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Summary: This paper includes an evaluation of ventilationditions in a given living quarters — a room igimgle-family

house, based on local parameters of thermal cordfetgrmined by numerical calculations. Global paters (Predicted
Mean Vote and Predicted Percentage of Dissatished)local parameters (including: Resultant TempezatRelative Hu-
midity) were determined from numerical solution thinsient case of living quarters ventilation iN3YS-CFX software.

1. INTRODUCTION

Numerical modelling of ventilation in living quarte
office space and utility rooms has been a subjéchany
scientific papers over the past few years (Abarttale
2004; Evola and Popov, 2006; Lin et al., 2007; Stam
and Katsiris, 2006). Doing this kind of calculatioallows
an in-depth analysis of the ventilation issues aalye
on the project stage, which significantly lowers thost
of the investment.

The goal of this paper is to determine the infleenc
of a chosen ventilation type on the thermal comifofiving
quarters by analysing the thermal comfort pararsetdrich
are the results of numerical calculations done MSXS-
CFX software.

Defining the notion of thermal comfort in roomsdi-
ficult, because it is highly individual and subjeet
In order to define thermal comfort of large grougispeo-
ple, special parameters of thermal comfort haven lestab-
lished. These factors were divided by the PN-EN 1SO
7730:2006(U) norm into: global, comprehensively edet
mining personal sensations, and local, descrittiegetffect
the particular elements of a micro-climate havehmnsatis-
faction or dissatisfaction with the conditions ingaven
room and describing the negative effects they lmvear-
ticular body parts.

2. THERMAL COMFORT FACTORS

Thermal comfort and discomfort factors were desatib
in PN-EN 1SO 7730: 2006(U) norm. The most important
parameters of global comfort were considered tothze
PMV — Predicted Mean Vote — expressed in a scala f3
to +3 and PPD - Predicted Percentage of Dissatidfiecal
comfort and discomfort factors include: Draught iRgt
Local Thermal Discomfort Caused by Warm or ColddFlo
and Vertical Air Temperature Difference Between tHea
and Ankles.

PMV is calculated from the formula: (Fang&®74):

PMV = (0,352¢™00*@u/A0w 1 0,032) (24 (1~ ) —

0,35 [43 - 0,061% (1-1n)— pw] — 0,42 [/fT"i 1-7) -

50] —0,0023 -2 (44 —p,,) — 0,0014-2M (34 — ¢,,) —
Apu Apu

34- 1O_Sfd [(te + 273)4 = (Tt + 273)4] -

faar(ta —ty)} (1)

where:Ap, is the DuBois area (surface area of a human
body) m?], Q,, is the metabolic hea¥{], n is the physical
fitnessp,,— partial pressure of water vapour in the surround-
ing air [mmHg], t,, is the air temperature’(], f,; is the
ratio of the surface area of clothed body to thdase area

of exposed bodyt, — mean temperature of the clothed
surface of human body(], T,,,. — mean radiant tempera-
ture PC], ayis the heat transfer through convection
[W/(m?K)]. The temperaturet, is calculated from
the formula:

ta = 35,7 — 0,032 (1 — ) — 0,18
Du

{3'4 ) 10_8fcl [(tcl + 273)4 - (Tmrt + 273)4] +
fclak (tcl - tw)}
where: A, is the thermal resistance coefficient of clothing
[cla].

The Predicted Percentage of Dissatisfied expresses
the heat sensations of a group of people dissdisfith the

thermal conditions in a given room. It is calcathtfrom
the formula (Fangel974):

PPD = 100 — 956(0,03353PMV4+0,2179PMV2)

()

®3)

Draught Rating (DR) is calculated as follows (PN-EN
ISO 7730:2006):

DR = (34 — t)(v — 0,05)%62(0,37vT, + 3,14) (4)

where:t andv is, respectively, temperatureC] and mean
air velocity [m/s], T,, is the turbulence intensity; formula
(4) is applicable within these parameters: 20°C <+ 26°C,
v<05[m/s] i T,=10% + 6%; for v <0,05[m/s]

it is presumed that = 0,05 [m/s], and in case oDR >
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100%, the value oDR = 100% is accepted,;
An important local indicator of thermal comfortasso
the relative humidityRH calculated from the formula:

RH = ﬁmO% ; (5)
p — water vapour density,, — density of saturated water
vapour.

The felt air temperature is described numerically
by determining theDRT — Dry Resultant Temperature,
calculated from the formula (Awbi, 2003):

tmrt+317VV o,

1+3,17Vv [°Cl: 6)
where:t,,,, mean radiant temperatur€], calculated from
Stefan — Boltzman law, — temperature®C] | v — air veloc-
ity [m/s]; for v < 0,1 [m/s] it is presumed thaDRT =
(tmre+t)/2.

PDV — percentage of dissatisfied from vertical air tem

perature difference between head and feet — iuleddd
from the following ratio (PN-EN 1SO 7730):

100
1+¢(576-0,856Aty)?

DRT =

PDV = @)
whereAt, < 8°C is the difference in temperatures between
head and feet measured verticatig]f

PDF — percentage of dissatisfied caused by warm
or cold floor — is calculated from the formula (AW ISO
7730):

PDF = 100 — 94e(—1,387+o,118tf—o,002St}) (8)
wheret; - floor temperature°[].

After performing a numerical simulation of the titm
tion in ANSYS-CFX, an evaluation of thermal comfort
has been conducted. In order to do so, the gléidV (1)
andPPD (3), and localDR (4), RH (5), DRT (6), PDV (7),
PDF (8) parameters were applied.

3. DESCRIPTION OF LIVING QUARTERS

The calculations were done for an actual livingrtgra
located in a single-family house from the 1970'ke ge-
ometry of the room with most important featurespig-
sented in Fig. 1. It represents the flow domailed
with work fluid. Because of the need to reduce thenber
of nodes in computational grid, shapes of mosthef dle-
ments have been simplified. Such simplifications eom-
monly used in numerical calculations regardingbgtila-
tion problems (Evola and Popov, 2006; Lin et aDP?,
Stamou and Katsiris, 2006), rarely are there pabbos
where the geometry of the elements is more complex
(Abanto et al, 2004; Sorensen and Voigt, 2003).

Room dimensions: 4m x 4m x 2,8m. The calculations
include the following heat sources: human, radjatom-
puter and chandelier. Heat penetration through reate
walls and window was also taken into consideratldeat
gain from sunshine was neglected.

The room is ventilated using a trickle vent, and #ir-
exhaust is done through a vent connected to véotila
chimney. Air flow (inflow and outflow) is also pdbte
through a crack under the door leading to the oéghe
house.

