers [3], [14], [4], [5], [1], [15], [12], [10], [13], [11], [2], [7], [9], and [6]
provide the notation and terminology for this paper.

1. Formal Contexts

We consider 2-sorted as systems
〈 objects, a Attributes 〉,

where the objects constitute a set and the Attributes is a set.
Let C be a 2-sorted. We say that C is empty if and only if:

(Def. 1) The objects of C are empty and the Attributes of C is empty.

We say that C is quasi-empty if and only if:

(Def. 2) The objects of C are empty or the Attributes of C is empty.

Let us note that there exists a 2-sorted which is strict and non empty and
there exists a 2-sorted which is strict and non quasi-empty.

One can verify that there exists a 2-sorted which is strict, empty, and quasi-
empty.

We consider ContextStr as extensions of 2-sorted as systems
〈 objects, a Attributes, a Information 〉,

where the objects constitute a set, the Attributes is a set, and the Information
is a relation between the objects and the Attributes.
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One can check that there exists a ContextStr which is strict and non empty
and there exists a ContextStr which is strict and non quasi-empty.

A FormalContext is a non quasi-empty ContextStr.
Let C be a 2-sorted.

(Def. 3) An element of the objects of C is said to be an object of C.

(Def. 4) An element of the Attributes of C is said to be a Attribute of C.

Let C be a non quasi-empty 2-sorted. Note that the Attributes of C is non
empty and the objects of C is non empty.

Let C be a non quasi-empty 2-sorted. One can check that there exists a
subset of the objects of C which is non empty and there exists a subset of the
Attributes of C which is non empty.

Let C be a FormalContext, let o be an object of C, and let a be a Attribute
of C. We say that o is connected with a if and only if:

(Def. 5) 〈〈o, a〉〉 ∈ the Information of C.

We introduce o is not connected with a as an antonym of o is connected with a.

2. Derivation Operators

Let C be a FormalContext. The functor ObjectDerivation C yields a func-
tion from 2the objects of C into 2the Attributes of C and is defined by the condition
(Def. 6).

(Def. 6) Let O be an element of 2the objects of C . Then (ObjectDerivation C)(O) =
{a; a ranges over Attribute of C:

∧
o : object of C (o ∈ O ⇒ o is connected

with a)}.
Let C be a FormalContext. The functor AttributeDerivation C yields a func-

tion from 2the Attributes of C into 2the objects of C and is defined by the condition
(Def. 7).

(Def. 7) Let A be an element of 2the Attributes of C . Then (AttributeDerivation C)(A) =
{o; o ranges over objects of C:

∧
a : Attribute of C (a ∈ A ⇒ o is connected

with a)}.
The following propositions are true:

(1) Let C be a FormalContext and o be an object of C. Then
(ObjectDerivation C)({o}) = {a; a ranges over Attribute of C: o is con-
nected with a}.

(2) Let C be a FormalContext and a be a Attribute of C. Then
(AttributeDerivation C)({a}) = {o; o ranges over objects of C: o is con-
nected with a}.
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(3) For every FormalContext C and for all subsets O1, O2 of the ob-
jects of C such that O1 ⊆ O2 holds (ObjectDerivation C)(O2) ⊆
(ObjectDerivation C)(O1).

(4) For every FormalContext C and for all subsets A1, A2 of the Attri-
butes of C such that A1 ⊆ A2 holds (AttributeDerivation C)(A2) ⊆
(AttributeDerivation C)(A1).

(5) For every FormalContext C and for every subset O of the objects of C

holds O ⊆ (AttributeDerivation C)((ObjectDerivation C)(O)).
(6) For every FormalContext C and for every subset A of the Attributes of

C holds A ⊆ (ObjectDerivation C)((AttributeDerivation C)(A)).
(7) For every FormalContext C and for every subset O of the objects of C

holds (ObjectDerivation C)(O) = (ObjectDerivation C)
((AttributeDerivation C)((ObjectDerivation C)(O))).

(8) For every FormalContext C and for every subset A of the Attributes of
C holds (AttributeDerivation C)(A) =
(AttributeDerivation C)((ObjectDerivation C)((AttributeDerivation C)(A))).

(9) Let C be a FormalContext, O be a subset of the objects of C, and A be
a subset of the Attributes of C. Then O ⊆ (AttributeDerivation C)(A) if
and only if [:O, A :] ⊆ the Information of C.

(10) Let C be a FormalContext, O be a subset of the objects of C, and A

be a subset of the Attributes of C. Then A ⊆ (ObjectDerivation C)(O) if
and only if [:O, A :] ⊆ the Information of C.

(11) Let C be a FormalContext, O be a subset of the objects of C, and A be
a subset of the Attributes of C. Then O ⊆ (AttributeDerivation C)(A) if
and only if A ⊆ (ObjectDerivation C)(O).

Let C be a FormalContext. The functor φ(C) yielding a map from
2the objects of C
⊆ into 2the Attributes of C

⊆ is defined by:

(Def. 8) φ(C) = ObjectDerivation C.

Let C be a FormalContext. The functor psi C yields a map from
2the Attributes of C
⊆ into 2the objects of C

⊆ and is defined as follows:

(Def. 9) psi C = AttributeDerivation C.

We now state the proposition

(12) For every FormalContext C holds 〈〈φ(C), psi C〉〉 is a connection between
2the objects of C
⊆ and 2the Attributes of C

⊆ .

Let P , R be non empty relational structures and let C1 be a connection
between P and R. We say that C1 is co-Galois if and only if the condition
(Def. 10) is satisfied.

(Def. 10) There exists a map f from P into R and there exists a map g from R

into P such that
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(i) C1 = 〈〈f, g〉〉,
(ii) f is antitone,
(iii) g is antitone, and
(iv) for all elements p1, p2 of P and for all elements r1, r2 of R holds

p1 ¬ g(f(p1)) and r1 ¬ f(g(r1)).
We now state several propositions:

(13) Let P , R be non empty posets, C1 be a connection between P and R, f

be a map from P into R, and g be a map from R into P . Suppose C1 = 〈〈f,

g〉〉. Then C1 is co-Galois if and only if for every element p of P and for
every element r of R holds p ¬ g(r) iff r ¬ f(p).

(14) Let P , R be non empty posets and C1 be a connection between P and
R. Suppose C1 is co-Galois. Let f be a map from P into R and g be a
map from R into P . If C1 = 〈〈f, g〉〉, then f = f · (g · f) and g = g · (f · g).

(15) For every FormalContext C holds 〈〈φ(C), psi C〉〉 is co-Galois.

(16) For every FormalContext C and for all subsets O1, O2 of the objects
of C holds (ObjectDerivation C)(O1 ∪ O2) = (ObjectDerivation C)(O1) ∩
(ObjectDerivation C)(O2).

(17) For every FormalContext C and for all subsets A1, A2 of
the Attributes of C holds (AttributeDerivation C)(A1 ∪ A2) =
(AttributeDerivation C)(A1) ∩ (AttributeDerivation C)(A2).

(18) For every FormalContext C holds (ObjectDerivation C)(∅) = the Attri-
butes of C.

(19) For every FormalContext C holds (AttributeDerivation C)(∅) = the ob-
jects of C.

3. Formal Concepts

Let C be a 2-sorted. We introduce ConceptStr over C which are systems
〈 a Extent, a Intent 〉,

where the Extent is a subset of the objects of C and the Intent is a subset of
the Attributes of C.

Let C be a 2-sorted and let C2 be a ConceptStr over C. We say that C2 is
empty if and only if:

(Def. 11) The Extent of C2 is empty and the Intent of C2 is empty.

We say that C2 is quasi-empty if and only if:

(Def. 12) The Extent of C2 is empty or the Intent of C2 is empty.

Let C be a non quasi-empty 2-sorted. Observe that there exists a ConceptStr
over C which is strict and non empty and there exists a ConceptStr over C which
is strict and quasi-empty.
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Let C be an empty 2-sorted. Observe that every ConceptStr over C is empty.
Let C be a quasi-empty 2-sorted. Observe that every ConceptStr over C is

quasi-empty.
Let C be a FormalContext and let C2 be a ConceptStr over C. We say that

C2 is concept-like if and only if:

(Def. 13) (ObjectDerivation C)(the Extent of C2) = the Intent of C2 and
(AttributeDerivation C)(the Intent of C2) = the Extent of C2.

Let C be a FormalContext. One can check that there exists a ConceptStr
over C which is concept-like and non empty.

Let C be a FormalContext. A FormalConcept of C is a concept-like non
empty ConceptStr over C.

Let C be a FormalContext. Note that there exists a FormalConcept of C

which is strict.
Next we state four propositions:

(20) Let C be a FormalContext and O be a subset of the objects of C. Then
(i) 〈(AttributeDerivation C)((ObjectDerivation C)(O)),

(ObjectDerivation C)(O)〉 is a FormalConcept of C, and
(ii) for every subset O′ of the objects of C and for every subset A′ of the

Attributes of C such that 〈O′, A′〉 is a FormalConcept of C and O ⊆ O′

holds (AttributeDerivation C)((ObjectDerivation C)(O)) ⊆ O′.
(21) Let C be a FormalContext and O be a subset of the ob-

jects of C. Then there exists a subset A of the Attributes of
C such that 〈O,A〉 is a FormalConcept of C if and only if
(AttributeDerivation C)((ObjectDerivation C)(O)) = O.

(22) Let C be a FormalContext and A be a subset of the Attributes of C.
Then

(i) 〈(AttributeDerivation C)(A), (ObjectDerivation C)
((AttributeDerivation C)(A))〉 is a FormalConcept of C, and

(ii) for every subset O′ of the objects of C and for every subset A′ of the
Attributes of C such that 〈O′, A′〉 is a FormalConcept of C and A ⊆ A′

holds (ObjectDerivation C)((AttributeDerivation C)(A)) ⊆ A′.
(23) Let C be a FormalContext and A be a subset of the At-

tributes of C. Then there exists a subset O of the objects of
C such that 〈O,A〉 is a FormalConcept of C if and only if
(ObjectDerivation C)((AttributeDerivation C)(A)) = A.

Let C be a FormalContext and let C2 be a ConceptStr over C. We say that
C2 is universal if and only if:

(Def. 14) The Extent of C2 = the objects of C.

Let C be a FormalContext and let C2 be a ConceptStr over C. We say that
C2 is co-universal if and only if:
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(Def. 15) The Intent of C2 = the Attributes of C.

Let C be a FormalContext. Note that there exists a FormalConcept of C

which is strict and universal and there exists a FormalConcept of C which is
strict and co-universal.

Let C be a FormalContext. The functor Concept− with− all−Objects C

yields a strict universal FormalConcept of C and is defined by the condition
(Def. 16).

(Def. 16) There exists a subset O of the objects of C and there exists a subset A of
the Attributes of C such that Concept− with− all−Objects C = 〈O, A〉
and O = (AttributeDerivation C)(∅) and A =
(ObjectDerivation C)((AttributeDerivation C)(∅)).

Let C be a FormalContext. The functor Concept− with− all−Attributes C

yielding a strict co-universal FormalConcept of C is defined by the condition
(Def. 17).

(Def. 17) There exists a subset O of the objects of C and there exists a subset A

of the Attributes of C such that Concept− with− all−Attributes C =
〈O, A〉 and O = (AttributeDerivation C)((ObjectDerivation C)(∅)) and
A = (ObjectDerivation C)(∅).

One can prove the following propositions:

(24) Let C be a FormalContext. Then the Extent of
Concept− with− all−Objects C = the objects of C and the Intent of
Concept− with− all−Attributes C = the Attributes of C.

(25) Let C be a FormalContext and C2 be a FormalConcept of C. Then
(i) if the Extent of C2 = ∅, then C2 is co-universal, and
(ii) if the Intent of C2 = ∅, then C2 is universal.

(26) Let C be a FormalContext and C2 be a strict FormalConcept of C. Then
(i) if the Extent of C2 = ∅, then C2 = Concept− with− all−Attributes C,

and
(ii) if the Intent of C2 = ∅, then C2 = Concept− with− all−Objects C.

(27) Let C be a FormalContext and C2 be a quasi-empty ConceptStr over C.
Suppose C2 is a FormalConcept of C. Then C2 is universal or co-universal.

(28) Let C be a FormalContext and C2 be a quasi-empty Con-
ceptStr over C. If C2 is a strict FormalConcept of C, then C2 =
Concept− with− all−Objects C or C2 =
Concept− with− all−Attributes C.

Let C be a FormalContext. A non empty set is called a Set of FormalCon-
cepts of C if:

(Def. 18) For every set X such that X ∈ it holds X is a FormalConcept of C.

Let C be a FormalContext and let F1 be a Set of FormalConcepts of C. We
see that the element of F1 is a FormalConcept of C.
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Let C be a FormalContext and let C3, C4 be FormalConcept of C. We say
that C3 is SubConcept of C4 if and only if:

(Def. 19) The Extent of C3 ⊆ the Extent of C4.

We introduce C4 is SuperConcept of C3 as a synonym of C3 is SubConcept of
C4.

One can prove the following propositions:

(29) Let C be a FormalContext and C3, C4 be FormalConcept of C. Then C3

is SuperConcept of C4 if and only if C4 is SubConcept of C3.

(30) Let C be a FormalContext and C3, C4 be FormalConcept of C. Then C3

is SubConcept of C4 if and only if the Extent of C3 ⊆ the Extent of C4.

(31) Let C be a FormalContext and C3, C4 be FormalConcept of C. Then C3

is SubConcept of C4 if and only if the Intent of C4 ⊆ the Intent of C3.

(32) Let C be a FormalContext and C3, C4 be FormalConcept of C. Then C3

is SuperConcept of C4 if and only if the Extent of C4 ⊆ the Extent of C3.

(33) Let C be a FormalContext and C3, C4 be FormalConcept of C. Then C3

is SuperConcept of C4 if and only if the Intent of C3 ⊆ the Intent of C4.

(34) Let C be a FormalContext and C2 be a FormalConcept of
C. Then C2 is SubConcept of Concept− with− all−Objects C and
Concept− with− all−Attributes C is SubConcept of C2.

4. Concept Lattices

Let C be a FormalContext. The functor B− carrier C yielding a non empty
set is defined by the condition (Def. 20).

(Def. 20) B− carrier C = {〈E, I〉; E ranges over subsets of the objects of
C, I ranges over subsets of the Attributes of C: 〈E, I〉 is non
empty ∧ (ObjectDerivation C)(E) = I ∧ (AttributeDerivation C)(I) =
E}.

Let C be a FormalContext. Then B− carrier C is a Set of FormalConcepts
of C.

Let C be a FormalContext. One can check that B− carrier C is non empty.
One can prove the following proposition

(35) For every FormalContext C and for every set C2 holds C2 ∈ B− carrier C

iff C2 is a strict FormalConcept of C.

Let C be a FormalContext. The functor B−meet C yields a binary operation
on B− carrier C and is defined by the condition (Def. 21).

(Def. 21) Let C3, C4 be strict FormalConcept of C. Then there exists a subset O of
the objects of C and there exists a subset A of the Attributes of C such that
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(B−meet C)(C3, C4) = 〈O,A〉 and O = (the Extent of C3)∩ (the Extent
of C4) and A = (ObjectDerivation C)((AttributeDerivation C)((the Intent
of C3) ∪ (the Intent of C4))).

Let C be a FormalContext. The functor B− join C yielding a binary opera-
tion on B− carrier C is defined by the condition (Def. 22).

(Def. 22) Let C3, C4 be strict FormalConcept of C. Then there exists a sub-
set O of the objects of C and there exists a subset A of the At-
tributes of C such that (B− join C)(C3, C4) = 〈O, A〉 and O =
(AttributeDerivation C)((ObjectDerivation C)((the Extent of C3) ∪ (the
Extent of C4))) and A = (the Intent of C3) ∩ (the Intent of C4).

One can prove the following propositions:

(36) For every FormalContext C and for all strict FormalConcept C3, C4 of
C holds (B−meet C)(C3, C4) = (B−meet C)(C4, C3).

(37) For every FormalContext C and for all strict FormalConcept C3, C4 of
C holds (B− join C)(C3, C4) = (B− join C)(C4, C3).

(38) For every FormalContext C and for all strict FormalConcept
C3, C4, C5 of C holds (B−meet C)(C3, (B−meet C)(C4, C5)) =
(B−meet C)((B−meet C)(C3, C4), C5).

(39) For every FormalContext C and for all strict FormalConcept
C3, C4, C5 of C holds (B− join C)(C3, (B− join C)(C4, C5)) =
(B− join C)((B− join C)(C3, C4), C5).

(40) For every FormalContext C and for all strict FormalConcept C3, C4 of
C holds (B− join C)((B−meet C)(C3, C4), C4) = C4.

(41) For every FormalContext C and for all strict FormalConcept C3, C4 of
C holds (B−meet C)(C3, (B− join C)(C3, C4)) = C3.

(42) For every FormalContext C and for every strict FormalConcept C2 of C

holds (B−meet C)(C2, Concept− with− all−Objects C) = C2.

(43) For every FormalContext C and for every strict FormalConcept
C2 of C holds (B− join C)(C2, Concept− with− all−Objects C) =
Concept− with− all−Objects C.

(44) For every FormalContext C and for every strict FormalConcept C2 of C

holds (B− join C)(C2, Concept− with− all−Attributes C) = C2.

(45) For every FormalContext C and for every strict FormalConcept
C2 of C holds (B−meet C)(C2, Concept− with− all−Attributes C) =
Concept− with− all−Attributes C.

Let C be a FormalContext. The functor ConceptLattice C yielding a strict
non empty lattice structure is defined as follows:

(Def. 23) ConceptLattice C = 〈B− carrier C, B− join C, B−meet C〉.
The following proposition is true
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(46) For every FormalContext C holds ConceptLattice C is a lattice.

Let C be a FormalContext. One can verify that ConceptLattice C is strict
non empty and lattice-like.

Let C be a FormalContext and let S be a non empty subset of the carrier
of ConceptLattice C. We see that the element of S is a FormalConcept of C.

Let C be a FormalContext and let C2 be an element of the carrier of
ConceptLattice C. The functor C2

T yielding a strict FormalConcept of C is
defined as follows:

(Def. 24) C2
T = C2.

One can prove the following two propositions:

(47) Let C be a FormalContext and C3, C4 be elements of the carrier of
ConceptLattice C. Then C3 v C4 if and only if C3

T is SubConcept of C4
T.

(48) For every FormalContext C holds ConceptLattice C is a complete lattice.

Let C be a FormalContext. Observe that ConceptLattice C is complete.
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Summary. In this paper, we define join and meet operations between
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The notation and terminology used in this paper have been introduced in the
following articles: [9], [6], [5], [2], [3], [1], [10], [4], [8], and [7].

1. Preliminaries

For simplicity, we use the following convention: Y is a non empty set, P1, P2

are partitions of Y , A, B are subsets of Y , i is a natural number, x, y, x1, x2,
z0 are sets, and X, V , d, t, S1, S2 are sets.

The following proposition is true

(1) If X ∈ P1 and V ∈ P1 and X ⊆ V, then X = V.

Let us consider S1, S2. We introduce S1 b S2 and S2 c S1 as synonyms of
S1 is finer than S2.

