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Abstract: The subject of this case study is an issue of optimisation of flat tube solar collectors. Basic elements of energy analysis of per-
formance parameters described by Hottel-Whillier equation are presented in the article. It is considered to be crucial to precisely analyse 
fluid flow through flow elements in evacuated tube collectors. It is especially important in the case of systems with channels of cross-
sections shapes different from circular and for the use of detailed mathematical description of complex film conduction phenomena. 
It is presented that the advanced analysis of the flow and thermal phenomena in complex heat transfer systems, represented by evacuated 
tube collectors, enables engineering rationalisation of technical solutions for these devices. 

Keywords: Flat Plate Solar Collector, Heat Transfer, Fluid Flow in Pipes, Optimum Mass Flow Rate, Boundary Equation Method  

1. INTRODUCTION 

The primary objective of every active and passive solar sys-
tem is to gain solar radiation energy and to transfer it to the recipi-
ent in a planned, relatively simple way with highest possible 
efficiency of conversion. In many active and passive solar sys-
tems the basic element that absorbs solar energy is a flat plate 
collector. Its basic element is a plate or tube absorber. In the case 
of the plate absorber the medium which receives the heat flows di-
rectly under the absorber surface. The heat absorbing medium 
can be a liquid as well as a gas. The majority of collectors’ solu-
tions employ tube absorbers, where tubular elements are attached 
to the absorber plate. Pipes are arranged parallel to each other 
forming series of channels. In majority of installation solutions 
pipes or channels are filled up with a liquid, whereas in passive 
systems, typically, the air is the medium. Another form of tube col-
lectors are evacuated tube collectors. In this particular type of so-
lution pipes transporting heat are placed inside glass vacuum 
pipes in order to reduce heat loss from the medium to the ambient 
(Chwieduk, 2011 and Kalogirou, 2004). In the advanced construc-
tions, designed for conversion of solar radiation energy into useful 
energy, panels of photovoltaic cells are placed on the absorber 
surface. In these cells types (PV/T) solar radiation energy is con-
verted into heat and electricity in the rate dependent on the con-
struction of the device (Ibrahim et al. 2011) 

 
Fig. 1. Flat plate liquid collector with circular cross-section tubes 

Variations design versions and types of solar collectors de-
pending on kind of application (passive and active systems), type 
of medium used (air and liquid), connections for photovoltaic 
modules, and applied materials are described in detail in the lit-
erature (Zondag, 2008; Zhang et al., 2012; Charalambous et al., 
2007). 

The cross-section of flat plate liquid collector is presented 
in Fig. 1.  

2. COLLECTOR HEAT BALANCE EQUATION 

Deliberation on the thermal phenomena occurring in the col-
lector is based on its thermal balance calculation. Balance equa-
tions of the configuration absorber-pipe system in the simplest 
form are obtained having analysed heat fluxes in the plate of the 
absorber and heat flux transferred to the medium inside pipe sys-
tem of the collector. Fig. 2 presents a cross-section of flat plate 
collector with circular pipes system.  

 
Fig. 2. The layout of a flat plate liquid collector of various dimensions  

As investigated by Luminosu and Fara (2005) as well as 
Farahat et al., (2009),  one of the most effective ways to obtain 
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the highest possible efficiency of the collector operation is to re-
duce heat loss to a minimum. Therefore it is crucial that thermal 
resistance of elements separating the main body of the solar radi-
ation receiver, i.e. the absorbing surface (absorber), from the am-
bient was possibly the highest (Vestlund et al., 2009). Additionally, 
when absorbing surface is taken into consideration it is necessary 
to intensify processes of heat transfer in the absorber. It is im-
portant that the thermal resistance is possibly the lowest across 
absorber plate (between pipes or channels) and between the plate 
and the pipe or channel. A heat transfer phenomenon that occurs 
when the solar radiation energy is absorbed on the panel of the 
absorber and during its transfer to the medium flowing in pipe el-
ements is analysed below. 

Application of Hottel-Whillier model (Zondag, 2008, Alvarez 
et al., 2010 and Herrero Martín et al., 2011) in order to analyse 
thermal processes occurring in the collector facilitates describing 
temperature distribution Tp ≡ Tp(x) in absorber plate and liquid 
temperature Tf ≡ Tf (y) inside pipe system of the collector with 
equations: 
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where: U�	 – overall collector heat loss coefficient [W/(m2K)], 
 !	– coefficient of heat loss between ambient air and the medium 
inside pipes of the collector, "#$  – solar irradiation [W/m2],  
%$– temperature of the ambitne [K],	&' 	– fluid mass flow rate 
in pipe collector [kg/s],	
� – heat capacity of fluid [J/(kg K)], 
	(� – transmittance of the material [W/(m K)],	) – fin thickness 
[m], *– tube spacing [m],	n	 – number of pipes in flat plate col-
lector [-], T+ – temperature in the contact area for plate of the ab-
sorber and tube element [K], T,  – liquid temperature in the inlet 
to collector pipe [K]. 

Solution of the above equations provide to relations which 
describe temperature distribution in the absorber plate and in the 
medium flowing through the pipe elements: 
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Introducing FR heat-removal factor for the collector: 
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where: 01  – area of the collector [m2], %! = %2(4 = 5) – tem-
perature of the medium in the outlet of the collector pipe obtained 
by calculation from equation (2b). 

Density of energy gained by the collector and its useful ther-
mal power can be described by following equations: 

( )( )u R sa L i aq F G U T T= − − ( )( )u R sa L i aq F G U T T= − −
 

                                                                                                   
(4a) 

u c uQ S q= ⋅                   (4b) 

Relating the density of the energy converted by the collector 
defined by Eq. 4a to the solar irradiation the expression determin-
ing efficiency of energy generation by the solar collector is as fol-
lows: 

η u
c th

sa

q
G

=         (5) 

Fluid mass flow rate through system of pipes of the collector 
is a significant factor. This factor determines solar collector ener-
getic parameters along with the thermal properties of the materials 
that the absorber is made of, pipe system, medium and with tem-
perature difference between the medium and the ambient air. 

Determination of the fluid mass flow of the medium inside the 
pipe system of the collector is easy in the case when the cross-
section of pipes is circular. 

In Fig. 3 the tube collectors are presented. There are three op-
tions of the cross-section shapes – elliptic, triangular and rectan-
gular. Canals depending on the various construction solutions can 
be of various arbitrary cross-section shapes which can be ob-
tained by profiling flow systems from steel sheets. 

 
Fig. 3. Flat plate liquid collector with non-circular shape tubes  

In the case when the collector pipes cross-sections are differ-
ent from circular it becomes necessary to determine the flow ve-
locity field and to calculate mass and volume flow rate of the 
medium by integration of velocity distribution inside the area. The 
area of calculations is described by canal profile contour. These 
calculations are essential in order to optimise construction param-
eters of the collector. 
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3. FLOW THROUGH NON-CIRCULAR CROSS-SECTION 
SHAPE PIPES COLLECTOR DETERMINATION  

The sufficient model for fluid flow through pipes or hydraulic 
ducts of the collector flow system is the model of steady, uniform 
unidirectional laminar flow of incompressible viscous fluid (Batch-
elor, 1967). 

3.1. Flow problem formulation 

Unidirectional, slow flow of viscous fluid through a straight-
axis pipe in the cross-section (Λ) of arbitrary shape inside the 
borderline (L), can be described by Stokes’ equation with bounda-
ry condition which is the assumption of zero velocity value at in-
flexible and impermeable material border (at the duct partition): 

2 2

2 2
,z zc c

P
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Δ
 ∂ ∂
 + = −
 ∂ ∂ 

       (6) 
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μ
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= −
∂

   

with boundary condition: 

( )( , ) 0 ; ,zc x y x y L= ∀ ∈                (6a) 

 
Fig. 4. Unidirectional flow through a straight duct 

Among methods of solving the above-formulated boundary 
problem for Poisson equation (6) there is the decomposition 
of function ( ( , )zc x y ) into the homogeneous part ( ( , )zc x y ), 

which satisfies Laplace equation, and the non-homogeneous part 
( ( , )zc x y% ), which satisfies  Poisson equation. 

( , ) ( , ) ( , ) ,z z zc x y c x y c x y= + %      (7) 

where: 
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where its non-homogeneous part can be written: 

( , ) ( , ) ,zc x y P x yυ= −∆%       (8) 

where ( , )z x yυ  is arbitrary chosen function which satisfies 

Poisson equation.  
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One of the possible forms of this function is the square of the 
radius vector of any point ( , )x y LΛ≡ ∈q qq q U ,(Batchelor, 

1967) i.e.: 
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Given the decomposition (7) of function ( , )zc x y  boundary 

condition ( , ) 0 ; ( , )zc x y x y L= ∀ ∈  takes the form: 

( , ) ( , ) ( , ) ( , )z zc x y c x y P x y x y Lυ= − = ∆ ∀ ∈%  .  (9) 

3.2. Integral formulation of the problem 
 for unidirectional flow 

Using Green's second identity, homogeneous component 
of flow velocity (function (
D̅(E)) satisfying Laplace equation 
in area (Λ) limited borderline (L) can be described by the follow-
ing equation (Brebbia et al 1984): 
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where EIJE, 4EL and M(JM, 4M) are respectively the set point 
and the current integration point, and function N(E, M) is a fun-
damental solution of Laplace equation: 
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to the boundary line (L) at point M(JM, 4M). 
After inserting dependence (9) into integral equation (10) and 

separating principal value from second integral, on right-hand side 
due to characteristic of kernel function Q(E, M) on boundary line 
(L) when E(JE, 4E) ≡ M(JM, 4M) with an assumption that the 
border of the area is smooth, boundary integral equation is ob-
tained: 
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Equation (9) is a Fredholm integral equation of the first kind 
regarding density T(M) of the function 
D̅(M) on the boundary 
of the area. The integral on right-hand side with the integrand 
Q(E, M) described by dependence (8b) is understood in the 
meaning of Cauchy principal value. 

Having solved the integral equation (11) values of function 
	
D̅(E) at points E(JU, 4U) inside the area (Λ) are determined 
according to the following integral relation: 

( ) ( )
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The volumetric flow rate of unidirectional flow through a duct 
of the cross-sectional area (Λ) is equal to: 

( )

( )zQ c d

Λ

Λ= ∫∫ qq                  (13) 

Substituting expressions (7) and (8) as the integrand of the 
equation (13) and application of Green’s second identity one can 
obtain the expression describing the flow rate of the creeping flow 
in an arbitrary shape cross-section straight pipe: 
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q q
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Mass flow rate of the flow is the product of the volume flow 
rate described by the above expression and the fluid specific 
weight. 

3.3. Numerical solution 

The simplest way of discretisation of the integral equation is to 
approximate the curved closed boundary line (L) with J-element 
system of straight line segments with central collocation points of 
constant function density at each element.  

When the boundary line (L) of the considered area (Λ) is ap-
proximated with the boundary linear elements of the constant 
density of function distribution g(qqqq				j) and υ(qqqq				j) on each element 
∆Lj, the integral equation (11) is reduced to the system of (J) lin-
ear algebraic equations with unknown function g(q j) at points 
qqqq				j (j = 1,..., J	) on the edge of the area:  

 
Fig. 5. Discretization of the boundary line with constant elements 
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After determining the density of function distribution TIMXL 
at the edge of the area, values of the function 
D̅(EY)(Z =
1,… , ])

 
at points (EY)(Z = 1,… , ]) inside the area (Λ) 

are calculated using the following relation:  
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Finally, the velocity 
D(EY)(Z = 1,… , ]) at the points 
(EY)(Z = 1,… , ]), according to the equation (7), is described 
by the following sum: 

( ) ( ) ( ) ( 1,..., )z n z n nc c P n Nυ= + ∆ =p p p              (17) 

3.4. Velocity field in elliptical, rectangular  and triangular 
cross-section straight tubes – calculations principles  

The flow velocity field is determined for the flow through 
straight pipe or closed duct thoroughly filled with liquid of density 
ρ=1000.00 kg/m3, and viscosity µ=1.00*10-3 Pa�s (ethylene glycol 
20% H2O) at temperature 80°C) and pressure difference 
∆P=10.00 s-1m-1. 

3.4.1 Flow through an elliptic cross-section duct 

The flow velocity field is determined for elliptic dust of the fol-
lowing dimensions: a=0.050 m,  b=0.025 m. The results of the 
calculations are presented graphically in Fig. 6.a – c.  
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Fig. 6. Velocity distribution in a straight duct of elliptical cross-section: 
a) Contour line chart of the velocity field in the duct 
b) Velocity chart in the cross-sections: x=const 
c) Velocity profile 

3.4.2. Flow through a rectangular cross-section duct 

The flow velocity field is determined for rectangular duct of 
edges dimensions: a=0.050 m, b=0.025 m. The results of the cal-
culations are presented graphically in Fig. 7.a – c. 

 

 

 

Fig. 7. Velocity distribution in a rectangular cross-section duct:  
a) Contour line chart of the velocity field in the duct 
b) Velocity chart in the cross-sections: x=const 
c) Velocity profile  

3.4.3. Flow through a triangular cross-section duct  

Velocity field is determined in the duct of a triangular cross-
section (equilateral) of side size a=0.050 m. 

The results of the calculations are presented graphically 
in Fig. 8.a – c.  
 

a) a) 

b) b) 

c) c) 
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Fig. 8. Velocity distribution in a triangular cross-section duct.  
a) Contour line chart of the velocity field in the duct 
b) Velocity chart in the cross-sections: x=const 
c) Velocity profile 

4. CONCLUSIONS 

The article presents classic model of calculations of tempera-
ture distribution in the absorber plate and in the pipe system 
in a flat plate solar collector. Further in the paper it is shown, how 
an energy efficiency of the device is determined. The model de-

scribes phenomena of flow and convective heat transfer in the 
systems of pipes of circular cross-sections. Determining velocity 
fields and temperature fields in the flow systems of liquid collec-
tors is the principal element of flow and thermal optimisation of so-
lar collectors. 

The presented method uses Boundary Element Method that 
enables modelling and determining of flows in solar collectors pipe 
systems where cross-section shapes are different from circular. 
The method offers the possibility of determining velocity field and 
flow rate in the laminar flow of viscous fluid through straight-axis 
pipes and closed channels of arbitrary cross-section shape. 
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ASSESSMENT OF MUSCLE FORCES AND JOINT REACTIONS IN LOWER LIMBS 
DURING THE TAKE-OFF FROM THE SPRINGBOARD 
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Abstract: Computer simulation methods, based on the biomechanical models of human body and its motion apparatus, are commonly 
used for the assessment of muscle forces, joint reactions, and some external loads on the human body during its various activities. In this 
paper a planar musculoskeletal model of human body is presented, followed by its application to the inverse simulation study of a gymnast 
movement during the take-off from the springboard when performing the handspring somersault vault on the table. Using the kinematic da-
ta of the movement, captured from optoelectronic photogrammetry, both the internal loads (muscle forces and joint reactions) in the gym-
nast’s lower limbs and the external reactions from the springboard were evaluated. The calculated vertical reactions from the springboard 
were then compared to the values assessed using the captured board displacements and its measured elastic behaviors.  

Key words: Musculoskeletal Human Models, Inverse Dynamics Simulation, Muscle Forces, Joint Reactions 

1. INTRODUCTION 

In studying human movements, the non-invasive experiments 
are usually limited to photogrammetry from which the positions 
and orientations of the body segments are captured, electromyog-
raphy (EMG) used to record the sequence and timing of muscle 
activity, and measurements of the ground reaction forces. Direct 
recording of muscle forces and joint reactions in vivo are currently 
infeasible. In this situation, inverse dynamics simulation, based 
on human body modeling and the non-invasive measurements, 
is still the prevailing method for the assessment of the internal 
loads during various human activities.  

The inverse dynamics methodology, aimed at the determina-
tion of muscle forces and joint reactions in the motion apparatus, 
can be divided into four main stages: 
1. design of the physical (musculoskeletal) model of the human 

body and its motion apparatus; 
2. formulation of the mathematical model; 
3. capturing the movement kinematic data and (possibly) other 

experimental data;  
4. calculations using appropriate numerical codes.  

2. PHYSICAL MODEL 

The gymnast body is modeled as a planar kinematic structure 

composed of 16=N  rigid segments (head, 3 trunk parts, arms, 

forearms, hands, thighs, legs, feet) interconnected by 15=k  

ideal hinge joints. The motion of the segments is assumed to be 

represented in the sagittal plane. In the deternministic model of 

actuation, the interaction between the segments is modeled by 

means of k resuntant muscle joint torques 
T][ 151 τττ L=  and 

kl 2=  Lagrange multipliers 
T][ 301 λλλ ′′=′ L  that represent the 

X and Y components of the joint reactions (Fig. 1c). In the non-

deterministic model of actuation (Blajer et al., 2007, 2010), the 

three control torques in the joints of each lower limb are replaced 

with the action of 9=m  lower-limb muscles and groups of 

muscles that actuate the three degrees of freedom (Fig. 1b), 

1 9[ ]TF F F= L . In this model, due to the control 

overactuation in the lower limbs, the problem of distribution of the 

respective muscle torques τ ′  into the muscle forces F has infinite 

solutions, and is usually solved using optimization techniques 

(Winter, 2005; Winters and Woo, 1990; Yamaguchi, 2001). 

Applying the obtained muscle forces, the joint reactions in the 

lower limb will involve the tensile muscle forces, and as such λ  

obtained this way will differ from λ ′  obtained using the 

deterministic model.  

 
Fig. 1. The deterministic (a) and non-deterministic (b)  
            models of the gymnast’s body, and the interaction between  
            the segments in the deterministic (c) and nondeterministic  
           (d) models 
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The external loads on the gymnast’s model are the gravita-

tional forces T

ggg fff ][ 161L=  of the respective segments, and 

the ground reaction forces reduced to a chosen point on the foot 

segments, T

zyx MRRR ][= . A symmetric distribution of the 

ground reaction between the two legs during the phase of contact 

with the springboard was assumed.  

The inertial and anthropometric data of the subject body, i.e. 

the segment masses and mass moments of inertia, the segment 

lengths and mass center locations, the cross-sectional areas of 

the modelled muscles, the effective origin and insertion points of 

the muscles and their paths relative the skeleton, etc., were either 

directly measured of estimated using the guidelines reported in 

the literature (Winters and Woo, 1990, Zatsiorsky, 2002, 

Tejszerska et al., 2011).  

3. MATHEMATICAL MODEL 

The dynamic equations of the gymnast model are formulated 

in 483 == Nn  coordinates 
T

NCNCNCC yxyxp ][ 111 ϕϕ L=  

that specify the location of the segment mass centers and their 

angular orientations with respect to an inertial (absolute) reference 

ftame. The generic matrix form of the equation is: 

*

g u RM p f B u C C Rλλ= + + +&&   (1) 

As said, in the deterministic model, the internal loads are modeled 

by means of the resultant muscle torques in the joints, distributed 

here into the lower-limb joint torques τ ′  and the upper body joint 

torques τ ′′ , and the joint reactions λ ′  to which the contribution 

of the tensile muscle forces is not involved:  

[ ][ ] *

' " ' " '
T

uB u B B Bτ τ ττ τ τ λ λ= = =  (2) 

Then, in the nondeterministic model, the lower-limb joint torques 

τ ′  are replaced with the respective muscle forces F, which yields 

also more realistic joint reactions in the lower limbs (contribution 

of the tensile muscle forces is involved),  

[ ][ ] *

" "
T

u FB u B B Fτ τ λ λ= =  (3) 

In the deterministic model, using the kinematic characteristics 

of the analyzed movement, the unknown internal loads and the 

external reactions can explicitly be determined from:  

[ ] [ ] ( )1
' " '

T

R gR B C C M p fτ λτ τ λ
−

= −&&  (4) 

The indeterminate inverse dynamics problem, i.e. the distribution 

of τ ′  from the determinate inverse dynamics formulation (4) into 

the respective muscle forces F, and then the determination of the 

joint reactions λ  that include the influence of the tensile muscle 

forces in the lower limbs, can then be solved ising the projected 

dynamic equations. These to aims are achieved by introducing 

18=r  independent coordinates 
T

GG yxq ][ 161 ϕϕ L= , where 

Gx  and Gy  are the absolute coordinates of a point on the top of 

the head segment, and the angular ccordinates are as used in p. 

Then, using a relationship ),,( tzqgp = , where z are the open-

constraint coordinates in the directions of *λ , two matrices can be 

extracted from:  

p Dq E z γ= + +& & &  (5) 

where the rn×  ( 1848× ) matrix D is an orthogonal complement 

to the constraint matrix λC , 0=TTCD λ , and the rn×  matrix E 

its pseudo-inverse, ICE TT =λ  (identity matrix). The equations (1) 

projected in q directions can then be represented as:  

( )
[ ][ ]
[ ][ ]

' "

"

' "

"

T

T T

g R T

F

B B
D M p f C R D

B B F

τ τ

τ

τ τ

τ
− − =&&          (6) 

with the joint reactions excluded from the evidence.  

Using the notation: ][ τττ ′′′= BBDB T
M , ][ ττ ′′= BBDB F

T

F M

, and DMDM T= , after another projection of equations (6) into 

the controlled directions, one arrives at: 

1 1
'

" "
T T

F

F
B M B B M Bτ τ τ τ

τ
τ τ

− −   
=   

   
                                   (7) 

from which one can state the following relationship between the 

resultant muscle torques τ ′  and the muscle forces F (or stresses 

σ ) in the lower extremities, i.e.  

FS F P=      or     
0FS A Pσ =                                             (8) 

where F

TTT

F BDMBDS 1−
′= )( τ  is a square matrix of the 

dimension of F, τττ ′= ′
−

′ BDMBDP TTT 1)( , and 0A  is the 

diagonal matrix of the muscle cross-sectional areas. The muscular 

load sharing problem in the lower-limbs can then be stated as the 

following optimozation procedure 

0

min max

( )

F

J

S A P

σ
σ

σ σ σ




=
 ≤ ≤

minimize

subject to

and

 (9) 

where J is an approproate objective function, and minσ  and maxσ  

are the physiologically allowable minimal and maximal muscle 

stresses. In this way the lower-limb muscle torques τ ′ , obtained 

from the deterministic solution, are distributed into the respective 

muscle stresses/forces.  

Using the evaluated muscle forces in the lower limbs, the joint 

reactions λ can be determined from the projection of the dynamic 

equations (1) into the constrained directions specified by E, i.e. 

[ ]" "
T T

g F R

F
E M p E f B B C C Rτ λλτ

  
= + + +     

&&       (10) 

which, after using ICE TT =λ , leads to  

[ ]" "
T

g F R

F
E M p f B B C Rτλ

τ
  

= − − −     
&&                 (11) 

4. SIMULATION RESULTS 

The analysis was limited to the gymnast (master competitor 

of age 27, mass 70 kg, height 169 cm) movement during his 

landing and take-off from the springboard, with some short flying 

periods before and after the on-board phase, who performed 

a handspring vault with a front somersault in pike position (Fig. 2). 

The on-board phase was chosen for the expected high im-

pact/impulsive forces and possible verification of the calculated 

external reactions from the springboard, which can be compared 

to the values assessed using the captured board displacements 
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and its measured elastic behaviors. 

 
Fig. 2. Distinct phases of the performed handspring vault  
           with a front somersault in pike position 

The actual jump performance was recorded using a set 

of synchronized digital cameras (100 Hz), together with a sepa-

rate registration of the springboard displacements. The raw kine-

matic data were then smoothed (Winter, 2005; Dziewiecki et al., 

2011) to obtain the base point trajectories, from which the kine-

matic characteristics )(tpd , )(tpd
&  and )(tpd

&& , used in the 

inverse simulation study, were calculated. 

In Fig. 4 are reported the simulation results for the muscle 

forces of four selected group of muscles: r.fem. (rectus femoris), 

vast. (vastus), gastr. (gastrocnemius), and sol. (soleus), presented 

in Fig. 3. 

 
Fig. 3. The selected groups of muscles (a) and the joint reactions  
             in lower limbs together with the external reactions (b)  

As shown, the results obtained for the right and left limbs are 

very similar. During the on-board phase, which lasts from 4.48 to 

5,58 s, the largest contribution to the movement performance 

comes from sol., the contribution of r.fem. appears meaningless, 

vast. is active mainly during the landing, and gastr. during the 

take-off. Then, in Fig. 5 there are reported the calculations of the 

knee and ankle reactions during the movement. The estimated 

total reaction values, respectively in the knee (k) and ankle (s) 

joints are, are approximately 7 and 10 times higher than the gym-

nast weight. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4. The forces in selected muscles of the left and right lower limbs during the take-off from the springboard, related to the body weight of the gymnast  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The reactions in the knee (k) and ankle (s) joints of the left and right lower limbs during the take-off from the springboard, 
related to the body weight of the gymnast   
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5. LIMITED VALIDATION OF THE SIMULATION RESULTS 

In addition to the calculations, the verical reactions yR  form 

the springboard during the take-off were estimated using the 

captured board displacements and its experimentaly measured 

elastic characteristics (Mazur at al.,2011b). The maximum values 

of the vertical reaction yR , calculated from the inverse dynamics 

analysis and estimated from the recorded board displacements, 

were in good agreement (Fig. 6). This allows one to have limited 

confidence to the quality of the developed biomechanical model, 

correctness of its geometric and inertial parameters, and, finally, 

accuracy/adequacy of the kinematic characteristics used as an 

input to the human dynamics model in the inverse dynamics 

simulation (Erdemir et al., 2007).  

 
Fig. 6. The horizontal and vertical reactions from the springboard 

 obtained from the inverse dynamics simulation, and the vertical  
 reaction assessed from the recorded board displacements,  
 related to the body weight (G) of the gymnast 

6. CONCLUSIONS 

The human motion apparatus is extremely complex and, 

as such, very difficult to model. For these reasons the models 

used in the inverse dynamics analyses always involve 

simplifications, according to the aims and expected exactidude 

of the analysis.  

Studies on muscle force prediction usually compare the 

assessed muscle force loading or activation patterns against the 

EMG data as an estimate of validity. In this paper we compared 

the springboard vertical reaction values obtained from the inverse 

simulation against ithe values estimated from the measured board 

displacements. A good agrement of the maximum vertical values 

was reported.  

In the literature, see e.g. Erdemir et al. (2007) for a review, 

advanced analyses exist which incorporate the quantification 

of muscle force sensitivity on diverse modeling parameters. Some 

critical model parameters are associated with the assumtions 

related to the musculotendon paths and the effective attachment 

points of the tendons (Winters and Woo, 1990; Blajer et al., 2010). 

The physiological cross-sectional area of muscles are the other 

parameters that significantly affect the magnitude of muscle force 

estimates (Mazur et al., 2011a). Of importance is also the way the 

raw kinematic data are processed (smoothed/filtered) before they 

are used in the inverse dynamics simulation (Dziewiecki et al., 

2011). Finally, the musle force estimates are influenced by muscle 

decomposition and recruitment ctiteria used in the force sharing 

optimization process. Nonetheless, though the inverse dynamics 

simulations are possibly burdened with possible large inaccuracy, 

they still remain the only prevailing non-invasive method for the 

assessment of the internal loads during human movements.  

The reported evaluations show that in gymnastics, during the 

dynamic movements like landing and take-off, the internal loads 

in the lower limbs may be much (a dosen or so) higher compared 

to the gymnast weight. The situation is reflected in frequent 

injuries of limb structures of locomotion apparatus, and different 

diseases after longer sport activity. Knowledge of muscle forces 

and joint reactions during the sport activities, even if approximate, 

can be of great importance for the risk assessment.  
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Abstract: A method based on elementary column and row operations of the factorization of nonnegative matrices is proposed. It is shown 
that the nonnegative matrix � ∈ ℜ�

�×�	(
 ≥ �) has positive full column rank if and only if it can be transformed to a matrix with cyclic 
structure. A procedure for computation of nonnegative matrices � ∈ ℜ�

�×�, � ∈ ℜ�
�×�	(� ≤ rank	(
,�)) satisfying � = �� is pro-

posed. 