Crack dimensions: 0,8m x 0,02m.

external walls window trickle vent

window

crack under door

Fig. 1. Geometry of the subject room
4. MATHEMATICAL MODEL

The flow of air (working fluid) in a given room igjov-
erned by the basic laws of mechanics: conservationass,
conservation of momentum and conservation of energy
These are their differential forms:
— continuity equation:
ap (AT — -

-tV (pV) = 0; (9)
wherep — density of the working fluid/ — is the velocity
vector,;

Navier-Stokes equation:

D+ V- (pV@V) = -Vp+V-T+f; (10)
wherep is the pressure and

T=pu(VW + V)T — §5v V) (11)
is the stress tensof, — body forces

- energy equation:
a(ph ] é

(phe) _9p o (o7h.)

at ot . L (12)
=V-QAVD) +V(V 1)+ V- f+Se

where h, = e+ g + %VZ — total enthalpy,e — internal

energy\ — thermal conductivitySg — heat source.

The equations presented above need to be suppleanent
with proper initial and boundary conditions.

In case of turbulent flow, solving the Navier-Steke
equations is ineffective, because of the limitegadulities
of modern computers, which does not allow for theppr
density of computational grid. Because of this,ehaations
are substituted with Reynolds equations. In ordeclose
the set of equations, additional equations are egtedthe
'turbulence model'. In this paper, the- ¢ turbulence
model was utilized in an RNG modified form, widalged
in this type of calculations (Abanto J et al 2004).



The ANSYS-CFX software solves the fluid flow
and heat transfer problems described by RANS ennmti
using the control volume method, utilizing the shap
function for estimating the variables within thentol
volume (ANSYS-CFX, 2006).

5. NUMERICAL MODELLING

Numerical modelling utilizing the ANSYS-CFX re-
quires creating a geometrical model, computatiayréd,
choosing the work fluid, determining the model afah
transfer and the type of flow (the turbulence mpdkefin-
ing the initial and boundary conditions, selectthg solu-
tion parameters and conducting the calculations.

In this case, the working fluid is a humid air, sisting
of dry air (ideal gas parameters) and water vapdiater
vapour parameters were taken from the IAPWS IH&aily
implemented in the ANSYS-CFX software. Additionally
a distinction was made between “fresh” air, flowing
from outside, and “old” air, present in the roons @result,
the working fluid was a mixture (ideal) of “old” raiwater
vapour, and “fresh” air. The distinction of diffetekinds
of air in the mixture allowed an easy analysisioflawing
from outside. Because of the importance of natcwalvec-
tion in the analysed case, the physical flow madeuded
the gravity. Defining the thermal comfort paramstee-
quired determining the mean radiant temperaturetha
physical model of the process the Discrete Transfdia-
tion model, recommended for this type of calculadidy
the ANSYS-CFX documentation, was applied.

The simulation was divided into two stages. Thstfir
stage was a transient simulation of natural cotwec
caused by an abrupt “switching on” the internal thea
sources: radiator (350W), chandelier (50W) and agemp
(95W). In still air, which was initially thermalliljomogene-
ous ( 20°C) with relative humidity of 40%, the humia-
fluence was also included. A person resting inesk@iosi-
tion generates a heat flux (20W) and mass flow oht@a-
ter vapour (41 g/h) (Fangefl974). The calculations in-
cluded the heat losses through non-transparentdaoies
(external walls) with heat transfer coefficient lofiilding
build between 1976-1983, equalling 1,163 Winestab-
lished according to PN-74/B03404 norm; and heatsfer
coefficient of windows equalling 1,1 W/@i). Reference
pressure was 0.1MPa. For the purpose of theselatdms,
the outside temperature was assumed to be -5°Cdabe
to the room was closed, but the air flow was pdssib
through the crack under the door (Fig. 1) with pues
difference equalling OPa. The air flowing out fréime room
had a temperature of 20°C and relative humidit§Qsfo.

In the second stage, 10 seconds after “switchiny on

the heat sources, the window vent was opened, which

allowed the inflow of outside air of temperaturé G5and
relative humidity 100%, as well as the air exhgostflow
with 0.5Pa pressure difference ) connected toilegion
chimney. The inflow of the outside air had a consta
velocity of 0.5m/s, normal to the inflow surface.
The calculations were continued until t=55s.

The calculations used RNG ekturbulence model
with scaled wall function; the intensity of turbote
was set to 5%.
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6. RESULTS. DISCUSSION

The calculations used a grid with 169338 nodes.
The simulation was conducted until t=55s. The tespie-
sented in this paper reflect the thermal comfort tiuat
moment.

In the first stage of simulation, that is during thatural
convection over internal heat sources: human, tadia
computer and chandelier, a convective current ngwip
towards ceiling could be observed. The most intensis-
cending stream was located over the radiator, lghtalthe
surface of window.
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Fig. 2. Velocity isolines in plane x=1m,
going through the resting person, fe55s

After opening the air vent and air-exhaust, cold ai
of temperature “%C began to flow inside. Relatively strong
convection current in the plane of window, moving- u
wards, caused a turbulence of air close to théngeiCold
air, warmed after contacting the warmer convectioment
moved from the window vent towards the ceiling, &oes
the corner of the room on the left side of the wind
and further down the wall towards the sitting perso
or moved directly down along the window. The movame
of air in the room had significant influence on thermal
comfort in the room.

Fig. 2. presents the velocity isolines in plane xoing
through the resting person and parallel to the aindAl-
though the plane was distanced from the window (ahe
the air velocity reached 0.68m/s), an eddy flowselto the
ceiling could be observed, caused by the convectiorent
which in turn was caused by the radiator. The rsgkieloc-
ity — around 1.36m/s — was reached close to thexdiaust.
The air flow through the door crack reached 0.96in/she
area around the sitting person the air velocity aiqd
0.05+0.35m/s and in some places exceeded velooitypd
able in winter conditions, that is 0.2+0.3m/s.

Draught Rating (predicted percentage of peopleatisss
fied with the draught) reached its highest valueuad
the door crack — up to 40%R was around 10+13% near
the window, that is close to the strongest convectiur-
rents and close to window vent and air-exhaust. Big
presents the area of constant value ofDR=3%. In most
areas of the room tHeR value was much lower.
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Fig. 4.I1sotherms on the floor and external wall surfaage$65s

Fig. 5. Isolines of the®?DF indicator (predicted percentage
of people dissatisfied with floor temperature)tfeb5s

Fig. 6. DRT isotherms for a plane distanced by 1.1ntf&5s

The temperature of air in the room varied from -5°C
on the surface of air vent up to 50°C on the radiatirface
and 45°C on the chandelier's surface. Fig. 4. shows
the isotherms on the floor and external walls efdhalysed
room. Because of the internal heat sources, thpdgatures
of window, external walls and floor around the eddr
rose, which caused a rise in the predicted pergenta
of dissatisfied with floor temperature PDF — Fig. 5.

In the rest of the room this indicator was withire trange
of 8.5+9.5%.

Fig.6. shows the isolines @RT resultant temperature
in plane parallel to the floor, distanced by 1.This plane
is located on the head level of a sitting persa@mierature
felt for t=55s is slightly higher than the 20+22°C recom-
mended in winter conditions — this is caused mostly
by the heat generated by the internal heat sources.