We now state several propositions:

(2) For every partition P1 of Y holds P1 c P1.

(3)
⋃

(S1 \ {∅}) =
⋃

S1.

(4) For all partitions P1, P2 of Y such that P1 c P2 and P2 c P1 holds
P2 ⊆ P1.

(5) For all partitions P1, P2 of Y such that P1 c P2 and P2 c P1 holds
P1 = P2.
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(7)1 For all partitions P1, P2 of Y such that P1 c P2 holds P1 is coarser than
P2.

Let us consider Y , let P1 be a partition of Y , and let b be a set. We say that
b is a dependent set of P1 if and only if:

(Def. 1) There exists a set B such that B ⊆ P1 and B 6= ∅ and b =
⋃

B.

Let us consider Y , let P1, P2 be partitions of Y , and let b be a set. We say
that b is a minimal dependent set of P1 and P2 if and only if the conditions
(Def. 2) are satisfied.

(Def. 2)(i) b is a dependent set of P1 and a dependent set of P2, and
(ii) for every set d such that d ⊆ b and d is a dependent set of P1 and a

dependent set of P2 holds d = b.

We now state several propositions:

(8) For all partitions P1, P2 of Y such that P1 c P2 and for every set b such
that b ∈ P1 holds b is a dependent set of P2.

(9) For every partition P1 of Y holds Y is a dependent set of P1.

(10) Let F be a family of subsets of Y . Suppose Intersect(F ) 6= ∅ and for every
X such that X ∈ F holds X is a dependent set of P1. Then Intersect(F )
is a dependent set of P1.

(11) Let X0, X1 be subsets of Y . Suppose X0 is a dependent set of P1 and X1

is a dependent set of P1 and X0 meets X1. Then X0 ∩X1 is a dependent
set of P1.

(12) For every subset X of Y such that X is a dependent set of P1 and X 6= Y

holds Xc is a dependent set of P1.

(13) For every element y of Y there exists a subset X of Y such that y ∈ X

and X is a minimal dependent set of P1 and P2.

(14) For every partition P of Y and for every element y of Y there exists a
subset A of Y such that y ∈ A and A ∈ P.

Let Y be a non empty set. One can verify that every partition of Y is non
empty.

Let Y be a set. The functor PARTITIONS(Y ) is defined by:

(Def. 3) For every set x holds x ∈ PARTITIONS(Y ) iff x is a partition of Y .

Let Y be a set. One can check that PARTITIONS(Y ) is non empty.

2. Join and Meet Operation Between Partitions

Let us consider Y and let P1, P2 be partitions of Y . The functor P1 ∧ P2

yielding a partition of Y is defined by:

1The proposition (6) has been removed.
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(Def. 4) P1 ∧ P2 = P1 e P2 \ {∅}.
Let us observe that the functor P1 ∧ P2 is commutative.

One can prove the following propositions:

(15) For every partition P1 of Y holds P1 ∧ P1 = P1.

(16) For all partitions P1, P2, P3 of Y holds P1 ∧ P2 ∧ P3 = P1 ∧ P2 ∧ P3.

(17) For all partitions P1, P2 of Y holds P1 c P1 ∧ P2.

(18) For all partitions P1, P2, P3 of Y such that P1 c P2 and P2 c P3 holds
P1 c P3.

Let us consider Y and let P1, P2 be partitions of Y . The functor P1 ∨ P2

yielding a partition of Y is defined by:

(Def. 5) For every d holds d ∈ P1 ∨P2 iff d is a minimal dependent set of P1 and
P2.

Let us observe that the functor P1 ∨ P2 is commutative.
One can prove the following propositions:

(19) For all partitions P1, P2 of Y holds P1 b P1 ∨ P2.

(20) For every partition P1 of Y holds P1 ∨ P1 = P1.

(21) For all partitions P1, P3 of Y such that P1 b P3 and x ∈ P3 and z0 ∈ P1

and t ∈ x and t ∈ z0 holds z0 ⊆ x.

(22) For all partitions P1, P2 of Y such that x ∈ P1 ∨ P2 and z0 ∈ P1 and
t ∈ x and t ∈ z0 holds z0 ⊆ x.

3. Partitions and Equivalence Relations

We now state the proposition

(23) Let P1 be a partition of Y . Then there exists an equivalence relation R1

of Y such that for all x, y holds 〈〈x, y〉〉 ∈ R1 if and only if the following
conditions are satisfied:

(i) x ∈ Y,

(ii) y ∈ Y, and
(iii) there exists A such that A ∈ P1 and x ∈ A and y ∈ A.

Let us consider Y . The functor Rel(Y ) yields a function and is defined by
the conditions (Def. 6).

(Def. 6)(i) dom Rel(Y ) = PARTITIONS(Y ), and
(ii) for every x such that x ∈ PARTITIONS(Y ) there exists an equivalence

relation R1 of Y such that (Rel(Y ))(x) = R1 and for all sets x1, x2 holds
〈〈x1, x2〉〉 ∈ R1 iff x1 ∈ Y and x2 ∈ Y and there exists A such that A ∈ x

and x1 ∈ A and x2 ∈ A.
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Let Y be a non empty set and let P1 be a partition of Y . The functor ≡(P1)

yielding an equivalence relation of Y is defined as follows:

(Def. 7) ≡(P1) = (Rel(Y ))(P1).
The following propositions are true:

(24) For all partitions P1, P2 of Y holds P1 b P2 iff ≡(P1) ⊆ ≡(P2).

(25) Let P1, P2 be partitions of Y , p0, x, y be sets, and f be a finite sequence
of elements of Y . Suppose that

(i) p0 ⊆ Y,

(ii) x ∈ p0,

(iii) f(1) = x,

(iv) f(len f) = y,

(v) 1 ¬ len f,

(vi) for every i such that 1 ¬ i and i < len f there exist sets p2, p3, u such
that p2 ∈ P1 and p3 ∈ P2 and f(i) ∈ p2 and u ∈ p2 and u ∈ p3 and
f(i + 1) ∈ p3, and

(vii) p0 is a dependent set of P1 and a dependent set of P2.
Then y ∈ p0.

(26) Let R2, R3 be equivalence relations of Y , f be a finite sequence of ele-
ments of Y , and x, y be sets. Suppose that

(i) x ∈ Y,

(ii) y ∈ Y,

(iii) f(1) = x,

(iv) f(len f) = y,

(v) 1 ¬ len f, and
(vi) for every i such that 1 ¬ i and i < len f there exists a set u such that

u ∈ Y and 〈〈f(i), u〉〉 ∈ R2 ∪R3 and 〈〈u, f(i + 1)〉〉 ∈ R2 ∪R3.

Then 〈〈x, y〉〉 ∈ R2 tR3.

(27) For all partitions P1, P2 of Y holds ≡P1∨P2 = ≡(P1) t ≡(P2).

(28) For all partitions P1, P2 of Y holds ≡P1∧P2 = ≡(P1) ∩ ≡(P2).

(29) For all partitions P1, P2 of Y such that ≡(P1) = ≡(P2) holds P1 = P2.

(30) For all partitions P1, P2, P3 of Y holds P1 ∨ P2 ∨ P3 = P1 ∨ P2 ∨ P3.

(31) For all partitions P1, P2 of Y holds P1 ∧ P1 ∨ P2 = P1.

(32) For all partitions P1, P2 of Y holds P1 ∨ P1 ∧ P2 = P1.

(33) For all partitions P1, P2, P3 of Y such that P1 b P3 and P2 b P3 holds
P1 ∨ P2 b P3.

(34) For all partitions P1, P2, P3 of Y such that P1 c P3 and P2 c P3 holds
P1 ∧ P2 c P3.

Let us consider Y . The functor I(Y ) yielding a partition of Y is defined as
follows:

(Def. 8) I(Y ) = SmallestPartition(Y ).
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Let us consider Y . The functor O(Y ) yielding a partition of Y is defined by:

(Def. 9) O(Y ) = {Y }.
The following propositions are true:

(35) I(Y ) = {B :
∨

x : set (B = {x} ∧ x ∈ Y )}.
(36) For every partition P1 of Y holds O(Y ) c P1 and P1 c I(Y ).
(37) ≡O(Y ) = ∇Y .

(38) ≡I(Y ) = 4Y .

(39) I(Y ) b O(Y ).
(40) For every partition P1 of Y holds O(Y )∨P1 = O(Y ) and O(Y )∧P1 = P1.

(41) For every partition P1 of Y holds I(Y )∨P1 = P1 and I(Y )∧P1 = I(Y ).
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Summary. In this paper, we define Boolean valued functions. Some of
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scussed.

MML Identifier: BVFUNC 1.

The terminology and notation used in this paper are introduced in the following
papers: [4], [6], [1], [2], [3], and [5].

1. Boolean Operations

In this paper Y denotes a non empty set.
Let k, l be elements of Boolean. The functor k ⇒ l is defined by:

(Def. 1) k ⇒ l = ¬k ∨ l.

The functor k ⇔ l is defined as follows:

(Def. 2) k ⇔ l = ¬(k ⊕ l).
Let k, l be elements of Boolean. The predicate k b l is defined by:

(Def. 3) k ⇒ l = true.

Let us note that the predicate k b l is reflexive.
One can prove the following three propositions:

(1) For all elements k, l of Boolean and for all natural numbers n1, n2 such
that k = n1 and l = n2 holds k b l iff n1 ¬ n2.
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(2) For all elements k, l of Boolean such that k b l and l b k holds k = l.

(3) For all elements k, l, m of Boolean such that k b l and l b m holds
k b m.

2. Boolean Valued Functions

Let us consider Y . The functor BVF(Y ) is defined by:

(Def. 4) BVF(Y ) = BooleanY .

Let Y be a non empty set. Observe that BVF(Y ) is functional and non
empty.

Let us consider Y , let a be an element of BVF(Y ), and let x be an element
of Y . The functor Pj(a, x) yields an element of Boolean and is defined by:

(Def. 5) Pj(a, x) = a(x).
Let us consider Y and let a, b be elements of BVF(Y ). The functor a ∧ b

yields an element of BVF(Y ) and is defined by:

(Def. 6) For every element x of Y holds Pj(a ∧ b, x) = Pj(a, x) ∧ Pj(b, x).
Let us notice that the functor a ∧ b is commutative.

Let us consider Y and let a, b be elements of BVF(Y ). The functor a ∨ b

yields an element of BVF(Y ) and is defined by:

(Def. 7) For every element x of Y holds Pj(a ∨ b, x) = Pj(a, x) ∨ Pj(b, x).
Let us notice that the functor a ∨ b is commutative.

Let us consider Y and let a be an element of BVF(Y ). The functor ¬a

yielding an element of BVF(Y ) is defined as follows:

(Def. 8) For every element x of Y holds Pj(¬a, x) = ¬Pj(a, x).
Let us consider Y and let a, b be elements of BVF(Y ). The functor a ⊕ b

yields an element of BVF(Y ) and is defined as follows:

(Def. 9) For every element x of Y holds Pj(a⊕ b, x) = Pj(a, x)⊕ Pj(b, x).
Let us note that the functor a⊕ b is commutative.

Let us consider Y and let a, b be elements of BVF(Y ). The functor a ⇒ b

yields an element of BVF(Y ) and is defined by:

(Def. 10) For every element x of Y holds Pj(a⇒ b, x) = ¬Pj(a, x) ∨ Pj(b, x).
Let us consider Y and let a, b be elements of BVF(Y ). The functor a ⇔ b

yielding an element of BVF(Y ) is defined as follows:

(Def. 11) For every element x of Y holds Pj(a⇔ b, x) = ¬(Pj(a, x)⊕ Pj(b, x)).
Let us observe that the functor a⇔ b is commutative.

Let us consider Y . The functor false(Y ) yielding an element of BVF(Y ) is
defined by:

(Def. 12) For every element x of Y holds Pj(false(Y ), x) = false.



a theory of boolean valued functions and . . . 251

Let us consider Y . The functor true(Y ) yielding an element of BVF(Y ) is
defined as follows:

(Def. 13) For every element x of Y holds Pj(true(Y ), x) = true.

The following propositions are true:

(4) For every element a of BVF(Y ) holds ¬¬a = a.

(5) For every element a of BVF(Y ) holds ¬ true(Y ) = false(Y ) and
¬ false(Y ) = true(Y ).

(6) For all elements a, b of BVF(Y ) holds a ∧ a = a.

(7) For all elements a, b, c of BVF(Y ) holds (a ∧ b) ∧ c = a ∧ (b ∧ c).
(8) For every element a of BVF(Y ) holds a ∧ false(Y ) = false(Y ).
(9) For every element a of BVF(Y ) holds a ∧ true(Y ) = a.

(10) For every element a of BVF(Y ) holds a ∨ a = a.

(11) For all elements a, b, c of BVF(Y ) holds (a ∨ b) ∨ c = a ∨ (b ∨ c).
(12) For every element a of BVF(Y ) holds a ∨ false(Y ) = a.

(13) For every element a of BVF(Y ) holds a ∨ true(Y ) = true(Y ).
(14) For all elements a, b, c of BVF(Y ) holds a ∧ b ∨ c = (a ∨ c) ∧ (b ∨ c).
(15) For all elements a, b, c of BVF(Y ) holds (a ∨ b) ∧ c = a ∧ c ∨ b ∧ c.

(16) For all elements a, b of BVF(Y ) holds ¬(a ∨ b) = ¬a ∧ ¬b.

(17) For all elements a, b of BVF(Y ) holds ¬(a ∧ b) = ¬a ∨ ¬b.

Let us consider Y and let a, b be elements of BVF(Y ). The predicate a b b

is defined by:

(Def. 14) For every element x of Y such that Pj(a, x) = true holds Pj(b, x) = true.

Let us note that the predicate a b b is reflexive.
The following four propositions are true:

(18) For all elements a, b, c of BVF(Y ) holds if a b b and b b a, then a = b

and if a b b and b b c, then a b c.

(19) For all elements a, b of BVF(Y ) holds a⇒ b = true(Y ) iff a b b.

(20) For all elements a, b of BVF(Y ) holds a⇔ b = true(Y ) iff a = b.

(21) For every element a of BVF(Y ) holds false(Y ) b a and a b true(Y ).

3. Infimum and Supremum

Let us consider Y and let a be an element of BVF(Y ). The functor INF a

yields an element of BVF(Y ) and is defined as follows:

(Def. 15) INF a =
{

true(Y ), if for every element x of Y holds Pj(a, x) = true,

false(Y ), otherwise.
The functor SUP a yielding an element of BVF(Y ) is defined by:
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(Def. 16) SUP a =
{

false(Y ), if for every element x of Y holds Pj(a, x) = false,

true(Y ), otherwise.
Next we state two propositions:

(22) For every element a of BVF(Y ) holds ¬ INF a = SUP¬a and ¬SUP a =
INF¬a.

(23) INF false(Y ) = false(Y ) and INF true(Y ) = true(Y ) and
SUP false(Y ) = false(Y ) and SUP true(Y ) = true(Y ).

Let us consider Y . Observe that false(Y ) is constant.
Let us consider Y . One can verify that true(Y ) is constant.
Let Y be a non empty set. Observe that there exists an element of BVF(Y )

which is constant.
We now state several propositions:

(24) For every constant element a of BVF(Y ) holds a = false(Y ) or a =
true(Y ).

(25) For every constant element d of BVF(Y ) holds INF d = d and SUP d = d.

(26) For all elements a, b of BVF(Y ) holds INF(a ∧ b) = INF a ∧ INF b and
SUP(a ∨ b) = SUP a ∨ SUP b.

(27) For every element a of BVF(Y ) and for every constant element d of
BVF(Y ) holds INF(d⇒ a) = d⇒ INF a and INF(a⇒ d) = SUP a⇒ d.

(28) For every element a of BVF(Y ) and for every constant element d of
BVF(Y ) holds INF(d ∨ a) = d ∨ INF a and SUP(d ∧ a) = d ∧ SUP a and
SUP(a ∧ d) = SUP a ∧ d.

(29) For every element a of BVF(Y ) and for every element x of Y holds
Pj(INF a, x) b Pj(a, x).

(30) For every element a of BVF(Y ) and for every element x of Y holds
Pj(a, x) b Pj(SUP a, x).

4. Boolean Valued Functions and Partitions

Let us consider Y , let a be an element of BVF(Y ), and let P1 be a partition
of Y . We say that a is dependent of P1 if and only if:

(Def. 17) For every set F such that F ∈ P1 and for all sets x1, x2 such that x1 ∈ F

and x2 ∈ F holds a(x1) = a(x2).
The following two propositions are true:

(31) For every element a of BVF(Y ) holds a is dependent of I(Y ).
(32) For every constant element a of BVF(Y ) holds a is dependent of O(Y ).

Let us consider Y and let P1 be a partition of Y . We see that the element
of P1 is a subset of Y .
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Let us consider Y , let x be an element of Y , and let P1 be a partition of Y .
Then EqClass(x, P1) is an element of P1. We introduce Lift(x, P1) as a synonym
of EqClass(x, P1).

Let us consider Y , let a be an element of BVF(Y ), and let P1 be a partition
of Y . The functor INF(a, P1) yields an element of BVF(Y ) and is defined by the
condition (Def. 18).

(Def. 18) Let y be an element of Y . Then
(i) if for every element x of Y such that x ∈ EqClass(y, P1) holds Pj(a, x) =

true, then Pj(INF(a, P1), y) = true, and
(ii) if it is not true that for every element x of Y such that x ∈

EqClass(y, P1) holds Pj(a, x) = true, then Pj(INF(a, P1), y) = false.

Let us consider Y , let a be an element of BVF(Y ), and let P1 be a partition
of Y . The functor SUP(a, P1) yielding an element of BVF(Y ) is defined by the
condition (Def. 19).

(Def. 19) Let y be an element of Y . Then
(i) if there exists an element x of Y such that x ∈ EqClass(y, P1) and

Pj(a, x) = true, then Pj(SUP(a, P1), y) = true, and
(ii) if it is not true that there exists an element x of Y such that x ∈

EqClass(y, P1) and Pj(a, x) = true, then Pj(SUP(a, P1), y) = false.

Next we state a number of propositions:

(33) For every element a of BVF(Y ) and for every partition P1 of Y holds
INF(a, P1) is dependent of P1.

(34) For every element a of BVF(Y ) and for every partition P1 of Y holds
SUP(a, P1) is dependent of P1.

(35) For every element a of BVF(Y ) and for every partition P1 of Y holds
INF(a, P1) b a.

(36) For every element a of BVF(Y ) and for every partition P1 of Y holds
a b SUP(a, P1).

(37) For every element a of BVF(Y ) and for every partition P1 of Y holds
¬ INF(a, P1) = SUP(¬a, P1).

(38) For every element a of BVF(Y ) holds INF(a,O(Y )) = INF a.

(39) For every element a of BVF(Y ) holds SUP(a,O(Y )) = SUP a.

(40) For every element a of BVF(Y ) holds INF(a, I(Y )) = a.

(41) For every element a of BVF(Y ) holds SUP(a, I(Y )) = a.