Keywords: Factorization, Nonnegative Matrix, Positive Rank, Procedure, Computation 

1. INTRODUCTION 

The factorization problem can be stated as: given nonnegative 

matrix � ∈ ℜ�
�×�, find two nonnegative matrices � ∈ ℜ�

�×� 
and � ∈ ℜ�

�×� such that � = ��. The problem has been con-
sidered in many papers (de Almeida, 2011; Cichocki and Zdunek, 
2006; Cohen and Rothblum, 1993; Donoho and Stodden, 2004; 
Lin, 2007; Lee and Seung, 2001) and it arises in many problems 
for example signal processing, quantum mechanics, combination-
al optimization etc. (de Almeida, 2011; Cohen and Rothblum, 
1993). The factorization problem is closely related to the positive 
rank of nonnegative matrices (Cohen and Rothblum, 1993). 
The positive rank of nonnegative matrices plays important role 
in control system theory specially in the reachability problem 
of positive linear systems (Kaczorek, 2001). 

In this paper a method based on elementary column and row 
operations of the factorization of nonnegative matrices will be 
proposed.  

The paper is organized as follows. In section 2 the factoriza-
tion problem is formulated and some basic definitions are recalled. 
The main result of the paper is presented in section 3, which 
is divided in three subsections. In the subsection 3.1 the elemen-
tary column and row operations and the elementary operation 
matrices are defined and their properties are formulated. Matrices 
with cyclic structures are introduced in subsection 3.2 and it is 
shown that the nonnegative matrix has positive full column rank 
if and only if it can be transformed to a matrix with cyclic structure. 
The proposed method of the factorization of nonnegative matrices 
is presented in subsection 3.3. The concluding remarks are given 

in section 4.The following notation will be used: ℜ – the set of real 

numbers, ℜ�×� – the set of n × m real matrices, ℜ�
�×� – the 

set of 
 × � matrices with nonnegative entries and ℜ�
� = ℜ�

�×�, 

I� – the 
 × 
 identity matrix. 

2. PRELIMINARIES AND PROBLEM FORMULATION 

Definition 2.1. (Cohen and Rothblum, 1993) The smallest non-
negative integer � is called the positive rank of the matrix 

A ∈ ℜ�
�×� and denoted by rank�� if there exist  ! ∈ ℜ�

� , 

" = 1,… , �	(� ≤ �) such that each column %& ∈ ℜ�
� , ' =

1,… ,� of A is the linear combination: 

∑
=

=
r

k

kiki bca

1

,  for mi ,...,1=                                               (2.1) 

with nonnegative coefficients (!& ≥ 0, " = 1,… , �; ' = 1,… ,� 
of the vectors  ! . 

From (2.1) it follows that if rank�� = � then the matrix 

� ∈ ℜ�
�×� can be written in the form: 

BCA =                                                                                  (2.2a) 

where: 

.,...,1],...[

,,]...[

,1,

1

1

rkccc

c

c

CbbB

mkkk

mr

r

rn
r

==

ℜ∈

















=ℜ∈= ×
+

×
+ M

            (2.2b) 

Definition 2.2. The representation of the matrix � ∈ ℜ�
�×�  

in the form (2.2) is called factorization of the matrix A. 

The standard rank � of � ∈ ℜ�
�×� and the positive 

rank�� are related by (Cohen and Rothblum, 1993): 

),min(rankrank mnAA ≤≤ +                                             (2.3) 

For example the matrix: 



















=

3300

1010

0202

0011

A                                                                 (2.4) 

has the standard rank equal to 3 and the positive rank equal to 4. 
The problem under considerations can be stated as follows. 

Given a nonnegative matrix � ∈ ℜ�
�×�, find its factorization 

(2.2) i.e. the matrices � ∈ ℜ�
�×� and � ∈ ℜ�

�×� such that (2.2) 
holds. 

In this paper the factorization problem will be solved by the 
use of the elementary column and row operations. 
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3. PROBLEM SOLUTION 

3.1. Elementary operations 

To solve the factorization problem the following elementary 
column and row operations will be used: 

− Multiplication of the ith column (row) by positive number (. 
This operation will be denoted by R+' × (,	(L+' × (,. 

− Addition to the ith column (row) of the jth column (row) 
multiplied by negative number −(	(( > 0). This operation 

will be denoted by R+' + 1 × (−(),	(L+' + 1 × (−(),. 

− Interchange of the ith and jth columns (rows). This operation 
will be denoted by R+', 1,	(L+', 1,). 

Let 2�+', (,, 23+', 1, −(, and 2&+', 1, be the elementary  
column operations matrices obtained by applying the elementary 
column operations 2+' × (,, 2+' + 1 × (−(), and 2+', 1, to the 
identity matrices respectively. Similarly, are defined the elemen-

tary row operations matrices 4�+', (,, 43+', 1, −(, and 4&+', 1,. 
The elementary column operations are performed by post-
multiplication of the matrix by the elementary column operations 
matrices and the elementary row operations are performed 
by premultiplication of the matrix by the elementary row opera-
tions (Kaczorek, 1993). 

It is easy to prove the following lemmas. 
Lemma 3.1. The inverse matrices 2�

5�+', (,, 23
5�+', 1, −(,, 

2&
5�+', 1, of 2�+', (,, 23+', 1, −(,, 2&+', 1, and the inverse 

matrices 4�
5�+', (,, 43

5�+', 1, −(,, 4&
5�+', 1, of 4�+', (,, 

43+', 1, −(,, 4&+', 1,  satisfies the equalities: 









=−

c
iRciR mm
1
,],[

1 , ],,[],,[
1

cjiRcjiR aa =−− , ],[],[
1

jiRjiR ii =−
 

             (3.1a) 









=−

c
jLciL mm
1
,],[

1 , ],,[],,[
1

cjiLcjiL aa =−− , ],[],[
1

jiLjiL ii =−      

     (3.1b) 

Lemma 3.2. The elementary column operations 2+' × (,, 

2+' + 1 × (−(),, 2+', 1, and elementary row operations 

4+' × (,, 4+' + 1 × (−(),, 4+', 1, do not change the positive 
rank�A of the matrix A ∈ ℜ�

�×�. 
Remark 3.1. It is assumed that after performance of any of the 
elementary column and row operations on a nonnegative matrix 
A ∈ ℜ�

�×� the obtained matrix is also nonnegative. 
For example performing on the matrix (2.4) the following elemen-

tary operations 4+2 × 1/2,, 4+4 × 1/3,,  we obtain: 



















 →



















 →



















 →



















1100

0110

0011

1001

1010

0110

0101

1001

0110

1010

0101

1001

1100

1010

0101

0011

]3,2[

]4,3[]4,2[

R

LR

         (3.2) 

The matrices (2.4) and (3.2) have the same positive rank 
equal to 4. 

Let :& be the ith column of the 
 × 
 identity matrix. The col-

umn %:& for % > 0 is called the monomial column (Kaczorek, 

2001). The nonnegative matrix consisting of �(� ≤ 
) linearly 
independent monomial columns has full column positive rank. 
The positive rank and standard rank of this matrix are the same 
as the matrix (2.4). 

3.2. Matrices with cyclic structure 

Definition 3.1. A nonnegative matrix:  

njia

aa

aa

A ij

nnn

n

,...,1,,0,

...

...

...

,1,

,111

=≥

















= MM                      (3.3) 

is called the matrix with cyclic structure if: 

niaaaaa iiiiniiii ,...,1...... ,1,1,,1 =≥≥≥≥≥≥ −+ .       (3.4) 

For example the matrix (3.2) has cyclic structure. 
Theorem 3.1. [9] The system of linear algebraic equations: 

njiaxaxaxa jinniii ,...,1,,0,1... ,,22,11, =≥=+++    (3.5) 

has a nonnegative solution ;& ≥ 0, ' = 1,… , 
 if and only if its 
coefficient matrix has the cyclic structure. 

Theorem 3.2. The nonnegative matrix A ∈ ℜ�
�×�, 
 ≥ � 

has positive full column rank: 

mA =+rank                                                                            (3.6) 

if and only if it can be transformed to a matrix A with cyclic struc-

ture, i.e. (3.4) holds for , ' = 1, … ,�. 
Proof. Consider the matrix equation: 



























=





















































++

1

1

1

1

1

1

1...0...

......

0...1...

0...0...

......

0...0... 1

,1,

,11,1

,1,

,111

M

M

M

M

MMMM

MMMM

m

mnn

mmm

mmm

m

x

x

aa

aa

aa

aa

                   (3.7) 

By Theorem 3.1 the matrix equation has the nonnegative solu-

tion ; = +;�…;� 			1…1,< ∈ ℜ�
�  if and only if the matrix A has 

cyclic structure. 
From Theorem 3.2 and Lemma 3.2 we have the following im-

portant corollary. 

Corollary 3.1. The nonnegative matrix � ∈ ℜ�
�×�  has positive full 

column rank rank�A = � if and only if it has cyclic structure 
or can be transformed to this cyclic structure by the elementary 
column and row operations. 

For example the matrix (2.4) has not the cyclic structure but it 
has been transformed to the matrix (3.2) with cyclic structure 
by the use of the elementary row and column operations. 

3.3. The proposed method 

First the proposed method of the factorization of nonnegative 
matrices will be demonstrated on the following examples. 
Examples 3.1. For the nonnegative matrix:  
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















=

210

541

242

A                                                                      (3.8) 

find nonnegative matrices B and C satisfying the condition (2.2a). 
Using the elementary column operations to (3.8) we obtain: 

A

R
R

R

=

















 →

















 →
















−×+
−×+

−×+

010

021

002

210

521

202

210

541

242
)]2(23[
)]1(13[

)]2(12[

 (3.9a) 

and: 

ARA =                                                                                 (3.9b) 

where: 

.

100

210

321

100

210

001

100

010

101

100

010

021

]2,2,3[]1,1,3[]2,1,2[

















−

−

=

















−















 −















 −

=

−−−= aaa RRRR

(3.10) 

From (3.9) and (3.10) we have: 

BC

RAA

=

































=

















−

−

















==

−

−

100

210

121

010

021

002

100

210

321

010

021

002
1

1

                   (3.11) 

where: 









=

















=
210

121
,

10

21

02

CB .                                       (3.12) 

Using (3.1) and (3.10) we may compute the inverse matrix 
25� as follows: 

.

100

210

121

100

010

021

100

010

101

100

210

001

]2,1,2[]1,1,3[]2,2,3[1

















=

















































=

=−
aaa RRRR

      (3.13) 

The same result we obtain using the elementary row opera-
tions to (3.8): 

A
L
L

ˆ

210

121

000

210

541

242
)]2(21[
)]2(32[

=

















 →
















−×+
−×+

                   (3.14a) 

and 

LAA =ˆ                                                                               (3.14b) 

where: 

.
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100
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001

100
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021

]2,3,2[]2,2,1[

















−

−

=

















−















 −

=

−−= aa LLL

           (3.15) 

From (3.14) and (3.15) we have: 

BC

ALA

=

































=

































−

−

==

−

−

210

121

000

100

210

021

210

121

000

100

210

421

ˆ

1

1

                         (3.16) 

where the matrices B, C are given by (3.12). 
Using (3.1) and (3.15) we may compute the inverse matrix 

45� as follows: 

.

100

210

021

100

010

021

100

210

001

]221[]232[1

















=

































=

=−
aa LLL

                          (3.17) 

In general cases let us consider the nonnegative matrix 
� ∈ ℜ�

�×� with 
 ≥ �. If rank�A = � then the matrix has 

trivial factorization (2.2) with � positive full column rank, i.e. 

rank�B = � and any nonnegative elementary column opera-

tions matrix �.  

From example for the matrix 

















=

100

301

240

A  we have: 

.

100

120

301

,

100

001

020

















=

















= CB                                       (3.18) 

Let: 

),min(rank mnrA <=+ .                                                    (3.19) 

If 
 > � the following elementary column operations proce-
dure is recommended. 
Procedure 3.1. 
Step 1. Using a suitable sequence of elementary column opera-

tions reduce the matrix � ∈ ℜ�
�×� to the form: 

rnmn BBARA ×
+

×
+ ℜ∈ℜ∈== ,]0[              (3.20) 

 where: 

qRRRR ...21=
                                                   (3.21) 

And 2!, " = 1,… , > are the elementary column opera-
tion matrices defined in 3.1. 

Step 2. Performing the elementary column operations on the 

identity matrix ?� and using (3.1) compute the inverse 
matrix: 
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mrmmr

q

RR

R

R
RRRR

×−
+

×
+

−−−−

ℜ∈ℜ∈









==

)(
21

2

11
1

1
2

11

,

,...
.                          (3.22) 

Step 3. Using (3.20) and (3.22) find the desired matrices 

� ∈ ℜ�
�×� and � = 2@� ∈ ℜ�

�×� satisfying (2.2). 
Justification of Procedure 3.1 follows from (3.20) and (3.22) 

since: 

BCRB
R

R
BRAA ==








== −

1
2

11 ]0[ .                            (3.23) 

Remark 3.2. If 
 > � and rank�A = � then the elementary 
row operations procedure is recommended or we may apply 

Procedure 3.1 to the transpose matrix �< and use the equality 

�< = (��)< = �<�<. 
Example 3.2. Find the factorization (2.2) of the nonnegative ma-
trix: 

43

1486

5.0120

0123
×
+ℜ∈

















=A .                                            (3.24) 

In this case we apply the elementary row operations approach 

since � = 4 > 
 = 3. Using Procedure 3.1 we obtain the fol-
lowing. 
Step 1. Using the following row operations we obtain: 









=









==

















 →
−×+
−×+

5.0120

0123

,
0

0000

5.0120

0123
)]2(23[
)]2(13[

C

C
AA

L
L

.              (3.25) 

Step 2. Performing the elementary row operations 4+3 + 2 × 2, 

4+3 + 1 × 2, on the identity matrix ?A we obtain: 

















=

















=

==

















 →
















−×+

×+

1

0

0

,

22

10

01

],[

122

010

001

100

010

001
1]213[

]223[

BB

BBL
L
L

.  (3.26) 

Step 3. The desired matrices � and � satisfying � = �� have  
 the forms: 









=

















=
5.0120

0123
,

22

10

01

CB .                                 (3.27) 

4. CONCLUDING REMARKS 

The factorization problem of nonnegative real matrices has 
been addressed. A method based on elementary column and row 
operations of the factorization of nonnegative matrices has been 

proposed. It has been shown that the nonnegative matrix A ∈

ℜ�
�×�		(
 ≥ �) has positive full column rank if and only if it can 

be transformed to a matrix A with cyclic structure (Theorem 3.2). 
A procedure based on the elementary operations for computation 
of nonnegative matrices � ∈ ℜ�

�×�, � ∈ ℜ�
�×� (� ≤

�%
"(
,�)) satisfying the condition (2.2a) has been proposed 
and illustrated by numerical examples. 
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Abstract: Stressed state peculiarities of cortical and trabecular bones by two-point asymmetric screw fixation with implant for femoral neck 
fracture are studied. Layer construction mechanic methods are used for analysis of stresses in cortical and trabecular bones. Biomechani-
cal conditions for non-opening of the junction of the bone parts being joined are determined. It has been found that the total tightness of the 
broken parts when they rest against each other is secured over the whole fracture section without junction opening under condition 
that fixing screws are positioned in the trabecular bone without penetration of the thread side surface into cortical bone.  

Key words: Femoral Neck Fracture, Screw Fixation, Stressed State, Cortical Bone, Trabecular Bone 

1. INTRODUCTION 

The main task of screw fixation for femoral neck fracture 
is securing the tightness (compression) of broken parts when they 
rest against each other. This tightness can be secured by means 
of different connections: one-point (central and eccentric); two-
point (symmetric or asymmetric); three-point (symmetric, asym-
metric with two bearing and one auxiliary fastening elements); 
four-point, etc. Extensive review of the world scientific and tech-
nical achievements in this field is given in the research papers 
(Manniger et al., 2007; Mow and Huiskes, 2005; Booth et al., 
1998). The analysis of the published works shows that the major 
disadvantage of one-point fixation is the difficulty in preventing 
the parts being joined from possible rotation. In addition, one-point 
fixation stipulates the centric fixing element position which deterio-
rates blood circulation and fosters avascular necrosis of femoral 
head in case of femoral neck stabilization. Two-point, three-point 
and other multiple-point fixation secures broken parts from mutual 
rotation but a big number of fixation points makes osteosynthesis 
operation more traumatic and labour-consuming. Therefore, two-
point and three-point fixation is considered to be preferable 
(Fig.1).  

 
Fig. 1. Conventional screw fixation for femoral neck fractures:  

a – side view; b – one-point; c – two-point symmetric;  
d – three-point symmetric fixation: 1 – cortical bone;  
2 – trabecular bone; 3 – fixing screw; 4 – plate 

Moreover, the three-point fixation under certain conditions 
(strain-retention loss of one of the screws) may work as a two-
point asymmetric fixation.  

In spite of intensive research and development work, a num-
ber of issues of deflected mode of the broken femoral neck parts 
being joined by means of different types of fixation have been 
studied so far insufficiently. Approaches described in the literature 
(Booth et al.,1998; Akulich and Denisov, 2008; Yeremin, 2010) 
are based on simplified biomechanical models which consider 
bone tissue as homogeneous material. This introduces significant 
errors at determining the tension in the parts being joined. 

On the other hand, modified fixation methods have been used 
increasingly in recent medical practice wherein one of the fixing 
screws is substituted with an implant of definite shape which 
is made from the bone of the person being operated upon (Karev, 
2012) (Fig.2). 

a)  b)   

c)  

Fig. 2. Graphic representation of the basic scheme (a) and characteristic 
dimensional parameters (b), (c) for two-point asymmetric screw 
fixation with an implant: �� = �, �� = �� = �: 1 – cortical 
bone; 2 – trabecular bone; 3 – fixing screw; 4 – implant 
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These methods make it possible to decrease the proportion 
of foreign objects (fixing screws), facilitate drainage and thereby 
improve recovery of the femoral head in postoperative period 
by reducing the time of medical treatment. However, the biome-
chanical aspect of such approach is still not fully investigated 
which makes it difficult to analyze the potentialities of this osteo-
synthesis method. 

The objective of this work is development of improved calcula-
tion methods based on taking into account differences of defor-
mation-stress properties of the outer and inner layers of the bone 
and the performance of bones tension analysis in transfer from 
three-point to two-point asymmetric fixation type with an implant.  

2. BIOMECHANICAL ANALYSIS OF FIXATION TYPES 

From the mechanics of materials perspective, the femoral 
neck represents a two-layer material consisting of solid outer 
cortical layer 1 of diameter D and relatively less solid inner tra-
becular layer 2 of diameter d (Fig. 2c). Specifically, according 
to the data from literary sources the breaking stress of cortical 
bone under longitudinal tension is 133 MPa (Mow and Huiskes, 
2005), under longitudinal compression – 193 MPa; the breaking 
stress of trabecular bone is from 3.65 to 9.1 MPa (Yeremin, 2010); 
modulus of elongation: 17–25 GPa for cortical bone and 0.2–2.5 
GPa for trabecular bone (Mow and Huiskes, 2005). Indicator 
values of mechanical properties depend on age-related and 
pathological changes of bone tissue as a consequence of past 
medical history as well as on the loading speed while testing 
(Mow and Huiskes, 2005). 

Significant (by order of magnitude greater) difference in physi-
cal and mechanical properties of bone tissue of cortical and tra-
becular layers results in nonuniform distribution of compression 
stress in bone section when fixing screws are tightened. Even 
if the screws are tightened uniformly in case of three-point sym-
metric fixation (Fig.1c), the tension, being uniform within each 
layer, differs at the layer borders proportionally to the differences 
in elasticity modulus (Fig. 3). 

 
Fig. 3. Tension distribution pattern from the screw tightening over 

the section: a) – uniform tightening; b) – nonuniform tightening;  
c) – threshold case (junction opening); 1 – cortical bone;  
2 – trabecular bone 

In case of strain-retention loss of one of the screws, sec-
tion tension distribution within each layer becomes nonuniform 
(Fig. 3b). At that, nonuniformity grows proportionally to the strain-
retention loss degree. Maximum permissible is the case when the 
pressure (compression) in the outer layer becomes equal to zero 
(Fig. 3c). Further release of the screw strain is inadmissible as it is 
followed by the junction opening of the bone parts being joined. 

It should be noted that the same compression distribution rel-
evant to our case can be achieved by implementation of two-point 
asymmetric fixation illustrated in Fig. 2a. Let us analyze this type 

of fixation. Under the condition of uniform tightening of the fixing 
screws 1 and 2 with equal strain V their resultant (integral force) 
F=2V will be applied to the point K. Since from mechanical point 
of view this type of fixation corresponds to eccentrical compres-
sion of the layered structure by the applied effort which is posi-
tioned at the distance of eccentricity е=ОК from the longitudinal 
axis, such loading can be considered as combination of centric 
compression with effort F and bending moment M=F*е (Vinokurov 
et al., 1998; Minenkov and Stasenko, 1977). 

Corresponding formulas of mechanics of layered structures 
(Vinokurov et al., 1998; Minenkov and Stasenko, 1977), adapted 
to the calculation model under consideration are used for the 
evaluation of compression in each layer within femoral neck.  

Specifically, for compression stresses in the cortical bone: 

2211

1
1

EAEA

FE
c

+
=σ ,            (1) 

and for the trabecular bone: 

2211

2
2

EAEA

FE
c

+
=σ ,                          (2) 

where: �	
  , ��
  are correspondingly compression stress in corti-
cal (1) and trabecular (2) layers of femoral neck; Е1 and Е2 – elas-
ticity moduli of cortical and trabecular layers; А1 and А2 – cross-
sectional area of cortical and trabecular layers; F – integral force 
of screw strain. 

Bending stress for layered material (Vinokurov et al., 1998; 
Minenkov and Stasenko, 1977) in any point at the distance r from 
centroid of section: 
in cortical bone: 

2211

1
1

IEIE

rEM
b

+

⋅⋅
=σ             (3) 

and in trabecular bone: 

2211

2
2

IEIE

rEM
b

+

⋅⋅
=σ              (4) 

Here �	� is the bending stress in the outer (cortical) layer; ��� 
is bending stress in the trabecular layer; I1 and I2 – corresponding-
ly axial moment of inertia of cortical and trabecular layers of bone 
section. 

Calculation values of areas of cortical А1 and trabecular А2 

layers and corresponding axial moments of inertia of section I1 

and I2 can be expressed in initial approximation through outer D 
and inner d diameters (fig.2c) by means of the following corre-
spondences 
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4
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−
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              (5) 
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πD               (6) 
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πD

I =               (8) 

where α=d/D. 
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The formulae given above (5)–(8) are approximate because 
they do not take into account the weakening of sections by the 
openings intended for fixing screws and the implant due to its little 
effect.  

With regard to (5)–(8) formulae (1)–(4) for stresses calculation 
are brought to the following form: 

Compression stress in a cortical bone: 

( )[ ]22
1

22

1
1

1

4

EED

FE
c

ααπ
σ

+−
=             (9) 

compression stress in a trabecular bone: 

( )[ ]22
1

22

2
2

1

4

EED

FE
c

ααπ
σ

+−
=           (10) 

bending stress in a cortical bone: 

( )[ ]24
1

44
1

1
1

64

EED

rEM
b

ααπ
σ

+−

⋅⋅⋅
=           (11) 

bending stress in a trabecular bone: 

( )[ ]24
1

44

2
2

1

64

EED

rEM

b

ααπ
σ

+−

⋅⋅⋅
=           (12) 

Maximum bending stress values are obtained if: 

M = F *еmax,                 (13) 

where еmax – maximum eccentricity of integral force application F. 
The maximum resulting stresses magnitude will be observed 

in the outermost point from centroid of section of the correspond-
ing layer from the side where the compression stress and bending 
stress coincide, and the minimum ones – at the same kind of point 
from the side where the compression stress and bending stress 
signs are opposite. 

3. BIOMECHANICAL CONDITION FOR NON-OPENING  
OF THE JUNCTION OF THE BONE PARTS BEING JOINED 

 The criterion for non-opening of the junction is the absence 
of tensile stress in the zone where the signs of compression 
and bending stress are opposite. Having equated the maximum 
bending stress to compression stress after transformation we get 
the value of maximum permissible level of eccentricity еmax 
of screw strain resultant application: 
for cortical bone: 

( )
( )[ ]22

1
2

2
4

1
4

max1
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1

EE

EED
e
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αα

+−

+−
=          (14) 

for trabecular bone: 

( )
( )[ ]22

1
2

2
4

1
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max2
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EE
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e

ααα

αα

+−

+−
=          (15) 

Maximum permissible relative eccentricity value of screw 
strain resultant application: 
for cortical bone: 

( )
( )[ ]22
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for trabecular bone: 

( )
( )[ ]22
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For illustrative purposes the tables (1, 2, 3) contain calculated 
magnitudes of the maximum permissible eccentricity value 
by condition of non-opening of the junction in cortical and trabecu-
lar bone layers. Calculations were made through the example 
of widely occurring diameter of femoral neck D=40 mm for differ-
ent values of elasticity moduli of layer materials in case of two-
point fixation with uniform screw strains. 

Tab. 1.The calculated magnitudes of dimensional parameters  
             for value of cortical bone elasticity modulus Е1=17 GPa 

Name and 
identifier of 
dimensional 
parameter 

Elasticity modulus of trabecular bone Е2, GPa 

0.25 0.5 1.0 1.5 2.0 2.5 

Maximal rela-
tive eccentricity 
for cortical bone 

e1max/D 

0.24 0.24 0.22 0.21 0.21 0.20 

Maximal rela-
tive eccentricity 
for trabecular 
bone e2max/D 

0.27 0.26 0.25 0.24 0.23 0.22 

Maximal value 
of eccentricity 

for cortical bone 
e1max, mm 

9.72 9.4 8.94 8.54 8.20 7.9 

Maximal value 
of eccentricity 
for trabecular 

bone e2max, mm 

10.8 10.4 9.93 9.48 9.11 8.78 

Tab. 2.The calculated magnitudes of dimensional parameters  
            for value of cortical bone elasticity modulus Е1=20 GPa 

Identifier of 
dimensional 
parameter 

Elasticity modulus of trabecular bone Е2,GPa 

0.25 0.5 1.0 1.5 2.0 2.5 

Maximal rela-
tive eccentricity 

for cortical 
bone e1max/D 

0.24 0.23 0.23 0.22 0.21 0.20 

Maximal rela-
tive eccentricity 
for trabecular 
bone e2max/D 

0.27 0.26 0.25 0.24 0.23 0.23 

Maximal value 
of eccentricity 

for cortical 
bone e1max, mm 

9.77 9.5 9.08 8.71 8.40 8.12 

Maximal value 
of eccentricity 
for trabecular 

bone e2max, mm 

10.9 10.6 10.1 9.68 9.3 9.0 
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Tab. 3.The calculated magnitudes of dimensional parameters  
             for value of cortical bone elasticity modulus Е1=25 GPa 

Name and 
identifier of 
dimensional 
parameter 

Elasticity modulus of trabecular bone Е2, GPa 

0.25 0.5 1.0 1.5 2.0 2.5 

Maximal rela-
tive eccentricity 

for cortical 
bone e1max/D 

0.25 0.24 0.23 0.23 0.23 0.21 

Maximal rela-
tive eccentricity 
for trabecular 
bone e2max/D 

0.27 0.27 0.26 0.25 0.24 0.23 

Maximal value 
of eccentricity 

for cortical 
bone e1max, mm 

9.83 9.62 9.25 9.07 8.64 8.40 

Maximal value 
of eccentricity 
for trabecular 

bone e2max, mm 

10.9 10.7 10.28 10.1 9.6 9.3 

 
While analyzing the findings, we consider that OK = e; OB = 

OA = R = 2e as it appears in Fig. 2b; i.e. maximum permissible 
distance from the center of section to the fixing screws installation 
points is equal to the doubled amount of eccentricity. 