Fig. 7. Relative humidityRH<40% fort=55s

Internal heat sources have tremendous effect on the
thermal comfort conditions in a room. The effectsoich
sources is clearly visible in Fig. 7., which presethe part
of the room with relative humidity lower than 40%un-



comfortable for human. Observation of humidity disi-
tion behaviour over time shows a growing area afonm
fortably low relative humidityRH, caused by internal heat
sources and convection currents caused by them.

The predicted percentage of people dissatisfietl thie
difference of temperatures between head and aR[EY)
was calculated for a seated person, presuming rkée a
level to be 0.1m and head level 1.2m. TRBV factor
distribution, presented in Fig. 8., shows thatPR®/ is low

and for the majority of the room is lower than 1%.

With passing time the value of theDV indicator rises
slightly in the vicinity of radiator and computehat is in
areas where human presence is physically impossible

"\

[ L

A

Fig. 8. Isolines of thé®?DV indicator (predicted percentage
of people dissatisfied with the difference
of temperatures between head and anklegffifs

t=55s

t=40s

Fig. 9. Graphs of volume of air containing at least 0.Gissn
fraction of fresh air after t=20, 30, 40 and 55s

Dividing the working fluid into two types: freshrai
(outside) and old air (inside) in the physical moallowed
visualising the inflow of outside air and observitgdistri-
bution in the room. Fig. 9. shows the graphs ofunwd
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of air containing at least 0.01 mass fraction m@sh air
aftert=20, 30, 40 and 55s. These graphs show the process
of spreading of fresh air flowing from outside. eTlir
flowing from the window vent moves towards the @m

of the room, between the window and the sittingspey
flows down, is partially lifted by the convectiorurcent
from the radiator and moves up, towards the ceilaigng

the window plane. Inside the room, after 55 secp88%6

of the total area in room contains at least 0.0%amfiaction

of fresh air.

Determining the global thermal comfort parameters
PMV (1) andPPD (3) requires calculating the body tem-
peraturety, which is achieved by solving a non-linear equa-
tion (2). This requires programming a calculatisagedure
in Fortran. Because of the lack of Fortran compdem-
patible with ANSYS-CFX, this paper is limited totdamin-
ing the average values of global thermal comforapeeters
PMV and PPD for the whole room. For this purpose the
calculator published on www.healthyheating.com/sohs.
htm web-page was used.

The calculations assumed the following values: gner
flux caused by a person in the room was equalet m
(for a person resting in a seated position) andttieemal
resistance coefficient of clothing was equal 0J6. c
The following values were taken from the ANSYS-CFX
postprocessor : the mean radiant temperature avénae
room 20.91°C, the average relative humidity 44.418e,
average air velocity 0.075m/s and average air teatpe
20,58°C. The calculations resulted in the followigigbal
thermal comfort parameterMV= - 1.3 ,PPD=40.3%.

Based on these results it can be said that theitaomsd
in the analysed room would not be comfortable f0r3%o
of people staying in this room. The resulting agereBMV
means that a large group of people would deschibie heat
sensation as cold or relatively cold.

The goal of this paper was to determine the thermal
comfort parameters in living quarters using nunarood-
elling. Numerical modelling allows for a quick apsik
of the influence the type of ventilation has onrthal com-
fort conditions in living quarters. For this kind calcula-
tions, very important is the creating of proper ygibal
model of the fluid flow and heat transfer problem.
The quality of the result is heavily influenced thye com-
putational grid. In other words, in order to obtajnod
quality results, the calculations require densemaational
grid and good computer equipment.
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Abstract: This paper considers a development of the boynelament approach for studying of the antiplareaslof elastic
anisotropic solids containing cracks and thin is@uas. For modeling of thin defects the couplingngiple for continua
of different dimension is utilized, and the problé&smdecomposed onto two separate problems. Theidien external one,
which considers solid containing lines of displaeamand stress discontinuities and is solved usowndary element ap-
proach. The second is internal one, which considefsrmation of a thin inhomogeneity under the gggpload. Compatible
solution of external and internal problems gives sblution of the target one. Stroh formalism iizetd to account the ani-
sotropy of a solid and inclusion. Numerical exanmgilews the efficiency and advantages of the prapapproach.

1. INTRODUCTION

Thin inclusions are often provided into materiats f
improving of their properties. Those are fibers atrthgers
in composite materials, glue connections, caviéiad in-
clusions introduced for damping etc. However, thin
inhomogeneities of material structure can also €aas
undesirable effect. In particular, cracks, thindsyiforeign
layers, thin inclusions etc. induce huge stressenmation,
which can cause a failure or even mechanical fraatfithe
corresponding structural element.

The study of thin inhomogeneities in materials
and structures mainly concerns defects of a typehof
void (crack). Application of different boundary eient
and boundary integral equation approaches for stgdy
of cracks in anisotropic solids can be found in kgor
by Ang et al. (1999), Denda and Marante (2004), Pan
and Amadei (1996), Pan (1997), Sollero and Aliabadi
(1995), Ting (1996) etc.

Less publications concern study of solids with thin
clusions. In modeling of thin inclusions, their lirdnce
on the main material is often replaced by the ferdistrib-
uted with a certain density along a line, whichslat the
median surface of inclusion (a mass forces meth®dgh
approach is used in the BEM by Padron et al. (2007)
for modeling of piles in a ground (beams bendingdaip
by Riederer et al. (2009) for studying of anchortdo
screwed up in the rock (beam tension model), bplrddi
and Saleh (2002) and Saleh and Aliabadi (1998jrfodel-
ing of rectilinear reinforcement of concrete. Thestncom-
plete among mentioned is a model of Aliabadi ant:lSa
(2002) as it considers tension, shear and bendintio
inclusion. Nevertheless, the mass forces methootisuit-
able for modeling of the transverse deformatiorinafu-
sion, which is accompanied with displacement diiooi
ties at a median surface of thin inhomogeneity.rétuee,

mentioned models of thin inhomogeneity require rfioah
tion, which will take into account the transversgidity
of inclusion’s material.

Another approach in numerical modeling of thin incl
sions is the analysis of solid with the inhomoggnef real
geometrical features and elastic properties (selnBu
and Pasternak (2008a), Sulym and Pasternak (2008)-
ever, in this case the thinness of inclusion shdddad-
dressed and special techniques developed by Sulym
and Pasternak (2008b) are to be utilized.

The present paper develops the numerical-analydjzal
proach for studying of the antiplane shear of anigic
elastic solids based on the boundary element medmod
coupling principle for continuums of different dimson
introduced by Sulym (2007).

2. PROBLEM FORMULATION

Consider a cylindrical elastic anisotropic solidhigh
contains a thin ribbon-like foreign inclusion. Assal that
mechanical fields, which act in a solid and inausi
and the applied load, do not depend on time ancoteary
along the direction parallel to the generatrix ofalid.
Consider that at the inclusion-solid interface tbhaditions
of ideal mechanical contact are satisfied and & duhs
a material symmetry plane perpendicular to the igrig.
These assumptions allow reducing spatial problem
to consideration of 2D steady-state fields of aidsaeind
inclusion acting at arbitrary plane, which is pexgieular to
the solid’s generatrix. The applied load is assurtede
parallel to the generatrix.