(42) For all elements a, b of BVF(Y ) and for every partition P1 of Y holds
INF(a ∧ b, P1) = INF(a, P1) ∧ INF(b, P1).

(43) For all elements a, b of BVF(Y ) and for every partition P1 of Y holds
SUP(a ∨ b, P1) = SUP(a, P1) ∨ SUP(b, P1).
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Let us consider Y and let f be an element of BVF(Y ). The functor GPart f

yields a partition of Y and is defined by:

(Def. 20) GPart f = {{x; x ranges over elements of Y : f(x) = true}, {x′; x′ ranges
over elements of Y : f(x′) = false}} \ {∅}.

The following propositions are true:

(44) For every element a of BVF(Y ) holds a is dependent of GPart a.

(45) For every element a of BVF(Y ) and for every partition P1 of Y such
that a is dependent of P1 holds P1 is finer than GPart a.

References

[1] Shunichi Kobayashi and Kui Jia. A theory of partitions. Part I. Formalized Mathematics,
7(2):243–247, 1998.

[2] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics,
1(3):471–475, 1990.

[3] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[4] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction.

Formalized Mathematics, 1(3):441–444, 1990.
[5] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[6] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–737,

1990.

Received October 22, 1998



FORMALIZED MATHEMATICS

Volume 7, Number 2, 1998
University of Białystok

Trigonometric Functions and Existence of
Circle Ratio

Yuguang Yang
Shinshu University

Nagano

Yasunari Shidama
Shinshu University

Nagano

Summary. In this article, we defined sinus and cosine as the real part and
the imaginary part of the exponential function on complex, and also give their
series expression. Then we proved the differentiablity of sinus, cosine and the
exponential function of real. Finally, we showed the existence of the circle ratio,
and some formulas of sinus, cosine.
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The papers [11], [3], [1], [10], [17], [14], [15], [4], [5], [2], [12], [16], [6], [20], [21],
[8], [9], [7], [13], [18], and [19] provide the terminology and notation for this
paper.

1. Some Definitions and Properties of Complex Sequence

For simplicity, we adopt the following rules: p, q, r, t1, t2, t3 are elements of
R, w, z, z1, z2 are elements of C, k, l, m, n are natural numbers, s1 is a complex
sequence, and r1 is a sequence of real numbers.

Let m, k be natural numbers. Let us assume that k ¬ m. The functor
PN(m, k) yielding an element of N is defined by:

(Def. 1) PN(m, k) = m− k.

Let m, k be natural numbers. The functor CHK(m, k) yields an element of
C and is defined by:

(Def. 2) CHK(m, k) =
{

1C, if m ¬ k,

0C, otherwise.
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The functor RHK(m, k) yields an element of R and is defined as follows:

(Def. 3) RHK(m, k) =
{

1, if m ¬ k,

0, otherwise.
In this article we present several logical schemes. The scheme ExComplex

CASE deals with a binary functor F yielding an element of C, and states that:
For every k there exists s1 such that for every n holds if n ¬ k,

then s1(n) = F(k, n) and if n > k, then s1(n) = 0C
for all values of the parameter.

The scheme ExReal CASE deals with a binary functor F yielding an element
of R, and states that:

For every k there exists r1 such that for every n holds if n ¬ k,

then r1(n) = F(k, n) and if n > k, then r1(n) = 0
for all values of the parameter.

The complex sequence Prod complex n is defined by:

(Def. 4) (Prod complex n)(0) = 1C and for every n holds (Prod complex n)(n +
1) = (Prod complex n)(n) · ((n + 1) + 0i).

The sequence Prod real n of real numbers is defined by:

(Def. 5) (Prod real n)(0) = 1 and for every n holds (Prod real n)(n + 1) =
(Prod real n)(n) · (n + 1).

Let n be a natural number. The functor n!c yields an element of C and is
defined as follows:

(Def. 6) n!c = (Prod complex n)(n).
Let n be a natural number. Then n! is a real number and it can be charac-

terized by the condition:

(Def. 7) n! = (Prod real n)(n).
Let z be an element of C. The functor z ExpSeq yields a complex sequence

and is defined as follows:

(Def. 8) For every n holds z ExpSeq(n) = zn
N

n!c .

Let a be an element of R. The functor a ExpSeq yielding a sequence of real
numbers is defined as follows:

(Def. 9) For every n holds a ExpSeq(n) = an
N

n! .

The following propositions are true:

(1) If 0 < n, then n + 0i 6= 0C and 0!c = 1C and n!c 6= 0C and n + 1!c =
n!c · ((n + 1) + 0i).

(2) n! 6= 0 and (n + 1)! = n! · (n + 1).
(3) For every k such that 0 < k holds PN(k, 1)!c ·(k+0i) = k!c and for all m,

k such that k ¬ m holds PN(m, k)!c ·(((m+1)−k)+0i) = PN(m+1, k)!c.

Let n be a natural number. The functor Coef n yielding a complex sequence
is defined by:
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(Def. 10) For every natural number k holds if k ¬ n, then (Coef n)(k) =
n!c

k!c·PN(n,k)!c and if k > n, then (Coef n)(k) = 0C.

Let n be a natural number. The functor Coef e n yields a complex sequence
and is defined as follows:

(Def. 11) For every natural number k holds if k ¬ n, then (Coef e n)(k) =
1C

k!c·PN(n,k)!c and if k > n, then (Coef e n)(k) = 0C.

Let us consider s1. The functor Sift s1 yielding a complex sequence is defined
as follows:

(Def. 12) (Sift s1)(0) = 0C and for every natural number k holds (Sift s1)(k +1) =
s1(k).

Let us consider n and let z, w be elements of C. The functor Expan(n, z, w)
yields a complex sequence and is defined as follows:

(Def. 13) For every natural number k holds if k ¬ n, then (Expan(n, z, w))(k) =
(Coef n)(k) · zk

N · wPN(n,k)
N and if n < k, then (Expan(n, z, w))(k) = 0C.

Let us consider n and let z, w be elements of C. The functor Expan e(n, z, w)
yielding a complex sequence is defined by:

(Def. 14) For every natural number k holds if k ¬ n, then (Expan e(n, z, w))(k) =
(Coef e n)(k) · zk

N ·wPN(n,k)
N and if n < k, then (Expan e(n, z, w))(k) = 0C.

Let us consider n and let z, w be elements of C. The functor Alfa(n, z, w)
yielding a complex sequence is defined by:

(Def. 15) For every natural number k holds if k ¬ n, then (Alfa(n, z, w))(k) =
z ExpSeq(k) · (

∑κ
α=0 w ExpSeq(α))κ∈N(PN(n, k)) and if n < k, then

(Alfa(n, z, w))(k) = 0C.

Let a, b be elements of R and let n be a natural number. The functor
Conj(n, a, b) yielding a sequence of real numbers is defined as follows:

(Def. 16) For every natural number k holds if k ¬ n, then (Conj(n, a, b))(k) =
a ExpSeq(k)·((∑κ

α=0 b ExpSeq(α))κ∈N(n)−(
∑κ

α=0 b ExpSeq(α))κ∈N(PN(n, k)))
and if n < k, then (Conj(n, a, b))(k) = 0.

Let z, w be elements of C and let n be a natural number. The functor
Conj(n, z, w) yielding a complex sequence is defined by:

(Def. 17) For every natural number k holds if k ¬ n, then (Conj(n, z, w))(k) =
z ExpSeq(k)·((∑κ

α=0 w ExpSeq(α))κ∈N(n)−(
∑κ

α=0 w ExpSeq(α))κ∈N(PN(n, k)))
and if n < k, then (Conj(n, z, w))(k) = 0C.

The following propositions are true:

(4) z ExpSeq(n + 1) = z ExpSeq(n)·z
(n+1)+0i and z ExpSeq(0) = 1C and

|z ExpSeq(n)| = |z|ExpSeq(n).
(5) If 0 < k, then (Sift s1)(k) = s1(PN(k, 1)).
(6) (

∑κ
α=0(s1)(α))κ∈N(k) = (

∑κ
α=0(Sift s1)(α))κ∈N(k) + s1(k).

(7) (z + w)n
N = (

∑κ
α=0(Expan(n, z, w))(α))κ∈N(n).
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(8) Expan e(n, z, w) = 1C
n!c Expan(n, z, w).

(9) (z+w)n
N

n!c = (
∑κ

α=0(Expan e(n, z, w))(α))κ∈N(n).
(10) 0C ExpSeq is absolutely summable and

∑
(0C ExpSeq) = 1C.

Let us consider z. One can verify that z ExpSeq is absolutely summable.
Next we state a number of propositions:

(11) z ExpSeq(0) = 1C and (Expan(0, z, w))(0) = 1C.

(12) If l ¬ k, then (Alfa(k + 1, z, w))(l) = (Alfa(k, z, w))(l) + (Expan e(k +
1, z, w))(l).

(13) (
∑κ

α=0(Alfa(k +1, z, w))(α))κ∈N(k) = (
∑κ

α=0(Alfa(k, z, w))(α))κ∈N(k)+
(
∑κ

α=0(Expan e(k + 1, z, w))(α))κ∈N(k).
(14) z ExpSeq(k) = (Expan e(k, z, w))(k).
(15) (

∑κ
α=0 z + w ExpSeq(α))κ∈N(n) = (

∑κ
α=0(Alfa(n, z, w))(α))κ∈N(n).

(16) (
∑κ

α=0 z ExpSeq(α))κ∈N(k) · (
∑κ

α=0 w ExpSeq(α))κ∈N(k) − (
∑κ

α=0 z +
w ExpSeq(α))κ∈N(k) = (

∑κ
α=0(Conj(k, z, w))(α))κ∈N(k).

(17) |(∑κ
α=0 z ExpSeq(α))κ∈N(k)| ¬ (

∑κ
α=0 |z|ExpSeq(α))κ∈N(k) and

(
∑κ

α=0 |z|ExpSeq(α))κ∈N(k) ¬∑
(|z|ExpSeq) and

|(∑κ
α=0 z ExpSeq(α))κ∈N(k)| ¬∑

(|z|ExpSeq).
(18) 1 ¬∑

(|z|ExpSeq).
(19) 0 ¬ |z|ExpSeq(n).
(20) |(∑κ

α=0 |z|ExpSeq(α))κ∈N(n)| = (
∑κ

α=0 |z|ExpSeq(α))κ∈N(n) and if n ¬
m, then |(∑κ

α=0 |z|ExpSeq(α))κ∈N(m) − (
∑κ

α=0 |z|ExpSeq(α))κ∈N(n)| =
(
∑κ

α=0 |z|ExpSeq(α))κ∈N(m)− (
∑κ

α=0 |z|ExpSeq(α))κ∈N(n).
(21) |(∑κ

α=0 |Conj(k, z, w)|(α))κ∈N(n)| = (
∑κ

α=0 |Conj(k, z, w)|(α))κ∈N(n).
(22) For every p such that p > 0 there exists n such that for every k such

that n ¬ k holds |(∑κ
α=0 |Conj(k, z, w)|(α))κ∈N(k)| < p.

(23) For every s1 such that for every k holds s1(k) =
(
∑κ

α=0(Conj(k, z, w))(α))κ∈N(k) holds s1 is convergent and lim s1 = 0C.

2. Definition of Exponential Function on Complex

The partial function exp from C to C is defined as follows:

(Def. 18) dom exp = C and for every element z of C holds (exp)(z) =∑
(z ExpSeq).

Let us consider z. The functor exp z yielding an element of C is defined by:

(Def. 19) exp z = (exp)(z).
The following proposition is true

(24) For all z1, z2 holds exp z1 + z2 = exp z1 · exp z2.
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3. Definition of Sinus, Cosine, and Exponential Function on R

The partial function sin from R to R is defined as follows:

(Def. 20) dom sin = R and for every real number d holds (sin)(d) = =(
∑

(0 +
di ExpSeq)).

Let us consider t1. The functor sin t1 yielding an element of R is defined by:

(Def. 21) sin t1 = (sin)(t1).
Next we state the proposition

(25) sin is a function from R into R.

The partial function cos from R to R is defined by:

(Def. 22) dom cos = R and for every real number d holds (cos)(d) = <(
∑

(0 +
di ExpSeq)).

Let us consider t1. The functor cos t1 yields an element of R and is defined
by:

(Def. 23) cos t1 = (cos)(t1).
One can prove the following propositions:

(26) cos is a function from R into R.

(27) dom sin = R and dom cos = R.

(28) exp 0 + t1i = cos t1 + sin t1i.

(29) (exp 0 + t1i)∗ = exp−(0 + t1i).
(30) | exp 0 + t1i| = 1 and | sin t1| ¬ 1 and | cos t1| ¬ 1.

(31) (cos)(t1)2+(sin)(t1)2 = 1 and (cos)(t1)·(cos)(t1)+(sin)(t1)·(sin)(t1) = 1.

(32) (cos t1)2 + (sin t1)2 = 1 and cos t1 · cos t1 + sin t1 · sin t1 = 1.

(33) (cos)(0) = 1 and (sin)(0) = 0 and (cos)(−t1) = (cos)(t1) and
(sin)(−t1) = −(sin)(t1).

(34) cos 0 = 1 and sin 0 = 0 and cos−t1 = cos t1 and sin−t1 = −sin t1.

Let t1 be an element of R. The functor t1 P sin yielding a sequence of real
numbers is defined by:

(Def. 24) For every n holds t1 P sin(n) = ((−1)n
N)·t12·n+1

N
(2·n+1)! .

Let t1 be an element of R. The functor t1 P cos yielding a sequence of real
numbers is defined by:

(Def. 25) For every n holds t1 P cos(n) = ((−1)n
N)·t12·n

N
(2·n)! .

The following propositions are true:

(35) For all z, k holds z2·k
N = (zk

N)2N and z2·k
N = (z2

N)k
N.

(36) For all k, t1 holds (0 + t1i)2·kN = ((−1)k
N) · t12·k

N + 0i and (0 + t1i)2·k+1
N =

0 + (((−1)k
N) · t12·k+1

N )i.
(37) For every n holds n!c = n! + 0i.
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(38) For all t1, n holds (
∑κ

α=0 t1 P sin(α))κ∈N(n) = (
∑κ

α=0=(0 +
t1i ExpSeq)(α))κ∈N(2·n+1) and (

∑κ
α=0 t1 P cos(α))κ∈N(n) = (

∑κ
α=0<(0+

t1i ExpSeq)(α))κ∈N(2 · n).
(39) For every t1 holds (

∑κ
α=0 t1 P sin(α))κ∈N is convergent and

∑
(t1 P sin) =

=(
∑

(0 + t1i ExpSeq)) and (
∑κ

α=0 t1 P cos(α))κ∈N is convergent and∑
(t1 P cos) = <(

∑
(0 + t1i ExpSeq)).

(40) For every t1 holds (cos)(t1) =
∑

(t1 P cos) and (sin)(t1) =
∑

(t1 P sin).
(41) For all p, t1, r1 such that r1 is convergent and lim r1 = t1 and for every

n holds r1(n) ­ p holds t1 ­ p.

(42) For all n, k, m such that n < k holds m! > 0 and n! ¬ k!.
(43) For all t1, n, k such that 0 ¬ t1 and t1 ¬ 1 and n ¬ k holds t1

k
N ¬ t1

n
N.

(44) For all t1, n holds (t1 + 0i)n
N = (t1n

N) + 0i.

(45) For all t1, n holds (t1+0i)n
N

n!c = t1n
N

n! + 0i.

(46) =(
∑

(p + 0i ExpSeq)) = 0.

(47) (cos)(1) > 0 and (sin)(1) > 0 and (cos)(1) < (sin)(1).
(48) For every t1 holds t1 ExpSeq = <(t1 + 0i ExpSeq).
(49) For every t1 holds t1 ExpSeq is summable and

∑
(t1 ExpSeq) = <(

∑
(t1+

0i ExpSeq)).
(50) For all p, q holds

∑
(p + q ExpSeq) =

∑
(p ExpSeq) ·∑(q ExpSeq).

The partial function exp from R to R is defined by:

(Def. 26) dom exp = R and for every real number d holds (exp)(d) =∑
(d ExpSeq).

Let us consider t1. The functor exp t1 yields an element of R and is defined
as follows:

(Def. 27) exp t1 = (exp)(t1).
We now state a number of propositions:

(51) dom exp = R.

(52) For every element d of R holds (exp)(d) =
∑

(d ExpSeq).
(53) For every t1 holds (exp)(t1) = <(

∑
(t1 + 0i ExpSeq)).

(54) exp t1 + 0i = exp t1 + 0i.

(55) exp p + q = exp p · exp q.

(56) exp 0 = 1.
(57) For every t1 such that t1 > 0 holds (exp)(t1) ­ 1.

(58) For every t1 such that t1 < 0 holds 0 < (exp)(t1) and (exp)(t1) ¬ 1.

(59) For every t1 holds (exp)(t1) > 0.

(60) For every t1 holds exp t1 > 0.
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4. Differential of Sinus, Cosine, and Exponential Function

Let z be an element of C. The functor z P dt yields a complex sequence and
is defined as follows:

(Def. 28) For every n holds z P dt(n) = zn+1
N

n+2!c .

Let z be an element of C. The functor z P t yielding a complex sequence is
defined by:

(Def. 29) For every n holds z P t(n) = zn
N

n+2!c .

Next we state a number of propositions:

(61) For every z holds z P dt is absolutely summable.

(62) For every z holds z ·∑(z P dt) =
∑

(z ExpSeq)− 1C − z.

(63) For every p such that p > 0 there exists r such that r > 0 and for every
z such that |z| < r holds |∑(z P dt)| < p.

(64) For all z, z1 holds
∑

(z1 + z ExpSeq)−∑
(z1 ExpSeq) =

∑
(z1 ExpSeq) ·

z + z ·∑(z P dt) ·∑(z1 ExpSeq).

(65) For all p, q holds (cos)(p + q) − (cos)(p) = −q · (sin)(p) − q · =(
∑

(0 +
qi P dt) · ((cos)(p) + (sin)(p)i)).

(66) For all p, q holds (sin)(p + q) − (sin)(p) = q · (cos)(p) + q · <(
∑

(0 +
qi P dt) · ((cos)(p) + (sin)(p)i)).

(67) For all p, q holds (exp)(p + q) − (exp)(p) = q · (exp)(p) + q · (exp)(p) ·
<(

∑
(q + 0i P dt)).

(68) For every p holds cos is differentiable in p and (cos)′(p) = −(sin)(p).

(69) For every p holds sin is differentiable in p and (sin)′(p) = (cos)(p).

(70) For every p holds exp is differentiable in p and (exp)′(p) = (exp)(p).

(71) exp is differentiable on R and for every t1 such that t1 ∈ R holds
(exp)′(t1) = (exp)(t1).

(72) cos is differentiable on R and for every t1 such that t1 ∈ R holds
(cos)′(t1) = −(sin)(t1).

(73) sin is differentiable on R and for every t1 holds (sin)′(t1) = (cos)(t1).

(74) For every t1 such that t1 ∈ [0, 1] holds 0 < (cos)(t1) and (cos)(t1) ­ 1
2 .

(75) [0, 1] ⊆ dom( sin
cos) and ]0, 1[ ⊆ dom( sin

cos).