Since the fixing screws diameter is usually 8 mm (radius  
is 4 mm), maximum geometrically permissible distance from the 
center of bone cross-section to the fixing screws installation point 
without injury of the inner part of cortical layer with the screw 
thread (parameter Rmax) is Rmax =40/2-2-4=14 mm, providing 
that cortical layer thickness is 2 mm. Collation of this value with 
the maximum permissible values calculated on the basis of the 
data given in the Tabs. 1–3 points to secured provision of condi-
tions for non-opening of junction in case of two-point asymmetric 
fixation with implant throughout the studied range of bone layers 
elasticity modules values variation. 

The obtained date are based on approximate method of calcu-
lation and as result are approximate and estimate. But the accu-
racy of calculation used is sufficient for position  determination of 
fixing screws' arrangement. More precise analysis of cortical and 
trabecular bones' stressed state is possible with using of numeri-
cal methods, e.g. FEM. 

4. CONCLUSION 

Methodology is suggested for calculation assessment of corti-
cal and trabecular layer tension parameters in case of two-point 
asymmetric fixation with an implant for femoral neck fracture. 
It has been found that solid tightness of the broken parts against 
each other is secured over the whole fracture section without 
junction opening under condition that fixing screws are positioned 
in the trabecular layer without penetration of the thread side sur-
face into cortical layer. This concerns the studied range of me-
chanical properties change of cortical and trabecular layers 
of bone tissue. 
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Abstract: The aim of this note is to show possible consequences of the principle of stationary action formulated for non-conservative sys-
tems. As an example, linear models of vibratory system with damping and with one and two degrees of freedom are considered. This kind 
of models are frequently used to describe road and rail vehicles. There are vibrations induced by road profile. The appropriate action func-
tional is proposed with the Lagrangian density containing: the kinetic and potential energies as well as dissipative one. Possible variations 
of generalized coordinates are introduced together with a noncommutative rule between operations of taking variations of the coordinates 
and their time derivatives. The stationarity of the action functional leads to the Euler-Lagrange equations.  

Key words: Non-Conservative System, Principle of Stationary Action, Lagrangian, Non-Commutative Rule, Damping 

1. INTRODUCTION 

Historically, the classical Lagrange and Hamilton’s formalisms 
were formulated for the point mechanics problems. Accordingly, 
if a dynamical system is described by the vector-valued general-
ized coordinate � and the Lagrangian � = � − � , where � 

and � are, respectively, the kinetic and potential energy, then one 
formulates the variational principle of the dynamical system requir-
ing that between all curves � = �(�) in a configuration space 
 
the actual path (i.e. the solution of the system) is that which 
makes the action integral 

���
 = � �(�, �� , �)����
��

 (1) 

stationary. Taking the first variation �� subject to the conditions ��(��) = ��(��) = 0 the stationarity of the action requires �� = 0, which is equivalent to the Euler-Lagrange’s equation: ��� ����� − ���� = 0 (2) 

provided the classical commutative rule:  

��� = ��� 	��, or written as ���, ����� � = 0 (3) 

holds. Here the bracket ��δ,   !�� defines the difference between 

two compositions of operators  δ   !−   ! δ, not a vector. 

It is well known that the governing equations for non-conser-
vative, mechanical systems, i.e. when dissipative phenomena 
occur, at the present time cannot be derived from Hamilton’s 
variational principle understood as the requirement: ����
 = 0 
occupied with (3) (Schechter, 1967). In the present paper we will 
show that neglecting the commutativity law (3) governing equa-
tions of non-conservative system is possible to derive. First 

in Sec. 2 short review of different approaches is presented to-
gether with the main assumption about non-commutativity. As an 
example, linear models of vibratory system with damping and with 
one and two degrees of freedom are considered in Sec. 3. This 
kind of models are frequently used to describe road and rail vehi-
cles under vibrations induced kinematically by road profile. The 
appropriate action functionals are proposed with the Lagrangian 
density containing: the kinetic and potential energies as well as 
dissipative one. Possible variations of generalized coordinates are 
introduced together with a non-commutative rule between opera-
tions of taking variations of the coordinates and their time deriva-
tives. The stationarity of the action functional leads to the Euler-
Lagrange equations. 

2. NON-COMMUTATIVITY RULE 

In order to derive governing equations describing irreversible 
phenomena using the variational technique some artificial re-
strictions must be made, concerning the basic rules of variational 
calculus. A good example is served by the variational principle 
formulation made in: Biot (1970), Chambers (1956), Kotowski 
(1989, 1992), Marsden and Hughes (1983), Prigogine 
and Glandsdorff (1965), Rosen (1954), Schechter (1967), Vuja-
nović and Djuković (1972) and Yang (2010).  

Different procedure was given by Vujanović (1971) and ap-
plied to governing hyperbolic equation of heat conduction (with 
finite wave speed), in which the new Lagrangian was proposed 
with an explicit dependence on time in the form of the exponential 
term exp �/& appearing as a factor. This term has the power �/&, 

where & is the thermal relaxation time. The corresponding transi-
tion to the case of infinite speed of thermal disturbance (parabolic 
equation) is performed by setting the relaxation time equal to zero. 

After his first paper Vujanović has proposed in Vujanović 
(1974, 1975) the new method for deriving the class of equations 
describing some physical irreversible processes and based on the 
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variational principle which has a Hamiltonian structure, and in 
most cases its form does not differ from that known for conserva-
tive systems. However, the crucial assumption of the new method 
is a non-commutative rule between operations of taking variations 
of the generalized coordinate (field) and their time derivatives. 

In dissipative systems the loss of energy is a crucial effect. 
Because of this effect a physical process cannot be reversed 
without change in the environment. Such process is irreversible. 
Irreversibility means that variation of the quantity involved in de-
scription of irreversible process and the variation of its time deriva-
tive are related to dissipative mechanism governing the process 
considered, not the time differentiation. It means that the time 

derivative 
��� �� from one side must be different from the variation 

of the time derivative of the quantity, i.e. � ��� �. From the other 

side this variation is the dynamic quantity and it should depend 
on the non-conservative forces (according to Vuhanović (1975)) 
acting upon the system. We are not going to tamper with the usual 

notation of the variation of �� and the velocity of variation 
��� ��. 

These two vectors are regarded as purely kinematic in nature. 
The vector �� means that we consider the infinitesimal transfor-

mation (i.e. first variation) replacing �(�, '), for example 

by �(�, ') + )*(�, '), where *(�, ') is an arbitrary differentia-
ble function of � and ', and ) is a small parameter passing 
through zero. Then, from the definition: 

��(�) = ��) +�(�) + 	)*(�),�) = *(�)�) (4) 

Hence in this notation we have: ��� �� = ��� *(�)�) (5) 

Since the vector � ��� � has a purely dynamic character and its 

form depends on the nature of dissipative (non-conservative) 
phenomena and forces acting on the body, the infinitesimal trans-

formation replaces  
��� �(�) by 

��� �(�) + )-(�), where -(�) 
is not arbitrary differentiable function of �. This function, however, 

may differ from 
���*(�, ') by a part that is related to the function *(�, ') via some relationship depending on the irreversible phe-

nomena of the system. Hence we can write: 

� ��� � = ��) . ��� �(�) + )-(�)/ �) = -(�)�) (6) 

together with: 

-(�) = ���*(�) + 01�(�), ��� �(�), �2 *(�)  (7) 

Notice that here we admit the tensor function 0. The appear-

ing of the tensor 0 is a new fact (cf. Grochowicz and Kosiński 
(2011), Kosiński and Perzyna, 2012)). 

Comparing (4) and (6) with (7) we end up with the following 
non-commutative rule: 

���, ����� � = 01�(�), ��� �(�), �2 ��  (8) 

We can see that the case when the function 0 = 0 corre-
sponds to a commutative rule. This non-commutative rule will be 
crucial in developing new variation principle for deformable body 
made of the dissipative material with internal state variables. 

In the previous papers (Grochowicz and Kosiński (2011), 

Kosiński and Perzyna, 2012)) the simpler version of the variational 
technique developed here was applied to 3 continuous irreversible 
systems. They were: long-line (i.e. telegraph) equation, hyperbolic 
model of heat conduction as well as governing equations of de-
formable body with internal state variables. In the next paper we 
will generalize the last derivation to the case of thermomecha-
nics. 

3. VARIATIONAL PRINCIPLE FOR DYNAMIC SYSTEM  
WITH DAMPING 

Let us consider two linear models of  a vehicle (Grzyb, 2012) 
which moves on a road or on a track. We will consider its vertical  
movement characterized by the displacement 3(�) and produced 
by its horizontal  motion along the road (track) profile, see Fig. 1. 
The vertical motion will be induced by kinematic excitation de-
scribed by  function 4(�). The car body  of the vehicle is modeled 

by a rigid body of  mass 5. Vibrations of the mass  are forced by 

a spring of an elastic constant 6. The damping of the vehicle 
is realized by a linear, viscose  damper characterized by a viscosi-

ty constant 7. The first model has one degree of freedom. 

 
Fig. 1. Physical model of vehicle with one degree of freedom 

 
Fig. 2. Physical model of vehicle with two degrees of freedom 
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In order to take into account two parts of the vehicle, namely 
the vehicle body and the boogie, the model with two degrees 
of freedom, see Fig. 2, will be considered. The vibrations of the 

vehicle body of mass m� and the boogie of mass m9 are charac-
terized by displacements: 3�(�) and 39(�), respectively. The 
vertical vibration of the both parts are induced by two separate 

springs with elastic constants: 6� and 69. The damping of consid-
ered vibrations is realized by linear dampers with viscosity con-

stants 7� and 79, compare the element :; on Fig. 2. 

3.1. One degree of freedom model 

In the first model the motion of the system (i.e. the car) is gov-
erned by the second order ODE (cf. Grzyb (2012)): 

53<(�) + 73�(�) + 63(�) = 74� (�) + 64(�)  (9) 

According to the author of Grzyb (2012) this equation can be 
derived from the following Lagrange equation of the second kind: ��� =�>?�@� A + �B�@� + �>C�@ = D (10) 

with the appropriate forms of the kinetic energy >? , the potential 

energy >C, the dissipation function of the system B and the gen-

eralized force D. In Grzyb (2012) in the derivation the author put @ = 3, D = 0 and suitable forms of other functions. It will be 
shown, that in the two degrees of freedom system the governing 
of equations are Euler-Lagrange equations derivable from a sta-
tionary action principle. 

3.2. Two degree of freedom model 

Having the derivation of the first model, let us start with the 
definition of the kinetic and potential energies for the system 
together with its dissipative part. Then, assuming the index 1 
for the quantities describing the car body, we have the kinetic 
energy for the whole system: the car body and the boogie �(3��, 3�9): 
�+3��, 3�9, = �9 �5�3��9 +593�99
	  (11) 

the potential energy �(3�, 39): �(3�, 39, 4) = �9 �6�(39 − 3�)9 + 69(4 − 39)9
	  (12) 

and the dissipative part E(4� , 39): E(4� , 39) = 794� 39	  (13) 

Let us postulate the following non-commutative rule (cf. (8)): 

���, ����� F3�39G = �H�� H�9H9� H99� F�3��39G = 

I− J�K�
J�K�J�KL − J�MJLKL

N F�3��39G 
(14) 

Let us define the action functional with its Lagrangian density � = � + E − �: 

�(3�, 39, 4) = O +�+3��, 3�9, + E(4� , 39) −�����(3�, 39),��	  (15) 

Now we formulate the following stationary action principle. 

Postulate: Let a system will be exited by the kinematic loading 4. 
Along all curves (3�(�), 39(�)) in the configuration space the 
actual path is that which makes the action integral (15) stationary 

provided the both variations �3�(�) and �39(�) vanish at the 
end points �� and �� and the non-commutativity load (14) holds. 

Let us take the first variation of (15). We get: 

��(3�, 39, 4) = � P ���3�� �3�� + ���3�� �3�9Q��
��
��

 

− � =�(� − E)�3� �3� + �(� − E)�39 �39A ��
��
��

 

(16) 

Now we use the rule (14) to �3�� and �3��, to get: 

�� = � P ���3�� =��3��� A + H���3� + H�9�39Q ��
��
��

	 
+	 � P ���3�9 =��39�� A + H9��3� + H99�39Q ��

��
��

 

− � =�(� − E)�3� �3� + �(� − E)�39 �39A ��
��
��

 

(17) 

Taking the time derivative on some terms and using formula 
of product differentiation as well as grouping similar terms, 
we obtain: 

�� = � P− ��� P ���3��Q�3� − ��� P ���3�9Q�39Q ��
��
��

 

+R ���3�� �3� + ���3�9 �3�S �� = ��� = �� 

+ � P ���3��H�� + ���3�9H9�Q �3���
��
��

 

+ � P ���3��H�9 + ���3�9H99Q �39��
��
��

 

− � =�(� − E)�3� �3� + �(� − E)�39 �39A ��
��
��

 

(18) 

Since our Postulate requires vanishing ���3�, 39, 4
 = 0 

and the variations of 3� and 39 vanish at the end points, then 
inside the interval grouping terms appearing in the front of the 
variations �3� and �39, we obtain, in view of their arbitrariness 
and independence, two ODE’s: 

��� TUTV�� + T(WXY)TV� − 
TUTV��H�� − TUTV�LH9� = 0 

��� TUTV�L + T(WXY)TV� − 
TUTV��H�9 − TUTV�LH99 = 0 

(19) 

The above equations form the Euler-Lagrange equations 
of our stationary action functional Postulate. 

We substitute the expressions for the H’s coefficients from 
(14). We obtain: 
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5�3<� + 7�+3�� − 3�9, + 6�(3� − 39) = 0  

593<9 − 7�3�� + (7� + 79)3�9 − 6�(3� − 39)+ 6939 = 694 + 794�  (20) 

The above method can be applied to the previous model with 
one degree of freedom system (9) by putting: 

�(3) = �953�9  

�(3, 4) = 12 6(4 − 3)9 

E(4� , 3) = 74� 3 

(21) 

and the non-commutativity rule: 

���, ����� 3 = − J\  (22) 

4. CONCLUSIONS 

In this paper starting with the action functional in which kinetic 
energy, potential energy and dissipative part of energy related to 
both elastic and irreversible phenomena of the system appear, 
the principle of its stationarity is formulated. Making the first varia-
tion of the functional compatible with the assumed initial 
and boundary conditions and postulating the appropriate non-
commutative laws between the variation and time differentiation 
operators, the consequence in the form of Euler-Lagrange equa-
tions is obtained. The derived equations form the governing sys-
tem of equations of the model with two degree of freedom. 
The passage to the system with one degrees of freedom is also 
shown. 

The formulated method may be very helpful in other deriva-
tions and the investigation of particular and approximate forms 
of solutions of non-conservative systems. 
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Abstract: A new approach for frequency analysis of recorded signals and readout the frequency of harmonics is presented in the paper. 
The main purpose has been achieved by the cross-correlation function and Hilbert transform. Using the method presented in the paper, 
there is another possibility to observe and finally to identify single harmonic apart from commonly used Fourier transform. Identification 
of the harmonic is based on the effect of a straight line of the envelope of the cross-correlation function when reference and signal harmon-
ic have the same frequency. This particular case is the basis for pointing the value of the frequency of harmonic component detected. 

Key words: Frequency Analysis, Cross-Correlation, Hilbert Transform, Envelope 

1. INTRODUCTION 

It is common knowledge that spectrum analysis using fast 
Fourier transform (FFT) presents the amplitudes of all harmonics 
the fast way. This method of showing the frequency profile of the 
signal is applied both during the post-processing and as real-time 
processing. 

There is many engineering applications of correlation function 
(Bendat and Piersol, 1980). To provide for a new application, 
the cross-correlation function has been utilized to correlate real-
measured signal and a single harmonic signal generated 
by a software. Also, the Hilbert transform has been used for ob-
taining the envelope of the cross-correlation function (Thrane, 
1984) where the envelope removes the oscillations (Thrane et al., 
1999). In particular cases, experimental results have shown 
a linear shape of the envelope. It is observed when correlated 
signals have a common frequency value (Kotowski, 2010). This 
effect is well noted and very sensitive to generated single harmon-
ic signal frequency. Thus, the paper presents the method of read-
ing the particular frequency harmonic developed on the base 
of cross-correlation function and its envelope. 

It is obviously known that after signal recording there is no 
way to have the longer one. This case couses the fixed frequency 
resolution as inverse of period of signal duration when using FFT. 
This case is especially noted for very short-time signals, e.g., from 
impulse tests. For avoiding that limitation, Cawley and Adams 
(1979) investigated the problem mentioned aboved and showed 
to be possible to obtain frequency resolution of one-tenth of the 
spacing between the frequency points produced by the Fourier 
transform. Also, it is commonly used zero-padding for improving 
frequency estimation (Quinn, 2009; Dunne, 2002). Zero-padding 
means that an array of zeros is appended to the end (or begin-
ning) of analysed signal. Using the method presented in the paper 
there also is possible to obtain different frequency resolution than 
that fixed using FFT. Frequency resolution can be variable adjust-
ed by user of the method starting from reference value of 1 Hz 
to up or down. 

2. METHODOLOGY 

The cross-correlation function Rxy(τ) between two processes, 
x(t) and y(t), is calculating by the expression (Bendat, Piersol, 
1980): 
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where: T – signal record length, τ – argument of cross-correlation 
function (time delay). 

Then, the cross-correlation function Rxy(τ) is transformed into 
the envelope by Hilbert transform. The Hilbert transform of a real 
time signal, x(t), is defined as follows (Thrane, 1984) 
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Thus, the Hilbert transform of the cross-correlation Rxy(τ) 
is given by: 
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The Hilbert transform enables calculation of the envelope 
of the signal x(t) as follows (Thrane et al., 1999): 
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 is the envelope. Similarly, we can calculate 

the envelope of the function Rxy(τ) as: 
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The method also needs series of harmonic signals generated 
as follows: 

))(2sin( tiwfy si ⋅⋅+⋅= π   (6) 

where: i - an integer value (index), fs – starting frequency,  
w – factor as frequency resolution parameter. 

Frequency fs is fixed as a start point value and is increasing 
by i = 1, 2, 3, … , n. Also, the factor w is applied for changing 
the resolution of the harmonic frequency reading. This way, a form 
of the envelope points the case of detection and finally identifica-
tion of harmonic. The harmonic frequency value equals one of the 
harmonics existing within the signal yi(t). Preliminary studies have 
shown that envelope of the cross-correlation function is in the 
form of a straight line when input signal x(t) and the signal y(t) 
have in common one frequency determined as (fs+w�i). This phe-
nomenon is easy to detect and determination of the common 
frequency is fast. For that reason, plot of the envelope can be 
effectively used to identify harmonics included in recorded signals 
without Fourier transform. 

There are a hundred of plots of the cross-correlation function 
envelope to illustrate four particular cases of the straight line effect 
mentioned above in Fig. 1. It has been used the four-harmonic 
signal x(t) generated as follows 
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where: f1=64 Hz,  f2=85 Hz, f3=130 Hz, f4=150 Hz. The signal yi 
is calculated in the way determined in Eq. 6, where fs and w 
are constant and equal 60.0 and 1.0 respectively. The index i 
varies in the range from 1 to 100. 

The value of frequency of harmonic included in the input sig-
nal x(t) is determined on the base of the plot of the envelope. 
When observing straight-line effect, we know the fs value,  
w value and the i index value of the signal yi(t) which was used for 
calculations (Eq. 6). This way, a formula (fs +w�i) indicates the 
frequency of recognized harmonic. 

 

Fig. 1. The cross-correlation envelopes 

3. RESULTS FOR STATIONARY SIGNAL 

The exemplary experimental results have been based  
on signal of vibration presented in Fig. 2. The signal has been 
recorded by sampling frequency of 4096 Hz and over time of one 
second. The spectrum shown in Fig. 3 has a lot of well-observed 
harmonics. As shown in Fig. 4, two cases have been detected 
between 210 Hz and 310 Hz where envelopes of the cross-
correlation function are almost in the form of a straight line. Thise 
situation has occurred for i=17 and i=92 by fs=210Hz and w=1 
(Eq. 6). Hence, it has been for 227 and 302 Hz with frequency 
resolution fixed by w as 1Hz (w=1). 

Apart from detection based on cross-correlation envelope 
image, an indicator Le has been used to express in numbers 
deviation of cross-correlation envelope from linearity. This way, 
it was possible to present a plot of changes in straight line overlay 

for all frequency span of recorded vibration signal. Le is described 
as follows 

∑
=

−=
N

n

envrefe yyL

1

 (8) 

where: yref – reference straight line, yenv – cross-correlation  
envelope, N – number of points for calculation. 

This way, a plot of changes of indicator Le has been prepared 
and presented in Fig. 5. It seems to be no difference between 
spectrun presented in Fig. 3 and the plot of Le but if zooming the 
plot there are local minimas in places of dominant frequency 
appearance (spectrum peaks). If having the plots of Le,  
it is possible to readout frequencies being under consideration 
(Figs. 6-9). 
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Fig. 2. Signal of vibration 

 

Fig. 3. Signal spectrum 

 
Fig. 4. Envelopes of the cross-correlation functions
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Fig. 5. Le indicator plot for all frequency span of recorded vibration signal

 
Fig. 6. Enlargement of Le indicator plot around 227 Hz 

 
Fig. 7. Enlargement of Le indicator plot around 302 Hz 

 
Fig. 8. Enlargement of Le indicator plot around 378 Hz 

 

Fig. 9. Enlargement of Le indicator plot around 1511 Hz 

4. RESULTS FOR NONSTATIONARY SIGNAL 

Frequency identification presented in section 3 can be applied 
for nonstationary signals where commonly used Fourier transform 
relies on a stationarity assumption and it is difficult to guarantee, 
in practice, the stationarity over a long signal time horizon (Benko 
and Juričić, 2008). A typical nonstationary signal can be the signal 
of response from impulse test. Exemplary impulse response under 
consideration is shown in Fig. 10. Laboratory software tool using 
curvefitting procedure have been utilized to obtain values of two 
frequencies at two highest amplitudes. It have resulted the 
frequency of 3794 and 13714 Hz. 

In this case, impulse response analysis have shown that 
frequency readout is based on some different form of Le indicator 
plot than obtained for vibration signal in section 3. It is well-
observed an push-up effect presented in Figs. 11-12. This effect 
revealed the frequency of harmonics really existing in impulse 
response, i.e., 3794 and 13714 Hz. 

Results presented previously have been obtained by the 
frequency resolution of 1 Hz. By changing the w parameter, 
it is possible to get greater resolution e.g. 0.2 Hz (w=0.2). As show 
in Fig. 13, the plot of Le indicator has the same character but 
readout of frequency is more exact. In this case it is 3794.2 Hz – 
frequency at maximum of push-up effect. 
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Fig. 10. Impulse response 

 
Fig. 11. Le indicator plot for impulse response around 3794 Hz 

 
Fig. 12. Le indicator plot for impulse response around 13714 Hz 

 
Fig. 13. Le indicator plot for impulse response around 3794 Hz  
              by the frequency resolution of 0.2 Hz 

It is also able to obtain quasi-stationary signal from 
nonstationary by deviding the nonstationary signal into several 
sections and then use FFT. But this way, the Fourier spectrum 
resolution is going down. By deviding the signal presented in Fig. 
10 into two parts, the spectrum resolution equals 164Hz (duration 
is 6.10 milisecond). After splitting into four sections, the spectrum 
resolution equals 328Hz (duration is 3.05 milisecond). However 
using the indicator Le the method have its own spectrum 
resolution independent of duration of analysed signal or a 
fragment of analysed signal. 

5. CONCLUSIONS 

A general view of the use of cross-correlation function and its 
envelope for frequency analysis has been presented in the paper. 
That approach brings in the method for reading the frequency 
both for stationary and for nonstationary signals. For stationary 
signals, new possibility is based on the cross-correlation envelope 
straight-line effect observed for two signals (input signal and 
reference signal) when having one harmonic in common. The 
approach proposed in the paper shows a possibility to detect and 
finally to identify frequencies being within the input signal without 
use of Fourier transform, thus, without limitation in frequency 
resolution. The frequency resolution of proposed frequency 
analysis is determined over the factor used for generating 
reference signal. The method proposed in the paper gives a 
possibility to have the spectrum resolution controlled and 
independent of period of signal recording, e.g. signals lasting 
much less than one second always have Fourier spectrum 
resolution much over than 1 Hz and using the proposed methos it 
is able to obtain spectrum resolution 1Hz or even below 1Hz. 

The cross-correlation function and its envelope can be a 
complementary method for frequency analysis, e.g. for accurate 
detection of natural frequencies using impulse tests. 
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Abstract: Rotating shafts are important and responsible components of many machines, such as power generation plants, aircraft en-
gines, machine tool spindles, etc. A transverse shaft crack can occur due to cyclic loading, creep, stress corrosion, and other mechanisms 
to which rotating machines are subjected. If not detected early, the developing shaft crack can lead to a serious machine damage resulting 
in a catastrophic accident. The article presents a new method for shaft crack detection. The method utilizes the coupling mechanism be-
tween the bending and torsional vibrations of the cracked, non-rotating shaft. By applying an external lateral force of a constant amplitude, 
a small shaft deflection is induced. Simultaneously, a harmonic torque is applied to the shaft inducing its torsional vibrations. By changing 
the angular position of the lateral force application, the position of the deflection also changes opening or closing of the crack. This chang-
es the way the bending and torsional vibrations are being coupled. By studying the coupled lateral vibration response for each angular po-
sition of the lateral force one can assess the possible presence of the crack. The approach is demonstrated with a numerical finite element 
model of a rotor. The results of the numerical analysis demonstrate the potential of the suggested approach for effective shaft crack detec-
tion. 

Key words: Rotordynamics, Shaft Crack, Structure Health Monitoring, Diagnosis 

1. INTRODUCTION 

One of the most dangerous malfunctions of rotating machines 
are shaft cracks. Transverse cracks occur due to cyclic loading, 
thermal stresses, creep, corrosion, and other mechanisms to 
which rotating shafts are subjected. Once a crack has appeared, 
high stresses develop at its edge and allow the crack to propagate 
deeper, even if external loads are not changing. When the crack 
has propagated to a relevant depth, the propagation speed in-
creases dramatically and the shaft may fail in a very short time, 
what usually leads to a catastrophic accident. That is why an early 
detection of the potential shaft cracks inside the rotating machine 
components is so important. 

The problems of early shaft crack detection and warning have 
been in the limelight of many research centers for over 40 years. 
Different methods have been analyzed, tested and validated 
experimentally. Generally, the developed approaches can be 
divided into the vibration based methods and other methods (e.g. 
ultrasonic, eddy current testing, dye penetrant testing, etc.) 
(Bachschmid et al., 2010). 

Usual crack detection methods are based on vibration signal 
analysis (Bently and Muszynska, 1986; Gasch, 1993; Grabowski, 
1982) for which dynamic signal analyzers, evaluating the fast 
Fourier transform (FFT) are utilized. By studying the changes in 
the vibration spectra, the appearance of the possible shaft crack 
can be easily assessed. The frequently discussed changes in 
frequency spectra induced by a crack are: a considerable in-
crease of the amplitude of the synchronous frequency 1X and an 
appearance of its second multiple 2X, especially for a rotor speed 
near the half of the critical frequency (Bachschmid et al. 2010). 
However, such symptoms are characteristic not only for cracked 
rotors, but can be induced by other faults such, as: bearing mal-
functions, misalignment, thermal sensitivity, etc. (Bently and 

Muszynska, 1986). 
Other vibration based methods include changes in rotor modal 

parameters, such as its natural frequencies and mode shapes, 
which appear in the presence of the developing shaft crack 
(Bachschmid et al., 2000, 2010).  

Nowadays, model-based methods are gaining a special inter-
est. A mathematical model of the analyzed rotor is extensively 
used here for designing state observers, Kalman filters or the so 
called robust fault detection filters, which have proved their effi-
ciency not only for shaft crack detection, but also for the determi-
nation of its location along the shaft axis (Bachschmid et al., 2000; 
Isermann, 2005; Kulesza and Sawicki, 2010). 

Methods utilizing new signal processing algorithms, such as 
neural networks, genetic algorithms, wavelets, Huang-Hilbert 
transform, etc. are also progressing quickly (Guo and Peng, 2007; 
He at al., 2001; Litak and Sawicki, 2009). 