Based on the coupling principle for different dirgiem
continua of Sulym (2007) (Fig. 1) the lined modéltlin
inhomogeneity can be developed. Due to the thinness
of inhomogeneity its real geometrical features waith-

11
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drawn, and contact tractions and displacementdrare-
ferred onto the inclusion’s median surfalge(accordingly
onto its facedi" and 7", see Fig. 1). Thus, the problem
is reduced to determination of an elastic statea cfolid
containing the line of discontinuities of stressd agis-
placement fields. After development of the inte@aticon-
ditions for a thin inhomogeneity along with the egtal
equations concerning abovementioned field discaittas
for a solid, the elastic state of the latter caéermined.

Fig. 1. Problem scheme (a) and modeling technique
based on the coupling principle (b)

Consider a 2D domai§ occupied by solid’s median
surface, which is perpendicular to the generathissume
that a rectangular coordinate systefix;x,x; origin
is placed at this plane anfx; axis is directed along
the generatrix. Then, based on Ting (1996) thetiatige
relations for antiplane shear of anisotropic solids be
written in the following compact form:
g3; =Cjcwy (i.k=12), @)
wherea;; are the only nonzero components of stress tensor;
w = uyis the only nonzero component of displacement
VECIOr;Cy1 = Cs5, C1p = Cp1 = Cus, Cap = Cyy; ¢4 Are elas-
tic moduli of the material. Here and further thengtein
summation convention is assumed.

The equilibrium equation (see Ting (1996)) for tase
of antiplane shear can be reduced to:

(2)

where f; is a body force applied to a solid. Substituting
Eqg. (1) into Eq. (2) one can obtain:

0'31"1' +f3:0,

Cikwi + 3=0. ®)

The homogeneous solutigip = 0 of Eq. (3) can be ob-
tained using the Stroh formalism. Consider that:

12

(4)

wherea andp are complex constants to be determined,
andF(z) is an analytical function of. Substituting Eq. (4)
into Eq. (3) one obtains the following eigenrelatio

[Q+2Rp+ T;ﬂ &0,

w=aF(x + px),

©®)

whereQ = C;4, T = C5,, R = C;, = C,; are numbers simi-
lar to the same-denoted Stroh matrices.

After differentiation of Eq. (4) and utilizing catitsitive
relations (1), stresses can be obtained in the fafrfhing
(1996):

031="9 2, 032=91, (6)
whereg = bF(x; + px,) is a stress function and
b=(R+ pT) a=—( Q- pR A . 7)

Thus, for the solution of the problem it's more een-
ient to use the complex numbersbh andp instead of elas-
tic moduli Cj,. These complex numbers can be determined
from the following eigenrelation of Ting (1996):

N;, N NE = pg,

n=| N N NETEE ®)
N3 N N'n=pn,

where Ny =—R/T, N, =1/T, N;=R*/T—-Q; §=

[a, b]T is a right eigenvecton = [b,a]” is a left eigenvec-
tor of a matrixN; superscript T" denotes matrix transpose.
Vectors¢, andng obtained for the eigenvalugg andpg
are normalized using the relation:

)

Therefore, the problem (8) gives two complex eiggnv
uesp, =p and p, = p, and corresponding eigenvectors
& = &, are also complex conjugate. The variaileande
are real, thus the general solution of the probdecording
to Ting (1996) is:

w=2Rd aF(x + px) ], #=2RgbF(x+px)]. (10)

Based on the Stroh formalism it is easy to obtain
the Green function for a line force acting at anpéi(¢,, &,)
of infinite anisotropic medium (Ting, 1996):

&;‘I,B = 53,6’ .

W(x,8) :%Tlm[a2 In Z(x,%)]
ab(n, -
<

where Z(x,&) = x; + px, — (&1, +p&,). Displacements

w along with tractionst = o3;n; at a point x(xq, x;)

of a solid at the surface with a norméln,,n,) caused by
the action of a concentrated factof;6(¢) at the point
£(&,,&,) can be determined within the following depend-
ences:

w(x) =W(x£) &, t(x)=T(x&) f.

Hereé (&) is the Dirac delta-function.

T(x,g):l—lTlm{

12)



3. BOUNDARY INTEGRAL EQUATIONS
OF EXTERNAL PROBLEM

Due to the symmetry of the elasticity tensgy the fol-
lowing Betti type relation holds:

J WO - @uar = [ €2 Wi O w] as (13)
0S S

for two different stress states of a solid. Chogdiald (12)

as one of the states of a solid, based on Eq. &8)can
obtain Somigliana type identity for antiplane shear
of anisotropic solids:

w(g)= OIS [W(x8) 1) = T(x.8) wix)]

+'|'S'|'W(x,§) f3(x) dS(x).

Based on the method of Lin’kov (1999) of fictitious
boundaries introduction and their further coupling,
for a solid with a mathematical cui; one can receive
the following integral representation for displaeets:

= [[W(x.&) tx) - T(x.8) )] " (x)

d ()

(14)

+ [ [W(x.8)2t0) - T(x.8) Awx) | d” (x) (15)
re
+ﬂW(x,§) f(x) dS(x).
S
Here () = ()" + ()75 A0) = ()" = ()7 I'=0S

is a boundary of a domaify t¥ = 03]n] (n are the com-

ponents of normal vectors™ of surfacesl;); signs “+”
and “-" denote variables concerned with fatgsand Iz
of the mathematical cut;, respectively.

For simplification of further notations, considéat the
solid is free of body forces, i.¢; = 0. Thus, the last term
in Eqg. (15) vanishes.

Approaching the internal source poito a boundary
pointy € T' and assuming that the curl’ds smooth at the
pointy, from Eq. (15) one can obtain displacement bounda-
ry integral equation:

lw(

> y):IFE[W(X,V)Zt(X)—T(x,y)Avx(x)]

+RPV[ W (x,y) te)dr (x)

(x,y) wx)dr (x),

d(x)
(16)
—Cij

where symbols “RPV” stand for the Riemann Principal
Value, and “CPV” for Cauchy Principal Value of thee-
gral. When a collocation pointlays at the smooth surface
of the mathematical cui., one can receive the following
boundary integral equation:

W(x.y)Ztx)d (x)
T(x.y)Aw)dr (x)

y) )= T(xy) wx)] o

1 -
S2w(y) = RijrE

—Cij .