(76) sin
cos is continuous on [0, 1].

(77) For all t2, t3 such that t2 ∈ ]0, 1[ and t3 ∈ ]0, 1[ and ( sin
cos)(t2) = ( sin

cos)(t3)
holds t2 = t3.



262 yuguang yang and yasunari shidama

5. Existence of Circle Ratio

The element Pai of R is defined as follows:

(Def. 30) ( sin
cos)(

Pai
4 ) = 1 and Pai ∈ ]0, 4[.

We now state the proposition

(78) (sin)(Pai
4 ) = (cos)(Pai

4 ).

6. Formulas of Sinus, Cosine

Next we state several propositions:

(79) (sin)(t2+t3) = (sin)(t2)·(cos)(t3)+(cos)(t2)·(sin)(t3) and (cos)(t2+t3) =
(cos)(t2) · (cos)(t3)− (sin)(t2) · (sin)(t3).

(80) sin t2 + t3 = sin t2 · cos t3 + cos t2 · sin t3 and cos t2 + t3 = cos t2 · cos t3 −
sin t2 · sin t3.

(81) (cos)(Pai
2 ) = 0 and (sin)(Pai

2 ) = 1 and (cos)(Pai) = −1 and (sin)(Pai) = 0
and (cos)(Pai +Pai

2 ) = 0 and (sin)(Pai +Pai
2 ) = −1 and (cos)(2 · Pai) = 1

and (sin)(2 · Pai) = 0.

(82) cos Pai
2 = 0 and sin Pai

2 = 1 and cos Pai = −1 and sin Pai = 0 and
cos Pai +Pai

2 = 0 and sin Pai +Pai
2 = −1 and cos 2 ·Pai = 1 and sin 2 ·Pai =

0.

(83)(i) (sin)(t1 + 2 · Pai) = (sin)(t1),
(ii) (cos)(t1 + 2 · Pai) = (cos)(t1),
(iii) (sin)(Pai

2 − t1) = (cos)(t1),
(iv) (cos)(Pai

2 − t1) = (sin)(t1),
(v) (sin)(Pai

2 + t1) = (cos)(t1),
(vi) (cos)(Pai

2 + t1) = −(sin)(t1),
(vii) (sin)(Pai +t1) = −(sin)(t1), and
(viii) (cos)(Pai +t1) = −(cos)(t1).

(84) sin t1 +2 ·Pai = sin t1 and cos t1 +2 ·Pai = cos t1 and sin Pai
2 − t1 = cos t1

and cos Pai
2 − t1 = sin t1 and sin Pai

2 + t1 = cos t1 and cos Pai
2 + t1 = −sin t1

and sin Pai +t1 = −sin t1 and cos Pai +t1 = −cos t1.

(85) For every t1 such that t1 ∈ ]0, Pai
2 [ holds (cos)(t1) > 0.

(86) For every t1 such that t1 ∈ ]0, Pai
2 [ holds cos t1 > 0.
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Summary. In the paper some auxiliary theorems are proved, needed in the
proof of the second part of the Jordan curve theorem for special polygons. They
deal mostly with characteristic points of plane non empty compacts introduced
in [5], operation mid introduced in [19] and the predicate “f is in the area of g”
(f and g : finite sequences of points of the plane) introduced in [28].

MML Identifier: SPRECT 3.

The notation and terminology used here are introduced in the following papers:
[21], [32], [6], [22], [24], [7], [2], [3], [30], [4], [27], [15], [16], [20], [26], [19], [9],
[18], [11], [12], [13], [1], [23], [5], [10], [14], [17], [29], [28], [31], [25], [8], and [33].

1. Preliminaries

In this paper i, j, k, n are natural numbers.
The following propositions are true:

(1) For all sets A, B, C such that A misses B holds A ∩ (B ∪ C) = A ∩ C.

(2) For all sets A, B, C, p such that A ⊆ B and B ∩ C = {p} and p ∈ A

holds A ∩ C = {p}.
(3) For all real numbers q, r, s, t such that t ­ 0 and t ¬ 1 and s =

(1− t) · q + t · r and q ¬ s and r < s holds t = 0.

(4) For all real numbers q, r, s, t such that t ­ 0 and t ¬ 1 and s =
(1− t) · q + t · r and q ­ s and r > s holds t = 0.

(5) If i−′ k ¬ j, then i ¬ j + k.
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(6) If i ¬ j + k, then i−′ k ¬ j.

(7) If i ¬ j −′ k and k ¬ j, then i + k ¬ j.

(8) If j + k ¬ i, then k ¬ i−′ j.
(9) If k ¬ i and i < j, then i−′ k < j −′ k.

(10) If i < j and k < j, then i−′ k < j −′ k.

(11) Let D be a non empty set, f be a non empty finite sequence of elements
of D, and g be a finite sequence of elements of D. Then πlen(gaf)(g a f) =
πlen ff.

(12) For all sets a, b, c, d holds the indices of
(

a b

c d

)
= {〈〈1, 1〉〉, 〈〈1, 2〉〉, 〈〈2,

1〉〉, 〈〈2, 2〉〉}.

2. Euclidean Space

We now state four propositions:

(13) For all points p, q of En
T and for every real number r such that 0 < r and

p = (1− r) · p + r · q holds p = q.

(14) For all points p, q of En
T and for every real number r such that r < 1 and

p = (1− r) · q + r · p holds p = q.

(15) For all points p, q of En
T such that p = 1

2 · (p + q) holds p = q.

(16) For all points p, q, r of En
T such that q ∈ L(p, r) and r ∈ L(p, q) holds

q = r.

3. Euclidean Plane

One can prove the following propositions:

(17) Let A be a non empty subset of E2
T, p be an element of the carrier of E2,

and r be a real number. If A = Ball(p, r), then A is connected.

(18) For all subsets A, B of E2
T such that A is open and B is a component of

A holds B is open.

(19) For all points p, q, r of E2
T such that L(p, q) is horizontal and r ∈ L(p, q)

holds p2 = r2.

(20) For all points p, q, r of E2
T such that L(p, q) is vertical and r ∈ L(p, q)

holds p1 = r1.

(21) For all points p, q, r, s of E2
T such that L(p, q) is horizontal and L(r, s)

is horizontal and L(p, q) meets L(r, s) holds p2 = r2.
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(22) For all points p, q, r of E2
T such that L(p, q) is vertical and L(q, r) is

horizontal holds L(p, q) ∩ L(q, r) = {q}.
(23) For all points p, q, r, s of E2

T such that L(p, q) is horizontal and L(s, r)
is vertical and r ∈ L(p, q) holds L(p, q) ∩ L(s, r) = {r}.

4. Miscellaneous

In the sequel p, q denote points of E2
T and G denotes a Go-board.

Next we state two propositions:

(24) If 1 ¬ j and j ¬ k and k ¬ width G and 1 ¬ i and i ¬ len G, then
(Gi,j)2 ¬ (Gi,k)2.

(25) If 1 ¬ j and j ¬ width G and 1 ¬ i and i ¬ k and k ¬ len G, then
(Gi,j)1 ¬ (Gk,j)1.

In the sequel C denotes a subset of E2
T.

We now state a number of propositions:

(26) L(NW-corner C, NE-corner C) ⊆ L̃(SpStSeq C).
(27) N-most C ⊆ L(NW-corner C, NE-corner C).
(28) For every non empty compact subset C of E2

T holds N-min C ∈
L(NW-corner C, NE-corner C).

(29) L(NW-corner C, NE-corner C) is horizontal.

(30) Let f be a finite sequence of elements of E2
T and i, j be natural numbers.

Suppose f is a special sequence and 1 ¬ i and i ¬ j and j ¬ len f. Then
LE πif, πjf, L̃(f), π1f, πlen ff.

(31) Let g be a finite sequence of elements of E2
T and p be a point of E2

T.
Suppose π1g 6= p and (π1g)1 = p1 or (π1g)2 = p2 and g is a special
sequence and L(p, π1g)∩L̃(g) = {π1g}. Then 〈p〉a g is a special sequence.

(32) Let g be a finite sequence of elements of E2
T and p be a point of E2

T.
Suppose πlen gg 6= p and (πlen gg)1 = p1 or (πlen gg)2 = p2 and g is a
special sequence and L(p, πlen gg) ∩ L̃(g) = {πlen gg}. Then g a 〈p〉 is a
special sequence.

(33) Let f be a S-sequence in R2 and p be a point of E2
T. If 1 < j and j ¬ len f

and p ∈ L̃(mid(f, 1, j)), then LE p, πjf, L̃(f), π1f, πlen ff.

(34) For every finite sequence h of elements of E2
T such that i ∈ dom h and

j ∈ dom h holds L̃(mid(h, i, j)) ⊆ L̃(h).
(35) If 1 ¬ i and i < j, then for every finite sequence f of elements of E2

T such
that j ¬ len f holds L̃(mid(f, i, j)) = L(f, i) ∪ L̃(mid(f, i + 1, j)).

(36) Let f be a finite sequence of elements of E2
T. If 1 ¬ i, then if i < j and

j ¬ len f, then L̃(mid(f, i, j)) = L̃(mid(f, i, j −′ 1)) ∪ L(f, j −′ 1).
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(37) Let g be a finite sequence of elements of E2
T and p be a point of E2

T.
Suppose g is a special sequence and p1 = (π1g)1 or p2 = (π1g)2 and
L(p, π1g) ∩ L̃(g) = {π1g} and p 6= π1g. Then 〈p〉 a g is a special sequence.

(38) Let f , g be finite sequences of elements of E2
T. Suppose that

(i) f is a special sequence,
(ii) g is a special sequence,
(iii) (πlen ff)1 = (π1g)1 or (πlen ff)2 = (π1g)2,

(iv) L̃(f) misses L̃(g),
(v) L(πlen ff, π1g) ∩ L̃(f) = {πlen ff}, and
(vi) L(πlen ff, π1g) ∩ L̃(g) = {π1g}.

Then f a g is a special sequence.

(39) For every S-sequence f in R2 and for every point p of E2
T such that

p ∈ L̃(f) holds π1 º f, p = π1f.

(40) Let f be a S-sequence in R2 and p, q be points of E2
T. If 1 ¬ j and

j < len f and p ∈ L(f, j) and q ∈ L(πjf, p), then LE q, p, L̃(f), π1f,

πlen ff.

5. Special Circular Sequences

Next we state the proposition

(41) For every non constant standard special circular sequence f holds
LeftComp(f) is open and RightComp(f) is open.

Let f be a non constant standard special circular sequence. One can verify
the following observations:

∗ L̃(f) is non vertical and non horizontal,

∗ LeftComp(f) is region, and

∗ RightComp(f) is region.

One can prove the following propositions:

(42) For every non constant standard special circular sequence f holds
RightComp(f) misses L̃(f).

(43) For every non constant standard special circular sequence f holds
LeftComp(f) misses L̃(f).

(44) For every non constant standard special circular sequence f holds
iWN f < iEN f.

(45) Let f be a non constant standard special circular sequence. Then there
exists i such that 1 ¬ i and i < len the Go-board of f and N-min L̃(f) =
(the Go-board of f)i,width the Go-board of f .
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(46) Let f be a clockwise oriented non constant standard special circular
sequence. Suppose i ∈ dom the Go-board of f and π1f = (the Go-
board of f)i,width the Go-board of f and π1f = N-min L̃(f). Then π2f = (the
Go-board of f)i+1,width the Go-board of f and πlen f−′1f = (the Go-board of
f)i,width the Go-board of f−′1.

(47) Let f be a non constant standard special circular sequence. If 1 ¬ i and
i < j and j ¬ len f and π1f ∈ L̃(mid(f, i, j)), then i = 1 or j = len f.

(48) Let f be a clockwise oriented non constant standard special circular
sequence. If π1f = N-min L̃(f), then L(π1f, π2f) ⊆ L̃(SpStSeq L̃(f)).

6. Rectangular Sequences

We now state the proposition

(49) Let f be a rectangular finite sequence of elements of E2
T and p be a point

of E2
T. If p ∈ L̃(f), then p1 = W-bound L̃(f) or p1 = E-bound L̃(f) or

p2 = S-bound L̃(f) or p2 = N-bound L̃(f).
One can check that there exists a special circular sequence which is rectan-

gular.
The following propositions are true:

(50) Let f be a rectangular special circular sequence and g be a S-sequence in
R2 . If π1g ∈ LeftComp(f) and πlen gg ∈ RightComp(f), then L̃(f) meets
L̃(g).

(51) For every rectangular special circular sequence f holds SpStSeq L̃(f) =
f.

(52) Let f be a rectangular special circular sequence. Then L̃(f) = {p; p
ranges over points of E2

T: p1 = W-bound L̃(f) ∧ p2 ¬ N-bound L̃(f) ∧ p2 ­
S-bound L̃(f) ∨ p1 ¬ E-bound L̃(f) ∧ p1 ­ W-bound L̃(f) ∧ p2 =
N-bound L̃(f) ∨ p1 ¬ E-bound L̃(f) ∧ p1 ­ W-bound L̃(f) ∧ p2 =
S-bound L̃(f) ∨ p1 = E-bound L̃(f) ∧ p2 ¬ N-bound L̃(f) ∧ p2 ­
S-bound L̃(f)}.

(53) For every rectangular special circular sequence f holds the Go-board of

f =
(

π4f π1f

π3f π2f

)
.

(54) Let f be a rectangular special circular sequence. Then LeftComp(f) =
{p : W-bound L̃(f) 6¬ p1 ∨ p1 6¬ E-bound L̃(f) ∨ S-bound L̃(f) 6¬
p2 ∨ p2 6¬ N-bound L̃(f)} and RightComp(f) = {q : W-bound L̃(f) <

q1 ∧ q1 < E-bound L̃(f) ∧ S-bound L̃(f) < q2 ∧ q2 < N-bound L̃(f)}.
One can check that there exists a rectangular special circular sequence which

is clockwise oriented.
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One can check that every rectangular special circular sequence is clockwise
oriented.

Next we state four propositions:

(55) Let f be a rectangular special circular sequence and g be a S-sequence
in R2 . If π1g ∈ LeftComp(f) and πlen gg ∈ RightComp(f), then
LPoint(L̃(g), π1g, πlen gg, L̃(f)) 6= NW-corner L̃(f).

(56) Let f be a rectangular special circular sequence and g be a S-sequence
in R2 . If π1g ∈ LeftComp(f) and πlen gg ∈ RightComp(f), then
LPoint(L̃(g), π1g, πlen gg, L̃(f)) 6= SE-corner L̃(f).

(57) Let f be a rectangular special circular sequence and p be a point of E2
T.

If W-bound L̃(f) > p1 or p1 > E-bound L̃(f) or S-bound L̃(f) > p2 or
p2 > N-bound L̃(f), then p ∈ LeftComp(f).

(58) For every clockwise oriented non constant standard special circular se-
quence f such that π1f = N-min L̃(f) holds LeftComp(SpStSeq L̃(f)) ⊆
LeftComp(f).

7. In the Area

Next we state a number of propositions:

(59) Let f be a finite sequence of elements of E2
T and p, q be points of E2

T.
Then 〈p, q〉 is in the area of f if and only if 〈p〉 is in the area of f and 〈q〉
is in the area of f .

(60) Let f be a rectangular finite sequence of elements of E2
T and p be a

point of E2
T. Suppose 〈p〉 is in the area of f but p1 = W-bound L̃(f) or

p1 = E-bound L̃(f) or p2 = S-bound L̃(f) or p2 = N-bound L̃(f). Then
p ∈ L̃(f).

(61) Let f be a finite sequence of elements of E2
T, p, q be points of E2

T, and r

be a real number. Suppose 0 ¬ r and r ¬ 1 and 〈p, q〉 is in the area of f .
Then 〈(1− r) · p + r · q〉 is in the area of f .

(62) Let f , g be finite sequences of elements of E2
T. If g is in the area of f and

i ∈ dom g, then 〈πig〉 is in the area of f .

(63) Let f , g be finite sequences of elements of E2
T and p be a point of E2

T. If
g is in the area of f and p ∈ L̃(g), then 〈p〉 is in the area of f .

(64) Let f be a rectangular finite sequence of elements of E2
T and p, q be points

of E2
T. If q /∈ L̃(f) and 〈p, q〉 is in the area of f , then L(p, q)∩ L̃(f) ⊆ {p}.

(65) Let f be a rectangular finite sequence of elements of E2
T and p, q be

points of E2
T. If p ∈ L̃(f) and q /∈ L̃(f) and 〈q〉 is in the area of f , then

L(p, q) ∩ L̃(f) = {p}.
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(66) Let f be a non constant standard special circular sequence. Suppose 1 ¬ i

and i ¬ len the Go-board of f and 1 ¬ j and j ¬ width the Go-board of
f . Then 〈(the Go-board of f)i,j〉 is in the area of f .

(67) Let g be a finite sequence of elements of E2
T and p, q be points of E2

T. If
〈p, q〉 is in the area of g, then 〈12 · (p + q)〉 is in the area of g.

(68) For all finite sequences f , g of elements of E2
T such that g is in the area

of f holds Rev(g) is in the area of f .

(69) Let f , g be finite sequences of elements of E2
T and p be a point of E2

T.
Suppose that

(i) g is in the area of f ,
(ii) 〈p〉 is in the area of f ,
(iii) g is a special sequence, and
(iv) there exists a natural number i such that 1 ¬ i and i + 1 ¬ len g and

p ∈ L(g, i).
Then º g, p is in the area of f .

(70) Let f be a non constant standard special circular sequence and g be a
finite sequence of elements of E2

T. Then g is in the area of f if and only if
g is in the area of SpStSeq L̃(f).

(71) Let f be a rectangular special circular sequence and g be a S-sequence
in R2 . If π1g ∈ LeftComp(f) and πlen gg ∈ RightComp(f), then
¼ LPoint(L̃(g), π1g, πlen gg, L̃(f)), g is in the area of f .

(72) Let f be a non constant standard special circular sequence. Suppose 1 ¬ i

and i < len the Go-board of f and 1 ¬ j and j < width the Go-board of
f . Then Int cell(the Go-board of f , i, j) misses L̃(SpStSeq L̃(f)).
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1. Convex and Internal Metric Spaces

Let V be a non empty metric structure. We say that V is convex if and only
if the condition (Def. 1) is satisfied.

(Def. 1) Let x, y be elements of the carrier of V and r be a real number. Suppose
0 ¬ r and r ¬ 1. Then there exists an element z of the carrier of V such
that ρ(x, z) = r · ρ(x, y) and ρ(z, y) = (1− r) · ρ(x, y).

Let V be a non empty metric structure. We say that V is internal if and
only if the condition (Def. 2) is satisfied.

(Def. 2) Let x, y be elements of the carrier of V and p, q be real numbers. Suppose
p > 0 and q > 0. Then there exists a finite sequence f of elements of the
carrier of V such that

(i) π1f = x,

(ii) πlen ff = y,

(iii) for every natural number i such that 1 ¬ i and i ¬ len f − 1 holds
ρ(πif, πi+1f) < p, and

(iv) for every finite sequence F of elements of R such that len F = len f − 1
and for every natural number i such that 1 ¬ i and i ¬ len F holds
πiF = ρ(πif, πi+1f) holds |ρ(x, y)−∑

F | < q.