A relatively new approach employs the use of a specially de-
signed diagnostic force applied to the rotating shaft (Ishida and 
Inoue, 2006; Mani et al., 2005; Sawicki and Lekki, 2008). If the 
force is harmonic, then the presence of the crack generates re-
sponses containing frequencies at combinations of the angular 
speed, applied forcing frequency, and the rotor natural frequen-
cies. It has been shown, that the appearance of the combinational 
frequencies is a very strong signature of the shaft crack (Sawicki 
et al., 2011). However, the research conducted so far has focused 
on applying the harmonic force, acting in one, fixed direction only. 

A well known feature of the cracked shaft is the coupling be-
tween the lateral and torsional vibrations. The appearance 
of coupled bending and torsional vibrations can be utilized as 
a possible shaft crack indicator, which has been reported by 
several authors (Darpe et al., 2004; Kiciński, 2005). 

Similarly to the previous methods, the present paper recom-
mends the use of an additional diagnostic force applied perpen-
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dicularly to the shaft axis. However, the shaft is not rotating, but 
excited by an additional torque inducing its torsional vibrations. 
The proposed method is based on vibration signal analysis, 
namely on the coupling mechanism between the lateral and tor-
sional vibrations. 

2. THE CONCEPT OF THE NEW METHOD  
FOR ROTOR CRACK DETECTION 

Schematic diagram explaining the concept of the proposed 
method is shown in Fig. 1. 

 
Fig. 1. Schematic diagram of the method for different angular positions  
           � of the external force ��� : a) � = 0° – fully closed crack,  
           b) � = 120° – partially open crack,  
           c) � = 180° – fully open crack 

The rotor supported by bearings is not rotating, as one of its 
ends is fixed to an unmovable base, removing its rotational 
degree of freedom. The other end is twisted by torque �� acting 
around the axis of the shaft. The amplitude of the torque changes 
harmonically inducing forced torsional vibrations of the shaft. 

Simultaneously, an external force ���  of a constant amplitude 
is applied perpendicularly to the shaft. The force is applied at 
different angles �, inducing some small deflections of the shaft. 
By changing the angular position of the force, the position of the 
deflection also changes opening or closing the crack. This 
changes the stiffness of the shaft and the way the bending and 
torsional vibrations are being coupled. It is supposed, that by 
studying the coupled bending vibration response for each angular 
position of the external force one will be able to assess the 
possible presence of the crack. 

The suggested method will be tested numerically. For this, the 
following mathematical models will be formulated: the finite 
element (FE) model of the rotor, the model of the shaft element 
with the crack, and the model of crack opening/closing. Based 
on these models the vibration responses of the cracked rotor 
for different values and angles of the lateral force as well as for 
different amplitudes and frequencies of the torsional excitation will 
be calculated. The Fourier spectra of the vibration responses 
obtained for both the cracked and uncracked rotors will be used 
for the comparative study assessing the possible employment 
of the proposed method for an efficient shaft crack detection. 

3. FINITE ELEMENT MODEL OF THE ROTOR 

Fig.2 presents the finite element model of the tested rotor. 
The rotor consists of a shaft of diameter 16 mm and length 

600 mm, and a rigid disk of diameter 120 mm and widtt 30 mm. 
Two ball bearings located 30 mm from both ends of the shaft are 
used to support the rotor. Radial stiffness and damping 

coefficients of the bearings are assumed as 
� = 3.4 ×
10�	N/m and �� = 10 Ns/m. Furthermore, the torsional stiffness 
and damping coefficients at the left bearing are chosen to be 

� = 4 × 10� Nm/rad and �� = 20 Nms/rad, as the left 
end of the shaft is fixed (Fig. 1). The rotor is made of steel 

of Young's modulus � = 2.08 × 10�� Pa, Poisson's ratio 

� = 0.3 and density � = 7850 kg/m3.  

 
Fig. 2. Finite element model of the tested rotor 

The shaft has been divided into 20 finite beam elements  
(Fig. 2). The 9th element has been assumed as cracked (see: 
section 4). The bearings are located at the 2nd and 20th node. 

The external force ���  deflecting the shaft and the additional 

torque �� inducing the torsional vibrations of the rotor are applied 

at the 8th and the 21st nodes, respectively. The vibration re-
sponse of the rotor is measured at the 3rd node; bending (along 
axes �� and ��) and torsional (around axis ��) vibrations are 
registered.  
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Usually, the motion of the rotor is considered in two separate 
coordinate systems: global (stationary) and local (rotating with 

a constant angular speed Ω. For the non-rotating rotor fixed with 
its end to the basis and oscillating around its axis (Fig. 1), only 

one stationary coordinate system ������ has been assumed, 
as it is shown in Fig. 3.  

Using the finite element method, the motion equations of the 
rotor can be presented in the following form (Gawroński et al., 
1984): 

ex t+ ++ = +qMq Dq K G F Q&& &  (1) 

where	! is the mass matrix including the masses and mass 
moments of inertia of shaft finite elements, rigid disks, etc., 

" is the damping matrix and # is the stiffness matrix (including 
the stiffness of the cracked shaft finite element). The gyroscopic 
matrix is not included, as the rotor is not rotating.  

Vector $ defines the generalized coordinates of the nodes 
of the finite element mesh discretizing the shaft. This vector 

consists of % 6-element sub-vectors, where % is the number 
of nodes. First three components of each sub-vector are 
displacements along axes ��, ��, ��, the next three are rotation 
angles around these axes. 

', ()* and +� are vectors of the following generalized forces: 
gravity, external force perpendicular to the rotor axis, and external 
torque inducing the oscillations of the rotor.  

Mass and stiffness matrices are assembled using the 
corresponding mass and stiffness sub-matrices of the shaft finite 
elements, rigid disks, bearings, etc. The damping matrix is usually 
calculated as a linear combination of the mass and stiffness 
matrices (the Rayleigh damping). The sub-matrices for rotor 
elements are given in Appendix A.1. The stiffness matrix for the 
cracked shaft finite element is discussed in the next sections 
of this paper. 

4. MODEL OF THE CRACK 

Usually the crack is modeled by local shaft stiffness changes 
resulting from the constant opening and closing of the crack. This 
periodic opening and closing of the crack due to the rotation of the 
shaft is called the breathing mechanism. The first models of the 
crack accounted for the breathing behavior with only two states, 
i.e., fully open and fully closed at certain angular position (Gasch, 
1993; Grabowski, 1982). These models are defined as hinge 
models. Mayes and Davies (1984) developed a similar model 
except that the transition from fully open to fully closed 
is governed by a cosine function depending on shaft rotation 
angle. Progressive development of the finite element method and 
its application for rotor dynamics (Nelson and McVaugh, 1976) 
resulted in more or less complicated models of a variable stiffness 
cracked shaft finite element. Dimarogonas and Paipetis (1983) 
derived a full stiffness matrix for a transverse open surface crack 
on a shaft. Darpe et al. (2004) provided more detail and complete 
derivations of the flexibility matrix of a cracked rotor segment 
starting from Castigliano’s theorem. They introduced an original 
model of the crack breathing mechanism, in which the extent 
of crack opening is determined by calculating the values 
of compressive stresses at the crack edge. 

In the model introduced by Mayes and Davies (1984) shaft 

stiffness reduction Δ#- for the fully open crack is represented 
by reductions Δ.�, Δ.� of the second moments of area of the 

shaft cross section around axes �� and �� at the location of the 
crack. Different authors (Mayes and Davies, 1984; Sinou and 

Lees, 2005) provide different formulas for Δ.�, Δ.� as the 
functions of crack depth /. Here, the relative crack depth / 

is defined as / = 0/(23), where 0 is the absolute crack depth 

and 3 is the shaft radius (Fig. 3b)).  
Consider, for example, the paper of Sinou and Lees (Sinou 

and Lees, 2005) where: 
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After shaft stiffness reduction Δ#- is determined, stiffness 
matrix #- of the cracked element is calculated, as follows (Mayes 
and Davies, 1984): 

c 0 c( )f ψ= − ∆K K K , (3) 

where #5 is the stiffness matrix of the shaft element with no 
crack, and 6(7) is the so called crack steering function. 
Depending on the crack model assumed, the crack steering 

function 6(7) takes different forms, e.g. for the hinge model:  

0, for 0
)

1, for 0
(f

ψ
ψ

ψ
<
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≥

  (4) 

and for the Mayes and Davies model: 

1
(1 o )( c s
2

)f ψ ψ−=   (5) 

The argument of these functions is the so called shaft 
torsional angle 7, or for the simplified models, for which weight 

dominance is assumed, it is the shaft rotation angle Φ = Ω9.  
For 6(7) = 0 the crack is fully closed and the stiffness of the 

cracked element is the same as the stiffness of the uncracked 
element, i.e. #- = #5. For 6(7) = 1 the crack is fully open, i.e. 

#- = #5 	− 	Δ#-. For other values the stiffness of the cracked 
element is somewhere in between these two extreme values.  

As can be seen the value of the crack steering function 
depends only on shaft rotation angle (or on shaft torsional angle). 
It is sufficient for most cases, where the breathing mechanism 
of the rotating cracked shaft should be included. However, for the 
non-rotating shaft, which oscillates harmonically around its axis 
and is deflected in different angular directions, the presented 
concept of the crack steering function is insufficient. The extent 
of crack opening should depend not only on shaft rotation 
/torsional angle, but also on internal loads at the crack location 
and resulting internal stresses. As mentioned previously, 
the method for calculating the extent of crack opening on the 
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basis of compressive stresses at the crack edge has been 
introduced by Darpe et al. (2004). Similar approach is used in the 
present article and is discussed in detail in the next section. 

4.1. Stiffness matrix of the cracked shaft element 

Figure 3a) presents a shaft element of radius 3 and length ; 
containing a transverse crack of depth 0, located at distance <=  

from the > th node. The element is modeled as the finite beam 
element of six degress of freedom at each node, and loaded with 

shear forces ?�, 	?�, 	?@, 	?A bending moments ?B, 	?�, 	?��, 	?��, 

torsional moments ?�, 	?�5	and axial forces ?�, 	?C. According 
to the Saint-Venant principle, the crack affects the stress field only 
in the region adjacent to the crack, i.e. only the stiffness matrix 
of the given finite element is considered. 

The cross-section of the shaft element at the location of the 
crack is presented in Fig. 3b). The uncracked area as well as the 
closed area of the cracked portion of the cross-section are 
hatched. The area of the open cracked portion of the cross-

section is marked as D= . The crack is considered as an infinitely 
thin notch of a half-penny shape. This shape can be limited from 
the left (or from the right) with the crack left (or right) limit line 
resulting from its breathing action. This is described in more 
details in the next section. The positions of the limits are given by 

EF and EG (Fig. 4). The elemental strip of width �H and height ℎ, 

at distance H from shaft axis ��′ is marked on the cross-section. 
Heights ℎ and K can be calculated, as follows: 

2 22h R β= −     h R aα = − +  (6) 

 
Fig. 3. Cracked shaft finite element: a) acting forces and coordinate  
            systems, b) cracked cross-section 

Using Castigliano theorem, the total node displacement LM 
in the direction of load ?M  can be calculated, as follows (Darpe 
et al., 2004): 

0 c

i

i i

U U
q

P P

∂ ∂
= +
∂ ∂

  (7) 

where N5 is the elastic strain energy of the uncracked element 

and N=  is the additional strain energy due to the crack. The elastic 
strain energy N5 can be presented, as (Darpe et al., 2004): 

2 2 32 2 2 3
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(8) 

where � is Young’s modulus, O is modulus of rigidity .�, .�, .� 

are area moments of inertia around axes ��, �� and ��, and P 
is the shear coefficient. 

The additional strain energy due to the crack N=  is given 
by the following expression (Tada et al., 1973): 
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  (9) 

where D=  is the area of the open cracked portion of the shaft 
cross-section (Fig. 4), � is the Poisson’s ratio, and QRM , QRRM , QRRRM  
are stress intensity factors (SIFs) corresponding to three different 
modes of crack displacement: opening (I), sliding (II) and shearing 
(III).  

The nonzero SIFs take the following forms (Tada et al., 1973): 
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where the correction functions ��, ��, �RR, �RRR are defined, 
as follows (Tada et al., 1973): 
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Integrating Eqs. (8) and (9) with Eqs. (7) and (10), the 

generalized coordinates LM can be presented in the following 
matrix form 

c
=q G P  (11) 

where $ = [L�			L� 			⋯			L�]
Z, [ = [?�			?� 			⋯			?�]

Z	and '- 
is the symmetric 6 6×  flexibility matrix. The nonzero elements 
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of this matrix are given in Appendix 2. As can be seen the non-
zero elements are located not only at the main diagonal, but also 

above and below it (e.g. \�,�, \�,�, \�,�). It is obvious that these 

elements will couple the bending, axial and torsional vibrations. 
However, the off-diagonal, nonzero elements are present only in 
the flexibility matrix of the cracked shaft element. The other shaft 
finite elements do not contain the nonzero elements beyond the 
main diagonal (Appendix 1). 

Considering the static equilibrium condition, 12 generalized 
coordinates of the cracked shaft finite element can be obtained 
(Przemieniecki, 1968): 

[ ] [ ]1 2 12 1 2 6
... ...

T T
q q q q q q= T  (12) 

where ] = [^, ]_]
Z is the 12 × 6 transformation matrix, I  is the 

identity matrix, and the nonzero elements of the 6 × 6 matrix ]_ 
are, as follows:  

s1,1 s2,2 s3,3 s4,4 s5,5 s6,6 1t t tt t t= = = = = = − , s2,6 s3,5t t l= − =  

The flexibility matrix '- can be used to find the stiffnes matrix 

#- of the cracked shaft finite element: 

c c
=K TG T . (13) 

4.2. Crack breathing mechanism 

The changes in the extent of crack opening can be presented 

in terms of changes of circular segment area D=  inside the cross 
section of the cracked element (Fig. 4). Depending on external 
loads, this area changes from zero (for the fully closed crack) 

to its maximum value (for the fully open crack). Thus, the limits EF 
and EG separating cracked and uncracked portions of this area 

from the left and from the right, change from −E to E (for left limit 

EF) and from E to −E (for right limit EG). Here, E denotes half 
of the crack edge width. As can be seen from the lower part 
of Fig. 4, only one limit (left or right) can change at the same time, 
but not both. This way, the integration limits for the flexibility 
matrix '- (Eq. 11) change in time. Consequently, the stiffness 

matrix Q=  (Eq. 13) also changes in time, simulating the breathing 
behavior of the crack. 

To determine the locations of the left EF and right EG limits, the 

generalized forces [a acting at the nodes of the cracked shaft 
element should be be evaluated at each time step. These forces 
can be calculated using the generalized coordinates $a and the 

stiffness matrix #- of the cracked element 

cw w=P K q   (14) 

Vector of nodal coordinates $a can be obtained from the 

vibration response $ of the rotor by solving the motion equations 
(1). The nodal forces [a are used in Eq. 10 to calculate stress 
intensity factors along the crack edge. For this, the crack edge 
is divided into a given number of equally spaced points at which 
the SIFs are evaluated. In practice only QR�, QRB, QR� stress 
intensity factors are accounted for, as only they are responsible 
for the opening mode crack displacement influencing the extent 
of crack opening. To simplify, not separate SIFs are analyzed, but 

their sum Qb, where: 

s I1 I5 I6
K K K K= + +  (15) 

A negative sign of Qb indicates compressive stress and the 
closed crack at a given point of the crack edge. Similarly, 

a positive sign of Qb indicates tensile stress and the open state 
of the crack at a given point of the crack edge. Thus, analyzing 

the sign of the overall stress intensity factor Qb at each point 

of the crack edge, the locations of the left EF or right EG crack limit 
can be determined. Once the crack limits are ascertained the 

flexibility '- and stiffness #- matrices are updated (Eqs. 11) and 

13), and the global stiffness matrix # is assembled. 

 
Fig. 4. Crack breathing mechanism 

Next, from Eq. 1 the rotor response $ is evaluated for the new 
time step, and the vector of nodal coordinates is extracted from it. 
Again, using Eq. 14, the vector of nodal forces is obtained, and 

the overall SIF Qb at several points along the crack edge is 
calculated. Based on the sign of Qb the new locations EF and EG 

of crack limits are evaluated and stiffness matrix #- is updated. 

This way, at every iteration step, the overall stiffness matrix # 
of the rotor is updated by reevaluating the stiffness matrix #- 
of the cracked finite element. 

5. RESULTS 

During the numerical analysis, three different models of the 
rotor have been considered: the first with no crack, the second 
with a 25% deep crack and the third with a 40% deep crack. 
In all cases the value of the lateral force was ��� = 100 N, 

while the form of the external torque �� = Dcsin	(2g6c9), 

where the amplitude Dc = 500 Nm. Two different frequencies 

of the exciting torque have been considered: 6c = 60 Hz 

and 6c = 80 Hz.  

Using stiffness #, damping ", and mass ! matrices 
(Eq. (1)), the natural frequencies of the rotor have been evaluated. 

The first two bending frequencies are located at 6h = 40.6 Hz 
and 6h = 166.1 Hz, while the first torsional frequency is at 

6� = 612.3 Hz. 
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Motion equations (1) are solved using the Newmark integra-
tion scheme (Newmark, 1959), which is more efficient for large 
systems. The equations are integrated until a steady state has 
been established and then the FFT is calculated. 

Figs. 5-12 present frequency responses for different angles � 

of the lateral force F)*. Bending response is shown only for the 

vertical x� axis, as the vibrations along axes x� and x� are much 
the same. 

Figs. 5 and 6 present torsional and bending responses of the 
uncracked rotor. As expected, the torsional spectrum contains 
only one component of the exciting torque frequency 6c = 60 

Hz. In the bending response only the first natural frequency 

6h = 40.6 Hz is slightly induced. Such characteristics are typical 
for the linear model of the rotor. 

 
Fig. 5. Torsional response for different angles �; uncracked shaft;  

           6c = 60 Hz 

 
Fig. 6. Bending response for different angles �; uncracked shaft;                 

            6c = 60 Hz 

Figs. 7, 8 and 9 present responses of the 25% cracked rotor. 
Due to the nonlinearities introduced by the crack subsequent 

integer multiples of the exciting torque frequency 6c = 60 Hz 

denoted as 2X (120 Hz), 3X (180 Hz), 4X (240 Hz), 5X (300 Hz), 
and several other frequencies of the same high amplitudes of 

10kC  rad appear in the torsional response (Fig. 7). However, all 
these frequencies are observed only for particular angles �, i.e. 

for � from 30° to 135° and for �	from 225° to 330°. It should 
be noticed, that such angle ranges correspond to the situations, 
when the crack is partially open. For other ranges, only one com-
ponent is present in the vibration spectra. This is the frequency 
of the exciting torque 6c = 60  Hz. In this case, the angles are 

near 0°  and 180°, what corresponds to the (almost) fully open 
and (almost) fully closed crack. 

The similar, yet more important situation, is in the bending 
spectra (Figs. 8 and 9), where for the same angle ranges 
the same frequency components can be observed (including the 
multiples 2X, 3X, 4X, 5X, and so on). For other angle ranges, the 
bending frequency spectrum contains only slightly induced: natu-

ral frequency 6h = 40.6 Hz and exciting torque frequency 
6c = 60  Hz (or 6c = 80  Hz). 

 
Fig. 7. Torsional response for different angles ϑ; 25% crack; 6c = 60 Hz 

 
Fig. 8. Bending response for different angles ϑ; 25% crack; 6c = 60 Hz 

The rotor with a 40% deep crack behaves similarly (Figs. 10, 
11, and 12), yet the angle ranges for which additional bending 

frequencies are induced are wider: from � = 20° to � = 140°  
and from � = 210°  to � = 340°. This would suggest, that 
for deeper cracks it is more difficult to completely close (or com-
pletely open) the crack and consequently not to induce the addi-
tional bending frequencies. Nevertheless, for the 40% deep crack 
the angle ranges with the differences in the frequency responses 
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are evident. Presumably, such crack signatures can be used for 
the efficient diagnosis of the health of the machine. 

 
Fig. 9. Bending response for different angles ϑ; 25% crack; 6c = 80 Hz 

 
Fig. 10. Torsional response for different angles ϑ; 40% crack;  

              6c = 60 Hz 

 
Fig. 11. Bending response for different angles ϑ; 40% crack; 
             6c = 60 Hz 

 
Fig. 12. Bending response for different angles ϑ; 40% crack;  

             6c = 80 Hz 

6. CONCLUSIONS 

Early crack detection is a serious problem, as small shaft 
stiffness changes due to the crack have little influence on the rotor 
vibration response. During the normal machine operation the 
changes in the rotor response are small and practically 
unmeasurable. Hence, the methods amplifying the rotor sensitivity 
to the crack appearance and propagation should be applied. 

One of these methods is suggested in the present article. 
Inducing the deflection of the non-rotating shaft excited by the 
forced torsional vibrations, the coupled bending vibrations are 
induced. The maximum amplification and the appearance of the 
multiples of the torsional frequency in the bending spectrum are 
observed if the deflection is induced in a direction opening the 
crack partially. On the other hand, the minimum coupled bending 
amplitudes are observed if the deflection is directed in a way 
ensuring the fully opening or closing of the crack. Such behavior 
can be explained by the fact, that in a case of a partially open 
crack, the multiples of the forced frequency appear quite naturally 
in the torsional spectrum. These frequencies are transformed by 
the off-diagonal non-zero elements of the stiffness matrix to the 
coupled bending vibrations resulting in the same multiples in the 
bending vibration spectra. The coupling between the bending and 
torsional vibrations takes place only if the cracked shaft is 
considered, as only then the off-diagonal non-zero elements 
appear in the stiffness matrix. 

Numerical results confirm the potential of the proposed 
method. The changes in coupled bending vibrations are observed 
only for the cracked shaft. However, further analysis is needed to 
determine the required value of the external force inducing the 
shaft deflection, the amplitude and frequency of the exciting 
torque generating the forced torsional vibrations, the location of 
these forces along the shaft length, the location of the measuring 
probes, etc. At the same time, the experimental verification of the 
proposed method should also be conducted. 

Future extension of the proposed method may involve its 
application for the rotating shafts. This would enable the 
continuous monitoring of the rotor's health, without the need to 
switch the machine off its normal operation. 
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APPENDIX 1 

Elemental matrices of the finite element model of the rotor 
have been obtained on the basis of (Gawroński et al., 1984).  

Mass matrix of shaft finite element is, as follows: 

1,1 1,2 1,3 1,4 1,11 1,12

2,2 2,3 2,4 2,11 2,12
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where the nonzero elements lying on and above the main 
diagonal are, as follows: 
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Stiffness matrix of shaft finite element takes the following 
form: 

1,1 1,2 1,3 1,4 1,11 1,12

2,2 2,3 2,4 2,11 2,12

3,3 3,4 3,11 3,12
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where the nonzero elements lying on and above the main 
diagonal are, as follows: 

1,1k A= , 1,7 1,1k k= − , 3

2,2 2

12J
k

l
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2,6

6J
k

l
=  
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2(1 )
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+
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6,8 2,6k k= − , 6,12 32k J= , 7,7 1,1k k= , 8,8 2,2k k=  

8,12 2,6k k= − , 9,9 3,3k k= , 9,11 3,5k k= , 10,10 4,4k k=  

 11,11 5,5k k= , 12,12 6,6k k=  

Damping matrix " of shaft finite element is calculated, 

as:	" = Km# + Hm!, where the following values have been 

assumed: Km = 1 × 10kB, Hm = 0. 
Mass matrix of a disk takes the following form:  

! = diag(r,r,r, .s�, .s�, .s�), where r is the mass of the 

disk, and .s�, 	.s�, 	.s�	are mass moments of inertia of the disk 
around ��, ��, and �� axes.  

Stiffness matrix of a bearing takes the following form:  

# = diag(
t , 
� , 
� , 
� , 0, 0), where 
t, 
� , 
� are stiffness 
coefficients for axial, bending and torsional displacements.  

Damping matrix of the bearing takes the following form: 

" = diag(�t , �� , �� , �� , 0, 0), where �t , �� , �� are damping 
coefficients for axial, bending and torsional speeds. 

APPENDIX 2 

Flexibility matrix 
c
G  of the cracked shaft element can be pre-

sented, as: 
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DESIGN OF FRACTIONAL ORDER CONTROLLER SATYSFYING GIVEN GAIN  
AND PHASE MARGIN FOR A CLASS OF UNSTABLE PLANT WITH DELAY 
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Abstract: The paper describes the design problem of fractional order controller satisfying gain and phase margin of the closed loop sys-
tem with unstable plant with delay. The proposed method is based on using Bode's ideal transfer function as a reference transfer function 
of the open loop system. Synthesis method is based on simplify of the object transfer function. Fractional order of the controllers is relative 
with gain and phase margin only. Computer method for synthesis of fractional controllers is given. The considerations are illustrated 
by numerical example and results of computer simulation with MATLAB/Simulink. 

Key words: Fractional Order Controller, Stability, Delay, Bode’s Ideal Transfer Function 

1. INTRODUCTION 

In recent years considerable attention has been paid to frac-
tional calculus and its application in many areas in science 
or engineering (see, e.g. (Kilbas et al., 2006; Das, 2008; 
Ostalczyk, 2008; Kaczorek, 2011)). 

In control system fractional order controllers are used to im-
prove the performance of the feedback control loop. One of the 
most developed approaches in science to design robust 
and fractional order controllers is CRONE control methodology 
(French acronym of ”Commande Robuste d’Ordre Non Entier” - 
non-integer order robust control; Oustaloup, 1991, 1995, 1999). 

The fractional order PID controllers, namely PI�D� control-
lers, where � integrator order and µ differentiator order were 
proposed in (Podlubny, 1994, 1999). Several design methods 
based on the mathematical description of the process of tuning 

the PI�D� controllers were presented in (Monje et al., 2004; 
Valerio, 2005; Valerio and Costa, 2006). 

Also knows in science are approaches based on optimaliza-
tion methods (Monje et al., 2004), and classic Zieglera-Nicholsa 
metod (Valerio and da Costa, 2006). Methods based on the first 
order-plant with time delay, is the most frequently used model 
for tuning fractional and integral controllers (O’Dwyer, 2003).  

In this paper a simple method of determining the fractional or-
der controller satisfying given gain ang phase margin of the closed 
loop system with unstable plant with delay is given. 

Transfer function of the controller follows from the use 
of Bode's ideal transfer function as a reference transfer function 
for the open loop system (Barbosa et al., 2004; Busłowicz 
and Nartowicz, 2009, Nartowicz 2010). Approach submit In the 
paper was proposed in (Barbosa et al., 2004) for a class of natural 
order controller, and  (Busłowicz and Nartowicz, 2009) for a frac-
tional order controller synthesis. 

The considerations are illustrated by numerical example 
and results of computer simulation with MATLAB/Simulink. 

2.  METHOD 

Consider the feedback control system show In Fig. 1 in which 
the process to be controlled is described by (1): 

she
s

k
sG -

1
)(

τ−
=          (1) 

where: �, �, ℎ are positive real numbers, and C(s) is fractional 
order controller. 

 
Fig. 1. Feedback control system structure 

The paper presents the simple synthesis method of the frac-

tional order controller satisfying given 
� gain  and ��phase 
margin of the of the closed loop system with unstable plant 
with delay. Transfer function of the controller follows directly from 
the use of Bode's ideal transfer function as a reference transfer 
function for the open loop system: 


��� = ���� �� (2) 

where ��  is gain crossover frequency (|
�����| = 1) and � 
is real number. Transfer function (2) describe derivative plant 

for � < 0 and integral plant for � > 0. The open loop system (2) 
has constant value of phase margin �� = �1 − 0.5��� hence 
such a system is unsensitive to gain changes in open loop sys-
tem. For a detailed analysis of the considered system, including 
time domain, see paper (Ostalczyk P., 2008). 