+ [ Wi

(17)

(%)-
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Eqg. (17) can also be used when considering thekerbo
cuts or thin inclusions, however the requiremerdt tthe
collocation point never coincides the crook poimbld be
provided into the numerical procedure. DiffereritigtEq.
(17) for yi and using constitutive relations (1) with the
account of relatiom} = —n; one can obtain the stress
boundary integral equation:

%At(y) =n} (y)[CPVIrE D; (x.y)Zt(x)dr (x)

—HPVf : Sj (x.y)Awx) d™(x)

#fe [

where “HPV” stands for the Hadamard Principal Value
(finite part) of an integral. The kernels of intalgrin equa-
tion (18) are:

(18)

y)t) - (x.y) wix)] OF(X)]

D; (xy)= JKZTV::_E'”{(% 3y ) z(il,)y)}’
Sj(xy)=G o 1., (65 -y F’)—bz(nz_qp) .(19)
b Koy m J [Z(x,y)}2

The known expressions by Ang et al. (1999) or Aah a
Amadei (1996) for kernelB;(x,y) andS;(x,y) additional-
ly to complex numbers: and b contain constantg,,
which compared to (19) complicates computationgbal
rithms.

Assume thatl; is a median surface of thin inclusion.
Without loss in generality, the interaction conalits be-
tween a solid and inhomogeneity, which is modelsithgu
the coupling principle for different dimension cioniums,
according to Egs. (17) and (18) is convenient toosk
in the form of the following functional dependences
swy) = F¥(y,zt,aw), At(y)=F'(y,2t,Aw).  (20)

Thus, when the collocation point lays at a smooth
boundaryl' of a solid one can use the only Eq. (16), and
when the collocation point lays at a smooth median sur-
face I of the inhomogeneity two integral equations (17)
and (18) along with the inclusion model (20) aredis

Thus, the formulated problem is reduced to deteamin
tion from the system of boundary integral equations
of unknown discontinuities of displacements and stress:

Aoy, = (03J T3 )nj+ =oyn +o3n =xt

at the mathematical clit and functionsyv or t, which are
not set by the boundary conditions at the solidsridary
I'. After all boundary functions are obtained, one ce-
termine the field of displacements using the iraégepre-
sentation (15). After differentiation of Eq. (1%ne can
obtain stress field at arbitrary source pg@jmtf a solid by:

73 (&) = [ D (x£)t0) - § (x.8) we) | " (x)

+I [ (x.8)Zt(x) - Sj (x,&)Aw(x)} d (x). 2y

13
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4. INCLUSION MODEL
FOR THE INTERNAL PROBLEM

Consider mechanical fields acting at the certaossr
sectiony of a thin inclusion. Assume all quantities in the
local coordinate syster@ix’;x',x;, which axisOx'; is di-
rected along the normal vectart. With the account
of n* = —n'F the conditions of a perfect mechanical con-
tact of inclusion and a solid ane™ = wiF, t¥ = —¢tiF,
Here the non-italic superscript “i” denotes valgescerned
with the inclusion.

According to Eq. (1) stress inside the inclusiorthini
the notations (5) equal:
031=Q Wi+ Rwy 03 =Rw i+ T wy. (22)

By integration of Eq. (22) over the thickness oflin
sion one can obtain:

[5oah=Q [ w(H- (- ]+ R, w o
[0 ostn= R W - w- ]+ T[" v or

With the account of equilibrium equation (2) andch€o
tact conditionst™ = —tF using the coupling principle
for continuums of different dimension the followingla-
tions hold:

(23)

ffhae»zdh: P(y), P(y)=-F°+[) zt(9 ds

Yo (24)

wheres is an arc coordinate of a mathematical Byt P°
is force applied at the left end of the inclusiamich posi-
tion vector is defined by a poigt,. According to the mean
value theorem:

[ ozyh=2hody
= h(y)[ti (h)-t (—h)] = hy)ay),
1 wpdh= 2y

=h(y)[ w2 (h)+ wa(-H]= Hy)Z wa(y).

Withdrawing the interaction of mechanical fieldgiag
in the directions normal and tangential to the medsur-
face of the inhomogeneity (as in the model of thieRiér
elastic foundation) and using Eqgs. (24), (25) alavith
relations (23) one can obtain:

(25)

At(y) - —M[Aw(y) +AW (y)]

h(y)

swiy)=2w + T PT(?/)+—Ff(y)ds

(v)h(y)

Considering assumptions made in Eq. (26) similar
to Sulym (2007) the system of correcting functidms’, P*
is introduced (in the theory of thin elastic degeby Sulym
(2007) they are also called the end face forces dind
placements). For thin defects, these functions usally

(26)
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set using the aprioristic formulas. The latter evastructed
under the assumption that the problem has the escdat
tion for three main cases of inclusion’s materiedgerties
(a crack, a rigid line inclusion, and a continugo$id with-
out inhomogeneity, i.e. inclusion material is samnito that
of a medium). Considering the aprioristic formulas
of Sulym (2007) the correcting functions for vehyrt in-
clusions can be assumed zero ones.

Mean value of displacement® at the left end face
of thin inclusion is determined using the inclusgoglobal
equilibrium equation:

n 0 —
PN+ P Ir; =t(x) dr(x) =0, (27)
whereP" is a force applied at the right end of the thin in
clusion.

5. BEM SOLUTION STRATEGY

System of integral equations (16)—(18) are solveulls
taneously with Egs. (26), (27) using the bounddeynent
method proposed by Pasternak (2011). Cuivesnd I
are approximated using respectivelyandn, rectilinear
segments (boundary elemertg. At each element, three
nodal points are set: one at the centre, and therstat the
distance of 1/3 of element length at both sidesenftral
node (discontinuous three-node boundary elementhsf
polynomial shape functions are used it is callextaintinu-
ous quadratic boundary element, see Saleh and atliab
(1998)). Thus, the collocation point never coinside
the corner points of the approximated boundary #rel
conditions assumed for the corresponding integcplae
tions are provided. Boundary functiomsw, 't and Aw
are approximated at the element using their noalaies.

Using the abovementioned procedure, boundary iategr
equations (16)—(18) along with the model of then tiniclu-
sion (26), (27) are reduced to the system of lirdgebraic
equations concerning the nodal values of boundang-f
tionst, w, Y.t andAw.

Shape functions for the elements, which do notiadjo
the inhomogeneity ends, are set in the form of aage
polynomials for the system of nodés = [—2/3;0;2/3]
of three-node discontinuous boundary element.

To increase the accuracy of a method and for cenven
ient determination of the generalized stress irtgfactors
(SIF) it is obvious to take an advantage of thecipesle-
ments, which model near-tip parts of thin inclusidyc-
cording to Pasternak (2011) the following systensludipe
functions is introduced for displacement disconties:

A =0 [p+ofp+dh80®'? (p=12,3;  (28)
and for traction discontinuities:
g =0 Vet + s o (p=123. (29)

Herep is the normalized distance to the inclusion’s tip;
CD;‘,}V and GDE; are constant matrices, which are determined

the same as the factors of Lagrange polynomials.
Shape functions (28) and (29) allow direct deteamin



tion of generalized SIK;, andKj;, through equations:

K= e () K==l (52 @

whereL = —2v/—1b? is a real number, which correspond
in 2D anisotropic elasticity to the Barnett — Lotie@sorL
(see Ting (1996)). In the case of a crack-like defe
K3, = K;;; andK5, = 0, whereK),; is the classical mode Il
stress intensity factor.