One can prove the following proposition

273
c© 1998 University of Białystok

ISSN 1426–2630



274 robert milewski

(1) Let V be a non empty metric space. Suppose V is convex. Let x, y be
elements of the carrier of V and p be a real number. Suppose p > 0. Then
there exists a finite sequence f of elements of the carrier of V such that

(i) π1f = x,

(ii) πlen ff = y,

(iii) for every natural number i such that 1 ¬ i and i ¬ len f − 1 holds
ρ(πif, πi+1f) < p, and

(iv) for every finite sequence F of elements of R such that len F = len f − 1
and for every natural number i such that 1 ¬ i and i ¬ len F holds
πiF = ρ(πif, πi+1f) holds ρ(x, y) =

∑
F.

Let us observe that every non empty metric space which is convex is also
internal.

One can verify that there exists a non empty metric space which is convex.
A Geometry is a Reflexive discernible symmetric triangle internal non empty

metric structure.

2. Isometric Functions

Let V be a non empty metric structure and let f be a map from V into V .
We say that f is isometric if and only if:

(Def. 3) rng f = the carrier of V and for all elements x, y of the carrier of V

holds ρ(x, y) = ρ(f(x), f(y)).
Let V be a non empty metric structure. The functor ISOM V yields a set

and is defined as follows:

(Def. 4) For every set x holds x ∈ ISOM V iff there exists a map f from V into
V such that f = x and f is isometric.

Let V be a non empty metric structure. Then ISOM V is a subset of (the
carrier of V )the carrier of V .

One can prove the following proposition

(2) Let V be a discernible Reflexive non empty metric structure and f be a
map from V into V . If f is isometric, then f is one-to-one.

Let V be a discernible Reflexive non empty metric structure. One can check
that every map from V into V which is isometric is also one-to-one.

Let V be a non empty metric structure. Observe that there exists a map
from V into V which is isometric.

The following three propositions are true:

(3) Let V be a discernible Reflexive non empty metric structure and f be
an isometric map from V into V . Then f−1 is isometric.
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(4) For every non empty metric structure V and for all isometric maps f , g

from V into V holds f · g is isometric.

(5) For every non empty metric structure V holds idV is isometric.

Let V be a non empty metric structure. Note that ISOM V is non empty.

3. Real Linear-Metric Spaces

We introduce RLSMetrStruct which are extensions of RLS structure and
metric structure and are systems
〈 a carrier, a distance, a zero, an addition, an external multiplication 〉,

where the carrier is a set, the distance is a function from [: the carrier, the carrier :]
into R, the zero is an element of the carrier, the addition is a binary operation on
the carrier, and the external multiplication is a function from [:R, the carrier :]
into the carrier.

One can verify that there exists a RLSMetrStruct which is non empty and
strict.

Let X be a non empty set, let F be a function from [:X, X :] into R, let O

be an element of X, let B be a binary operation on X, and let G be a function
from [:R, X :] into X. One can verify that 〈X,F, O,B,G〉 is non empty.

Let V be a non empty RLSMetrStruct. We say that V is homogeneous if
and only if:

(Def. 5) For every real number r and for all elements v, w of the carrier of V

holds ρ(r · v, r · w) = |r| · ρ(v, w).
Let V be a non empty RLSMetrStruct. We say that V is translatible if and

only if:

(Def. 6) For all elements u, w, v of the carrier of V holds ρ(v, w) = ρ(v+u, w+u).
Let V be a non empty RLSMetrStruct and let v be an element of the carrier

of V . The functor Norm v yielding a real number is defined as follows:

(Def. 7) Norm v = ρ(0V , v).
Let us note that there exists a non empty RLSMetrStruct which is strict,

Abelian, add-associative, right zeroed, right complementable, real linear space-
like, Reflexive, discernible, symmetric, triangle, homogeneous, and translatible.

A RealLinearMetrSpace is an Abelian add-associative right zeroed right com-
plementable real linear space-like Reflexive discernible symmetric triangle ho-
mogeneous translatible non empty RLSMetrStruct.

We now state three propositions:

(6) Let V be a homogeneous Abelian add-associative right zeroed right com-
plementable real linear space-like non empty RLSMetrStruct, r be a real
number, and v be an element of the carrier of V . Then Norm(r · v) =
|r| ·Norm v.
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(7) Let V be a translatible Abelian add-associative right zeroed right com-
plementable triangle non empty RLSMetrStruct and v, w be elements of
the carrier of V . Then Norm(v + w) ¬ Norm v + Norm w.

(8) Let V be a translatible add-associative right zeroed right complementa-
ble non empty RLSMetrStruct and v, w be elements of the carrier of V .
Then ρ(v, w) = Norm(w − v).

Let n be a natural number. The functor RLMSpace n yielding a strict Real-
LinearMetrSpace is defined by the conditions (Def. 8).

(Def. 8)(i) The carrier of RLMSpace n = Rn,

(ii) the distance of RLMSpace n = ρn,

(iii) the zero of RLMSpace n = 〈0, . . . , 0︸ ︷︷ ︸
n

〉,

(iv) for all elements x, y of Rn holds (the addition of RLMSpace n)(x,

y) = x + y, and
(v) for every element x of Rn and for every element r of R holds (the

external multiplication of RLMSpace n)(r, x) = r · x.

Next we state the proposition

(9) For every natural number n and for every isometric map f from
RLMSpace n into RLMSpace n holds rng f = Rn.

4. Groups of Isometric Functions

Let n be a natural number. The functor IsomGroup n yielding a strict gro-
upoid is defined by the conditions (Def. 9).

(Def. 9)(i) The carrier of IsomGroup n = ISOM RLMSpace n, and
(ii) for all functions f , g such that f ∈ ISOM RLMSpace n and g ∈

ISOM RLMSpace n holds (the multiplication of IsomGroup n)(f, g) = f ·g.

Let n be a natural number. Note that IsomGroup n is non empty.
Let n be a natural number. Note that IsomGroup n is associative and group-

like.
The following two propositions are true:

(10) For every natural number n holds 1IsomGroup n = idRLMSpace n.

(11) Let n be a natural number, f be an element of IsomGroup n, and g be
a map from RLMSpace n into RLMSpace n. If f = g, then f−1 = g−1.

Let n be a natural number and let G be a subgroup of IsomGroup n.

The functor SubIsomGroupRel G yielding a binary relation on the carrier of
RLMSpace n is defined by the condition (Def. 10).
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(Def. 10) Let A, B be elements of RLMSpace n. Then 〈〈A, B〉〉 ∈ SubIsomGroupRel G
if and only if there exists a function f such that f ∈ the carrier of G and
f(A) = B.

Let n be a natural number and let G be a subgroup of IsomGroup n. Observe
that SubIsomGroupRel G is equivalence relation-like.
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1. Preliminaries

Let S be a finite 1-sorted structure. One can verify that the carrier of S is
finite.

Let S be a trivial 1-sorted structure. One can check that the carrier of S is
trivial.

One can check that every set which is trivial is also finite.
One can verify that every 1-sorted structure which is trivial is also finite.
Let us mention that every 1-sorted structure which is non trivial is also non

empty.
One can check the following observations:

∗ there exists a 1-sorted structure which is strict, non empty, and trivial,

∗ there exists a relational structure which is strict, non empty, and trivial,
and

∗ there exists a FR-structure which is strict, non empty, and trivial.

We now state the proposition

(1) For every T1 non empty topological space T holds every finite subset of
T is closed.

1This work has been supported by KBN Grant 8 T11C 018 12.
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Let T be a compact topological structure. Observe that ΩT is compact.

Let us observe that there exists a topological space which is strict, non
empty, and trivial.

Let us mention that every non empty topological space which is finite and
T1 is also discrete.

Let us observe that every topological space which is finite is also compact.

One can prove the following propositions:

(2) Every discrete non empty topological space is a T4 space.

(3) Every discrete non empty topological space is a T3 space.

(4) Every discrete non empty topological space is a T2 space.

(5) Every discrete non empty topological space is a T1 space.

One can check that every non empty topological space which is T4 and T1 is
also T3.

Let us observe that every non empty topological space which is T3 and T1 is
also T2.

Let us note that every topological space which is T2 is also T1.

One can check that every topological space which is T1 is also T0.

Next we state three propositions:

(6) Let S be a reflexive relational structure, T be a reflexive transitive rela-
tional structure, f be a map from S into T , and X be a subset of S. Then
↓(f◦X) ⊆ ↓(f◦↓X).

(7) Let S be a reflexive relational structure, T be a reflexive transitive rela-
tional structure, f be a map from S into T , and X be a subset of S. If f

is monotone, then ↓(f◦X) = ↓(f◦↓X).

(8) For every non empty poset N holds IdsMap(N) is one-to-one.

One can prove the following proposition

(9) For every finite lattice N holds SupMap(N) is one-to-one.

We now state three propositions:

(10) For every finite lattice N holds N and 〈Ids(N),⊆〉 are isomorphic.

(11) Let N be a complete non empty poset, x be an element of N , and X be
a non empty subset of N . Then x u¤ preserves inf of X.

(12) For every complete non empty poset N and for every element x of N

holds x u¤ is meet-preserving.
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2. On the Basis of Topological Spaces

Next we state several propositions:

(13) Let T be an anti-discrete non empty topological structure and p be a
point of T . Then {the carrier of T} is a basis of p.

(14) Let T be an anti-discrete non empty topological structure, p be a point
of T , and D be a basis of p. Then D = {the carrier of T}.

(15) Let T be a non empty topological space, P be a basis of T , and p be a
point of T . Then {A; A ranges over subsets of T : A ∈ P ∧ p ∈ A} is a
basis of p.

(16) Let T be a non empty topological structure, A be a subset of T , and p

be a point of T . Then p ∈ A if and only if for every basis K of p and for
every subset Q of T such that Q ∈ K holds A ∩Q 6= ∅.

(17) Let T be a non empty topological structure, A be a subset of T , and p

be a point of T . Then p ∈ A if and only if there exists a basis K of p such
that for every subset Q of T such that Q ∈ K holds A ∩Q 6= ∅.

Let T be a topological structure and let p be a point of T . A family of subsets
of T is said to be a generalized basis of p if:

(Def. 1) For every subset A of T such that p ∈ Int A there exists a subset P of T

such that P ∈ it and p ∈ Int P and P ⊆ A.

Let T be a non empty topological space and let p be a point of T . Let us note
that the generalized basis of p can be characterized by the following (equivalent)
condition:

(Def. 2) For every neighbourhood A of p there exists a neighbourhood P of p

such that P ∈ it and P ⊆ A.

The following propositions are true:

(18) Let T be a topological structure and p be a point of T . Then
2the carrier of T is a generalized basis of p.

(19) For every non empty topological space T and for every point p of T holds
every generalized basis of p is non empty.

Let T be a topological structure and let p be a point of T . Observe that
there exists a generalized basis of p which is non empty.

Let T be a topological structure, let p be a point of T , and let P be a
generalized basis of p. We say that P is correct if and only if:

(Def. 3) For every subset A of T holds A ∈ P iff p ∈ Int A.

Let T be a topological structure and let p be a point of T . Note that there
exists a generalized basis of p which is correct.

One can prove the following proposition
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(20) Let T be a topological structure and p be a point of T . Then {A; A
ranges over subsets of T : p ∈ Int A} is a correct generalized basis of p.

Let T be a non empty topological space and let p be a point of T . Observe
that there exists a generalized basis of p which is non empty and correct.

One can prove the following three propositions:

(21) Let T be an anti-discrete non empty topological structure and p be a
point of T . Then {the carrier of T} is a correct generalized basis of p.

(22) Let T be an anti-discrete non empty topological structure, p be a point
of T , and D be a correct generalized basis of p. Then D = {the carrier of
T}.

(23) For every non empty topological space T and for every point p of T holds
every basis of p is a generalized basis of p.

Let T be a topological structure. A family of subsets of T is said to be a
generalized basis of T if:

(Def. 4) For every point p of T holds it is a generalized basis of p.

Next we state two propositions:

(24) For every topological structure T holds 2the carrier of T is a generalized
basis of T .

(25) For every non empty topological space T holds every generalized basis
of T is non empty.

Let T be a topological structure. Note that there exists a generalized basis
of T which is non empty.

Next we state two propositions:

(26) For every non empty topological space T and for every generalized basis
P of T holds the topology of T ⊆ UniCl(Int P ).

(27) For every topological space T holds every basis of T is a generalized basis
of T .

Let T be a non empty topological space-like FR-structure. We say that T is
topological semilattice if and only if:

(Def. 5) For every map f from [:T, (T qua topological space) :] into T such that
f = uT holds f is continuous.

Let us note that every non empty topological space-like FR-structure which
is reflexive and trivial is also topological semilattice.

Let us mention that there exists a FR-structure which is reflexive, trivial,
non empty, and topological space-like.

We now state the proposition

(28) Let T be a topological semilattice non empty topological space-like FR-
structure and x be an element of T . Then x u¤ is continuous.
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1. Preliminaries

The following proposition is true

(1) For every non empty poset L and for every element x of L holds
compactbelow(x) = ↓↓x ∩ the carrier of CompactSublatt(L).

Let L be a non empty reflexive transitive relational structure and let X be
a subset of 〈Ids(L),⊆〉. Then

⋃
X is a subset of L.

The following propositions are true:

(2) For every non empty relational structure L and for all subsets X, Y of
the carrier of L such that X ⊆ Y holds finsups(X) ⊆ finsups(Y ).

(3) Let L be a non empty transitive relational structure, S be a sups-
inheriting non empty full relational substructure of L, X be a subset of
the carrier of L, and Y be a subset of the carrier of S. If X = Y, then
finsups(X) ⊆ finsups(Y ).

(4) Let L be a complete transitive antisymmetric non empty relational struc-
ture, S be a sups-inheriting non empty full relational substructure of L,
X be a subset of the carrier of L, and Y be a subset of the carrier of S. If
X = Y, then finsups(X) = finsups(Y ).

1This work has been supported by KBN Grant 8 T11C 018 12.
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(5) Let L be a complete sup-semilattice and S be a join-inheriting non empty
full relational substructure of L. Suppose ⊥L ∈ the carrier of S. Let X

be a subset of L and Y be a subset of S. If X = Y, then finsups(Y ) ⊆
finsups(X).

(6) For every lower-bounded sup-semilattice L and for every subset X of
〈Ids(L),⊆〉 holds sup X = ↓finsups(

⋃
X).

(7) For every reflexive transitive relational structure L and for every subset
X of L holds ↓↓X = ↓X.

(8) For every reflexive transitive relational structure L and for every subset
X of L holds ↑↑X = ↑X.

(9) For every non empty reflexive transitive relational structure L and for
every element x of L holds ↓↓x = ↓x.

(10) For every non empty reflexive transitive relational structure L and for
every element x of L holds ↑↑x = ↑x.

(11) Let L be a non empty relational structure, S be a non empty relational
substructure of L, X be a subset of L, and Y be a subset of S. If X = Y,

then ↓Y ⊆ ↓X.

(12) Let L be a non empty relational structure, S be a non empty relational
substructure of L, X be a subset of L, and Y be a subset of S. If X = Y,

then ↑Y ⊆ ↑X.

(13) Let L be a non empty relational structure, S be a non empty relational
substructure of L, x be an element of L, and y be an element of S. If
x = y, then ↓y ⊆ ↓x.

(14) Let L be a non empty relational structure, S be a non empty relational
substructure of L, x be an element of L, and y be an element of S. If
x = y, then ↑y ⊆ ↑x.

2. Relational Subsets

Let L be a non empty relational structure and let S be a subset of L. We
say that S is meet-closed if and only if:

(Def. 1) sub(S) is meet-inheriting.

Let L be a non empty relational structure and let S be a subset of L. We
say that S is join-closed if and only if:

(Def. 2) sub(S) is join-inheriting.

Let L be a non empty relational structure and let S be a subset of L. We
say that S is infs-closed if and only if:

(Def. 3) sub(S) is infs-inheriting.
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Let L be a non empty relational structure and let S be a subset of L. We
say that S is sups-closed if and only if:

(Def. 4) sub(S) is sups-inheriting.

Let L be a non empty relational structure. Observe that every subset of L

which is infs-closed is also meet-closed and every subset of L which is sups-closed
is also join-closed.

Let L be a non empty relational structure. One can verify that there exists
a subset of L which is infs-closed, sups-closed, and non empty.

One can prove the following propositions:

(15) Let L be a non empty relational structure and S be a subset of L. Then
S is meet-closed if and only if for all elements x, y of L such that x ∈ S

and y ∈ S and inf {x, y} exists in L holds inf{x, y} ∈ S.

(16) Let L be a non empty relational structure and S be a subset of L. Then
S is join-closed if and only if for all elements x, y of L such that x ∈ S

and y ∈ S and sup {x, y} exists in L holds sup{x, y} ∈ S.

(17) Let L be an antisymmetric relational structure with g.l.b.’s and S be a
subset of L. Then S is meet-closed if and only if for all elements x, y of L

such that x ∈ S and y ∈ S holds inf{x, y} ∈ S.

(18) Let L be an antisymmetric relational structure with l.u.b.’s and S be a
subset of L. Then S is join-closed if and only if for all elements x, y of L

such that x ∈ S and y ∈ S holds sup{x, y} ∈ S.

(19) Let L be a non empty relational structure and S be a subset of L. Then
S is infs-closed if and only if for every subset X of S such that inf X exists
in L holds d−eLX ∈ S.

(20) Let L be a non empty relational structure and S be a subset of L. Then
S is sups-closed if and only if for every subset X of S such that sup X

exists in L holds
⊔

L X ∈ S.

(21) Let L be a non empty transitive relational structure, S be an infs-closed
non empty subset of L, and X be a subset of S. If inf X exists in L, then
inf X exists in sub(S) and d−esub(S)X = d−eLX.

(22) Let L be a non empty transitive relational structure, S be a sups-closed
non empty subset of L, and X be a subset of S. If sup X exists in L, then
sup X exists in sub(S) and

⊔
sub(S) X =

⊔
L X.

(23) Let L be a non empty transitive relational structure, S be a meet-closed
non empty subset of L, and x, y be elements of S. Suppose inf {x, y} exists
in L. Then inf {x, y} exists in sub(S) and d−esub(S){x, y} = d−eL{x, y}.

(24) Let L be a non empty transitive relational structure, S be a join-closed
non empty subset of L, and x, y be elements of S. Suppose sup {x, y} exists
in L. Then sup {x, y} exists in sub(S) and

⊔
sub(S){x, y} =

⊔
L{x, y}.
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(25) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and S be a non empty meet-closed subset of L. Then sub(S) has g.l.b.’s.

(26) Let L be an antisymmetric transitive relational structure with l.u.b.’s
and S be a non empty join-closed subset of L. Then sub(S) has l.u.b.’s.

Let L be an antisymmetric transitive relational structure with g.l.b.’s and
let S be a non empty meet-closed subset of L. Observe that sub(S) has g.l.b.’s.

Let L be an antisymmetric transitive relational structure with l.u.b.’s and
let S be a non empty join-closed subset of L. Observe that sub(S) has l.u.b.’s.