To obtain an open loop system in the form (2), simplify the 
plant transfer function: 
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( )
shsh

e
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k
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2
-≈

-1
)(

ττ
=      (3) 

The controller transfer function should have a structure: 

α2-)( sksC c=
 
        (4) 

where $ is real number. 
Open loop transfer function is given:  

ατ s

ekk
sGsCsK

sh
c)()()( ==      (5) 

Note that open loop transfer function of control system shown 
in Fig.1. is different than Bode's ideal transfer function (2) 
with coefficient exp�−�ℎ�. It takes differences while Bode’s 
diagram drawing. 

Consider synthesis of the fractional order controller 

(4). For a given 
� gain  and �� phase margins, the controller 

parameters ��	and real number $ are searching. 
Using ����) = |�|)*+),/. wrote gain and phase 

for a transfer function (5): 

αωτ
ω

1
|)(| ckkjK =

    2
--)(arg)(

π
αωωωφ hjK ==  (6) 

For a gain �/ and �0 phase crossover frequency terms can 

be written:  

1|)(| =gjK ω
     

πωωφ -)(arg)( == pp jK  (7) 

Using (6) the equations (7) can be rewritten as:  

1=ατωg
ckk

     

π
π

αω -
2

-- =ph  (8) 

By solving equations (8) gain �/ and �0 phase crossover 
frequency:  

τ
ωα c
g

kk
=

    h
p

2
)-2(
π

α
ω =  (9) 

Considering the second od (9) equations, we can said that �0 
is positive number while $ < 2. 

For a given 
� gain  and �� phase margins: 

mp

c

A

kk 1
=ατω

    
2

--
π

αωπφ gm h=  (10) 

By solving (10) we can written:  
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kkA
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Simply using first equations of (9) and (10): 

α

α

ω

ω

g

p
mA =  (12) 

Using second equations (9) and (11), and solving with (12) 
gain margin A3  is given by: 


� =
4
56

mφ
π

α

π
α

-
2
)-2(

2
)-2(

7
89
)

              (13) 

Nonlinear equation (13) is handling 
� gain  and �� phase 
margins and fractional order of the considerable controller (4) $. 

Parameter $ can be determined by solving equation (13)  
using computer methods. 

By solving one of the first equations of (8) or (10): 

m

pg
c

kAk
k

αα τωτω
==  (14) 

where � – gain of the transfer function (1). 
Gain and phase fraquency crossover are determined from 

second equation of (9) or (11). 
Note that fractional order of the controllers is relative with gain 

and phase margin only. Gain controller ��  is relative with gain 
or phase crossover frequency, gain � and time  : of the consider-
able object. 

Method of the synthesis fractional order controller satisfying 
gain 
� and phase �� margin of the closed loop system with 
unstable plant with delay is given. 
Synthesis method: 
1. Solving nonlinear equation (13) for a given gain 
� 

and phase �� margins  

Real number $ is given. 
2. Solving phase crossover frequency from equation (9) or gain 

crossover frequency from equation (11)  

Parameter �� 	of the controller is given with (14) 
Stability margin for a real object is smaller because of simplify  

       used in (3). 

3. SYNTHESIS METHOD FOR A UNSTABLE PLANT  
WITH INTEGRAL TERM WITH DELAY 

Consider proposed synthesis method of the fractional control-
ler in feedback control system shown in Fig. 1 in which the pro-
cess to be controlled is described by transfer function: 

sh
e
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k
sG

-
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)-1(
)(

τ
=  (15) 

To obtain an open loop system in the form (2), simplify the 
plant transfer function: 
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The controller transfer function should have a structure: 

α
α

-2
2

--)( sk
s

s
ksC cc ==  (17) 

where $ is real number. 
Open loop transfer function is given:  

ατ s

ekk
sGsCsK

sh
c

-

)()()( ==  (18) 
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the same as given in (5), so for considered class main results are 
as given in. Determining controller parameters for a transfer func-
tion (15) we use equations (5-14) and given synthesis method. 

4. SYNTHESIS METHOD FOR A SECOND ORDER 
UNSTABLE  PLANT WITH DELAY 

Consider proposed synthesis method of the fractional control-
ler in feedback control system shown in Fig.1 in which the process 
to be controlled is described by transfer function: 

she
ss

k
sG −

+−
=

)1)(1(
)(

2
1 ττ

 (19) 

To obtain an open loop system in the form (2), simplify the 
plant transfer function: 

shsh ess kess ksG -- -≈
- �+1��+1��1�=�� 22 ττττ

 (20) 

The controller transfer function should have a structure: 

� � � �sTsks sTsksC cc +1=+1=�� 1 α
α

---  (21) 

where α is real number, and while τ. = T, we can said that open 
loop transfer function is given:  

ατ s

ekk
sGsCsK

sh
c

−
== )()()(  (22) 

the same as given in (5), so for considered class main results are 
as given. Determining controller parameters for a transfer function 
(23) we use equations (5-14) and given synthesis method. 

5. RESULTS 

Example 1: 
Consider the feedback control system shown in Fig.1 in which 

the process to be controlled is described by transfer function: 

se
s

sG 10

62-1

55.0
)( =  (23) 

Using synthesis method determine controller parameters for a 

given gain 
� = 4 (ab. 12dB) and phase �� = 55° (ab. 0.96 
rad) margins for a closed loop system. In that case: � = 0.55, : = 62, ℎ = 10. 

Using synthesis method: 
1. By solving equation (13) we get $ = 1.13385. 
2. By solving (11) we get �/ = 0.0401. 

Parameter �� 	is given by (14): �� = 2.9358  
So transfer function of the controller (4) can be written: 

 

13385.0

2.9358
)(

s
sC =   (24) 

Fig. 2 shows step response for control system presented 
in Fig. 1, where the process to be controlled is described by (23) 
and fractional order controller (24). Step response is drawn for 

a few values of parameter �.  
 

Step response 
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Fig. 2. Step response of the closed loop system with object (15)   
           and controller (16) for a few different values  of parameter � 
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Fig. 3. Frequency response of the open loop system with object (15)   
           and controller (16) 

Overshoot of step response drawn for � = 0.55 is 100%. 

Overshoot is growing for a values less than 0.55. Drawing step 
response for a values � more that 0.55 (simulations were draw-
ing  to 1) no changing of overshoot were note.  

Note that parameter �� 	of fractional controller (24) is negative, 
so with simplify transfer function (3) we finally get negative feed-
back. Simulations in matlab are drawn for a original transfer func-
tion of the considerable transfer function, note that feedback 
is positive.  

Fig. 3 shows Frequency response of the open loop system 
with object (15) and controller (16). Measured stability margin for 
a designed control system: 

.32.9208,3.5956 °== mmA φ
 

Stability margin measured is smaller because of simplify used 
in (3). 

Example 2: 
Consider the feedback control system shown in Fig.1 in which 

the process to be controlled is described by transfer function: 

P
h
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e 
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] 

G
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B
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sesssG 10�621� 55.0=�� -

-
 (25) 

Using synthesis method determine controller parameters for a 

given gain 
� = 4 (ab. 12dB) and phase �� = 55° 
(ab. 0.96 rad) margins for a closed loop system.  

In that case: � = 0.55, : = 62, ℎ = 10. 
Using synthesis method:: 

1. By solving equation (13) we get $ = 1.13385. 
2. By solving (11) we get �/ = 0.0401. 

Parameter �� 	is given by (14): �� = 2.9358. 
So transfer function of the controller (4) can be written: 

13385.0

2.9358
)(

s
sC −=  (26) 

Fig. 4 shows step response for control system show in Fig. 1, 
where the process to be controlled is described by (25) and frac-
tional order controller (26). Step response is drawn for a few 

values of parameter �.  
Step response 
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Fig. 4. Step response of the closed loop system with plant (21)  
            and controller (22) for a few different values of parameters �  

Overshoot of step response drawn for � = 0.55 is 100%. 

Overshoot is growing for a values less than 0.55. Drawing step 
response for a values k more that 0.55 (simulations were drawing  
to 1) no changing of overshoot were note. In that case we can 

also said that parameter ��  of fractional controller (26) is nega-
tive, and because of simplify (3) we finally get negative feedback. 
Simulations in matlab are drawn for a original transfer function 
of the considerable transfer function, note that feedback is posi-
tive. 

Measured stability margin for a designed control system: 

.32.9208,3.5956 °== mmA φ
 

Stability margin measured is smaller because of simplify used 
in (3), and the same as given in example 1. 

Example 3: 
Consider the feedback control system shown in Fig.1 in which 

the process to be controlled is described by transfer function: 

( )
s

e
s

sG
10

361)62-1(

55.0
)(

+
=  (27) 

Using synthesis method determine controller parameters for a 

given gain 
� = 4  (ab. 12dB) and phase �� = 55° (ab. 0.96 
rad) margins for a closed loop system.  

In that case: � = 0.55, : = 62, :. = 36, ℎ = 10. 
Using synthesis method transfer function of the controller (25) 

can be written:  

.105.6888s
2.9358

)( 0.8661

13385.0
−−=

s
sC  (28) 

Fig. 5 shows step response for control system show in Fig. 1, 
where the process to be controlled is described by (27) and frac-
tional order controller (28). Step response is drawn for a few 

values of parameter �.  
Overshoot of step response drawn for � = 0.55  is 100%. 

Overshoot is growing for a values less than 0.55. Drawing step 
response for a values � more that 0.55  (simulations were draw-
ing to 1) no changing of overshoot were note.  

Measured stability margin for a designed control system: 

.32.9208,3.5956 °== mmA φ  

Stability margin measured is the same as in example 2 and 
example 2 because of  transfer function of the open loop system 
given by the same transfer function 
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Fig. 5. Step response of the closed loop system with object (27)  
            and controller (28) and a few different values of parameters � 

6. CONCLUSIONS 

The paper considers the design problem of fractional order 
controller satisfying gain and phase margin of the closed loop 
system. The proposed method is based on using Bode's ideal 
transfer function as a reference transfer function of the open loop 
system. Synthesis method is based on simplify of the object trans-
fer function. Fractional order of the controllers is relative with gain 
and phase margin only. Method is based on using Bode's ideal 
transfer function as a reference transfer function of the open loop 
system. Synthesis method is based on simplify of the object trans-
fer function. Fractional order of the controllers is relative with gain 
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and phase margin only. Open loop transfer function of control 
system shown in Fig.1. is different than Bode's ideal transfer 
function (2) with coefficient exp�−�ℎ�. It takes differences while 
Bode’s diagram drawing,  phase and gain margin is different than 
given while synthesis the controller. 

Parameter ��  of fractional controller is negative in each ex-
ample considered in the paper, so with simplify transfer function 
(3) we finally get negative feedback. Simulations in matlab are 
drawn for a original transfer function of the considerable transfer 
function, the feedback is positive this example.  

 Computer method for synthesis of fractional controllers is giv-
en. The considerations are illustrated by numerical example and 
results of computer simulation with MATLAB/Simulink. 
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Abstract: The aim of  the paper is to present the synthesis method of classic PID controller for a class of unstable plant. The proposed  
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1. INTRODUCTION 

PID controllers are so far widely used in practice, because of  
well known simple structure. Many methods of tuning PID control-
lers for satisfactory behavior have been proposed in the literature 
(Johnson andMoradi, 2005). The methods are based 
on knowledge of mathematical descriptionof process (O’Dwyer, 
2003). 

This  paper is generalization of Skogestad method for a class 
of unstable plant. The starting point has been the IMC PID tuning 
rules of Rivera (1986). Furthermore Skogestad start by approxi-
mating the process by afirst-order plus delay processes. He  
proposed  analytic tuning rules, simply but still result in a good 
closed-loop behavior. 

2. METHOD  

Consider the feedback control system show in Fig.1: 

 

Fig. 1. Feedback control system structure 

The process to be controlled is described by (1): 

shesTsT
ksG -

+1+1=)(
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    (1) 

where: 
� ≥ 0, 
� ≥ 0, ℎ ≥ 0, and �(�) – transfer function 
of the controller. 

The method proposed by Skogestad is based on approxi- 
mating the process by a first- or second-order plus delay model, 

where: � – plant gain,�� – dominant time constant,ℎ –effective 

time delay.  
Skogestad method is based directly on analytical set of the 

controller parameters (Skogestad, 2001): 
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− Time constans��: 
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In equation (3) parameter ��  is recomended as follows: 
hC ≥τ          (6) 

In the paper the synthesis method of PID controller for an un-
stable plant described with transfer function (7) is proposed.  

,
+11

=)(
21,
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(7) 

where
� ≥ 0 , 
� ≥ 0, ℎ ≥ 0. 
To make generalization of Skogestad method for a class 

of unstable plant (7), the controller gain �� is described with: 

h

T

k
K

C
c +
=

τ
1-1
        (8) 

Equations (4)-(6) take their form unchanged. 
Compare proposed method with synthesis method of fraction-

al order controller proposed in Nartowicz (2011). 
In that paper transfer function of the controller follows directly 
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from the use of Bode's ideal transfer function as a reference trans-
fer function for the open loop system: 

βω








=

s
sK c)(  (9) 

To obtain an open loop system in the form (9) the controller 
transfer function should have a structure: 
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where � is real number, and �� = 
. 
Open loop transfer function is given by:  
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Knowing(jω)! = |ω|!e#!$/� gain and phase for a transfer 
function (7) was written: 
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For a gain *+ and *, phase crossover frequency terms was 
given: 
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Using (12) the equations (13) was rewritten as:  
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By solving equations (14) gain *+ and *, phase crossover 
frequency:  

τ
ωα c
g

kk=
     hp

2)2(=
π

α
ω

-

 (15) 

For a given ./gain  and 0/ phase margins: 
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Transformed equation (16) were written in a form:  
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Using given equationsgain margin ./was given by: 
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Nonlinear equation (18) is handling./gainand 0/ phase 
margins and fractional order of the considerable controller (4)�. 

Parameter � can be determined by solving equation (18) us-
ing computer methods. 

By solving one of the first equations of (14) or (16): 
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where:� – gain of the transfer function (1). 
3. RESULTS  

Example 1: 
� ≫ ℎ 

Consider the feedback control system shown in Fig. 1 in which 
the process to be controlled is described by transfer function: 
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Determine controller parameters for a given transfer function 

(20) to stabilize the closed loop control system. In that case:� =5, 
� = 6, 
� = 1.2; ℎ = 0.25. 
Using equations (4)-(6) and (8) transfer function of the control-

ler is given:  

( )( )ss
ssc 2.1+12
2+13=)( -              (21) 

Fig. 2 shows step response for control system presented in 
Fig.1, where the process to be controlled is described by (20), 
controller (21), and fractional controller proposed using Bode 
transfer function (Nartowicz, 2011), where: 

�(�) = −2.56/�>.�??@A − 3.07�>.@CC�. 

 
Time [s] 

Fig. 2. Step response of the closed loop system with object (20)   
            and controller (21), and fractional order controller synthesis  
            with Bode method  

Overshoot of step response drawn with method proposed 
in the paper is 10% bigger than drawn using Bode’s method.  
Settling time is 8 sec. The time is much longer while Bode method 
using. Fig 3 shows step response for control system with control-
ler (21), fractional order controller proposed with Bode method 
for a few values of parameter k (Fig.3a), and few values of delay ℎ for a controlled process described with transfer function (20) 



Tomasz Nartowicz 
Analitical Method of PID Controller Tuning for a Class of Unstable Plant 

48 

a. Step response 

 
time [s] 

b. Error signal 

 
time [s] 

c. Step response 

 
time [s] 

d. Error signal 

 
time [s] 

Fig. 3. Step response of the closed loop system with object (20)  
            and controller (21) for a few different values of parameters  
            k and h: a), b) step response; c), d) error signal 

Fig 3b and 3d shows error signal of the controlled system. 

Overshoot for � = 2 is 55% bigger than for original value (� =4), and moreover settling time is growing. There is no overshoot 
change while k is bigger, settling time also the same.  

For a few values of time delay h settling time is const, but 

when the time is growing, the overshoot is also growing, for ℎ =0.4  even to 50%. 
Example 2:	FG > I 

Consider the feedback control system shown in Fig.1 in which 
the process to be controlled is described by transfer function: 

( ) sesssG 1036+1)621(
55.0=)(

-
             (22) 

Determine controller parameters for a given transfer function 
(22) to stabilize the closed loop control system. 

In that case: � = 0.55, 
� = 62, 
� = 36; ℎ = 10. 
Using equations (4)-(6) and (8) transfer function of the control-

ler is given:  

( )( )ss
ssc 36+162

62+164.5=)( -

 

            (23) 

 
Time [s] 

Fig. 4. Step response of the closed loop system with object (20)   
           and controller (21), and fractional order controller syntheses  
           with Bode method  

Fig. 4 shows step response for control system presented 
in Fig. 1, where the process to be controlled is described by (22), 
controller (23), and fractional controller proposed using Bode 
transfer function: 

 �(�) = −2.9358/�>.�??@A − 105.6888�>.@CC�. 
Overshoot of step response drawn with method proposed 

in the paper is 20% bigger than drawn using Bode method. Fig. 5 
shows step response for control system with controller (23), frac-
tional order controller proposed with Bode method for a few val-

ues of parameter � (Fig. 5a), and few values of delay ℎ 
for a controlled process described with transfer function (22). 
Settling time is ab. 160 sec, while  the time for Bode method is 
250 sec. 
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a) Step response 

 
time [s] 

b) Error signal 

 
time [s] 

c) Step response 

 
time [s] 

d) error Signal 

 
time [s] 

Fig. 5. Step response of the closed loop system with object (22)   
           and controller (23) for a few different values of parameters k and h:  
           a), b) step response; c), d) error signal 

Fig. 5b and 5d show error signal of the controlled system. 

Overshoot for � = 0.4  is 100%, and moreover settling time 
is growing. For bigger value k overshoot value is decreasing, 

for � = 0.7even to 60%. For a few values of time delay h settling 
time is const when time delay is decreasing. 

4. CONCLUSIONS 

Skogestad method is well knows in the literature. That paper 
is generalization of Skogestad method for a class of unstable 
plant described with transfer function (7). For an unstable plant 
Skogestadanalytical method is extended for an negative gain 
of the controller, what makes positive feedback while simulat-
ing.As in Skogestad method, in that paper simulation for different 

time 
�, 
�, and time delayh was drawing. Note that for simulation �Lwas posited as:�L = ℎ In the paper two cases was presented: 
� ≫ ℎ, and
� > ℎ. Proposed method was compared with syn-
thesis method of fractional order controller proposed in other 
author papers.Computer method for synthesis of fractional con-
trollers is given. The considerations are illustrated by numerical 
exampleandresults of computer simulation with MATLAB/ 
Simulink. 
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1. INTRODUCTION 

The paper deals with linear control systems �∆��� =	������� + 	����
��� defined on a time scale �. We assume 
that 
: � → �,	where � is a subset of ��. In systems theory 

linear systems have (by definition) � = ��, but in many practical 

situations  the set � should be bounded, see for example Abel 
(2010). A restriction on controls brings some difficulties with con-
trollability conditions. For example (The example comes from 

Sontag (1998)), let us take a system �����/�� = −x + u and 
let u: �0, +∞� → �−1,1�. It is easy to see that the pair �A, B�	is controllable, but the system with restricted controls 

is not, since it is impossible to transfer the state x� = 0 to x� = 2	(we have �����/�� < 0 whenever ���� ∈ �1,2��.  
 For continuous-time linear systems, the problem of controlla-

bility with control constrains has been sudied for example in Ah-
med (1985), Chukwu and Lenhart (1991), Klamka (1991), Path et 
al., (2000), Schmitendorf and Barmish (1981), Sontag (1998). For 
discrete-time case – in Benzaid and Lutz (1980), Path et al., 
(2000). 

Analysis on time scales is nowadays recognized as the right 
tool to unify and extend the existing results for continuous- and 
discrete-time dynamical systems to the nonhomegonous time 
domains, see for example Bartosiewicz and Pawłuszewicz (2006), 
Bartosiewicz and Pawłuszewicz (2008), Davis et al., (2009), 
DaCunha and Davis (2011), Gravagne et al., (2009), Ferreira and 
Torres (2010), Pawłuszewicz and Torres (2010).   

A time scale is a model of time. Besides the standard cases 
of the whole real line (continuous-time case) and all integers 
(discrete-time case) there are many other models of time included 
that can be partially continuous and partially discrete, q-scales, 
quantum time scales (objects with non-uniform domains), and 
many others – see Bohner and Peterson (2001).  However, dis-
crete-time systems on time scales are based on the difference 
operator and not on the more conventional shift operator. One 
of the main concepts in the time scale analysis is the delta deriva-
tive, which is a generalization of the classical (time) derivative 
in the continuous time and the finite forward difference in the 
discrete time. Similarly, the integral of a real function defined 
on a time scale is an extension of the Riemann integral in the 

continuous time and the finite sum in the discrete time. As a con-
sequence, differential equations as well as difference equations 
are naturally accommodated in this theory.  

The goal of this paper is to study conditions under which a lin-
ear system defined on a time scale with control constrains 
is controllable. For this aim, in Section 2 gives general information 
about solution of considered class of systems. Section 3 is devot-
ed to the investigation of the problem of null-controllability of time-
varying systems with control constrains. It also presents the nec-
essary and  sufficient conditions for global null controllability 
for the systems with control constrains on homogenous time 
scale. In Section 4 linear time-invariant systems with control con-
strains are studied. The main result of this Section is that such 
a system is controllable if and only if  the Kalmann rank condition 
is satisfied.  

The necessary elements of delta-measurability and nonlinear 
theory on time scales are presented in Appendix. At this moment 

we only introduce the following notation: if #, $ ∈ �, # ≤ $,	then �#, $]' denotes the intersection of the real closed interval �#, $] 
with �. A similar notation is used for open, half-open, or infinite 
intervals. 

2. LINEAR SYSTEMS ON TIME SCALES 

Let T  be any time scale and let 	 ⊂ �.  Recall (see Cabada 

and Vivero (2005)) that a function *: � → � is absolutely contin-

uous on a  time scale �  if and only if *	 is continuous and 
of bounded variation on T and f maps every ∆-null subset of T	in-

to a null set. Let ,∆-  denote spaces linked to the Lebesgue ∆-

measure and absolutely continuous function on arbitrary closed 

interval of time scale �. We say that	* ∈ ,∆-�.� provided that / |*���|-∆� < ∞	if 2 ∈ �, 2 < ∞, Agrawal et al (2006), Caba-

da and Vivero (2006).  

Let I be the identity 4 × 4 - matrix and	6 ∈ �7×7. Recall that 

the matrix ∆-differential system defined on time scale �: 

8∆��� = 6���8���										8���� = 9                   (1) 

for any 8 ∈ �7, t ∈ �t�, supT�=, has a unique solution X��� =?@�A���, ���. Using the same arguments as in Bartosiewicz and 
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Pawłuszewicz (2006) for time-invariant case, we can show that for 

every �, B, C ∈ � such that � ≤ B ≤ C the following hold:  

− Φ���, B� = 9, Φ@�A���, �� = 9; 
− If  6���

 
is an regressive matrix, i.e. if matrix E9 + F���G6��� 

is invertible, then Φ@�A���, B� = �Φ@�A��B, ���HI; 

− Φ@�A���, B�Φ@�A��B, C� = Φ@�A���, C�. 
If Z	is time-invariant, the solution of the equation (1) is given 

by an exponential  matrix function on time scale T X�t� =eL�t, t��, see: Bartosiewicz and Pawluszewicz (2006), Jackson 
(2007).  

Let  us consider a linear control system defined on T:	 
�∆��� = 	������� + 	����
���,			����� = ��              (2) 

where 	��� ∈ �7×7 and ���� ∈ �7×� are rd-continuous matri-

ces on	�, i.e. each entry of these matrices is an  rd-continuous 
function on �. Also ���� ∈ M ⊂ �7 and 
��� ∈ � ⊂ ��. Let 

us choose a control  
. The trajectory of system (2) is a function N�⋅, ��, ��, 
�: ���, B
2��' → Σ that is the unique solution 
of (2), provided it is defined on ���, B
2��' and for all � ∊���, B
2��', ���� ∊ Ʃ. This solution for all � ∊ ���, B
2��' 
is given by (see Bartosiewicz and Pawłuszewicz (2006)):  

�R = ΦS��R , �����+/ ΦS T�R , U�B�V ��B�
�B�∆BAWAX               (3) 

If A is a regressive matrix, i.e. if the matrix E9 + F���G	��� 
is invertible, then (3) describes both forward and backward trajec-
tories of (2). 

We say that a control u is admissible for �� ∈ �7 if there ex-

ists a trajectory of system (2) from x� corresponding to u. The set 
of all admissible controls (for	��) will be denoted by �YZ . 

Let . = ���, �R]'. Assume that the set of the values of ad-

missible controls U is a given closed and convex cone with 
nonempty interior and vertex at zero. Thus the set of admissible 

controls �YZ  for system (2) has the form ,∆\ �., ��, i.e. is a Ba-

nach space endowed with the norm defined for every 
: . →�	as:  

||
||]∆̂ ≔ `a |
|\���∆�b c
I \d

 

3. TIME-VARYING SYSTEMS WITH CONTROL CONSTRAINS 

Let Σ ⊆ Rg. We say that system (2) is: 

− U-controllable on a time interval ���, �R]'	if, for any �� ∈ Ʃ 

and any �R  there exists a control 
 ∈ ,∆\ �., �� such that NE�R , ��, ��, 
G = �R , �R ∈ Ʃ. 
− �-controllable if it is �-controllable on every time interval ���, �R]'. 

− locally �-controllable on ���, �R]'
 
if, for the given trajectory N�⋅, ��, ��, 
� = ��⋅�

 
of (2) with 
� ∈ ,∆\�., �� and ����� = �� ∈ Ʃ there exists a neighborhood hiX  of  �� such 

that, for any j ∈ hiX  there exists an admissible control 
0
u  

such that NE�R , ��, ��, 
G = �R ∊ hiX .  

If �R = 0, then we have respectively null U-controllability 

on a time interval ���, �R]'		null U-controllability, local null  

U-controllability. 
Our goal is to show certain properties characterizing the null U-controllability. Let us assume that there exists a unique evolu-

tion operator ϑ defined as k?lS��, B�: �� ≤ B ≤ � ≤ �R; 	��, B, �,�R ∈ �m and corresponding to the ₳ = o	���: � ∈ ���, B
2��'p 
in (2). The ideas of proofs of next two  propositions come from 
Chuwku and Lenhart (1991). 
Proposition 1. Let us assume that system (2) is null  �-controllable on ���, �R]'. Then there exists a bounded operator q: Ʃ → ,∆\�., �� such that, with the admissible control 
 =q��, the solution of (2) satisfies �E�RG = NE�R , ��, ��, q��G =0.

  
Proof: For arbitrary initial state ��, let �A: Ʃ ⨯ �YZ → Ʃ be a 

map defined as �A���, 
� ≔ N��, ��, ��, 
� for any � ∈���, �R]'. Then �A is the continuous linear map with respect to 
. 

Let us consider also a map sA:	,∆-�.� 	→ 	Ʃ defined as: 

sA�
�: = a ΦSE�, U�B�G��B�∆BA
AX

 

for any � ∈ ���, �R]'.
 

Note that sA is linear, bounded and �A���, 
� = ?S��, ����� + sA�
�. Since for all �R ∈ �
 
 

ΦSE�R , ��GƩ ⊂ sAW T,∆
\�., ��V		then, from definition, this condi-

tion is equivalent to the null U-controllability of (2).  

Let us consider a map Ϛ: Nv → sAW T,∆
\�., ��V, where Nv 

denotes the orthogonal complement of the null space of sAW. 

Define q�� ≔ −ϚHI?S��, �����. Note that by Banach Theorem 
and closed graph theorem this operator is bounded (see Musielak 
(1989)).  Moreover:   

NE�R , ��, ��, q��G =
ΦSE�R , ��G�� + sAW�−ϚHI�ΦSE�R , ��G�� = 0			  
Proposition 2: Suppose that zero belongs to the interior of the 
set of admissible controls. If the system (2) is null U-controllable, 
then it is locally null U-controllable. 