6. NUMERICAL EXAMPLE

To show the efficiency and accuracy of the proposed
approach consider the problem of a thin elasti¢ragic
inclusion in the infinite anisotropic medium undie uni-
form shear at the infinity witle{% = o33 = t. The relative
rigidity of inclusion is characterized by the ratio
k = G'/c,,, WhereG! is a shear modulus of inclusion’s
material. The thickness of the inclusion is assuntethe
0.001 of its lengthK = 0,001a). The correcting functions
are assumed to be zero ones. The scheme of théeprob
is depicted in Fig. 2. Two cases of medium matgriaper-
ties are considered: isotropic (curve 1) and ortpit
with ¢, = 0 andcss/c,, = 10 (curve 2). The generalized
SIF obtained using Eq. (30) (solid curves) are camg
with the SIF obtained by the direct approach degwetb
by Sulym and Pasternak (2008b) (dashed curves)¢chwhi
uses 311 quadratic boundary elements uniformlyidiged
at the inclusion’s interface. The results are plbth Fig. 2.

1

0.8
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0.4

0.2

0
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10°10° 10° 10" 107 10” 10° 10" 10° 10° &
Fig. 2. Generalized SIF for a thin inclusion perfectly ded

into the isotropic 1) or anisotropic Z) medium

When the relative rigidityk of inclusion is extremely
low (a cavity) or high (a rigid inclusion), the dation
of generalized SIF obtained with the proposed aggto
from the analytical solution of a crack or rigichdi inclu-
sion problems by Sulym (2007) is less than 0.0h#&bth
isotropic and anisotropic cases. The error of tihect ap-
proach is higher and about 1.5 % for isotropic &l %
for anisotropic case.

acta mechanica et automatica, vol.5 no.4 (2011)

For the intermediate values of the inclusion’s tiet&a
rigidity the proposed approach gives a little highelues
of the generalized SIF comparing to the direct oRleis
is explained by neglecting of correcting functiansnclu-
sion model (26) during humerical computations. Nthe
less, higher values of generalized SIF can be edeat
as those, which already include safety factor.

The advantage of the proposed approach is the tieduc
of the general number of boundary elements (21nagai
311) used for modeling of the problem. Besides, e
posed approach can be used for studying problemergf
thin inclusions, which are challenging for the direap-
proach, even when the regularization procedure upyrs
and Pasternak (2008b) is applied.

7. CONCLUSION

Thin inhomogeneities of material structure induoca-c
siderable stress concentration at the vicinity hdirt tips.
For thin inclusions in anisotropic elastic mategiaitress
field near the tips of inhomogeneity possesses requaot
singularity. Therefore, for the numerical solutioh the
corresponding mathematical problem it is necesdary
consider this behavior of boundary functions, imtipalar
using special shape functions.

The stress field near the tip of thin inclusionainiso-
tropic elastic medium under antiplane shear caddfimed
within two real values, which are called generaliZiF.
One of them stands for the displacement disconinui
and in the case of a crack equal classical modelIiH.
Another stands for the stress discontinuity atitt@®moge-
neity.

The numerical analysis of a test problem shows bkigh
ficiency of the developed approach for modelingiiffer-
ent types of thin defects of anisotropic materiaisacks,
thin elastic and rigid inclusions etc. It allowsidying both
bounded and infinite solids. The account of in@asprop-
erties has essential influence on SIF of solidstaiaimg
thin inhomogeneities.
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Abstract: The problem of asymptotic stability of continuousetete linear systems is considered. Simple nacgs®ndi-

tions and two computer methods for investigatiorasymptotic stability of the second Fornasini-Masihi type model
are given. The first method requires computatiorthef eigenvalue-loci of complex matrices, the sdcorethod requires
computation of determinants of some matrices. Hffeness of the methods is demonstrated on nunhesieanple.

1. INTRODUCTION

In continuous-discrete systems both continuous-time
and discrete-time components are relevant andaictiag
and these components can not be separated. Sueimsys
are called the hybrid systems.

In this paper we consider the continuous-discrigieat
systems whose models have structure similar tortheels
of 2D discrete-time linear systems. Such modeldieadta
the 2D continuous-discrete or 2D hybrid models,ehbgen
considered in Kaczorek (2002) in the case of pasitiys-
tems.

The new general model of positive 2D hybrid linsgs-
tems has been introduced in Kaczorek (2007) fardsted
and in Kaczorek (2008a) for fractional systems. Tdwdi-
zation, reachability and solvability problems ofsjiive 2D
hybrid linear systems have been considered in Kakzo
(2002, 2008b, 2011a), Kaczorek and Rogowski (2010),
Kaczorek et al. (2008), Sajewski (2009).

The problems of stability and robust stability & 2on-
tinuous-discrete linear systems have been invdstiga
in Bistritz (2003, 2004), Bustowicz (2010a, b, 281Db),
Bustowicz and Ruszewski (2011a, b), Guiver and Bose
(1981) (see also Chapter 12 in Kaczorek (2011a)3tind-
ard and in Kaczorek (2011a, b), Kaczorek and S&jews
(2011) for positive systems.

The main purpose of this paper is to present coaput
tional methods for investigation of asymptotic #ibb
of the second Fornasini-Marchesini type model aftiow-
ous-discrete linear systems.

The following notation will be used? — the set of real
numbers R, = [0,], Z, — the set of non-negative inte-
gers, ™™ — the set ofn x m real matrices and™
RV x() II — the norm of(+), A;(X) —i-th eigenvalue
of matrix X.

2. PRELIMINARIES AND FORMULATION
OF THE PROBLEM

Consider the state equation of the second Fornasini
Marchesini type model of a continuous-discretedmsys-
tem (Kaczorek, 2002) (fot € Z, andt € R,):

(6,1 +1) = AX(T) + Agx(t,i +1) + Blu(t,i) + Bou(t,i +2), (1)

where x(t,i) = dx(t,i)/0t, x(t,i) € R", u(t,i) €R™
andA,, A, € R™", B, B, € R™™,

Definition 1. The model (1) is called asymptotically stable
(or Hurwitz-Schur stable) if foru(t,i) =0 (then also
u(t,i) =0) and bounded boundary conditions:

x(0,i), 121, i0Z,, xt,0, xt,0), tO0O,, (2)
the following condition holds:
limit o [IX@.i)|FO for t,i - oo.