The following four propositions are true:

(27) Let L be a complete transitive antisymmetric non empty relational struc-
ture, S be an infs-closed non empty subset of L, and X be a subset of S.
Then d−esub(S)X = d−eLX.

(28) Let L be a complete transitive antisymmetric non empty relational struc-
ture, S be a sups-closed non empty subset of L, and X be a subset of S.
Then

⊔
sub(S) X =

⊔
L X.

(29) For every semilattice L holds every meet-closed subset of L is filtered.

(30) For every sup-semilattice L holds every join-closed subset of L is directed.

Let L be a semilattice. Observe that every subset of L which is meet-closed
is also filtered.

Let L be a sup-semilattice. One can check that every subset of L which is
join-closed is also directed.

The following propositions are true:

(31) Let L be a semilattice and S be an upper non empty subset of L. Then
S is a filter of L if and only if S is meet-closed.

(32) Let L be a sup-semilattice and S be a lower non empty subset of L.
Then S is an ideal of L if and only if S is join-closed.

(33) For every non empty relational structure L and for all join-closed subsets
S1, S2 of L holds S1 ∩ S2 is join-closed.

(34) For every non empty relational structure L and for all meet-closed sub-
sets S1, S2 of L holds S1 ∩ S2 is meet-closed.

(35) For every sup-semilattice L and for every element x of the carrier of L

holds ↓x is join-closed.

(36) For every semilattice L and for every element x of the carrier of L holds
↓x is meet-closed.

(37) For every sup-semilattice L and for every element x of the carrier of L

holds ↑x is join-closed.

(38) For every semilattice L and for every element x of the carrier of L holds
↑x is meet-closed.
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Let L be a sup-semilattice and let x be an element of L. Observe that ↓x is
join-closed and ↑x is join-closed.

Let L be a semilattice and let x be an element of L. Note that ↓x is meet-
closed and ↑x is meet-closed.

Next we state three propositions:

(39) For every sup-semilattice L and for every element x of L holds ↓↓x is
join-closed.

(40) For every semilattice L and for every element x of L holds ↓↓x is meet-
closed.

(41) For every sup-semilattice L and for every element x of L holds ↑↑x is
join-closed.

Let L be a sup-semilattice and let x be an element of L. Note that ↓↓x is
join-closed and ↑↑x is join-closed.

Let L be a semilattice and let x be an element of L. Observe that ↓↓x is
meet-closed.

3. About Bases of Continuous Lattices

Let T be a topological structure. The functor weight T yields a cardinal
number and is defined as follows:

(Def. 5) weight T =
⋂{B : B ranges over bases of T}.

Let T be a topological structure. We say that T is second-countable if and
only if:

(Def. 6) weight T ⊆ ω.

Let L be a continuous sup-semilattice. A subset of L is called a CLbasis of
L if:

(Def. 7) It is join-closed and for every element x of L holds x = sup(↓↓x ∩ it).
Let L be a non empty relational structure and let S be a subset of L. We

say that S has bottom if and only if:

(Def. 8) ⊥L ∈ S.

Let L be a non empty relational structure and let S be a subset of L. We
say that S has top if and only if:

(Def. 9) >L ∈ S.

Let L be a non empty relational structure. Note that every subset of L which
has bottom is non empty.

Let L be a non empty relational structure. Observe that every subset of L

which has top is non empty.
Let L be a non empty relational structure. Note that there exists a subset

of L which has bottom and there exists a subset of L which has top.



290 robert milewski

Let L be a continuous sup-semilattice. One can verify that there exists a
CLbasis of L which has bottom and there exists a CLbasis of L which has top.

One can prove the following proposition

(42) Let L be a lower-bounded antisymmetric non empty relational structure
and S be a subset of L with bottom. Then sub(S) is lower-bounded.

Let L be a lower-bounded antisymmetric non empty relational structure and
let S be a subset of L with bottom. One can verify that sub(S) is lower-bounded.

Let L be a continuous sup-semilattice. Observe that every CLbasis of L is
join-closed.

One can check that there exists a continuous lattice which is bounded and
non trivial.

Let L be a lower-bounded non trivial continuous sup-semilattice. One can
verify that every CLbasis of L is non empty.

One can prove the following propositions:

(43) For every sup-semilattice L holds the carrier of CompactSublatt(L) is a
join-closed subset of L.

(44) For every algebraic lower-bounded lattice L holds the carrier of
CompactSublatt(L) is a CLbasis of L with bottom.

(45) Let L be a continuous lower-bounded sup-semilattice. If the carrier of
CompactSublatt(L) is a CLbasis of L, then L is algebraic.

(46) Let L be a continuous lower-bounded lattice and B be a join-closed
subset of L. Then B is a CLbasis of L if and only if for all elements x, y

of L such that y 6¬ x there exists an element b of L such that b ∈ B and
b 6¬ x and b� y.

(47) Let L be a continuous lower-bounded lattice and B be a join-closed
subset of L. Suppose ⊥L ∈ B. Then B is a CLbasis of L if and only if for
all elements x, y of L such that x� y there exists an element b of L such
that b ∈ B and x ¬ b and b� y.

(48) Let L be a continuous lower-bounded lattice and B be a join-closed
subset of L. Suppose ⊥L ∈ B. Then B is a CLbasis of L if and only if the
following conditions are satisfied:

(i) the carrier of CompactSublatt(L) ⊆ B, and
(ii) for all elements x, y of L such that y 6¬ x there exists an element b of

L such that b ∈ B and b 6¬ x and b ¬ y.

(49) Let L be a continuous lower-bounded lattice and B be a join-closed
subset of L. Suppose ⊥L ∈ B. Then B is a CLbasis of L if and only if for
all elements x, y of L such that y 6¬ x there exists an element b of L such
that b ∈ B and b 6¬ x and b ¬ y.

(50) Let L be a lower-bounded sup-semilattice and S be a non empty full
relational substructure of L. Suppose ⊥L ∈ the carrier of S and the carrier
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of S is a join-closed subset of L. Let x be an element of L. Then ↓↓x ∩ the
carrier of S is an ideal of S.

Let L be a non empty reflexive transitive relational structure and let S be
a non empty full relational substructure of L. The functor supMap S yielding a
map from 〈Ids(S),⊆〉 into L is defined by:

(Def. 10) For every ideal I of S holds (supMap S)(I) =
⊔

L I.

Let L be a non empty reflexive transitive relational structure and let S be a
non empty full relational substructure of L. The functor idsMap S yields a map
from 〈Ids(S),⊆〉 into 〈Ids(L),⊆〉 and is defined by:

(Def. 11) For every ideal I of S there exists a subset J of L such that I = J and
(idsMap S)(I) = ↓J.

Let L be a non empty relational structure and let B be a non empty subset
of the carrier of L. Observe that sub(B) is non empty.

Let L be a reflexive relational structure and let B be a subset of the carrier
of L. Note that sub(B) is reflexive.

Let L be a transitive relational structure and let B be a subset of the carrier
of L. Note that sub(B) is transitive.

Let L be an antisymmetric relational structure and let B be a subset of the
carrier of L. Observe that sub(B) is antisymmetric.

Let L be a lower-bounded continuous sup-semilattice and let B be a CLba-
sis of L with bottom. The functor baseMap B yielding a map from L into
〈Ids(sub(B)),⊆〉 is defined as follows:

(Def. 12) For every element x of L holds (baseMap B)(x) = ↓↓x ∩B.

We now state a number of propositions:

(51) Let L be a non empty reflexive transitive relational structure and S be a
non empty full relational substructure of L. Then dom supMap S = Ids(S)
and rng supMap S is a subset of L.

(52) Let L be a non empty reflexive transitive relational structure, S be a
non empty full relational substructure of L, and x be a set. Then x ∈
dom supMap S if and only if x is an ideal of S.

(53) Let L be a non empty reflexive transitive relational structure and S be a
non empty full relational substructure of L. Then dom idsMap S = Ids(S)
and rng idsMap S is a subset of Ids(L).

(54) Let L be a non empty reflexive transitive relational structure, S be a
non empty full relational substructure of L, and x be a set. Then x ∈
dom idsMap S if and only if x is an ideal of S.

(55) Let L be a non empty reflexive transitive relational structure, S be a non
empty full relational substructure of L, and x be a set. If x ∈ rng idsMap S,

then x is an ideal of L.
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(56) Let L be a lower-bounded continuous sup-semilattice and B be a CLba-
sis of L with bottom. Then dom baseMap B = the carrier of L and
rng baseMap B is a subset of Ids(sub(B)).

(57) Let L be a lower-bounded continuous sup-semilattice, B be a CLbasis of
L with bottom, and x be a set. If x ∈ rng baseMap B, then x is an ideal
of sub(B).

(58) For every up-complete non empty poset L and for every non empty full
relational substructure S of L holds supMap S is monotone.

(59) Let L be a non empty reflexive transitive relational structure and S be a
non empty full relational substructure of L. Then idsMap S is monotone.

(60) For every lower-bounded continuous sup-semilattice L and for every
CLbasis B of L with bottom holds baseMap B is monotone.

Let L be an up-complete non empty poset and let S be a non empty full
relational substructure of L. Observe that supMap S is monotone.

Let L be a non empty reflexive transitive relational structure and let S be
a non empty full relational substructure of L. One can check that idsMap S is
monotone.

Let L be a lower-bounded continuous sup-semilattice and let B be a CLbasis
of L with bottom. One can check that baseMap B is monotone.

The following propositions are true:

(61) Let L be a lower-bounded continuous sup-semilattice and B be a CLbasis
of L with bottom. Then idsMap sub(B) is sups-preserving.

(62) For every up-complete non empty poset L and for every non empty full
relational substructure S of L holds supMap S = SupMap(L) · idsMap S.

(63) For every lower-bounded continuous sup-semilattice L and for every
CLbasis B of L with bottom holds 〈〈 supMap sub(B), baseMap B〉〉 is Ga-
lois.

(64) Let L be a lower-bounded continuous sup-semilattice and B be a CLbasis
of L with bottom. Then supMap sub(B) is upper adjoint and baseMap B

is lower adjoint.

(65) Let L be a lower-bounded continuous sup-semilattice and B be a CLbasis
of L with bottom. Then rng supMap sub(B) = the carrier of L.

(66) Let L be a lower-bounded continuous sup-semilattice and B be a CLba-
sis of L with bottom. Then supMap sub(B) is infs-preserving and sups-
preserving.

(67) Let L be a lower-bounded continuous sup-semilattice and B be a CLbasis
of L with bottom. Then baseMap B is sups-preserving.

Let L be a lower-bounded continuous sup-semilattice and let B be a CLbasis
of L with bottom. One can verify that supMap sub(B) is infs-preserving and
sups-preserving and baseMap B is sups-preserving.
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One can prove the following propositions:

(69)2 Let L be a lower-bounded continuous sup-semilattice and B be a CLba-
sis of L with bottom. Then the carrier of CompactSublatt(〈Ids(sub(B)),⊆
〉) = {↓b : b ranges over elements of sub(B)}.

(70) Let L be a lower-bounded continuous sup-semilattice and B be a CLbasis
of L with bottom. Then CompactSublatt(〈Ids(sub(B)),⊆〉) and sub(B)
are isomorphic.

(71) Let L be a continuous lower-bounded lattice and B be a CLbasis of L

with bottom. Suppose that for every CLbasis B1 of L with bottom holds
B ⊆ B1. Let J be an element of 〈Ids(sub(B)),⊆〉. Then J = ↓↓⊔

L J ∩B.

(72) Let L be a continuous lower-bounded lattice. Then L is algebraic if and
only if the following conditions are satisfied:

(i) the carrier of CompactSublatt(L) is a CLbasis of L with bottom, and
(ii) for every CLbasis B of L with bottom holds the carrier of

CompactSublatt(L) ⊆ B.

(73) Let L be a continuous lower-bounded lattice. Then L is algebraic if and
only if there exists a CLbasis B of L with bottom such that for every
CLbasis B1 of L with bottom holds B ⊆ B1.
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The terminology and notation used in this paper have been introduced in the
following articles: [6], [11], [2], [3], [9], [4], [5], [7], [1], [10], and [8].

For simplicity, we follow the rules: i, k are natural numbers, I is an element
of Z8, i1 is an element of Instr-LocSCM, d1 is an element of Data-LocSCM, and
S is a non empty 1-sorted structure.

Let us observe that every non empty loop structure which is trivial is also
Abelian, add-associative, right zeroed, and right complementable and every non
empty double loop structure which is trivial is also right unital and right-
distributive.

Let us note that every element of Data-LocSCM is natural.
One can check the following observations:

∗ Data-LocSCM is non trivial,

∗ InstrSCM is non trivial, and

∗ Instr-LocSCM is non trivial.

Let S be a non empty 1-sorted structure. The functor InstrSCM(S) yields
a subset of [:Z8, (

⋃{the carrier of S} ∪ N)∗ :] and is defined by the condition
(Def. 1).

(Def. 1) InstrSCM(S) = {〈〈0, ε〉〉}∪{〈〈I, 〈a, b〉〉〉; I ranges over elements of Z8, a ran-
ges over elements of Data-LocSCM, b ranges over elements of Data-LocSCM:
I ∈ {1, 2, 3, 4}}∪ {〈〈6, 〈i〉〉〉 : i ranges over elements of Instr-LocSCM}∪ {〈〈7,

〈i, a〉〉〉 : i ranges over elements of Instr-LocSCM, a ranges over elements of
Data-LocSCM} ∪ {〈〈5, 〈a, r〉〉〉 : a ranges over elements of Data-LocSCM, r

ranges over elements of the carrier of S}.
Let S be a non empty 1-sorted structure. Note that InstrSCM(S) is non

trivial.
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Let S be a non empty 1-sorted structure. We say that S is good if and only
if:

(Def. 2) The carrier of S 6= Instr-LocSCM and the carrier of S 6= InstrSCM(S).
One can verify that every non empty 1-sorted structure which is trivial is

also good.
Let us observe that there exists a 1-sorted structure which is strict, trivial,

and non empty.
Let us observe that there exists a double loop structure which is strict,

trivial, and non empty.
One can check that there exists a ring which is strict and trivial.
In the sequel G denotes a good non empty 1-sorted structure.
Let S be a non empty 1-sorted structure. The functor OKSCM(S) yielding a

function from N into {the carrier of S}∪{InstrSCM(S), Instr-LocSCM} is defined
as follows:

(Def. 3) (OKSCM(S))(0) = Instr-LocSCM and for every natural number k holds
(OKSCM(S))(2 · k + 1) = the carrier of S and (OKSCM(S))(2 · k + 2) =
InstrSCM(S).

Let S be a non empty 1-sorted structure. An SCM-state over S is an element
of

∏
OKSCM(S).

Next we state several propositions:

(1) Instr-LocSCM 6= InstrSCM(S).
(2) (OKSCM(G))(i) = Instr-LocSCM iff i = 0.

(3) (OKSCM(G))(i) = the carrier of G iff there exists k such that i = 2·k+1.

(4) (OKSCM(G))(i) = InstrSCM(G) iff there exists k such that i = 2 · k + 2.

(5) (OKSCM(G))(d1) = the carrier of G.

(6) (OKSCM(G))(i1) = InstrSCM(G).
(7) π0

∏
OKSCM(S) = Instr-LocSCM.

(8) πd1

∏
OKSCM(G) = the carrier of G.

(9) πi1

∏
OKSCM(G) = InstrSCM(G).

Let S be a non empty 1-sorted structure and let s be an SCM-state over S.
The functor ICs yielding an element of Instr-LocSCM is defined by:

(Def. 4) ICs = s(0).
Let R be a good non empty 1-sorted structure, let s be an SCM-state over

R, and let u be an element of Instr-LocSCM. The functor ChgSCM(s, u) yielding
an SCM-state over R is defined by:

(Def. 5) ChgSCM(s, u) = s+·(0 7−→. u).
The following three propositions are true:

(10) For every SCM-state s over G and for every element u of Instr-LocSCM

holds (ChgSCM(s, u))(0) = u.
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(11) For every SCM-state s over G and for every element u of Instr-LocSCM

and for every element m1 of Data-LocSCM holds (ChgSCM(s, u))(m1) =
s(m1).

(12) For every SCM-state s over G and for all elements u, v of Instr-LocSCM

holds (ChgSCM(s, u))(v) = s(v).
Let R be a good non empty 1-sorted structure, let s be an SCM-state over

R, let t be an element of Data-LocSCM, and let u be an element of the carrier
of R. The functor ChgSCM(s, t, u) yielding an SCM-state over R is defined as
follows:

(Def. 6) ChgSCM(s, t, u) = s+·(t 7−→. u).
One can prove the following propositions:

(13) Let s be an SCM-state over G, t be an element of Data-LocSCM, and u

be an element of the carrier of G. Then (ChgSCM(s, t, u))(0) = s(0).
(14) Let s be an SCM-state over G, t be an element of Data-LocSCM, and u

be an element of the carrier of G. Then (ChgSCM(s, t, u))(t) = u.

(15) Let s be an SCM-state over G, t be an element of Data-LocSCM, u be
an element of the carrier of G, and m1 be an element of Data-LocSCM. If
m1 6= t, then (ChgSCM(s, t, u))(m1) = s(m1).

(16) Let s be an SCM-state over G, t be an element of Data-LocSCM, u be
an element of the carrier of G, and v be an element of Instr-LocSCM. Then
(ChgSCM(s, t, u))(v) = s(v).

Let R be a good non empty 1-sorted structure, let s be an SCM-state over
R, and let a be an element of Data-LocSCM. Then s(a) is an element of R.

Let S be a non empty 1-sorted structure and let x be an element of
InstrSCM(S). Let us assume that there exist elements m1, m2 of Data-LocSCM

and I such that x = 〈〈I, 〈m1,m2〉〉〉. The functor x address1 yielding an element
of Data-LocSCM is defined by:

(Def. 7) There exists a finite sequence f of elements of Data-LocSCM such that
f = x2 and x address1 = π1f.

The functor x address2 yields an element of Data-LocSCM and is defined by:

(Def. 8) There exists a finite sequence f of elements of Data-LocSCM such that
f = x2 and x address2 = π2f.

One can prove the following proposition

(17) For every element x of InstrSCM(S) and for all elements m1, m2 of
Data-LocSCM such that x = 〈〈I, 〈m1,m2〉〉〉 holds x address1 = m1 and
x address2 = m2.

Let R be a non empty 1-sorted structure and let x be an element of
InstrSCM(R). Let us assume that there exist an element m1 of Instr-LocSCM

and I such that x = 〈〈I, 〈m1〉〉〉. The functor x addressj yielding an element of
Instr-LocSCM is defined as follows:
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(Def. 9) There exists a finite sequence f of elements of Instr-LocSCM such that
f = x2 and x addressj = π1f.

Next we state the proposition

(18) For every element x of InstrSCM(S) and for every element m1 of
Instr-LocSCM such that x = 〈〈I, 〈m1〉〉〉 holds x addressj = m1.