Proof follows from the fact that map q defined in  Proposition 

1 is continuous at 0. This implies the existence of an open set W� 

containing 0 and such that q�x�� ⊂ h ⊂ y4��YZ . Hence, the 
state 0 can be achieved from any �� ∈ x� using 
 = q��.  

Other conditions for null U-controllability can be obtained un-
der exponential stability assumption. Recall that system (1) de-
fined on unbounded time scale T with bounded graininess func-

tion F: � → �z ∪ o0p is exponentially stable if there exists 

a constant | > 0	such that for every �� ∊ � there exists ~ =~���� ≥ 1 with  

||Φ@�'���, ���x(���|�≤ ~�H��AHAX��| x(���||  
for any t ∈ �t�, sup�=; ||. || denotes the classical Euclidian norm. 
Proposition 3. If system (2) is null �-controllable on each time 

interval ���, � + U����', ���, B
2��', and the system �∆��� =	�������, ����� = ��, is exponentially stable, then the system 
(2) is null �-controllable. 

Proof:  By Proposition 2, null �-controllable of the given system 

implies local null �-controllability of this system. Then there exists 

a neighborhood hiX  of �� such that all states from hiX  can be 

steered to 0 with 
 ∈ �YZ . 
Let j ∈ hiX .  Exponential stability of the system �∆��� =	�������, ����� = j, implies existence �R�  such that the 

solution of  this equation satisfies ���R�� = �R� ∈ hiX . If we take 

as an initial data ��R� , �R��, then there exists �R̂ ∈ ��R� , B
2��',
 

such that, for some 
� ∈ �YZ  
holds NE�R� , �R� , ��, 
�G = �R�  and 
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NE�R̂ , �R� , ��, 
�G = 0. Taking as a  control multifunction ���� ≔
���
 
for � ∈ ���, �R�]' and ����: = 
���� for � ∈ ��R� , �R̂ ]' (with 

swithching time �R�), state j can be transferred to state 0 in time � ∈ ���, �R̂ ]'.  

       

Let 8 = o� ∈ �7: ,� = �p
 

where , is a given 2 × 4- 

matrix of the rank 2 and � ∈ �7 is a given vector. For any vector # ∈ �-
 let q��#� = sup	o�','#:� ∈ �p  denote the support 

function of a set �. 
Theorem 1: Let � be a time scale with a constant graininess  F. 

The system (2) is globally null �-controllable if and only if for 

every admissible control 
 holds 

/ q�E�'�B�ΦS'���,U�B��,'#G∆B = +∞							�AX          (4) 

where �'denotes the transposition matrix of �. 
Proof: For � = � the theorem was proved in Schmitendorf and 
Barmish (1981), Klamka (1991) and, using more general ap-
proach, in Path et al., (2000). The proof for � = ℎ6, ℎ > 0, 
mimics the one given in Path et al., (2000) for discrete-time sys-
tems.  

In continuous-time case, relation (4) can be formulated 
in terms of the solution of the adjoint equation Ahmed (1985), 
Path et al., (2000). For time scale system (2) such reformulation 
requires an assumption that matrix 	 is regressive for all � ∈ ��.  

4. LINEAR TIME-INVARIANT SYSTEMS  
WITH CONTROL CONSTRAINS  

Let us consider a linear time-invariant control system defined 

on a time scale T: 

�∆��� = 	���� + 	�
���									����� = ��               (5) 

where: 	 ∈ �7×7, � ∈ �7×�, ���� ∈ M ⊂ �7 , 
��� ∈ �. As 
previous, we assume that the set of values of admissible controls U�� is a given closed and convex cone with nonempty interior and 
vertex at zero. The matrix: 

�AW = a �S���, B���'�S'AW
AX

���, B�∆B 

is called the controllability gramian. If there exists �R ∊ �	such 

that the matrix �AW	is nonsingular and 		 is a regressive matrix, 

then using control:  


���� = −�'�S'���, U�B��	�AWHI��SE�R , ��G��-�R ] 

every state x� = x�t�� can be achieved from an initial state x�. 

Proposition 4. Let 0 ∈ y4��YZ . If the system (5) is controllable 

and matrix 	 is regressive, then it is locally null �-controllable.  

Proof: If �R ∈ �	is arbitrary, then there exists a control 
��B� =−�'�S'E��, U�B�G�AWHI�SE�R , ��G�, B ∈ ���, �R]', such that sta-

te x can be steered to 0 in a finite time. Since  map � → �S��, ��� 
is rd-continuous, then there exists a constant ~ such that �|
��B�|� ≤ ~�|�|�, B ∈ ���, �R]'. Hence the  thesis.   

 Let T be an unbounded time scale. Recall that system (5) 
is stabilizable (see Bartosiewicz et al.,, (2007)) if there exists 
a state feedback 
��� = �����, for � ∈ ��×7, such that the 

closed loop system �∆��� = �	 + ���x��� is exponentially 

stable. The set of exponential stability on a time scale � is defined 
as (see Pötzsche et al., (2003)): 

s��� ≔ s���� ∪ s���� 
where:	s���� =�� ∈ �: limA→∞ B
2 I

�HAX / lim�→���� �� |Iz�¡|�
�AX ¢£ < 0¤ 

s���� = o	� ∈ �: ∀¦ ∊ �	∃£ ∊ �, £ > ¦: 1 + F�£�� = 0p 
For the arbitrary time scale � it holds that s���� ⊆ o� ∈�: ��� < 0p and s���� ⊂ �−∞, 0�.  

Theorem 2. (Pötzsche et al., (2003)) The following holds: 
a) If (5) is exponentially stable then B2���	� ⊂ s���.  
b) If 	 is diagonalizable, then (5) is exponentially stable if and 

only if B2���	� ⊂ s���  

where: B2���	�  denotes the set of all eigenvalues of 	. 
Since the null �-controllability is a particular case of  �-controllability, we can reformulate the result from Bartosiewicz 

et al., (2007) as follows: 
Theorem 3. Assume that F��� is bounded. If system (5) is null  �-controllable, then it is stabilizable. 

Lemma 1. If system (5) is stabilizable then it is �-controllable. 
Proof: The idea of the proof is based on Zabczyk (1995).   Using 

classical arguments one can easily deduce that if the pair �	, �� 
is controllable, then there exists a matrix � ∈ ��×7 and a vector ¨ ∈ ��  such that the pair �	 + ��, �¨� is controllable.     

Let © ∈ �7×7 be a nonsingular matrix such that ©	©HI =
ª	II 	I\0 	\\«, ©� = ¬�I0 ­ and the pair �	II, �I�,				II ∈
�®×® , �I ∈ �®×�, is controllable. 

Since system (5) is stabilizable, then there is a matrix � ∈ ��×7, such that the closed loop system �∆��� =�	 + ������� + ��¨�
��� is exponentially stable. The charac-
teristic polynomial of 	 + �� is of the form: 

2Sz¯°��� = det��9 − �	 + ���]= det��9 − ©	©HI − ©��©HI�= det��9 − �	II©HI + �I��] det��9− 	\\� ,						� ∈ �. 
So, for any �, B2���	\\� ⊂ B2���	 + ��� ⊂ s��� and, 

if there exists | > 0 such that for every �� ∈ � there is ~ ≥ 1  

then | ≤ −B
2	o���: � ∈ 	B2���	\\�p. Hence the contradic-
tion with stabilizability of (5).  

Exponential stability and Proposition 2 imply the following. 

Proposition 5. If 0 ∈ �YZ  system (5) is �-controllable and expo-
nentially stable, then it is null �-controllable. 

       Let 	iX,�²³(��, �R� be a reachability set of  system  (2), i.e. 

a set of all points that can be reached at time �R  starting from �� = �����. The set of all points that can be reached from �� 

at �� in a finite time will be denoted as 	iX,�²³(���. The 

image of the map 
 ↦ NE�R , ��, ��, 
G, i.e. the set 	iX,�²³(��, �R� is a linear subspace of 	�7 and:  

	iX,�²³(��, �R� = 	ΦSE�R , ��G�� + 	�,�²³(��, �R� 
Using classicall arguments, similarly as in Sontag (1998) we 

can show the following: 

− if  � is convex, then 	µ,�²³(��� is a convex subset of  �7; 

− suppose that 	 is regressive. If system (5) is �-controllable 

and �YZ  is a neighborhood of 0 ∈ �7 then 	µ,�²³(��� 
is an open subset of �7

 . 
Collorary 1. Suppose that 0 ∈ y4�� system (5) is stabilizable 
and matrix 	 is diagonalizable. Then system (5) is null  �-controllable. 
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     For each eigenvalue λ of the matrix 	, let ¶·,¡ ≔ker��9 − 	�·  and ¶·,¡	� ≔ k��¨: ¨ ∈ ¶·,¡m. Let , =⋃ ¶·,¡	��»¡¼�  and � = ⋃ ¶·,¡	��»¡½� . If � is an open convex 

subset of �7
, ,	is a subset of �7contained in �, then � + � =�, see Sontag (1998). 

Lemma 2. Let 	 be an 4 × 4 −matrix  with eigenvalues  �I, … , �7. If  system (5) is �-controllable and �YZ  is a neighbor-
hood of 0, then  , ⊆ 	µ,�²³(��� .  
Proof:   Without loss of generality we assume that �YZ   is a 
convex neighborhood of 0. Using mathematical induction with 

respect to ¿, we show that ¶·,¡	� ⊆ 	µ,�²³(���. 
 For k = 0, the case is trivial. Let us assume that ¶·HI,¡	� ⊆	µ,�²³(���, � = | + yÀ, |, À ∈ �, and take any ¨̅ ∈ ¶·,¡ , 	¨̅	= ¨̅I + y¨̅\. Then for  any t ∈ �t�, sup�=, �¡��, ���	= ����, ���. Since 0 ∈ intU�� we can choose any Ã > 0  

such that ¨I ≔ Ã¨̅I ∈ 	µ,�²³(���. Moreover, since  ¨ ∈ ¿�C��9 − 	�·   and �S��, ��� = ∑ 	·ℎ·��, ���∞·Å� , where ℎ���, ��� ≡ 1, ℎ·zI��, ��� = / ℎ·�¦, ���∆¦AAX   (see Mozyrska 

and Pawłuszewicz (2008)), then: 

�S��, ���¨ = ÇÈ	·ℎ·��, ���
∞

·Å�
É ¨ = ¨ + � 

with � ∈ ¶·HI,¡	. So,  ����, ��� = �¡��, ��� = �¡��, �����SH¡Ê���, ���¨ −	�¡��, ����= �¡��, �����SH¡Ê���, ���¨ − ����, ���� 

Moreover,  since � = �I+i�\, then:  

�������, ���¨I� = �S��, ���¨I + ��Ê��, ����I ∈ 	iX,�²³(��, �� +	 ¶·,¡	� ⊆ 	�,�²³(��� 
L is the sum of the spaces ¶·,¡	�  over all eigenvalues λ with the 

real part nonnegative, and each of these spaces is included 	µ,�²³(���, so the sum of the L’s is included in 	µ,�²³(���. 
The ideas of the next Lemma and next Theorem come from 

Sontag (1998). 

Lemma 3. Let B
2� = ∞. If system (5) is �-controllable, �YZ  

is a convex, bounded neighborhood of 0, then there exists a set 	Ì such that 	µ,�²³(��� = Ì + , and Ì is bounded, convex 

and open relative to �. 
Proof: Note that (see Sontag (1998)):  

	�	µ,�²³(��� ∩ �� + , ⊆ 	µ,�²³(��� + , = 	µ,�²³ (��� 
and 	µ,�²³(��� ⊇ �	µ,�²³(��� ∩ �� + , 

Let Ì ≔ 	µ,�²³���� ∩ �. Then N is open and convex. Let Ï: �7 → �7, Ï�� + Ð� = � for � ∈ �, Ð ∈ ,.  If ¨ = � + Ð, 	� ∈ �, 	Ð ∈ ,, then ©	¨ = 	� = 	©¨. Let � ∈	µ,�²³���� ∩ �.  Since � ∈ 	µ,�²³����, then there exists an 

admissible control 
 and � ≥ �� such that � = / �SE�, U�B�G�
�B�∆BAAX . On the other hand, since 

� ∈ �, � = ©� , then:  

� = ©� = a ©�SE�, U�B�G�
�B�∆	= a �SE�, U�B�G��B�∆BA
AX

A
AX

 

where ��B� = ©�
�B� ∈ � ∩ ©���� for all B ∈ �. Since the 
restriction of 	 to � has all eigenvalues with a negative real part, 

then there are positive constants |, ~ > 0 such that (see 

Pötzsche et al., (2003)): |�¡��, ���| ∙ �|�|� = ||�S��, ����|| ≤

~�H��AHAX�||�|| for � ≥ �� and � ∈ �. Since ©���� 
is bounded, there is a constant � such that if � is also in ©����, 
then: 

|�¡��, ���| ⋅ �|�|� = �|�S��, ����|� ≤ ��H��AHAX��|�|�, � ≥ �� 

So, (see Sontag (1998)): 

�|�|� ≤ � a ��H��AHAX��B ≤A
AX

�| �1 − �H�A� ≤ �| 

Hence Ì is bounded. 
Theorem 4. Let B
2� = ∞ and �YZ  be bounded 

a neighborhood of zero. Then 	µ,�²³(��� = �7 if and only if:  

− system (5) is controllable; 

− matrix 	 has no eigenvalues with a negative real part. 
Proof: If 	µ,�²³(��� = �7

 
then (i) is obvious (see Bartosiewicz 

and Pawłuszewicz (2006)). If (ii) doesn’t hold then , should be 

a proper subspace of �7
 and ~ ≠ 0.We may assume that �YZ  

is convex and bounded. Lemma 3 implies that �7 = 	µ,�²³ (��� 
is a subset of  , + Ì and Ì  is bounded, hence the contradiction.  

If (i) and (ii) hold, then by Lemma 2, �7 = , ⊆ 	µ,�²³(���.  
Theorem 4 and Kalman controllability rank condition imply the 
following. 

Collorary 2. Let B
2� = ∞ and �YZ  be a bounded 

neighborhood of zero. Then 	µ,�²³(��� = �7  if and only if  C#4¿�B, AB,…AgHIB] = n.  
5. CONCLUSIONS 

The paper extends the conditions for constrained relative con-
trollability for linear time-varying and time-invariant  systems to 
the systems defined on different time models, also on nonhomog-
enous time domains. A calculus on time scales is used to achieve 
this goal. The  existing necessary and sufficient conditions for null 
controllability of time varying systems were unify. The Kalman 
rank condition for time-invariant  systems with control constrains 
was extended on systems defined to any unbounded from above 
time scale.  
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APPENDIX 

A1. BASICS ON TIME SCALES CALCULUS 

Let us recall that a time scale � is an arbitrary nonempty 
closed subset of the set � of real numbers. The standard cases 

comprise � = �, � = 6 and � = ℎ6 for ℎ > 0. We assume 

that � is a topological space with the topology induced from �. 
For � ∈ � we define the forward jump operator U: � → � 

by U��� ≔ infoB ∊ �: B > �p, the backward jump operator Ó: � → �  by Ó��� ≔ sup	oB ∊ �: B < �p,  the graininess func-

tion F: � → �0,∞� by F��� ≔ U��� − �. Using these operators 
we can classify the points of the time scale as follows: 

− If U��� > �, then t is called right-scattered and if Ó��� < �, 
then t is called left-scattered;  

− if � < B
2�
 
and U��� = �, then � is called right-dense and if � > y4*�  and Ó��� = �, then � is left-dense. 

Function *: � → � is called rd-continuous provided it is con-

tinuous at right-dense points in � and its left-sided limits exist 
(finite) at left-dense points in T. Function * is called regulated 
provided its right-sided limits exist (finite) at all right-dense points 

of � and its left-sided limits exist (finite) at all left-dense points 
in �. Function * is piecewise rd-continuous,  if it is regulated and 
if it is rd-continuous at all, except possibly at finitely many, right-

dense points � ∈ �.  

Let �� ≔ � − E�B
2��, B
2�Ô if B
2� < ∞
 
and �� ≔ ∞ 

if B
2� = ∞. 

Definition A1.  Let *: � → � and � ∈ ��. The delta derivative of * at �, denoted by *∆���, is the real number (provided it exists) 
with the property that given any Õ > 0,  there is a neighborhood h of � such that: 

|Ö*EU���G − *�B�Ô − *∆���(	U��� − B�| ≤ 	Õ|U��� − B| 
for all B ∈ h.  

We say that * is delta differentiable on ��	provided *∆��� ex-

ists for all � ∈ ��. In general, the function U may not be delta 
differentiable. Delta derivatives of higher order are defined in the 

standard way: *�·]��� = *∆�*∆×Ø����� for ¿ ≥ 1. 
Remark A2. [Bohner and Peterson (2001)]  If � = �, then *: � → � is delta differentiable at � ∈ �  if and only if * is differ-
entiable in the classical sense at �. If � = 6, then *: 6 → � 

is always delta differentiable at every � ∈ 6  with *∆��� = *�� +1� − *���.  
Let *: � → � be a bounded function on �#, $]' and let © be 

a partition of �#, $]' such that # = �� < �I < ⋯ < �7 = $. 

In each interval ��ÚHI, �Ú�', y = 1,… , 4, choose an arbitrary £Ú 
and form the sum: 

s = È*�£Ú��
7

ÚÅI
�Ú − �ÚHI� 

We say that * is Riemann ∆-integrable (or ∆-integrable) from # to $ if there exists a number 9 with the following property: 

for each Õ > 0 there exists Ã > 0 such that:  

|s − 9| < 	Õ 

for every s corresponding to any partition © of  �#, $]' and 

independent of the choice of £Ú ∈ ��ÚHI, �Ú�' £Ú, y = 1,… , 4. 
Such a number 9 is unique, see Bohner and Peterson (2003). 
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       A function �: � → �  is called a ∆-antiderivative of *: � → � 

provided � is ∆-differentiable on �� and �∆��� = *��� for all � ∈ ��. F is called a ∆-prederivative of * provided � is ∆ -

predifferentiable with region of differentiation  Û and �∆��� =*���  for all � ∈ Û.  

Theorem A3. [Bohner and Peterson (2003)]   Let * be a ∆-

integrable function on�#, $]'. If * has a ∆-prederivative �: �#, $]' → � with region of differentiation Û, then: 

a *���∆� ≔ ���� − ��B�A
�  

A.2. ELEMENTS OF ∆-MEASURES ON TIME SCALES 

The notions of ∆-measurable set and ∆-measurable function 
are studied in Cabada and Vivero (2006), Deniz (2007). Let us 
consider a set F = o�#, $�': #, $ ∈ �, # ≤ $p The interval �#, #�' is understood as the empty set. Let ÝI: � → �0,∞� be 

a set of functions that assigns to each interval �#, $�' ∊ � its 

length: ÝI��#, $�'� = $ − #.  Using the pair ��,ÝI� one can 

generate an outer measure mI∗  on the family of all subsets of � 
as follows. Let . ⊆ �. If there exists at least one finite or counta-

ble system of intervals hß ∈ �, à ∈ Ì,	such that . ⊂ ⋃ hßß , then 

we put ÝI∗�.� = y4* ∑ ÝIEhßG,ß  where the infinum is taken 

over all coverings of . by a finite or countable system of intervals  hß ⊆ �. If there is no such covering of  E, then we put ÝI∗�.� =∞.  A subset A of a time scale �  is ∆-measurable if ÝI∗�.� =

ÝI∗�. ∩ 	� +ÝI∗�. ∩ �� − 	�� holds true for any . ⊂ �. 
Defining a family:  

��ÝI∗� = oΛ ⊂ �: Λ	yB	∆-measurable} 

the Lebesgue ∆-measure, denoted by F∆, is the restriction of ÝI∗ to ��ÝI∗�. If set . is Lebesgue measurable, then set . ∩�	is ∆-measurable, see Deniz (2007).  
A function *: � → �−∞,∞]	is ∆-measurable if for every  real 

α the set *HIE�−∞, |�G = o� ∈ �: *��� < |p is ∆-

measurable. If *	is rd-continuous, then f is ∆-measurable, see 
Deniz (2007). 

Properties of rd-continuous and continuous functions 

on a time scales implies that if * is a continuous function defined 

on �, then it is ∆-measurable. Moreover, if an rd-continuous func-
tion * is defined on a ∆-measurable set . ⊆ �, then *	 
is a ∆ -measurable function. 

Proposition A4 [Deniz (2007)] Let * be defined on  
a ∆-measurable subset . of �. Function * is ∆ -measurable if the 

set of all right-dense points of ., where * is discontinuous,  
is a set of ∆-measure zero. 
Proposition A5 [Pawłuszewicz and Torres (2010)]  Assume that *: � → �−∞,∞]. Then * is ∆-measurable if and only if, given Õ > 0, there is a rd-continuous function â: �#, $]� → �	such 

that the ∆-Lebesgue measure of the set o�: *��� ≠ â���p 
is strictly less than Õ. 
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Abstract: This work concerns a new criterion for hot-tearing evaluation in castings. Algorithm describing the conduction of computer simu-
lations of phenomena accompanying the casting formation, which performing is the preparation stage for using of this criterion, is also de-
scribed. According to the low recurrence of phenomena occurring during solidification (e.g. grained structure parameters, stresses distribu-
tion) the casting’s hot-tearing inclination can be estimated only in approximated manner. Because of still following at present rapid comput-
er processors development, and techniques of its programming, enables to suppose that in short time the efficiency of computer simula-
tions will arise so much, the problem of hot-tearing evaluation newly became interesting for the team working on computer simulations 
at the Institute for Computer and Information Sciences at Częstochowa University of Technology.  

Key words: Casting, Computer Simulation, Hot Tearing, Solidification Processing 

1. INTRODUCTION 

The production of casts is a technology that involves many 
significant factors which have an impact on the end result, that 
is to say, on the quality of the cast.  

In shape casting, an equiaxial structure is formed (Fig. 1). 
During solidification processes various types of defects may ap-
pear in the solid-liquid areas. These areas solidify as the last 
batches of material. The shrinkage leads to micro-porosity effect. 
Looking at it the other way, the stress effect reveals the commonly 
named hot tearing in the casting. 

 
Fig. 1.  Equiaxial grains in Al-2% Cu alloy 

Hot tearing of solid-liquid areas occurs when the stresses  
acting on them are able to break the backbone of solid phase, 
filed with the liquid phase (Sczygiol and Szwarc, 2003b). 

Founders and scientists were and still are interested in the 
problem of hot tearing  of castings.  

At the beginning, the problem of hot tearing formations was 
solved by experimental estimation of the hot tearing susceptibility 

of foundry alloy. Then, the mathematical models describing hot 
tearing have been developed. The review and analysis of this 
work can be found in paper Parkitny and Sczygiol (1987). Re-
search on this field focused mostly on the formation of a single 
crack and were not relevant to industrial practice. The next step in 
the development of methods for testing susceptibility to hot tearing 
was the use of advanced numerical methods, through the com-
puter simulation (Rappaz et al., 1999). 

There are two groups of works which uses computer simula-
tions. The first group concentrates on the analysis of a single 
crack development. The second group involves a comprehensive 
analysis of thermo-mechanical phenomena, accompanying the 
production process of castings.  

On the basis of this analysis, the degree of risk of the appear-
ance of defects in continuity in the entire casting or in its selected 
parts, is attempted to be drawn (Szwarc, 2003; Sczygiol and 
Szwarc, 2005). The use of such approach is also possible while 
performing simulations with use of commercial engineering pro-
grams. Usually, such programs do not provide any criteria for hot 
tearing evaluation in castings. Users of such kind of software have 
to choose which of the available values characterizing the state 
of stress and/or deformation should be used to the rupture-
susceptibility assessment. It should be mentioned, that such 
an analysis requires good knowledge of the phenomena in casting 
formation and skills in simulation of these phenomena. Special-
ized engineering software, usually based on a finite element 
method is also required. In turn, simulations performed with use 
of such software are very time consuming. 

This paper concerns research on the analysis of the suscepti-
bility to hot tearing during an equiaxial structure casting. A new 
stress criterion to evaluate the level of risk of rupture in selected 
fragments of the casting is proposed.   According to the algorithm 
described in this paper, the assessment of castings hot tearing 
susceptibility with the use of this criterion is possible only after 
conducting a series of simulation calculations. The information 
about the degree of rupture risk in selected areas of the casting 
is obtained as a result of such evaluation. Studying the suscepti-
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bility to hot tearing by using the method proposed here is time-
consuming. However, continuous development of computational 
processors, such as GPUs, as well as effective methods of pro-
gramming such processors, let us believe that accelerations 
reached nowadays (Michalski and Sczygiol, 2010; Michalski, 
2011) give us ability to use proposed solutions in foundry practice. 

2. THE CRITERION FOR EVALUATION OF SUSCEPTIBILITY 
TO HOT TEARING  

Metal alloys often solidify by increasing equiaxial dendrites. 
It can be assumed that initially each dendrite grows individually. 
As the dendrites are in contact with each other they form the 
backbone of the solid phase. Dendrite arms are intertwined with 
the arms of their neighbors. From this moment, in the solidifying 
solid-liquid area appears tension. It is carried by each entangled 
dendrite arm. Dendrites are separated by layers largely filled with 
the liquid phase. 

The two-phase region described in this way consists of grow-
ing equiaxial grains and layers of the liquid phase which separate 
these grains. Such area in the numerical modeling is represented 
by hexagonal solid phase grain and the surrounding layer of the 
liquid phase. These hexagonal grains can be also divided into 
smaller hexagons. The solid phase is presented using regular 
hexagons and the liquid phase using flattened. The corresponding 
parts of these two types of hexagons are placed on the border 
area, see Fig. 1. The size of both areas (solid and liquid phases) 
is characterized by participation of the solid phase, calculated 
at the stage of solidification simulation. 

This way of modeling used for area of solidifying cast enables 
operating at the micro level of analysis separately for growing 
grains and for narrowing layers of the liquid phase. Finite ele-
ments used in calculations and in the macroscopic stress analysis 
are almost always much bigger than solidifying metal grains. 
In the macroscopic analysis, two-phase area is treated as iso-
tropic. The grain nature of the casting construction is ignored. 
Nevertheless, because the solidification simulation is conducted 
on the basis of the coupled model, i.e. macro-microscopic, 
so after the simulation of solidification the accumulation of grains 
in two-phase areas can be easily reconstructed. In combination 
with the analysis of stress at a microscopic level, it enables to 
analyze the phenomena leading to hot tearing.  

 
Fig. 2. Model of two-phase area for the alloy solidifying  
            in the form of equiaxial grains 

Different temperature gradients and the resistance posed by 
the wall of the mold to the shrinking casting are the most signifi-

cant causes of stress in the cast. Conditions of heat evacuation 
from the casting to the mold and to the environment determine the 
speed of the alloy solidification, i.e. the equiaxial grains growth 
speed, but also the speed of the stress generated in the casting. 

A new stress criterion is proposed to assess the hot tearing 
susceptibility of solidifying cast. The criterion takes into account 
the stress-speed ratio of effective stress in the layers separating 
the congealed particles to the speed of effective strain in these 
grains. The proposed criterion is expressed by the local coefficient 

of susceptibility to hot tearing and it is marked as �. This criterion 
assumed, that stress states are considered in micro scale, but 
these conditions are obtained under the stress states in a macro 
scale. During the solidification, the changes in geometry (size) 
of grains and separating layers is obtained from microscopic 
analysis conducted on the basis of macroscopic modeling. This 
is possible because in the macroscopic modeling the growth 
of equiaxial grains is represented by the connection of diffusion 
phenomena (micro scale) with thermal phenomena (macro scale). 

The calculation of the local coefficient of susceptibility to hot 
tearing proceeds in the following time steps, beginning with the 
participation of the solid phase, in which the backbone of solid 
phase is formed, until complete solidification.  

Effective strain rate can be written as: 

t∆

∆
=

σ
σ&  (1) 

where: Δ�� is the effective stress increment in the time step Δ� 
t∆ . 