The characteristic matrix of the model (1) hasftren:

H (s 2) =20, — A — ZAp. 3)
The characteristic function of this model:
w(s, z) = detH (s, z) = det[szl |, - sA - ZA] (4)

is a polynomial in two independent variablesand z,
of the general form:
_ad ki _
W(s,2)= ¥ X 84Sz, g =1 ®)
k=0j=0

From Bistritz (2003, 2004) and Guiver and Bose (198
we have the following theorem.
Theorem 1. The model (1) with characteristic function (4)
is asymptotically stable if and only if the followg condi-
tion holds:

w(s,z) #0, Res=0, |zl (6)
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The polynomialw(s,z) satisfying the condition (6)
is called continuous-discrete stable (C-D stable)Hair-
witz-Schur stable (Bistritz (2003, 2004)).

The main purpose of this paper is to present coaput
tional methods for checking the condition (6) oyraptotic
stability of the model (1) of continuous-discreitechar sys-
tems.

3. SOLUTION OF THE PROBLEM

Lemma 1. Simple necessary conditions for asymptotic sta-
bility of the model (1) are as follows:

ReAi(A) <0, i=12...,n, (7
IAN(ADKL =120 (8)

Proof. From (1) forA; = 0 andB; = B, = 0 one obtains
the homogeneous state equation of the continuous-ti
linear system (for the fixetle Z.,):

X(t,i+1) = Apx(t,i +1). 9

The system (9) is asymptotically stable if and dhthe
condition (7) holds, i.e. the matrid, is Hurwitz stable
(is a Hurwitz matrix).

Similarly, substitution ofA, =0 and B, =B, =0
in (1) gives the equation:

X(t,i +1) = Ax(t,i), (20)
which can be written in the form:
v(t,i+1) = Av(t,i), V(i) =x(,i). (12)

The discrete-time linear system (11) is asympttitica
stable if and only if the condition (8) holds, ithe matrix
A; is Schur stable (is a Schur matrix). This compglete
the proof.

Theorem 2. The condition (6) is equivalent to the following
two conditions:

w(s,el®) 20, Res>0, Dx0Q = [0, 27, (12)
and
w(jy,2) 20, |zk1, Oy0O]O0, ). (13)

Proof. From Bistritz (2003, 2004) and Guiver and Bose
(1981) it follows that (6) is equivalent to the ditions:

w(s,2) 20, Res=0, |zE] (14)
and
w(s,2)#20, Res=0, |zk1 (15)

It is easy to see that conditions (14) and (15) lean
written in the forms (12) and (13), respectively.

The characteristic matrix (3) of the model (1) dam
written in the following forms:

H(s 2 =[2 - Alllsl -S(29)] =[8l = A][2 = S(9)],

where:

(16)

18

S =(2 -A) (), (17)
S (9 = (s - A) (). (18)
Hence,

w(s, z) =det[zl — A ]det[sl - S(2)], (19a)
w(s,z) =det[sl — Ay ]det[zl - S,(9)]. (19b)

From (19a) and (17) foz =el® we have:

w(s,e?) =detle/® - A] detfsl - S;(e/®)], (20)
where:

S()) = (1e)- A) LAl (21)

Lemma 2. Let the necessary condition (8) be satisfied.
The condition (12) holds if and only if all eigethwas

of the complex matrix (21) have negative real péotsall

w € [0, 2x].

Proof. If (8) is satisfied then the matribe/® — A4, is non-
singular for allw € [0,2n] and from (20) it follows that
the condition (12) holds if and only if:

detel -S(€/?)20, Res>0, De0Q=[0,21].  (22)

Satisfaction of (22) means that all eigenvalueg2df)
have negative real parts for alle Q.

The condition (22) holds if and only if the eigeluex
loci of (21) with w € Q are located in the open left half-
plane of the complexg plane. These eigenvalue-loci are the
closed curves with endpoints (fab = 0 and w = 2m)
in eigenvalues ofS; (1) = (I — 4,)74,.

From (19b) and (18) far = jy we have:

w(jy, 2) = detfjyl - A)]det[2 - S,(jy)], (23)
where:
Sy(iy) = (iyl - Ao) H(iyAY). (24)

Lemma 3. Let the necessary condition (7) be satisfied.
The condition (13) holds if and only if all eigerwas

of the complex matrix (24) have absolute values fisn
one for ally = 0.

Proof. If (7) is satisfied then the matrijyl — A, is non-
singular for ally = 0 and from (23) we have that the condi-
tion (13) holds if and only if:

detlzl -S,(jy)]1#20, |zk1, Oyd[o, ),

i.e. all eigenvalues of (24) have absolute valess than
one for ally > 0.

Satisfaction of (25) means that the eigenvalue-loci
of (24) (eigenvalues of (24) for ajl € [0, )) are located
in the open unit circle of the complexlane.

It is easy to check that:

- R A §) )
g, 2= M = iyl - Ay

where adj(.) denotes the adjoint matrix.

(25)

A=A, (26)



From the above and (24) it follows that the eigduea
loci of S,(jy) start fory = 0 in the origin of the complex
plane and tend to the eigenvaluedipffor y — co.

Theorem 3. The second Fornasini-Marchesini type model
(1) is asymptotically stable if and only if the eseary
conditions (7) and (8) are satisfied and the folfaywcondi-
tions hold:

ReA{S(e/)} <0, DwDQ=[0,2n], i=12..n, (27)
and
AN{S(iy)l KL Oy=z0, i=12...n, (28)

where the matriceS, (e/*) andS,(jy) have the forms (21)
and (24), respectively.
Proof. It follows from Theorem 2 and Lemmas 1, 2 and 3.

Application of Theorem 3 requires computation of ei
genvalues of complex matrices (21) and (24). Thay ime
inconvenient from the computational reasons, palaity
in the case of ill conditioned matrices.

Therefore, we present a new method for investigatio
of asymptotic stability of the model (1) which rémps
the computation of determinants of some matrices.

Consider the polynomial:

w(s,e!®) = det@l - S(e!?)),

whereS; (e/®) is defined by (21). From the classical Mik-
hailov theorem (see Bustowicz (2007), Keel and Bhat
charyya (2000)) it follows that the condition (29lds if
and only if for any fixedw € [0, 2] plot of w; (jy, e/®)
starts fory = 0 in the pointw, (j0, e/®) = det(—S, (e’®))
and runs in the positive direction by quadrants of the
complex plane (missing the origin of this plane)yiin-
creases from 0 toed: This plot (called the Mikhailov hodo-
graph) quickly tends to infinity aggrows toco. Therefore,
direct application of the Mikhailov theorem to ckixy the
condition (27) is not practically reliable.

To remove this difficulty, we introduce the ratidbna
function:

(29)

_ v el®

a(iy.e9) =),
Wio(Jy)

instead ofw, (jy, e/®), wherew,,(s) is any Hurwitz stable

reference polynomial of degree

Lemma 4. The condition (27) holds if and only if for all

fixed y = 0 plot of (30) does not encircle or cross the origin

of the complex plane.