Let S be a non empty 1-sorted structure and let x be an element of
InstrSCM(S). Let us assume that there exist an element m1 of Instr-LocSCM,
an element m2 of Data-LocSCM, and I such that x = 〈〈I, 〈m1,m2〉〉〉. The functor
x addressj yields an element of Instr-LocSCM and is defined as follows:

(Def. 10) There exists an element m1 of Instr-LocSCM and there exists an element
m2 of Data-LocSCM such that 〈m1,m2〉 = x2 and x addressj = π1〈m1,

m2〉.
The functor x addressc yields an element of Data-LocSCM and is defined as
follows:

(Def. 11) There exists an element m1 of Instr-LocSCM and there exists an element
m2 of Data-LocSCM such that 〈m1,m2〉 = x2 and x addressc = π2〈m1,

m2〉.
We now state the proposition

(19) Let x be an element of InstrSCM(S), m1 be an element of Instr-LocSCM,
and m2 be an element of Data-LocSCM. If x = 〈〈I, 〈m1,m2〉〉〉, then
x addressj = m1 and x addressc = m2.

Let S be a non empty 1-sorted structure, let d be an element of Data-LocSCM,
and let s be an element of the carrier of S. Then 〈d, s〉 is a finite sequence of
elements of Data-LocSCM ∪ the carrier of S.

Let S be a non empty 1-sorted structure and let x be an element of
InstrSCM(S). Let us assume that there exist an element m1 of Data-LocSCM,
an element r of the carrier of S, and I such that x = 〈〈I, 〈m1, r〉〉〉. The functor
x const address yields an element of Data-LocSCM and is defined as follows:

(Def. 12) There exists a finite sequence f of elements of Data-LocSCM∪ the carrier
of S such that f = x2 and x const address = π1f.

The functor x const value yields an element of the carrier of S and is defined
by:

(Def. 13) There exists a finite sequence f of elements of Data-LocSCM∪ the carrier
of S such that f = x2 and x const value = π2f.

We now state the proposition

(20) Let x be an element of InstrSCM(S), m1 be an element of Data-LocSCM,
and r be an element of the carrier of S. If x = 〈〈I, 〈m1, r〉〉〉, then
x const address = m1 and x const value = r.

Let R be a good ring, let x be an element of InstrSCM(R), and let s be an
SCM-state over R. The functor Exec-ResSCM(x, s) yields an SCM-state over
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R and is defined by:

(Def. 14) Exec-ResSCM(x, s) =



ChgSCM(ChgSCM(s, x address1, s(x address2)), Next(ICs)), if there
exist elements m1, m2 of Data-LocSCM such that x = 〈〈1, 〈m1,m2〉〉〉,

ChgSCM(ChgSCM(s, x address1, s(x address1) + s(x address2)), Next(ICs)),
if there exist elements m1, m2 of Data-LocSCM such that x = 〈〈2, 〈m1, m2〉〉〉,

ChgSCM(ChgSCM(s, x address1, s(x address1)− s(x address2)), Next(ICs)),
if there exist elements m1, m2 of Data-LocSCM such that x = 〈〈3, 〈m1, m2〉〉〉,

ChgSCM(ChgSCM(s, x address1, s(x address1) · s(x address2)), Next(ICs)),
if there exist elements m1, m2 of Data-LocSCM such that x = 〈〈4, 〈m1, m2〉〉〉,

ChgSCM(s, x addressj), if there exists an element m1 of Instr-LocSCM

such that x = 〈〈6, 〈m1〉〉〉,
ChgSCM(s, (s(x addressc) = 0R → x addressj, Next(ICs))), if there exists

an element m1 of Instr-LocSCM and there exists an element m2

of Data-LocSCM such that x = 〈〈7, 〈m1,m2〉〉〉,
ChgSCM(ChgSCM(s, x const address, x const value), Next(ICs)), if there

exists an element m1 of Data-LocSCM and there exists an element r

of the carrier of R such that x = 〈〈5, 〈m1, r〉〉〉,
s, otherwise.
Let S be a non empty 1-sorted structure, let f be a function from

InstrSCM(S) into (
∏

OKSCM(S))
Q

OKSCM(S), and let x be an element of
InstrSCM(S). One can check that f(x) is function-like and relation-like.

Let R be a good ring. The functor ExecSCM(R) yielding a function from
InstrSCM(R) into (

∏
OKSCM(R))

Q
OKSCM(R) is defined as follows:

(Def. 15) For every element x of InstrSCM(R) and for every SCM-state y over R

holds (ExecSCM(R))(x)(y) = Exec-ResSCM(x, y).
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1. SCM over Ring

In this paper I is an element of Z8, S is a non empty 1-sorted structure, t is
an element of the carrier of S, and x is a set.

Let R be a good ring. The functor SCM(R) yields a strict AMI over {the
carrier of R} and is defined by the conditions (Def. 1).

(Def. 1)(i) The objects of SCM(R) = N,

(ii) the instruction counter of SCM(R) = 0,
(iii) the instruction locations of SCM(R) = Instr-LocSCM,

(iv) the instruction codes of SCM(R) = Z8,

(v) the instructions of SCM(R) = InstrSCM(R),
(vi) the object kind of SCM(R) = OKSCM(R), and
(vii) the execution of SCM(R) = ExecSCM(R).

Let R be a good ring, let s be a state of SCM(R), and let a be an element
of Data-LocSCM. Then s(a) is an element of R.

Let R be a good ring. An object of SCM(R) is called a Data-Location of R

if:

(Def. 2) It ∈ (the objects of SCM(R)) \ (Instr-LocSCM ∪ {0}).
For simplicity, we use the following convention: R is a good ring, r is an

element of the carrier of R, a, b, c, d1, d2 are Data-Location of R, and i1 is an
instruction-location of SCM(R).

Next we state the proposition
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(1) x is a Data-Location of R iff x ∈ Data-LocSCM.

Let R be a good ring, let s be a state of SCM(R), and let a be a Data-
Location of R. Then s(a) is an element of R.

We now state several propositions:

(2) 〈〈0, ε〉〉 ∈ InstrSCM(S).
(3) 〈〈0, ε〉〉 is an instruction of SCM(R).
(4) If x ∈ {1, 2, 3, 4}, then 〈〈x, 〈d1, d2〉〉〉 ∈ InstrSCM(S).
(5) 〈〈5, 〈d1, t〉〉〉 ∈ InstrSCM(S).
(6) 〈〈6, 〈i1〉〉〉 ∈ InstrSCM(S).
(7) 〈〈7, 〈i1, d1〉〉〉 ∈ InstrSCM(S).

Let R be a good ring and let a, b be Data-Location of R. The functor a:=b

yielding an instruction of SCM(R) is defined by:

(Def. 3) a:=b = 〈〈1, 〈a, b〉〉〉.
The functor AddTo(a, b) yielding an instruction of SCM(R) is defined by:

(Def. 4) AddTo(a, b) = 〈〈2, 〈a, b〉〉〉.
The functor SubFrom(a, b) yielding an instruction of SCM(R) is defined by:

(Def. 5) SubFrom(a, b) = 〈〈3, 〈a, b〉〉〉.
The functor MultBy(a, b) yielding an instruction of SCM(R) is defined as fol-
lows:

(Def. 6) MultBy(a, b) = 〈〈4, 〈a, b〉〉〉.
Let R be a good ring, let a be a Data-Location of R, and let r be an element

of the carrier of R. The functor a:=r yields an instruction of SCM(R) and is
defined by:

(Def. 7) a:=r = 〈〈5, 〈a, r〉〉〉.
Let R be a good ring and let l be an instruction-location of SCM(R). The

functor goto l yielding an instruction of SCM(R) is defined by:

(Def. 8) goto l = 〈〈6, 〈l〉〉〉.
Let R be a good ring, let l be an instruction-location of SCM(R), and let

a be a Data-Location of R. The functor if a = 0 goto l yielding an instruction
of SCM(R) is defined as follows:

(Def. 9) if a = 0 goto l = 〈〈7, 〈l, a〉〉〉.
One can prove the following proposition

(8) Let I be a set. Then I is an instruction of SCM(R) if and only if one
of the following conditions is satisfied:

(i) I = 〈〈0, ε〉〉, or
(ii) there exist a, b such that I = a:=b, or
(iii) there exist a, b such that I = AddTo(a, b), or
(iv) there exist a, b such that I = SubFrom(a, b), or
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(v) there exist a, b such that I = MultBy(a, b), or
(vi) there exists i1 such that I = goto i1, or
(vii) there exist a, i1 such that I = if a = 0 goto i1, or
(viii) there exist a, r such that I = a:=r.

In the sequel s denotes a state of SCM(R).
Let us consider R. Observe that SCM(R) is von Neumann.
The following two propositions are true:

(9) ICSCM(R) = 0.

(10) For every SCM-state S over R such that S = s holds ICs = ICS .

Let R be a good ring and let i1 be an instruction-location of SCM(R). The
functor Next(i1) yields an instruction-location of SCM(R) and is defined by:

(Def. 10) There exists an element m1 of Instr-LocSCM such that m1 = i1 and
Next(i1) = Next(m1).

The following propositions are true:

(11) For every instruction-location i1 of SCM(R) and for every element m1

of Instr-LocSCM such that m1 = i1 holds Next(m1) = Next(i1).
(12) Let I be an instruction of SCM(R) and i be an element of InstrSCM(R).

If i = I, then for every SCM-state S over R such that S = s holds
Exec(I, s) = Exec-ResSCM(i, S).

2. Users Guide

Next we state several propositions:

(13) (Exec(a:=b, s))(ICSCM(R)) = Next(ICs) and (Exec(a:=b, s))(a) = s(b)
and for every c such that c 6= a holds (Exec(a:=b, s))(c) = s(c).

(14) (Exec(AddTo(a, b), s))(ICSCM(R)) = Next(ICs) and
(Exec(AddTo(a, b), s))(a) = s(a) + s(b) and for every c such that c 6= a

holds (Exec(AddTo(a, b), s))(c) = s(c).
(15) (Exec(SubFrom(a, b), s))(ICSCM(R)) = Next(ICs) and

(Exec(SubFrom(a, b), s))(a) = s(a)− s(b) and for every c such that c 6= a

holds (Exec(SubFrom(a, b), s))(c) = s(c).
(16) (Exec(MultBy(a, b), s))(ICSCM(R)) = Next(ICs) and

(Exec(MultBy(a, b), s))(a) = s(a) · s(b) and for every c such that c 6= a

holds (Exec(MultBy(a, b), s))(c) = s(c).
(17) (Exec(goto i1, s))(ICSCM(R)) = i1 and (Exec(goto i1, s))(c) = s(c).
(18) If s(a) = 0R, then (Exec(if a = 0 goto i1, s))(ICSCM(R)) = i1 and if

s(a) 6= 0R, then (Exec(if a = 0 goto i1, s))(ICSCM(R)) = Next(ICs) and
(Exec(if a = 0 goto i1, s))(c) = s(c).
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(19) (Exec(a:=r, s))(ICSCM(R)) = Next(ICs) and (Exec(a:=r, s))(a) = r

and for every c such that c 6= a holds (Exec(a:=r, s))(c) = s(c).

3. Halt Instruction

The following two propositions are true:

(20) For every instruction I of SCM(R) such that there exists s such that
(Exec(I, s))(ICSCM(R)) = Next(ICs) holds I is non halting.

(21) For every instruction I of SCM(R) such that I = 〈〈0, ε〉〉 holds I is
halting.

Let us consider R, a, b. One can check the following observations:

∗ a:=b is non halting,

∗ AddTo(a, b) is non halting,

∗ SubFrom(a, b) is non halting, and

∗ MultBy(a, b) is non halting.

Let us consider R, i1. Observe that goto i1 is non halting.
Let us consider R, a, i1. Observe that if a = 0 goto i1 is non halting.
Let us consider R, a, r. Note that a:=r is non halting.
Let us consider R. One can check that SCM(R) is halting definite data-

oriented steady-programmed and realistic.
One can prove the following propositions:

(29)1 For every instruction I of SCM(R) such that I is halting holds I =
haltSCM(R).

(30) haltSCM(R) = 〈〈0, ε〉〉.
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The articles [8], [2], [6], [5], [1], [3], [9], [4], and [7] provide the terminology and
notation for this paper.

1. Preliminaries

In this paper Y denotes a non empty set and G denotes a subset of
PARTITIONS(Y ).

Let X be a set. Then PARTITIONS(X) is a partition family of X.
Let X be a set and let F be a non empty partition family of X. We see that

the element of F is a partition of X.
The following proposition is true

(1) Let y be an element of Y . Then there exists a subset X of Y such that
(i) y ∈ X, and
(ii) there exists a function h and there exists a family F of subsets of Y

such that dom h = G and rng h = F and for every set d such that d ∈ G

holds h(d) ∈ d and X = Intersect(F ) and X 6= ∅.
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Let us consider Y and let G be a subset of PARTITIONS(Y ). The functor∧
G yielding a partition of Y is defined by the condition (Def. 1).

(Def. 1) Let x be a set. Then x ∈ ∧
G if and only if there exists a function h and

there exists a family F of subsets of Y such that dom h = G and rng h = F

and for every set d such that d ∈ G holds h(d) ∈ d and x = Intersect(F )
and x 6= ∅.

Let us consider Y , let G be a subset of PARTITIONS(Y ), and let b be a set.
We say that b is upper min depend of G if and only if the conditions (Def. 2)
are satisfied.

(Def. 2)(i) For every partition d of Y such that d ∈ G holds b is a dependent set
of d, and

(ii) for every set e such that e ⊆ b and for every partition d of Y such that
d ∈ G holds e is a dependent set of d holds e = b.

One can prove the following proposition

(2) For every element y of Y such that G 6= ∅ there exists a subset X of Y

such that y ∈ X and X is upper min depend of G.

Let us consider Y and let G be a subset of PARTITIONS(Y ). The functor∨
G yielding a partition of Y is defined by:

(Def. 3)(i) For every set x holds x ∈ ∨
G iff x is upper min depend of G if G 6= ∅,

(ii)
∨

G = I(Y ), otherwise.

The following propositions are true:

(3) For every subset G of PARTITIONS(Y ) and for every partition P1 of Y

such that P1 ∈ G holds P1 c
∧

G.

(4) For every subset G of PARTITIONS(Y ) and for every partition P1 of Y

such that P1 ∈ G holds P1 b
∨

G.

2. Coordinate and Quantifiers

Let us consider Y and let G be a subset of PARTITIONS(Y ). We say that
G is a generating family of partitions if and only if:

(Def. 4)
∧

G = I(Y ).
Let us consider Y and let G be a subset of PARTITIONS(Y ). We say that

G is an independent family of partitions if and only if the condition (Def. 5) is
satisfied.

(Def. 5) Let h be a function and F be a family of subsets of Y . Suppose dom h =
G and rng h = F and for every set d such that d ∈ G holds h(d) ∈ d. Then
Intersect(F ) 6= ∅.

Let us consider Y and let G be a subset of PARTITIONS(Y ). We say that
G is a coordinate if and only if the conditions (Def. 6) are satisfied.
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(Def. 6)(i) G is an independent family of partitions ,
(ii) G is a generating family of partitions, and
(iii) for all partitions d1, d2 of Y such that d1 ∈ G and d2 ∈ G and d1 6= d2

holds d1 ∨ d2 = O(Y ).
Let us consider Y and let P1 be a partition of Y . Then {P1} is a subset of

PARTITIONS(Y ).
Let us consider Y , let P1 be a partition of Y , and let G be a subset of

PARTITIONS(Y ). The functor CompF(P1, G) yielding a partition of Y is defi-
ned by:

(Def. 7) CompF(P1, G) =
∧

G \ {P1}.
Let us consider Y , let a be an element of BVF(Y ), let G be a subset of

PARTITIONS(Y ), and let P1 be a partition of Y . We say that a is independent
of P1, G if and only if:

(Def. 8) a is dependent of CompF(P1, G).
Let us consider Y , let a be an element of BVF(Y ), let G be a subset of

PARTITIONS(Y ), and let P1 be a partition of Y . The functor ∀a,P1G yielding
an element of BVF(Y ) is defined by:

(Def. 9) ∀a,P1G = INF(a, CompF(P1, G)).
Let us consider Y , let a be an element of BVF(Y ), let G be a subset of

PARTITIONS(Y ), and let P1 be a partition of Y . The functor ∃a,P1G yielding
an element of BVF(Y ) is defined as follows:

(Def. 10) ∃a,P1G = SUP(a, CompF(P1, G)).
One can prove the following propositions:

(5) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∀a,P1G

is dependent of CompF(P1, G).
(6) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ),

and P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∃a,P1G

is dependent of CompF(P1, G).
(7) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∀true(Y ),P1
G =

true(Y ).
(8) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∃true(Y ),P1
G =

true(Y ).
(9) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∀false(Y ),P1
G =

false(Y ).
(10) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∃false(Y ),P1
G =
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false(Y ).
(11) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∀a,P1G b a.

(12) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and
P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then a b ∃a,P1G.

(13) Let a, b be elements of BVF(Y ), G be a subset of PARTITIONS(Y ), and
P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∀a∧b,P1G =
∀a,P1G ∧ ∀b,P1G.

(14) Let a, b be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∀a,P1G∨
∀b,P1G b ∀a∨b,P1G.

(15) Let a, b be elements of BVF(Y ), G be a subset of PARTITIONS(Y ), and
P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∀a⇒b,P1G b
∀a,P1G⇒ ∀b,P1G.

(16) Let a, b be elements of BVF(Y ), G be a subset of PARTITIONS(Y ), and
P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∃a∨b,P1G =
∃a,P1G ∨ ∃b,P1G.

(17) Let a, b be elements of BVF(Y ), G be a subset of PARTITIONS(Y ), and
P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∃a∧b,P1G b
∃a,P1G ∧ ∃b,P1G.

(18) Let a, b be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∃a,P1G⊕
∃b,P1G b ∃a⊕b,P1G.

(19) Let a, b be elements of BVF(Y ), G be a subset of PARTITIONS(Y ), and
P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∃a,P1G ⇒
∃b,P1G b ∃a⇒b,P1G.

(20) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and
P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ¬∀a,P1G =
∃¬a,P1G.

(21) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and
P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ¬∃a,P1G =
∀¬a,P1G.

(22) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∀u⇒a,P1G = u⇒ ∀a,P1G.

(23) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∀a⇒u,P1G = ∃a,P1G⇒ u.

(24) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u
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is independent of P1, G. Then ∀u∨a,P1G = u ∨ ∀a,P1G.

(25) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∀a∨u,P1G = ∀a,P1G ∨ u.

(26) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∀a∨u,P1G b ∃a,P1G ∨ u.

(27) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∀u∧a,P1G = u ∧ ∀a,P1G.

(28) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∀a∧u,P1G = ∀a,P1G ∧ u.

(29) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∀a∧u,P1G b ∃a,P1G ∧ u.

(30) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∀u⊕a,P1G b u⊕ ∀a,P1G.

(31) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∀a⊕u,P1G b ∀a,P1G⊕ u.

(32) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∀u⇔a,P1G b u⇔ ∀a,P1G.

(33) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∀a⇔u,P1G b ∀a,P1G⇔ u.

(34) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∃u∨a,P1G = u ∨ ∃a,P1G.