Nevertheless, conducted research show, that much better re-
sults are obtained if the relative effective stress is introduced to 
the criterion. Consequently, the criterion can be described as 
follows: 
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where: � is a sub-layer separation, while � denotes the sub-grain-
solidified parts. Because the quotient of relative increment 
of effective stress in the layers and the grains tends to zero with 
increasing share of the solid phase, in the sake of clarity, the hot 
tearing criterion can be transformed to the following form: 
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Application of the criterion (3) requires a computer simulation 
in the macro scale, and afterwards in the micro scale. At the 
macro level standard macroscopic finite elements are used. Con-
versely, at the micro level – microscopic elements are used. 
These microscopic elements cover the macroscopic element area. 
The finite element method, for both types of simulation, is formu-
lated in slightly different way. A traditional formulation e.g., based 
on the method of weighted residuals is used at the macro level. At 
the micro level was used a hybrid formulation (Ghosh and Moor-
thy, 1995; Parkitny et al., 2001). 

 The equation (3) describes the local susceptibility to hot tear-
ing of a small macroscopic area, corresponding to one finite mac-
roscopic element, subdivided into two areas, i.e. grains and layers 
separating them. Stress values and their increments used 
in equation (3) are determined for the subdivisions of layers and 
grains, receiving two tensors which describe the resultant state 
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of stress in all the grains and the resultant state of stress in all the 
layers of separation, which belong to the analyzed area. Tensors 
are obtained as a result of the so-called homogenization, based 
on the integration of the stress function in the above-mentioned 
subdivision, and then dividing the resulting value by the area 

of integrated subdivision �.   
High susceptibility to hot tearing is indicated by large values 

of factor �. Nevertheless, the criterion � does not indicate 
a specific limit value, above which the casting will crack. This 
follows from the fact that, that the value of � increases with in-
creasing equiaxial grain, as a result of stress growing with 
an increasing solidification area. � factor values are used to 
indicate the areas of analyzed casting, where most likely appears 

a damage, i.e. the rupture.	� criterion can also be used to deter-
mine the conditions most conducive to the production of a given 
type of cast. 

2.1.  Description of algorithm used for preparatory 
calculations 

 Computation of factor � is possible after a complex computer 
simulations. Data provided by these simulations are used 
to estimate the susceptibility to hot tearing of the cast. A number 
of preparatory tasks must be performed at this stage. The steps 
leading to determining the casting susceptibility to hot tearing 
cover the following: 
1. Simulation of solidification. For succeeding time steps the 

temperature field, the distribution of the solid phase participa-
tion and the mean radii of equiaxial grains, are determined. 

2. Calculating distributions of stress in consecutive time steps. 
3. Identification (selection) of subdivided areas for the hot tearing 

analysis. 
4. Division of the macroscopic finite elements into the microscop-

ic-hexagon-hybrid-finite elements in order to obtain the solid-
liquid areas. These solid-liquid areas are part of subdivisions 
which are to be analyzed if terms of susceptibility to hot tear-
ing   

5. Calculation of the stress in all solid-liquid areas  correspond-
ing to the macroscopic finite elements, 

6. Calculation of the value of coefficient � for each  macroscopic 
finite element in the selected areas  

7. Preparation of the scale of susceptibility to hot-tearing based 
on the simulations and calculations carried out for all the ana-
lyzed variants of the task. 

8. Execution of a local distribution coefficient diagrams for sus-
ceptibility to hot tearing for different variants of the task. 

9. Drawing conclusions. 
Since the first two steps are standard and well described in lit-

erature (Desbiolles et al., 1987; Sczygiol, 2000), only the remain-
ing steps will be shortly described below. 

2.2. Identification of subdivisions which are to be analyzed 

It makes no sense to carry out the analysis of the susceptibil-
ity to hot tearing for all the macroscopic finite elements of the 
casting, because experience (the practice)  shows that, the cracks 
appear only in selected, fairly easy to identify parts of the cast. 
The identification of such fragments requires selecting a group 
of finite elements and the area around them. This selection should 

be done on the basis of the probability of the hot tearing localiza-
tion. The group of selected macroscopic elements should be 
slightly greater than the area of the analysis.  

The second group of macroscopic elements (of a similar num-
ber of the elements) selected for analysis should be chosen in the 
area least subjected to hot tearing. If there is a suspicion about 
the possibility of appearance of hot tearing in other parts of the 
casting, then another group of elements should be created and 
analyzed.  

Fig. 3 shows the cast and three groups of elements selected 
for analysis. The main group is placed in the central part of the 
cast and consists of elements collected under infusion and form-
ing a notch around the bottom of the casting. This group is most 
at high risk of hot tearing. The second group is located on the left, 
in the casting arm.  The risk of occurring hot tearing in this area 
is very low. Rupture should not occur either, by design, in the third 
group, comprising the area around a 'notch' connecting the right 
shoulder with the casting 'head' located at its end. 

 
Fig. 3. Location of selected groups of macroscopic elements  
            for the analysis of hot tearing 

Comparision of the sizes of areas selected for the analysis 
with the size of the entire area of the casting (Fig. 3) it can be 
easily remarked, that the number of elements selected for analy-
sis is relatively small in comparison with the number of finite ele-
ments in the whole casting. 

2.3. Division of the macroscopic finite elements  
into the microscopic – hybrid elements 

Each of macroscopic finite elements, which belong to the  
group of the elements analyzed from the point of view of hot 
tearing susceptibility, is divided into hybrid, microscopic finite 
elements (Parkitny et al., 2002; Szwarc and Sczygiol, 2002). The 
mesh of hybrid finite element is generated on the basis of the 
characteristic dimension of the grains (grain radius). This value 
is obtained during the simulation of solidification. The mesh creat-
ed in this way ca be also taken into account in further analysis 
of two areas of material properties: densely tangled dendrites 
(solid phase) and the layers separating them in a solid-liquid state 
(Sczygiol and Szwarc, 2003a). 

The surface area of a macroscopic finite element determines 
the number of microscopic finite elements that belongs to the 
given macro element. Regardless of the original shape of this 
element, the hybrid elements mesh is always built on a rectangu-
lar plan (similar to a square) with an area equal to or close to the 
macro element area.  

Such an approximation of projecting a macroscopic element 
to microscopic elements is dictated by the polygonal shape 
of hybrid elements. 

In the areas of separating layers there is not only the liquid 
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phase, but also the solid phase in the form of dendrite arms. 
Therefore, the participation of the grains area in the region of the 
whole solid-liquid area can be written as: Szwarc and Sczygiol, 
(2004): 

( ) )1,0       where
1
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where: 
 is the part of the solid phase share in the separating 
layers, while �� is the share of the solid phase. The course of the 

function 
, depending on the participation of the solid phase, 
including a displacement of half participation of the solid phase 
to the area of layers (
 = 0.5) and assuming that all of the solid 

phase is in the grain area (
 = 0), is shown in Fig. 4. 

 
Fig. 4. The course of the function 
 for different 
 values 
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where: � is the coordinate of the node, ��  is the coordinate of the 
so-called measure of the solid phase increase, while the symbol' 
denotes the current location of the node and the output share 
of the grain area. 

2.4. Stress calculation in microscopic areas 

 As a result of the macroscopic calculation a number of instan-
taneous fields is obtained. These are: the temperature profile, 
liquid phase participation, stress, strain and deformation. The 
temperature of the end of solidification, the characteristic grain’s 
size and the stress field are relevant for further simulations. 

In the selected area the macroscopic finite elements are iso-
lated from the rest of the elements mesh of the casting. The pa-
rameters describing the state of the macro elements are used as 
input for further calculations leading to the determination of the 
susceptibility to hot tearing. The dimension of the hybrid finite 
elements is determined on the basis of the equiaxial grain radius 
assigned to the macro element. The growth of the grains area in 
successive time steps is controlled with use of the solid phase 

participation function ��(�). The temperature profile �(�) is used 
to control the change in material properties.  

The stress tensor �(�) constitute the basis for the formulation 
of the appropriate boundary conditions, see Fig. 5. 

Because of there is no symmetry in loading the system, 
the stress tensor is converted into an equivalent tensor of main 
stresses. As the result of this approach it is possible to analyze 

only a quarter of the system, suitably mounted on symmetry axes 
and charged by the main stress. 

 
Fig. 5. The division of macroscopic finite element  into hybrid microscopic 
            finite elements and the way of support  
            and load of the analyzed area 

For the purpose of numerical modeling of the solid-liquid cen-
ter cracking it is necessary to separate the macroscopic properties 
as the properties of the two subdivisions. These properties are 
determined in an experimental way. The participation of the area 
surface 
 in the whole solid-liquid area determines the “amount” 

of the subdivision. Therefore, the value of material property � 
can be described as: 

( )WqqWW g −+= 1  (6) 

where: W� is the value of material properties for the solid phase 

area (grains), while W� is the value of material properties for the 
area of separating layers. Furthermore, it has been assumed that 
the material properties in the subdivisions are in a relationship 
expressed as: 

( 1,0          where ∈= pp
W
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Equation (7) describes the distribution of material properties 
related from temperature (� = �(�)). Substituting (7) to (6) we 
obtain the relationship describing material properties for the solid 
phase: 
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One of the possibilities of determining function � consists 
in making it relevant of the range of the solidification 
temperatures: 
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where: ��  and �� are the liquidus and the solidus temperatures, 
respectively. Function of participation of solid phase (Sczygiol, 
2000) can be also used as the function of distribution of material 
properties. 

The analyzed solid-liquid area is covered by the microscopic 
finite element mesh. This mesh is charged by the macroscopic 
state of stress. The boundary conditions are updated on grains 
arising from the simulation at the macro level.  

On the basis of the current temperature values material prop-
erties of sub-grains and separating layers are determined. 
The calculations are carried out from the 'appearance' of stress, 
i.e., when the share of the solid phase exceeds a critical value 
(e.g. 25%) until complete solidification. 

2.5. Calculation of the value of �  
for the macroscopic finite element 

The equation (3) allows for calculation of the values of the lo-

cal coefficient of susceptibility to hot-tearing �. Since different 
areas of the casting solidify at different time intervals it is conven-

ient, due to further analysis, to present the course of � in the 
function of the solid phase share. Fig. 6 presents sample graph 
representing such a course.  

 
Fig. 6. Sample courses of � for given casting conditions (temperature  
            of the mold/casting temperature) 

Presentation of results in the function of the solid phase share 
enables a direct comparison of the coefficient value of all the 
solved task variants. 

2.6. Drawing up the scale of � 

In order to compare values � for different tasks, different con-
ditions for pouring and solidification have been drawn up the scale 

of susceptibility to hot tearing, based on the critical value ��� . 
It was assumed that the scale is dependent on the participation 

of the solid phase. The critical value ���  is determined from the 

maximum values � for all the variants of the simulation for the 
solid phase participation, ranging from 50 to 95%, in steps of 5%. 
On the basis of the received values the function determining 

critical values of � in the function of the solid phase may be con-
structed. This function is the basis for determining the degrees 
of the susceptibility to hot tearing. 

Thus one should decide whether further analysis of suscepti-

bility to hot tearing will run for four degrees. As high (the highest) 

degree adopted values � larger and equal to ��� , as the average 

– values from 0.9��� to ��� , as low degree – values from 0.8��� 
to 0.9��� . For values	� below 0.8���  the lack of susceptibility to 
hot tearing is accepted. 

2.7. Execution of diagram ! distribution 

Proposed in the previous section, the scale is the basis 

for drawing up diagrams (maps) of the coefficient � distribution 
for the main group of elements and for the control groups (Fig. 3). 
The maps are drawn up for certain selected values of the solid 
phase participation (Fig. 7). 

 

Fig. 7.  Sample map of the coefficient Θ distribution  
             of susceptibility to hot-tearing (a darker color means  
             a greater susceptibility to hot tearing) 

Since the coefficient � distribution maps are only compara-
tive, there are compared elements with the same share of the 
solid phase in a single casting. So they do not represent any real 
situation, i.e. those which may occur in the solidifying casting. 
Such maps are made to indicate that while the main group values 

�  indicate the possibility of hot tearing, in the control groups the 

coefficient values � are so small, that they are not at risk 
from cracking. 

2.8. Conclusions from the simulations 

After preparing maps of the coefficient � distribution some 
relevant, for the casting practice, conclusions arise. These con-
clusions may involve the casting hot tearing at different stages 
of solidification. What is also important, is the evaluation of infu-
sion conditions, which determine the temperature of the mold 
or flooding temperature, to ensure obtaining sound castings. 

3. THE CRITERION FOR EVALUATION OF SUSCEPTIBILITY 
TO HOT TEARING  

Application of the proposed criterion for the hot tearing evalua-
tion has been illustrated by the simulations and analysis of the 
casting made of Al-2% Cu alloy, solidifying in a metal form. 
A shape of the metal form and cast are presented in Fig. 8. 

The material properties are taken from the work Sczygiol, 
2000. Three groups of the macroscopic finite elements (indicated 
in Fig. 3) were selected for analysis of hot tearing susceptibility. 
Three series of computer simulations of solidifications were per-
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formed. For all simulations, the initial mold temperature was set 
to 300 K. 

The variable parameter was the pouring temperature, that was 
equal to: 930 K, 960 K and 990 K, respectively. 

 
Fig. 8.  The analyzed cast in the casting mold 

 
Fig. 9. The distribution of � for the solid phase share of 60%   
            in each macroscopic finite element 

Distributions of the local coefficient of susceptibility to hot tear-
ing for the major group and control groups are presented in Fig. 9, 
10, 11. The upper distributions were made for the pouring tem-
perature 930 K, the middle – for 960 K and the lower distributions 
for 990 K. 

The analysis shows that in all the cases, there is a high risk 
of the rupture of hot casting. It is therefore concluded that the 
initial mold temperature is too low. The obtained results were 
confirmed by experimental research. The hot tearing occurred for 
an initial mold temperature of 300 K (Fig. 12), while raising the 
temperature to 600 K guaranteed to receive a sound casting. 

 

 

 
Fig. 10.  The distribution of � for the solid phase share of 75%   
               in each macroscopic finite element 

 
Fig. 11.  The distribution of � for the solid phase share of 95%   
               in each macroscopic finite element 
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Fig. 12. Hot tearing in Al-2% Cu alloy 

4. SUMMARY 

 The new stress criterion, proposed in this paper, is a local cri-
terion used for the evaluation of hot tearing susceptibility in casts. 
It covers the area of a single macroscopic finite element.  

A global evaluation of the casting susceptibility to hot tearing 
is possible with application of this criterion for compact groups 
of finite elements, in selected casting areas. The analysis can be 
carried out jointly for several ranges of the initial and the boundary 
conditions. As a result of computer simulations and the analysis 
of the susceptibility to hot tearing,  the most advantageous (from 
the point of view of the rupture risk) variant of the casting can be 
chosen. 

Application of proposed criterion requires a lot of  preparatory 
work and computer simulations. However, due to the increasing 
computing performance of new processors, the use proposed 
solutions in foundry practice becomes more real. 
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Abstract: There were conducted numerical analyses of thermal residual stress in a double gradient surface coating consisting of porous 

ZrO2 of 500 µm thickness, placed on Inconel 718 substrate, with an interlayer of NiCoCrAlY of 200 µm thickness. It was assumed that 
the coating  was deposited by plasma spraying. It showed out roughness of the free surface and borders between material phases.  
Numerical model took into consideration the real geometry of material structure. The results were analysed after transforming them  
into discrete distributions of particular components of stress. Distributions were presented for  particular zones of the surface coating. 
This allowed to obtain signals originated by distinct features of the material structure such as particular material phases, their contact  
borders, pores, roughness of the external surface, roughness of internal borders between layers of the gradient system and others.   

Key words: Graded Surface Coating, Numerical Simulations, Residual Stress, Results as Discrete Distributions 

1. INTRODUCTION 

During cooling down from manufacturing to the room tempera-
ture an interaction between materials which have different thermo 
mechanical properties takes place which leads to origination 
of spatially complex state of residual stresses. They may cause 
coating durability lowering or even spallation. If the thermal  
expansion coefficient of the substrate is greater than for the sur-
face coating than, after the cooling process, the substrate is under 
tension and the coating is compressed (Khor and Gu, 2000). 

Stress distribution depends on microstructure features like 
material phases composition, inclusions, voids and pores, sub-
strate surface geometry. Residual stress may induce phase 
change in ZrO2 phase which has advantageous influence on 
fracture toughness of the coating (Szymczyk, 2002, 2005).   

It is possible to achieve internal energy redistribution in sub-
strate/coating system which improves durability by establishing 
it as gradient material. Gradient coating is a special composite 
in which material properties change along the specific directions. 
If the change is discrete the gradient system consists of several 
layers of materials of different properties and the borders between 
them are distinguishable. If the change is continuous the term 
functionally graded material (FGM) may be used.  

Gradient materials allows for spatial optimisation of material 
properties in chosen directions in surface coatings. Their definition 
differs from classic microstructural composites, where it is expect 
that properties and distributions of particular phases are homoge-
neous. Gradation of properties of the surface coating  in the depth 
direction is achieved by changing  of material phases volume 
fractions during the deposition process (Grujicic and Zhao, 1998).   

2. DISCRETE MODEL OF SURFACE COATING 

Numerical FEM modelling and simulations allow for determin-
ing of constructional and technological factors influence on resid-

ual stress distribution in surface coatings. Numerical methods 
are effective tool for extending knowledge concerning mecha-
nisms of stress redistribution, especially in cases when it is im-
possible to conduct experimental research. 

Different types of discrete models are used for investigations 
of surface coatings systems. In the paper are presented  methods 
of microstructure modelling and  results analysis which allowed 
for assuming residual stress state in a surface coating based 
on ZrO2.  

Numerical model took into consideration the real geometry 
of material structure. As an example pattern of the real geometry 
of material microstructure was taken into consideration  the struc-
ture presented in (Widjaja, 2003)[6]. There was elaborated 
a discrete raster 2D model (Fig. 1), consisted of uniform square 
elements. 

 
Fig. 1.  Model structure of the porous ZrO2 surface coating  
             corresponding with an example presented  
             in Widjaja S. et al., (2003) 
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There were conducted numerical analyses of thermal residual 
stress in a double gradient surface coating consisting of porous 

ZrO2 of 500 µm thickness, placed on Inconel 718 substrate, 

with an interlayer of NiCoCrAlY of 200 µm thickness.  
It was assumed that the coating was deposited by plasma 

spraying. The substrate was heated during deposition process 
and kept in stabile temperature of 700 K. Surface coating showed 
out roughness of the free surface and borders between material 
phases.  

3. MATERIAL PROPERTIES 

Material properties (Tab. 1) for particular phases of modelled 
graded coating system were found in Widjaja S. et al., (2003). 
Authors declared that the surface system was in temperature 
of 700 K. For the needs of numerical simulations the temperature 

decrease ∆T = -400 K from the deposition stage to the room 
temperature was assumed. Characteristics presented in (Tab. 1) 
are the averaged values for the assumed temperature decrease. 

Tab. 1.  Material properties averaged for temperature decrease  

∆Τ = -400K (Widjaja S. et al., 2003) (E – Young modulus,  

α – thermal expansion coefficient, ν – Poisson ratio) 

Material E [GPa] αααα    [10-6/K] νννν    

ZrO2 48 7.72 0.25 

Inconel 718 189.5 14.4 0.30 

NiCoCrAlY 193.5 12.8 0.30 

4. RESULTS ANALYSIS METHOD 

Contour plots are not sufficient for residual stress state analy-
sis. They provide qualitative evaluations, allow for determining 
stress concentrations areas. They show out that features of mi-
crostructure like roughness and porosity are effective residual 
stress concentrators. These stress concentrations are strong 

enough to initialize microcracking. More detailed quantitative 
comparison research with the use of contour plots is impossible.  

 
Fig. 2.  Zones in the model for stress components discrete distributions 
            establishing 

 

Fig. 3. Distribution of the stress component σx in Zone 1 

 
Fig. 4. Zone 1 – areas responsible for forming of the P1 and P2 peaks in the discrete distribution (compare Fig. 3) 

counts 
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For the needs of quantitative research the numerical calcula-
tions results were transformed to discrete distributions of particu-
lar stress components values. The distributions were obtain for 
particular zones of the surface coating (Fig. 2). In Fig. 3÷10 there 
are presented discrete distributions for distinguished zones. Posi-
tions of distribution peaks may be treated as average values 
of residual stress component for each zone. 

In Fig. 3 the distribution of the stress component σx in Zone 1 
is presented (roughed external surface of ZrO2 layer), weighted 
average value of the P1 and P2 peaks: M = -0.056 GPa. Peaks P1 
and P2 are from the areas that are marked in Fig. 4. 

In Fig. 5 the distribution of the stress component σx in Zone 2 
is presented (pure ZrO2). Weighted average value of the P1 and 
P2 peaks: M = -0.110 GPa. 

In Fig. 6   the distribution of the stress component σx in Zone 
3 is presented (transition area between ZrO2 and NiCoCrAlY 
phases). Weighted average value of the P1, P2 and P3 peaks: 
M = -0.183 GPa. 

In Fig. 7 the distribution of the stress component σx in Zone 4 
is presented (pure NiCoCrAlY). Weighted average value of the 
P1, P2 and P3 peaks: M = -0.174 GPa. 

In Fig. 8 the distribution of the stress component σx in Zone 5 
is presented (transition area between NiCoCrAlY and Inconel 
718). Weighted average value of the P1, P2 and P3 peaks:  
M = -0.167 GPa. 

In Fig. 9 the distribution of the stress component σx in Zone 6 
is presented (substrate Inconel 718). Weighted average value 
of the distribution: M = 0.0 GPa. 

In Fig. 10 distributions are presented of the stress component 

σx in all zones are presented together. All the peaks are in the 
range from -0.450 to 0.150 GPa. 

 

Fig. 5. Distribution of the stress component σx in Zone 2 

 

Fig. 6. Distribution of the stress component σx in Zone 3 

 
Fig. 7. Distribution of the stress component σx in Zone 4 

 
Fig. 8. Distribution of the stress component σx in Zone 5  

 
Fig. 9. Distribution of the stress component σx in Zone 6 

 

Fig. 10. Distributions of the stress component σx in all zones together 
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5. CONCLUSIONS 

Numerical calculations results transformed into the shape 
of discrete distributions allow to analyse the influence of particular 
features of material microstructure on residual stress field forming. 
Each feature like pores, phases borders, roughness of external 
surface of the coating, roughness of layer borders affects 
the shape of distribution. Each material phase layer of surface 
coating produce characteristic peak (Fig. 11, 12).   

 

Fig. 11. An example of contour plots of residual stress component σx 

in Zone 5 

In Fig. 11  an example of contour plots of residual stress com-

ponent σx in Zone 5 is presented. Zone 5 contains the border 
between NiCoCrAlY interlayer and substrate. There are marked 
areas which are responsible for particular parts of discrete distri-
bution forming (compare Fig. 12). 

 
Fig. 12.  Average and stress concentration values in subsequent zones  
               of investigated surface coating  

In Fig. 12 average and stress concentration values in subse-
quent zones of investigated surface coating are presented.  
Average values are negative and reach -0.2 GPa. In each zone 
extreme values of stress concentrations are negative or positive 

reaching -1.36 or 0.43 GPa. Stress concentrations of positive 
values may cause microcracking initiation. 

If we assume that materials in all the layers are homogeneous 
and borders between them are smooth the planar state of stress 
is the consequence and the formula (1) may be used for residual 
stress value approximation (Szymczyk, 2005): 

σtc = Ec ∆α ∆T (1+ν)/(1-ν2) (1) 

where: Ec − Young modulus of the layer, ∆α − difference be-
tween thermal expansion coefficients of the layer and substrate,  

∆T − difference between temperatures of deposition stage and 

room conditions, ν − Poisson ratio.    
Accordingly to the formula (1), average thermal residual stress 

value approximation should reach the value of -0.171 GPa 

for ∆T= -400 K. Real materials are not homogeneous, though 
spatial state of stress exists in them. We can expect lower values 

of σx stress component. From numerical calculations it was ob-
tained -0.110 GPa for the pure porous ZrO2 layer and weighted 
average value for all layers in the coating -0.151 GPa (Fig. 10). 
Numerical result are also affected by raster mesh shape itself. 
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Abstract: The object of this paper is the implementation of boundary element method to solving the transient heat transfer problem with 
nonzero boundary condition and particularly with periodic boundary condition. The new mathematical BEM algorithm for two dimensional 
transient heat conduction problem with periodic boundary condition is developed and verified. The results of numerical simulation of transi-
ent heat conduction in two dimensional flat plate under non zero initial condition are compared with results obtained with analytical method. 
Then the practical application of developed algorithm is presented, that is the solution of ground temperature distribution problem with os-
cillating temperature of ambient. All results were obtained with a new authoring computer program for solving transient heat conduction 
problem, written in Fortran.  

Keywords: Boundary Element Method, Transient Heat Conduction Problem, Periodic Boundary Condition 

1. INTRODUCTION 

The heat transfer in solids, with the changes of temperature 
in time on physical boundaries of analysed objects, occur in many 
engineering mechanisms (engines, compressors), heating and 
cooling systems and hydraulic networks (Zhang et al., 2009; Lu 
and Viljanen, 2006). The analysis of basic mechanism of heat 
transfer in solids, that is heat conduction problem, is significant 
for process of designing and optimization mechanical systems 
and devices. Accordingly, the heat conduction equations with 
conditions of variable temperature or heat flux on boundaries be-
come an important instrument for mathematical description 
of many engineering, geothermal and biological problems. 
As a result, there is a need to develop effective computational 
methods and tools for solving transient heat conduction problem 
(Mansur et al., 2009; Yang and Gao, 2010). 

Two groups of method are applied to obtain transient heat 
conduction problem solution: analytical and numerical.  
In the literature, many analytical methods have been proposed, in-
ter alia based on orthogonal and quasi-orthogonal expansion 
technique, Laplace transform method, Green’s function approach 
or finite integral transform technique, but they are feasible only 
for problems with simple geometries (Singh et al., 2008).  

Monte et al. (2012) presented very accurate analytical solu-
tions modeling transient heat conduction processes in 2D Carte-
sian finite bodies, such as rectangle and two layer objects, 
for small values of the time. In the paper, the geometry criterion 
was provided that permit to use 1D semi-infinite solutions for solv-
ing 2D finite single- and multi-layer transient heat conduction 
problems. Yumrutas (Yumrutas et al., 2005) developed new 
method based on complex finite Fourier transform (CFFT) tech-
nique for calculation of heat flux, through multilayer walls and flat 
roofs, and the temperature on the inner surface. The periodic 
boundary conditions were assumed, that is hourly changeable 
values of external air temperature and solar radiation. Lu et al. (Lu 
et al., 2006; Lu and Viljanen, 2006) adopted the Laplace transform 
to solve the multidimensional heat conduction in composite circu-
lar cylinder and multilayer sphere, with time-dependent tempera-
ture changes on boundary, which were approximated as Fourier 

series. Singh et al. (2008) applied separation of variables method 
to obtain analytical solution, in the form of transient temperature 
distribution, to the 2D transient heat conduction problem in polar 
coordinates with multiple layers in the radial direction. Rantala 
(2005) proposed a new semi-analytical method for the calculation 
of temperature distribution along the fill layer underneath a slab-
on-ground structure subjected to periodic external and internal 
temperature. 

In spite of development of analytical techniques, this methods 
still cannot be employed for solving most practical heat transfer 
problems, such as heat conduction in anisotropic materials, ob-
jects of complex geometries or complex boundary conditions 
(Rantala, 2005; Johansson and Lesnic, 2009). Hence, for last few 
decades, the numerical methods have been strongly developed, 
as more universal computational tool.  

The most popular are mesh methods, such as the finite ele-
ment method (FEM) and the finite difference method (FDM). Alt-
hough this methods are well established and commonly applied to 
transfer heat analysis, in many problems, mesh generation can be 
very laborious and constitutes the most expensive and difficult 
part of numerical simulations. Moreover, in objects of complex ge-
ometries, generated meshes can be distorted, what contributes to 
increase of computational error (Li, 2011). 