(35) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∃a∨u,P1G = ∃a,P1G ∨ u.

(36) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∃u∧a,P1G = u ∧ ∃a,P1G.

(37) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∃a∧u,P1G = ∃a,P1G ∧ u.
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(38) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then u⇒ ∃a,P1G b ∃u⇒a,P1G.

(39) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∃a,P1G⇒ u b ∃a⇒u,P1G.

(40) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then u⊕ ∃a,P1G b ∃u⊕a,P1G.

(41) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∃a,P1G⊕ u b ∃a⊕u,P1G.
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Summary. In this paper, we have proved some elementary predicate calcu-
lus formulae containing the quantifiers of Boolean valued functions with respect
to partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC 3.

The terminology and notation used here are introduced in the following articles:
[1], [2], [3], and [4].

For simplicity, we adopt the following convention: Y denotes a non empty set,
G denotes a subset of PARTITIONS(Y ), a, b, c, u denote elements of BVF(Y ),
and P1 denotes a partition of Y .

The following propositions are true:

(1) a⇒ b b ∀a,P1G⇒ ∃b,P1G.

(2) ∀a,P1G ∧ ∀b,P1G b a ∧ b.

(3) a ∧ b b ∃a,P1G ∧ ∃b,P1G.

(4) ¬(∀a,P1G ∧ ∀b,P1G) = ∃¬a,P1G ∨ ∃¬b,P1G.

(5) ¬(∃a,P1G ∧ ∃b,P1G) = ∀¬a,P1G ∨ ∀¬b,P1G.

(6) ∀a,P1G ∨ ∀b,P1G b a ∨ b.

(7) a ∨ b b ∃a,P1G ∨ ∃b,P1G.

(8) a⊕ b b ¬(∃¬a,P1G⊕ ∃b,P1G) ∨ ¬(∃a,P1G⊕ ∃¬b,P1G).
(9) ∀a∨b,P1G b ∀a,P1G ∨ ∃b,P1G.

(10) ∀a∨b,P1G b ∃a,P1G ∨ ∀b,P1G.

(11) ∀a∨b,P1G b ∃a,P1G ∨ ∃b,P1G.

(12) ∃a,P1G ∧ ∀b,P1G b ∃a∧b,P1G.
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(13) ∀a,P1G ∧ ∃b,P1G b ∃a∧b,P1G.

(14) ∀a⇒b,P1G b ∀a,P1G⇒ ∃b,P1G.

(15) ∀a⇒b,P1G b ∃a,P1G⇒ ∃b,P1G.

(16) ∃a,P1G⇒ ∀b,P1G b ∀a⇒b,P1G.

(17) a⇒ b b a⇒ ∃b,P1G.

(18) a⇒ b b ∀a,P1G⇒ b.

(19) ∃a⇒b,P1G b ∀a,P1G⇒ ∃b,P1G.

(20) ∀a,P1G b ∃b,P1G⇒ ∃a∧b,P1G.

(21) If u is independent of P1, G, then ∃u⇒a,P1G b u⇒ ∃a,P1G.

(22) If u is independent of P1, G, then ∃a⇒u,P1G b ∀a,P1G⇒ u.

(23) ∀a,P1G⇒ ∃b,P1G = ∃a⇒b,P1G.

(24) ∀a,P1G⇒ ∀b,P1G b ∀a,P1G⇒ ∃b,P1G.

(25) ∃a,P1G⇒ ∃b,P1G b ∀a,P1G⇒ ∃b,P1G.

(26) ∀a⇒b,P1G = ∀¬a∨b,P1G.

(27) If G is a coordinate and P1 ∈ G, then ∀a⇒b,P1G = ¬∃a∧¬b,P1G.

(28) ∃a,P1G b ¬(∀a⇒b,P1G ∧ ∀a⇒¬b,P1G).
(29) ∃a,P1G b ¬(¬∃a∧b,P1G ∧ ¬∃a∧¬b,P1G).
(30) ∃a,P1G ∧ ∀a⇒b,P1G b ∃a∧b,P1G.

(31) ∃a,P1G ∧ ¬∃a∧b,P1G b ¬∀a⇒b,P1G.

(32) ∀a⇒c,P1G ∧ ∀c⇒b,P1G b ∀a⇒b,P1G.

(33) ∀c⇒b,P1G ∧ ∃a∧c,P1G b ∃a∧b,P1G.

(34) ∀b⇒¬c,P1G ∧ ∀a⇒c,P1G b ∀a⇒¬b,P1G.

(35) ∀b⇒c,P1G ∧ ∀a⇒¬c,P1G b ∀a⇒¬b,P1G.

(36) ∀b⇒¬c,P1G ∧ ∃a∧c,P1G b ∃a∧¬b,P1G.

(37) ∀b⇒c,P1G ∧ ∃a∧¬c,P1G b ∃a∧¬b,P1G.

(38) ∃c,P1G ∧ ∀c⇒b,P1G ∧ ∀c⇒a,P1G b ∃a∧b,P1G.

(39) ∀b⇒c,P1G ∧ ∀c⇒¬a,P1G b ∀a⇒¬b,P1G.

(40) ∃b,P1G ∧ ∀b⇒c,P1G ∧ ∀c⇒a,P1G b ∃a∧b,P1G.

(41) ∃c,P1G ∧ ∀b⇒¬c,P1G ∧ ∀c⇒a,P1G b ∃a∧¬b,P1G.
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Summary. In this article, we have proved the correctness of the Public-
Key Cryptography and the Pepin’s Test for the Primality of Fermat Numbers
(F (n) = 22n

+ 1). It is a very important result in the IDEA Cryptography that
F(4) is a prime number. At first, we prepared some useful theorems. Then, we
proved the correctness of the Public-Key Cryptography. Next, we defined the
Order’s function and proved some properties. This function is very important in
the proof of the Pepin’s Test. Next, we proved some theorems about the Fermat
Number. And finally, we proved the Pepin’s Test using some properties of the
Order’s Function. And using the obtained result we have proved that F(1), F(2),
F(3) and F(4) are prime number.

MML Identifier: PEPIN.

The terminology and notation used in this paper are introduced in the following
papers: [8], [6], [2], [3], [9], [5], [1], [4], [7], and [10].

1. Some Useful Theorems

We adopt the following convention: d, i, j, k, m, n, p, q, k1, k2 are natural
numbers and a, b, c, i1, i2, i3, i4, i5 are integers.

One can prove the following four propositions:
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(1) For every i holds i and i + 1 are relative prime.

(2) For every p such that p is prime holds m and p are relative prime or
gcd(m, p) = p.

(3) If k | n ·m and n and k are relative prime, then k | m.

(4) If n | m and k | m and n and k are relative prime, then n · k | m.

Let n be a natural number. Then n2 is a natural number.
We now state a number of propositions:

(5) If c > 1, then 1 mod c = 1.

(6) For every i such that i 6= 0 holds i | n iff n mod i = 0.

(7) If m 6= 0 and m | n mod m, then m | n.

(8) If 0 < n and m mod n = k, then n | m− k.

(9) If i · p 6= 0 and p is prime and k mod i · p < p, then k mod i · p = k mod p.

(10) If p 6= 0, then (a · p + 1) mod p = 1 mod p.

(11) If 1 < m and n · k mod m = k mod m and k and m are relative prime,
then n mod m = 1.

(12) If m 6= 0, then (pk
N) mod m = ((p mod m)k

N) mod m.

(13) If i 6= 0, then i2 mod (i + 1) = 1.
(14) If j 6= 0 and k2 < j and i mod j = k, then i2 mod j = k2.

(15) If p is prime and i mod p = −1, then i2 mod p = 1.

(16) If n is even, then n + 1 is odd.

(17) If p > 2 and p is prime, then p is odd.

(18) If n > 0, then the n-th power of 2 is even.

(19) If i is odd and j is odd, then i · j is odd.

(20) For every k such that i is odd holds ikN is odd.

(21) If k > 0 and i is even, then ikN is even.

(22) 2 | n iff n is even.

(23) If m · n is even, then m is even or n is even.

(24) n2
N = n2.

(25) 2k
N = the k-th power of 2.

(26) If m > 1 and n > 0, then mn
N > 1.

(27) If n 6= 0 and p 6= 0, then np
N = n · np−′1

N .

(28) For all n, m such that m mod 2 = 0 holds (nm÷2
N )2 = nm

N .

(29) If n 6= 0 and 1 ¬ k, then (nk
N)÷ n = nk−′1

N .

(30) 2n+1
N = (2n

N) + 2n
N.

(31) If k > 1 and kn
N = km

N , then n = m.

(32) m ¬ n iff 2m
N | 2n

N.
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(33) If p is prime and i | pn
N, then i = 1 or there exists a natural number k

such that i = p · k.

(34) For every n such that n 6= 0 and p is prime and n < pk+1
N holds n | pk+1

N
iff n | pk

N.

(35) For every k such that p is prime and d | pk
N and d 6= 0 there exists a

natural number t such that d = pt
N and t ¬ k.

(36) If p > 1 and i mod p = 1, then (inN) mod p = 1.

(37) If m > 0 and n > 0, then (nm
N ) mod n = 0.

(38) If p is prime and n and p are relative prime, then (np−′1
N ) mod p = 1.

(39) If p is prime and d > 1 and d | pk
N and d - (pk

N)÷ p, then d = pk
N.

Let a be an integer. Then a2 is a natural number.

We now state several propositions:

(40) For every n such that n > 1 holds m mod n = 1 iff m ≡ 1(mod n).

(41) If a ≡ b(mod c), then a2 ≡ b2(mod c).

(42) If i5 = i3 · i4 and i1 ≡ i2(mod i5), then i1 ≡ i2(mod i3) and i1 ≡
i2(mod i4).

(43) If i1 ≡ i2(mod i5) and i1 ≡ i3(mod i5), then i2 ≡ i3(mod i5).

(44) 3 is prime.

(45) If n 6= 0, then Euler n 6= 0.

(46) If n 6= 0, then −n < n.

(47) For all m, n such that n > 0 and n > m holds m÷ n = 0.

(48) If n 6= 0, then n÷ n = 1.

2. Public-Key Cryptography

Let us consider k, m, n. The functor Crypto(m,n, k) yielding a natural
number is defined as follows:

(Def. 1) Crypto(m,n, k) = (mk
N) mod n.

One can prove the following proposition

(49) Suppose p is prime and q is prime and p 6= q and n = p · q and k1 and
Euler n are relative prime and k1 · k2 mod Euler n = 1. Let m be a natural
number. If m < n, then Crypto(Crypto(m,n, k1), n, k2) = m.
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3. Order’s Function

Let us consider i, p. Let us assume that p > 1 and i and p are relative prime.
The functor order(i, p) yields a natural number and is defined as follows:

(Def. 2) order(i, p) > 0 and (iorder(i,p)
N ) mod p = 1 and for every k such that k > 0

and (ikN) mod p = 1 holds 0 < order(i, p) and order(i, p) ¬ k.

One can prove the following propositions:

(50) If p > 1, then order(1, p) = 1.

(51) If p > 1 and i and p are relative prime, then order(i, p) 6= 0.

(52) If p > 1 and n > 0 and (inN) mod p = 1 and i and p are relative prime,
then order(i, p) | n.

(53) If p > 1 and i and p are relative prime and order(i, p) | n, then (inN) mod
p = 1.

(54) If p is prime and i and p are relative prime, then order(i, p) | p−′ 1.

4. Fermat Number

Let n be a natural number. The functor Fermat n yielding a natural number
is defined as follows:

(Def. 3) Fermat n = (22n
N
N ) + 1.

Next we state several propositions:

(55) Fermat 0 = 3.

(56) Fermat 1 = 5.

(57) Fermat 2 = 17.

(58) Fermat 3 = 257.

(59) Fermat 4 = 256 · 256 + 1.

(60) Fermat n > 2.

(61) If p is prime and p > 2 and p | Fermat n, then there exists a natural
number k such that p = k · 2n+1

N + 1.

(62) If n 6= 0, then 3 and Fermat n are relative prime.
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5. Pepin’s Test

We now state several propositions:

(63) If n > 0 and 3(Fermat n−′1)÷2
N ≡ −1(mod Fermat n), then Fermat n is

prime.

(64) 5 is prime.

(65) 17 is prime.

(66) 257 is prime.

(67) 256 · 256 + 1 is prime.
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1. Preliminaries

We adopt the following convention: V , C, x are sets and A, B are elements
of SubstitutionSet(V, C).

Let a, b be sets. Note that {〈〈a, b〉〉} is function-like and relation-like.
Let A, B be sets. Observe that A→̇B is functional.
Next we state several propositions:

(1) For all non empty sets V , C there exists an element f of V →̇C such that
f 6= ∅.

(2) For all sets a, b such that b ∈ SubstitutionSet(V, C) and a ∈ b holds a is
a finite function.

(3) For every element f of V →̇C and for every set g such that g ⊆ f holds
g ∈ V →̇C.

(4) V →̇C ⊆ 2[: V, C :].

(5) If V is finite and C is finite, then V →̇C is finite.

One can check that there exists a set which is functional, finite, and non
empty.
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2. Some Properties of Sets of Substitutions

One can prove the following four propositions:

(6) For every finite element a of V →̇C holds {a} ∈ SubstitutionSet(V, C).
(7) If A a B = A, then for every set a such that a ∈ A there exists a set b

such that b ∈ B and b ⊆ a.

(8) If µ(A a B) = A, then for every set a such that a ∈ A there exists a set
b such that b ∈ B and b ⊆ a.

(9) If for every set a such that a ∈ A there exists a set b such that b ∈ B

and b ⊆ a, then µ(A a B) = A.

Let V be a set, let C be a finite set, and let A be an element of Fin(V →̇C).
The functor Involved A is defined by:

(Def. 1) x ∈ Involved A iff there exists a finite function f such that f ∈ A and
x ∈ dom f.

In the sequel C denotes a finite set.
The following propositions are true:

(10) For every set V and for every finite set C and for every element A of
Fin(V →̇C) holds Involved A ⊆ V.

(11) For every set V and for every finite set C and for every element A of
Fin(V →̇C) such that A = ∅ holds Involved A = ∅.

(12) For every set V and for every finite set C and for every element A of
Fin(V →̇C) holds Involved A is finite.

(13) For every finite set C and for every element A of Fin(∅→̇C) holds
Involved A = ∅.

Let V be a set, let C be a finite set, and let A be an element of Fin(V →̇C).
The functor −A yielding an element of Fin(V →̇C) is defined as follows:

(Def. 2) −A = {f ; f ranges over elements of Involved A→̇C :
∧

g : element of V →̇C (g ∈
A ⇒ f 6≈ g)}.

One can prove the following propositions:

(14) A a −A = ∅.
(15) If A = ∅, then −A = {∅}.
(16) If A = {∅}, then −A = ∅.
(17) For every set V and for every finite set C and for every element A of

SubstitutionSet(V, C) holds µ(A a −A) = ⊥SubstLatt(V,C).

(18) For every non empty set V and for every finite non empty set C and for
every element A of SubstitutionSet(V,C) such that A = ∅ holds µ(−A) =
>SubstLatt(V,C).
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(19) Let V be a set, C be a finite set, A be an element of
SubstitutionSet(V, C), a be an element of V →̇C, and B be an element
of SubstitutionSet(V, C). Suppose B = {a}. If A a B = ∅, then there
exists a finite set b such that b ∈ −A and b ⊆ a.

Let V be a set, let C be a finite set, and let A, B be elements of Fin(V →̇C).
The functor A ½ B yielding an element of Fin(V →̇C) is defined as follows:

(Def. 3) A ½ B = (V →̇C) ∩ {⋃{f(i) \ i; i ranges over elements of V →̇C :
i ∈ A}; f ranges over elements of A→̇B : dom f = A}.

Next we state two propositions:

(20) Let A, B be elements of Fin(V →̇C) and s be a set. Suppose s ∈ A ½ B.

Then there exists a partial function f from A to B such that s =
⋃{f(i)\

i; i ranges over elements of V →̇C : i ∈ A} and dom f = A.

(21) For every set V and for every finite set C and for every element A of
Fin(V →̇C) such that A = ∅ holds A ½ A = {∅}.

We adopt the following convention: u, v are elements of the carrier
of SubstLatt(V, C), a is an element of V →̇C, and K, L are elements of
SubstitutionSet(V, C).

The following proposition is true

(22) For every set X such that X ⊆ u holds X is an element of the carrier of
SubstLatt(V, C).

3. Lattice of Substitutions is Implicative

Let us consider V , C. The functor pseudo compl(V,C) yielding a unary
operation on the carrier of SubstLatt(V,C) is defined as follows:

(Def. 4) For every element u′ of SubstitutionSet(V, C) such that u′ = u holds
(pseudo compl(V, C))(u) = µ(−u′).

The functor StrongImpl(V, C) yielding a binary operation on the carrier of
SubstLatt(V, C) is defined by:

(Def. 5) For all elements u′, v′ of SubstitutionSet(V,C) such that u′ = u and
v′ = v holds (StrongImpl(V,C))(u, v) = µ(u′ ½ v′).

Let us consider u. The functor 2u yielding an element of Fin (the carrier of
SubstLatt(V, C)) is defined by:

(Def. 6) 2u = 2u.

The functor ¤\u ¤ yielding a unary operation on the carrier of SubstLatt(V, C)
is defined by:

(Def. 7) (¤ \u ¤)(v) = u \ v.
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Let us consider V , C. The functor Atom(V, C) yielding a function from V →̇C

into the carrier of SubstLatt(V, C) is defined as follows:

(Def. 8) For every element a of V →̇C holds (Atom(V, C))(a) = µ{a}.
Next we state a number of propositions:

(23)
⊔f

K Atom(V, C) = FinUnion(K, singletonV →̇C).
(24) For every element u of SubstitutionSet(V, C) holds u =

⊔f
u Atom(V,C).

(25) (¤ \u ¤)(v) v u.

(26) For every element a of V →̇C such that a is finite and for every set c

such that c ∈ (Atom(V, C))(a) holds c = a.

(27) For every element a of V →̇C such that K = {a} and L = u and LaK = ∅
holds (Atom(V, C))(a) v (pseudo compl(V, C))(u).

(28) For every finite element a of V →̇C holds a ∈ (Atom(V,C))(a).
(29) Let u, v be elements of SubstitutionSet(V, C). Suppose that for every set

c such that c ∈ u there exists a set b such that b ∈ v and b ⊆ c ∪ a. Then
there exists a set b such that b ∈ u ½ v and b ⊆ a.

(30) Let a be a finite element of V →̇C. Suppose for every element b of
V →̇C such that b ∈ u holds b ≈ a and u u (Atom(V,C))(a) v v. Then
(Atom(V, C))(a) v (StrongImpl(V,C))(u, v).

(31) u u (pseudo compl(V, C))(u) = ⊥SubstLatt(V,C).

(32) u u (StrongImpl(V, C))(u, v) v v.

Let us consider V , C. Observe that SubstLatt(V,C) is implicative.
One can prove the following proposition

(33) u⇒ v =
⊔f

2u((the meet operation of SubstLatt(V, C))◦(pseudo compl(V, C),
(StrongImpl(V, C))◦(¤ \u ¤, v))).
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