The drawback of mesh generation is overcome in the mesh 
free (meshless) methods, that use a set of scattered nodal points 
in considered object (no connectivity among nodes), instead of 
meshes (Cheng and Liew, 2012; Ochiai et al., 2006). Some of this 
methods have been recently applied to transient heat conduction 
analysis in 2D objects, like meshless element free Galerkin 
(EFGM) method (Zhang et al., 2009), meshless local Petrov-
Galerkin (MLPG) method (Li et al., 2011), method of fundamental 
solutions MFS (Johansson and Lesnic, 2008, 2009), meshless lo-
cal radial basis function-based differential quadrature (RBF-DQ) 
method (Soleimani et al., 2010), and in 3D objects, like meshless 
reproducing kernel particle (RKPM) method (Cheng and Liew, 
2012). The disadvantage of this methods, is that, in some cases, 
like transient heat conduction, they are more time-consuming than 
mesh methods, such as FEM, because of the larger dimensions 
of generated matrices (Zhang et al., 2009). 

The alternative for above mentioned mesh and mesh free 
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methods is boundary element method (BEM). Compared to grid 
methods (FDM, FEM), the great advantage of BEM is the possibil-
ity of determination of the solution (both the function and the de-
rivative of this function) at any point of the domain without 
necessity of construction of grids in considered 2D or 3D space. 
The discretization is performed only over the boundary, not over 
the whole analyzed domain hence the size of system 
of equations, that need to be solved, is reduced by one. In BEM, 
the fully populated coefficient matrices are generated, what is the 
opposite of banded and symmetric matrices in FEM. However, the 
small dimensions of BEM matrices counterbalance this disad-
vantage (Katsikadelis, 2002; Majchrzak, 2001; Pozrikidis, 2000). 
Application of the BEM requires the knowledge of fundamental so-
lution of the governing differential operator, but at the same time, 
the use of fundamental solution stabilize the numerical commuta-
tions (Ochiai et al., 2006). 

The BEM is successfully applied to steady and unsteady heat 
conduction problems. As opposed to steady problem, 
in mathematical description of transient heat conduction, the do-
main integrals occur. In order to keep the boundary character 
of the method, many different techniques have been developed, 
but the most popular are: method using the Laplace transfor-
mation to eliminate the time derivative, the dual reciprocity meth-
od, and the convolution scheme (employing time-dependent 
fundamental solutions). 

Erhart (Erhart et al., 2006) implemented the Laplace transfor-
mation for solution of transient heat transfer in multi-region ob-
jects. As a result the time-independent boundary integral equation 
was produced, solved further with a steady BEM approach. 
The last step was numerical inversion of the solution, done with 
the use of Stehfest method. The derived algorithm was applied 
to heat conduction in a bar, laminar airfoil with three cooling pas-
sages and non-symmetric airfoil. The results were compared with 
those obtained with finite volume method (FVM).  

Sutradhar and Paulino (2004) also used the Laplace transfor-
mation, both with Galerkin approximation, for analysis of the non-
homogenous transient heat conduction problem in functionally 
graded materials FGM of variable thermal conductivity and specif-
ic heat. The three kinds of material variation, that is quadratic, ex-
ponential and trigonometric, were assumed for verifying the 
accuracy of presented method. The practical example for the 
functionally graded rotor problem was carried out. 

Another approach is Fourier transform, applied by Simoes 
(Simoes et al., 2012) and Godinho (Godinho et al., 2004), consist 
in three general steps: converting analyzed domain into frequency 
domain, solving the heat conduction problem with BEM and ob-
taining the final solution in time domain with the use of inverse 
Fourier transform. Simoes tested method in 2D object with unit ini-
tial temperatures and with non-constant temperature distribution 
in domain. Godinho analyzed transient heat conduction around 
a cylindrical irregular inclusion of infinite length, inserted in a ho-
mogeneous elastic medium and subjected to heat point sources 
placed at some point in the host medium. 

Mohammadia (Mohammadia et al., 2010) solved 2D nonlinear 
transient heat conduction problems with non-uniform and nonline-
ar heat sources, with the new BEM approach, using time-
dependent fundamental solutions. In this method temperature 
is computed on the boundary and in internal points at every time 
step, and the results constitute the initial values for the next time 
step. However, for 3D and large problems, the storage of coeffi-
cient matrices for every time step can be problematic (Erhart 
et al., 2006).  

Tanaka et al. (2006) applied dual reciprocity boundary ele-
ment method (DRBEM) for analysis of 3D transient heat conduc-
tion problem in nonlinear temperature-dependent materials. 
In proposed method, domain integral is transformed into boundary 
integrals with the use of radial basis functions. To entertain the 
material nonlinearity, the iterative solution procedure was em-
ployed. Białecki et al. (2002) proposed the DRBEM without matrix 
inversion for linear and non-linear transient heat conduction prob-
lem, that reduce the time of computations. The method was ap-
plied to solve heat transfer problem in a turbine rotor blade. Ochiai 
(Ochiai et al., 2006; Ochiai and Kitayama, 2009) developed the 
triple-reciprocity BEM to solve 2D and 3D transient heat conduc-
tion problems. One of the recent methods is radial integration 
boundary element method RIBEM applied to transient heat con-
duction problem by Yang and Gao (2010), which can be employed 
to analysis of functionally graded material problems.  

In this paper, BEM is applied to solve the unsteady heat con-
duction problem in 2D area of arbitrary shape of boundary line in 
particular case of periodic changes of temperature on boundary 
line. The new mathematical BEM algorithm for periodic boundary 
condition was developed, both with a new authoring computer 
program, written in Fortran, applied to verifying the accuracy 
of presented algorithm and to solving practical example.  

2. TRANSIENT HEAT CONDUCTION 

The thermal processes, in which the heat conduction is the 
main mechanism, are described by Fourier-Kirchhoff equation. 

The unsteady heat conduction in homogeneous solid sub-
stance with constant material properties without inner heat 
sources, is described by the heat conduction equation (also 
named thermal diffusion equation) 

2 1
0

∂ 
∇ − = α ∂ 

( , , )T x y t
t

          (1) 

 In the above equation α=λ/c  is the thermal diffusivity, 
in which λ is the thermal conductivity and c is the volumetric spe-
cific heat; and ∂ ∂/ t is the local time derivative. 

In order to find the solution of this equation, it is necessary to 
introduce the boundary conditions (1a) and (1b), and initial condi-
tion (1c) that take the following form: 

( , , ) ( , , ) ,                             ( , )= ∈L qT x y t T x y t x y L      (1a) 
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( , , ) ( , , ) , ( , )

∂
= −λ = ∈
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T x y tq x y t q x y t x y L

n
    (1b) 

0( , ,0) ( , ) , ( , )= ∈ΛT x y T x y x y      (1c) 

The boundary conditions (1a) and (1b) assume respectively 
the value of temperature at point p(xp,yp) on boundary (Lq) (Di-

richlet boundary condition), and the value of heat flux at any point 
p(xp,yp) on boundary (LT) (Neumann boundary condition). 

The initial condition (1c) assumes the value of temperature 
at point v(xv,yv)  inside the domain at initial time t=0. 

Particular form of the boundary problem for transient heat 
equation (1) is the formulation with the condition of periodic 
changes of the temperature on the boundary, which takes the fol-
lowing form: 

( , , ) cos(ω ) , ( , ) ( )T x y t T t x y L= ∈%     (1d) 
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where T%  is the amplitude of the temperature oscillations. 
The sketch for two dimensional boundary problem analysis 

of Fourier equation (1) is shown in Fig. 1.  

 
Fig. 1. Sketch for the two dimensional boundary problem analysis  
           of Fourier equation 

3. PROBLEM FORMULATION  

The fundamental solution of heat conductivity equation (1), al-
so called Green function for heat equation, and its normal deriva-
tive for two dimensional problems are given by: 
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The solution of the Fourier first problem in closed domain (Λ) 
is described by the sum of double layer heat potential and Pois-
son-Weierstrass integral: 
 
 
 
 
 
 
 
                 (3) 

Density T(q,τ) of double layer potential satisfies integral 
equation on boundary line (L):  
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The solution of the Fourier second problem in closed domain: 
(Λ) is described by the sum of single layer heat potential 
and Poisson-Weierstrass integral: 
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Density q(q,τ) of single layer potential  satisfies integral 
equation on boundary line (L):  
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3.1. Boundary integral equation for heat conduction equation 

 The mixed internal Fourier problem for differential equation (1) 
with conditions (1a,1b) and (1c) in two dimensional area (Λ) has 
the general solution of the integral form (Brebbia et al, 1984)  
 
 
 
 
 
 
 
 
 
 
 
               ,    (5) 
 

where p and q, v are respectively source and field points within 

the domain (Λ) or on the boundary (see Fig.1) and [t0 , tK] is the 
analyzed time interval. Coefficient χ(p) is related to the local ge-
ometry of the boundary at point (p). For smooth boundary point 
χ(p)=1/2 and for an internal point χ(v)=1. 

Unknown functions in integral equation (5) are: temperature 
T(q,τ) on the part (Lq) of boundary line and heat flux on the part 

(LT) of boundary line, whereat L= LqU LT. 

 In the simplest method of discretization the integral equation 
(5) in relation to time, it is supposed that the time variations of the 
functions T(q,τ) and q(q,τ) are small as compared to functions 
T*(p,q;tk,τ) and Q*(p,q;tk,τ). It can be reasonably assumed 
that the functions T(q,τ) and q(q,τ) are also constant in small 
time period [tk-1,tk] (Wrobel, 2002; Kythe, 2005). 

Accordingly to the above assumption the integral equation (5) 
can be denoted in the form: 
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               ,     (6) 
 
 

where the kernels % *( , ; ,τ)kT tp q  and % *( , ; ,τ)kQ tp q are given 

by expression: 
 
 
 
 
 
 
 
 
 
 
         ,           (6a) 
 
 
where Ei(.) is the exponential integral function: 
 
 
 
 
 
 
 
 
 
 
           ,         (6b) 
 
 
where  / /x yd r y l r x l= ⋅ ∂ ∂ − ⋅ ∂ ∂pq pqq q

 . 

3.2. Boundary integral equation for heat conduction  
       equation with periodic boundary condition 

The unsteady heat conduction problem in two dimensional ob-
ject with condition of periodical changes of temperature on 
boundary line is described by the equation (1) with periodic 
boundary condition (1d).  

In this case, the temperature may be treated as the function: 

 ( , , ) ( , )exp( )T x y t U x y i t= − ω            (7) 

where only the real part of the above expression has physical 
meaning as consequence of boundary condition (1d) and the 
basic relation for complex functions: exp(-iz)=cos(z)-isin(z). 
 Inserting space and time derivatives of the temperature, ex-
pressed by relation (7), to the equation (1), leads to the modified 
Helmholtz differential equation for function U≡U(x,y) (Sorko and 

Karpowich, 2007). 

2 2ˆ 0U k U∇ − = ;   where ˆ ω αk i= −             (8) 

The integral solution of differential equation (8) has the form: 
 
 
 
 
 
                 (9) 
 
 
where Green function G(p,q) of the Helmholtz equation is given 
by a modified Bessel function: 

0
1 ˆ( , ) ( )

2π
G K k r= pqp q                  (10) 

Modified Bessel function of order (0) of complex argument  
(�����) can be expressed by the Kelvin functions of real argument   

(����)	in which � = ��/�, then the Green function and its de-
rivative take the form: 
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  Taking the limit as the source point p approaching contour 
(L), where function U(q) is equal to the amplitude of the tempera-
ture oscillations and expressing the limit of the double layer poten-
tial in equation (9) in terms of its principal value (when p≡q), one 
obtains integral equation of the first kind for the normal derivative 
of the function U(q) 
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 Separating the real part and imaginary part of kernels in inte-
gral equation (10), one receives the system of two integral equa-
tions in relation to functions F(q)=(FRe(q),FIm(q)), which are 
the derivatives of function U(q). 
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 After determination of discrete values FRe(q), FIm(q) on the 

boundary (L), the values URe(q), UIm(q) of the function U(q) at 
points of domain (Λ) are obtained from the system of equations  

= +∫ ∫%
( ) ( )

( ) ( ) ( , ) ( , )Re Re Re Re

L L

U F G dL T H dLq qp q p q p q   (12a) 

= +∫ ∫%
( ) ( )

( ) ( ) ( , ) ( , )Im Im Im Im

L L

U F G dL T H dLq qp q p q p q  (12b) 

4. NUMERICAL SOLUTION OF INTEGRAL EQUATION 
OF HEAT CONDUCTION WITH PERIODIC BOUNDARY 
CONDITION 

 Numerical solution of integral equations in two dimensional 
problems consists in discretization of the boundary line into 
straight or arc elements with constant or linear distributed value 
of investigated function and consequently, the integral equation 
transforms to the system of algebraic linear equations in relation 
to the unknown integrand. 

 
Fig. 2. Discretization of area (Λ) 

Discrete solution of integral equation (6) can be obtained di-
viding the boundary line (L) into I (i=1,2,3,...,I) ,straight line ele-
ments, domain (Λ) into N (n=1,2,3,...,N) surface elements and 
time interval [t0,tK] into K (k=1,2,3,...,K) subintervals (Fig. 2). 

Using the nodal values, with assumption that the functions 
T(qjτ) and q(qj,τ) are constant on each linear element Lj, func-

tion T0(vn) is constant on each surface element Sn and also they 

areconstant at any subintervals [tk-1,tk], the boundary integral 
equation is obtained in discrete form as follows: 
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where: 
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 Similarly, the integral equation (10) expressed with the system 
of two integral equations (10a) and (10b), describing properly 
the real part and the imaginary part of the function, 
by discretization of the boundary line moves to two systems 
of linear equations: 
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5. EXAMPLES 

Basing on developed BEM algorithm, a new authoring com-
puter program was written in Fortran, which was applied to the fol-
lowing examples. 

Example 1:  

 The accuracy of the formulation was tested by computing the 
heat field in a finite square a=1.0 m, when non zero initial temper-
atures are prescribed inside the domain and variable tempera-
tures are assumed on the boundaries. 

The thermal properties of the homogeneous medium are as-
sumed to be: thermal conductivity λ=200.0 W/(mK), volumetric 
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specific heat c=2.0 106 J/(m3K), which defines a thermal diffusivity 
α=1.0 10-4 m2/s. 

The temperature distribution on the boundary at t0=0 
is described by the relations: 

 

(15a) 

and the initial temperature distribution, satisfying the boundary 
conditions described above, is given by the relation:  

( , ,0) 100.0 (1.0 cos(0.5π )sin(0.5π )T x y x y= ⋅ −      (15b) 

and is presented on the sketch (Fig. 3b.) 

 

Fig. 3a. The unit square and boundary conditions 

 
Fig. 3b. Temperature distribution in the unit square  

 The field of the temperature is symmetrical in relation to the 
diagonal of the square, so the time changes of the temperature 
can conveniently be presented along the line x=y.  

Temporal evolution of the temperature T=f(t) along diagonal 
of the square is shown on sketch (Fig. 4.) and the changes of field 
temperature are presented on sketch (Fig. 5.) 

The presented above problem has the analytical solution as 
follows 
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(15c) 

In numerical solution of considered problem with the boundary 
element method one assumes: 400 similar line elements on 
boundary, 100 square elements with collocation points in the ge-
ometrical center of every area  the temporary step ∆t =1.0 
at estimated time  tmax=3600. 

 
Fig. 4. Temperature distribution T=f(t) along diagonal of the square 

 
Fig. 5. Temperature distribution T=f(t) in the square 

 The maximum error of numeric solution, estimated from rela-
tion: 

δmax=100(T(x,y,t)th-T(x,y,t)num)/T(x,y,t)th,               (16) 

does not exceed the value 0.1%. 

 (1, ,0) 100.0 (1.0 sin(0.5π )

( ,1,0) 100.0 (1.0 cos(0.5π )

(0, ,0) 100.00

( ,0,0) 100.00

T y y

T x x

T y

T x

= ⋅ − 
= ⋅ − 
=


= 

( , ,0)T x y

x1

y

0

1



acta mechanica et automatica, vol.6 no.4 (2012) 

73 

Example 2: 

In technical problems of optimization the devices using re-
newable thermal energy, that for designing ground heat exchang-
ers (horizontal and vertical) of heat pump systems, it is necessary 
to determine the annual ground temperature distribution for vari-
ous values of ground thermal conductivity coefficient. This prob-
lem is the subject of many empirical studies, leading to 
formulation of complex empirical formulas describing the annual 
temperature propagation.  

The mathematical description of ground temperature distribu-
tion problem consists in solving the transient heat conduction 
problem in homogeneous or heterogeneous area with constant 
thermal conductivity coefficient and with boundary conditions as-
suming the heat flux on the boundaries of value equal 0 (Fig. 6). 
On the ground surface the boundary periodic condition is as-
sumed, that is the changeable annual temperature of ambient in 
the form: 

= + Δ cos(ω )u sa aT T T t              (17) 

The problem can be considered in heterogeneous area com-
posed of layers of known thickness and known values of thermal 
conductivity coefficient. 

− 
− 
∆ −

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u

sa

a

sg

T

T

T

T

 temporary temp. of ambient

 mean annual temp. of ambient

 annual amplitude of ambient

 mean temperature of ground

 

Fig. 6. Area with boundary temperature and heat flux 

 
Fig. 7. Temperature profile in the ground 

The Fig. 6 shows the sketch of area with boundary condi-
tions of considered problem. The solution of the problem, in the 
form of unified temperature distribution (8) from the surface layer 
to layer of constant temperature at every moment of cycle 
of annual changes of temperature, is presented in the Fig. 7. 

6. CONCLUSIONS 

In this paper the utility of the boundary element method 
for solving the transient heat conduction problem with periodic 
boundary condition is proved. The general solutions of Fourier 
equation with initial and boundary value problems are introduced, 
on the assumption that temperature changes periodically on the 
boundary. The new mathematical algorithm is developed, which 
is further verified by solving transient heat conduction problem 
in two dimensional area. The comparison between analytical 
and numerical solution of test problem proves the great accuracy 
of proposed BEM algorithm. Finally, the method is applied to solve 
the ground temperature distribution problem with the boundary 
condition of the oscillating temperature of ambient. All numerical 
computations were made with the use of a new computer pro-
gram, written by authors, in Fortran. 

Although, the boundary element method is not so widely ap-
plied, as an efficient numerical method and computational tool, 
constitutes the great alternative to popular mesh methods (FEM, 
FDM), and can be successfully employed for analysis of many 
engineering problems.  
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ABSTRACTS 

Anna Demianiuk, Sławomir Adam Sorko 
Analysis of Flow and Thermal Phenomena In Evacuated Tube Collectors 

The subject of this case study is an issue of optimisation of flat tube solar collectors. Basic elements of energy analysis of per-formance parame-
ters described by Hottel-Whillier equation are presented in the article. It is considered to be crucial to precisely analyse fluid flow through flow  
elements in evacuated tube collectors. It is especially important in the case of systems with channels of cross-sections shapes different from cir-
cular and for the use of detailed mathematical description of complex film conduction phenomena. It is presented that the advanced analysis 
of the flow and thermal phenomena in complex heat transfer systems, represented by evacuated tube collectors, enables engineering rationali-
sation of technical solutions for these devices. 

Krzysztof Dziewiecki, Zenon Mazur, Wojciech Blajer 
Assessment of Muscle Forces and Joint Reaction in Lower Limbs During the Take-Off from the Springboard 

Computer simulation methods, based on the biomechanical models of human body and its motion apparatus, are commonly used for the as-
sessment of muscle forces, joint reactions, and some external loads on the human body during its various activities. In this paper a planar mus-
culoskeletal model of human body is presented, followed by its application to the inverse simulation study of a gymnast movement during 
the take-off from the springboard when performing the handspring somersault vault on the table. Using the kinematic data of the movement, cap-
tured from optoelectronic photogrammetry, both the internal loads (muscle forces and joint reactions) in the gymnast’s lower limbs and the exter-
nal reactions from the springboard were evaluated. The calculated vertical reactions from the springboard were then compared to the values as-
sessed using the captured board displacements and its measured elastic behaviors. 

Tadeusz Kaczorek 
Factorization of Nonnegative Matrices by the Use of Elementary Operation  

A method based on elementary column and row operations of the factorization of nonnegative matrices is proposed. It is shown  
that the nonnegative matrix � ∈ ℜ�

�×�	(
 ≥ �) has positive full column rank if and only if it can be transformed to a matrix with cyclic struc-

ture. A procedure for computation of nonnegative matrices � ∈ ℜ�
�×�, � ∈ ℜ�

�×�	(� ≤ rank	(
,�)) satisfying � = �� is proposed. 

Dmitrij B. Karev, Vladimir G. Barsukov 
Biomechanical Analysis of Two-Point Asymmetric Screw Fixation with Implant for Femoral Neck Fracture 

Stressed state peculiarities of cortical and trabecular bones by two-point asymmetric screw fixation with implant for femoral neck fracture  
are studied. Layer construction mechanic methods are used for analysis of stresses in cortical and trabecular bones. Biomechanical conditions 
for non-opening of the junction of the bone parts being joined are determined. It has been found that the total tightness of the broken parts  
when they rest against each other is secured over the whole fracture section without junction opening under condition that fixing screws are po-
sitioned in the trabecular bone without penetration of the thread side surface into cortical bone. 

Witold Kosiński, Wiera Oliferuk 
Stationary Action Principle for Vehicle System with Damping 

The aim of this note is to show possible consequences of the principle of stationary action formulated for non-conservative systems.  
As an example, linear models of vibratory system with damping and with one and two degrees of freedom are considered. This kind of models 
are frequently used to describe road and rail vehicles. There are vibrations induced by road prole. The appropriate action functional is proposed 
with the Lagrangian density containing: the kinetic and potential energies as well as dissipative one. Possible variations of generalized coordi-
nates are introduced together with a non-commutative rule between operations of taking variations of the coordinates and their time derivatives. 
The stationarity of the action functional leads to the Euler-Lagrange equations. 

 
Adam Kotowski 
Frequency Analysis with Cross-Correlation Envelope Approach 

A new approach for frequency analysis of recorded signals and readout the frequency of harmonics is presented in the paper. The main purpose 
has been achieved by the cross-correlation function and Hilbert transform. Using the method presented in the paper, there is another possibility 
to observe and finally to identify single harmonic apart from commonly used Fourier transform. Identification of the harmonic is based  
on the effect of a straight line of the envelope of the cross-correlation function when reference and signal harmonic have the same frequency. 
This particular case is the basis for pointing the value of the frequency of harmonic component detected. 
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Zbigniew Kulesza 
Rotor Crack Detection Approach Using Controlled Shaft Deflection 

Rotating shafts are important and responsible components of many machines, such as power generation plants, aircraft engines, machine tool 
spindles, etc. A transverse shaft crack can occur due to cyclic loading, creep, stress corrosion, and other mechanisms to which rotating ma-
chines are subjected. If not detected early, the developing shaft crack can lead to a serious machine damage resulting in a catastrophic acci-
dent. The article presents a new method for shaft crack detection. The method utilizes the coupling mechanism between the bending and tor-
sional vibrations of the cracked, non-rotating shaft. By applying an external lateral force of a constant amplitude, a small shaft deflection  
is induced. Simultaneously, a harmonic torque is applied to the shaft inducing its torsional vibrations. By changing the angular position  
of the lateral force application, the position of the deflection also changes opening or closing of the crack. This changes the way the bending  
and torsional vibrations are being coupled. By studying the coupled lateral vibration response for each angular position of the lateral force one 
can assess the possible presence of the crack. The approach is demonstrated with a numerical finite element model of a rotor. The results  
of the numerical analysis demonstrate the potential of the suggested approach for effective shaft crack detection. 

Tomasz Nartowicz 
Design of Fractional Order Controller Satisfying Given Gain and Phase Margin for a Class of Unstable Plant with Delay 

The paper describes the design problem of fractional order controller satisfying gain and phase margin of the closed loop system with unstable 
plant with delay. The proposed method is based on using Bode's ideal transfer function as a reference transfer function of the open loop system. 
Synthesis method is based on simplify of the object transfer function. Fractional order of the controllers is relative with gain and phase margin 
only. Computer method for synthesis of fractional controllers is given. The considerations are illustrated by numerical example and results 
of computer simulation with MATLAB/Simulink. 

Tomasz Nartowicz 
Analitical Method of PID Controller Tuning for a Class of Unstable Plant 

The aim of  the paper is to present the synthesis method of classic PID controller for a class of unstable plant. The proposed  method based  
directly on Skogestad paper, where analitical synthesis of PID controllers in described. This paper is generalization of that approach on a class 
of unstable plants with delay. Analitical method for synthesis of fractional controllers is given. The considerations are illustrated By numerical  
example and results of computer simulation with MATLAB/Simulink. 

Ewa Pawłuszewicz 
Null-Controllability of Linear Systems on Time Scales 

The purpose of the paper is to study the problem of controllability of linear control systems with control constrains, defined on a time scale.  
The obtained results extend the existing ones on any time domain. The set of values of admissible controls is a given closed and convex cone 
with nonempty interior and vertex at zero or is a subset of  �� containing zero. 

Norbert Sczygiol 
A New Stress Criterion for Hot-Tearing Evaluation in Solidifying Casting 

This work concerns a new criterion for hot-tearing evaluation in castings. Algorithm describing the conduction of computer simu-lations of phe-
nomena accompanying the casting formation, which performing is the preparation stage for using of this criterion, is also described. According  
to the low recurrence of phenomena occurring during solidification (e.g. grained structure parameters, stresses distribution) the casting’s hot-
tearing inclination can be estimated only in approximated manner. Because of still following at present rapid computer processors development, 
and techniques of its programming, enables to suppose that in short time the efficiency of computer simulations will arise so much, the problem 
of hot-tearing evaluation newly became interesting for the team working on computer simulations at the Institute for Computer and Information 
Sciences at Częstochowa University of Technology. 

Wiesław Szymczyk 
Numerical Analysis of Residual Stress in a Gradient Surface Coating 

There were conducted numerical analyses of thermal residual stress in a double gradient surface coating consisting of porous ZrO2 of 500 µm 
thickness, placed on Inconel 718 substrate, with an interlayer of NiCoCrAlY of 200 m thickness. It was assumed that the coating  was deposited 
by plasma spraying. It showed out roughness of the free surface and borders between material phases. Numerical model took into consideration 
the real geometry of material structure. The results were analysed after transforming them into discrete distributions of particular components  
of stress. Distributions were presented for  particular zones of the surface coating. This allowed to obtain signals originated by distinct features 
of the material structure such as particular material phases, their contact borders, pores, roughness of the external surface, roughness of inter-
nal borders between layers of the gradient system and others. 

Anna Justyna Werner-Juszczuk, Sławomir Adam Sorko 
Application of Boundary Element Method to Solution of Transient Heat Conduction 

The object of this paper is the implementation of boundary element method to solving the transient heat transfer problem with nonzero boundary 
condition and particularly with periodic boundary condition. The new mathematical BEM algorithm for two dimensional transient heat conduction 
problem with periodic boundary condition is developed and verified. The results of numerical simulation of transient heat conduction in two di-
mensional flat plate under non zero initial condition are compared with results obtained with analytical method. Then the practical application of 
developed algorithm is presented, that is the solution of ground temperature distribution problem with oscillating temperature of ambient. All re-
sults were obtained with a new authoring computer program for solving transient heat conduction problem, written in Fortran. 

 


	2. CONTENTS
	DEMIANIUK_SORKO_EN_2012_032
	DZIEWIECKI_MAZUR_BLAJER_EN_2012_037
	KACZOREK_EN_2012_025
	KAREV_BARSUKOV_EN_2012_034
	KOSINSKI_OLIFERUK_EN_2012_043
	KOTOWSKI_EN_2012_040
	KULESZA_EN_2011_113
	NARTOWICZ_EN_PL_2010_092
	NARTOWICZ_EN_PL_2011_098
	PAWLUSZEWICZ_EN_2012_005
	SCZYGIOL_EN_PL_2011_076
	SZYMCZYK_EN_PL_2011_057
	WERNER-JUSZCZUK_SORKO_EN_2012_031
	3. ABSTRACT