Proof. If the reference polynomiat,(s) is Hurwitz stable

then from the Argument Principle we have:

Aargyne o) Woljy) =nmn

«Q =1[0,27], (30)

From (30) it follows that for any fixed € Q:
narg @y(jy,e’®) =
YL(=0,00)

= Aarg wi(jy,e!®)- Aarg wig(jy).
yO(—c0,00) yO(=00,00)

The condition (27) holds for any fixe@[1Q if and on-
ly if:

(31)

acta mechanica et automatica, vol.5 no.4 (2011)

Aarg wy(jy,e’®)= Aarg w(jy)=nm (32)

YLi(=e0,e0) yL)(~e0,e0)

which holds if and only if\arg, e o« $(y, e/°) = 0.
Taking into account alb € Q, we obtain that the above
holds if and only if for all fixedy =0 plot of (30)
as a function ofv € Q does not encircle or cross the origin
of the complex plane.
The reference polynomiad,,(s) can be chosen in the
form:

w(sh) =det@ - S @), SO =(-A)"A.

Hurwitz stability of the polynomial (33) is necesga
for Hurwitz stability of the complex polynomial (R€r all
w €

If wig(s) =wy(s)) then:

(33)

w(iy.e’) oo
w (jy D

Plot of (34) as a function of € Q (with any fixed
y = 0) is a closed curve. It begins with =0 and ends
with w = 27 in the point(1,;0), becausep,(jy,1) = 1.

It is easy to check that jf — oo, then the closed curve (34)
reduces to the poirft, j0).

The plot of (34) is called the modified Mikhailowdho-
graph. From the above it follows that this hodograp
is bounded for aly = 0.

Now, we consider the complex polynomial:

Wa(jy, 2) =det(@ - S,(jy)),

whereS, (jy) is defined by (24).

Let w,,(2) be any Schur stable reference polynomial
of degreen.

Similarly as for Lemma 4, we obtain the following
lemma.
Lemma 5. The condition (28) holds if and only if for all
fixed y = 0 plot of the function:

@ (jy.el®) = (34)

(3%)

- , wdqQ,
Woo(e!®)

@ (jy.el?) = (36)

does not encircle or cross the origin of the complane,
wherew, (jy, e/®) has the form (35) far = e/®.
From (35) fory=0 we have:

W, (0,2) =det@ -S,(0)) =2".

Therefore, the reference polynomia),(z) can be cho-
sen aw,,(z) = w,(0, z) = z™.

Schur stability oiw, (0, z) is necessary for Schur stabil-
ity of the complex polynomial (35) for ai = 0.

If wyo(z) = 2" then:

ol = Woliv.e")

Sen wdQ. (37)

®(jy,

Plot of (37) as a function ab € Q with the fixedy = 0
is a closed curve. It begins withh = 0 and ends with
w = 2m in the point:
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@ (jyD) =ws (jy ) = det - S;(jy)). (38)
It is easy to see thdt,(0,1) = 1.
From (26) and (37) we have:
, . joy _
0y (00,619) = lim @y (jy,e/®) =38 1 =A) 16 (39)
y_,oo e]m

From the above it follows that iff » c then plot
of (37) tends to the closed curve (39) with endfsoin
(for w = 0 andw = 21) ¢, (o0, 1) = det (I — 4;).

From Theorem 3 and Lemmas 4 and 5 we have the fol-
lowing theorem.

Theorem 4. Assume that the necessary conditions (7)

and (8) are satisfied. The model (1) is asympttjicdable

if and only if the following two conditions hold:

1. plots of the function (34) do not encircle or cross
the origin of the complex plane for all fixgd> 0;

2. plots of the function (37) do not encircle or cross
the origin of the complex plane for all fixgd> 0.
Applying computational method given in Theorem 4

we can take into consideration the following remark

Remark. The range’ = [0, y¢] of values of the parametgr

should be a suitable large, such that from plotdheffunc-

tions (34) and (37) fory €Y we can affirm fulfiiment

(or not) the conditions of Theorem 4 for gl 0. For any

fixed y € Y determined with appropriately small stap,

plots of the functions (34) and (37) should be dsepa-
rately digitizing the rangé) = [0, 2] with a sufficiently
small steprw.

4. ILLUSTRATIVE EXAMPLE

Consider the second Fornasini-Marchesini type model
(1) with the matrices:

04 01 03 -14 -1 -01
A=| 0 -08 -04|, A =| 08 -04 0 | (40)
-03 02 04 -1 0 -o07

Computing eigenvalues df, andA, one obtains:
— eigenvalues ofl;:

2 =-0.7247 z,5= 03624+ j0.2897

— eigenvalues od,:

5 =-0.764Q s,3=-0.8680t j0.6635

From the above it follows that the necessary cauit
(7) and (8) hold.

Eigenvalue-loci of the matriceS, (e/®), w € [0,2m]
and S, (jy), y € [0,50] are shown in Fig. 1 and 2, respec-
tively. By ‘0’ in Fig. 2 are denoted points corresgling
to eigenvalues ofl,. The eigenvalue-loci df,(jy) tend to
these points iy - oo.

From Fig. 1 and 2 it follows that the conditions7)2
and (28) of Theorem 3 are satisfied and the systeas-
ymptotically stable.

20

Plots of the functions (34) foy € [0,40] and (37)
for y € [0,20] are shown in Fig. 3 and 4, respectively.
The curve (39) is denoted by stars in Fig. 4.

From Fig. 3 and 4 it follows that the conditionsTdfeo-
rem 4 are satisfied and the system is asymptotistdble.
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Fig. 4. Plot of (37) fory € [0, 20]

5. CONCLUDING REMARKS

Simple necessary conditions and computational meth-
ods for analysis of asymptotic stability of the wed
Fornasini-Marchesini type model (1) of continuousccete
linear systems have been given in Lemma 1 and Eheor
3 and 4, respectively. The method given in TheoBm-
quires computation of eigenvalue-loci of complextncas
(21) and (24). The method proposed in Theorem dires)
computation of values of complex functions (34) &8id).

The method of Theorem 3 has been generalized in Bus
towicz (2011b) for the first Fornasini-Marchesigpe and
the Roesser type models of continuous-discreteaisgs-
tems. The method of Theorem 4 has been appli&lig
towicz and Ruszewski (2011a) to asymptotic stabilit
analysis of the first Fornasini-Marchesini type rabd

Extension of the proposed methods for the new géner
type model of 2D continuous-discrete linear systems
has been given in Bustowicz and Ruszewski (2011b).
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Summary: The paper presents the stabilization method ofipalypendulum in various inclinations. The theofytlee rro-
tion in a rapidly oscillating field has beapplied to explain the phenomenon of stabilizatiod to set conditions for thea-
bility of the pendulum. The paper shows resultsahputer simulations which confirm that the positamntrol of the peru-

lum in the open-loop is possible.

1. INTRODUCTION

The invertedpendulum, which is physical pendulu
whose center of mass lies above the point of sisépe
is very popular pendulum tested in automatics. Itnsex-
ample of a nonlinear system characterized by highabl-
ity. Due to its properties it is a good objdat testing dif-
ferent control algorithms. Beside the fact the eysis n-
teresting from a theoretical point of view, it hmany pric-
tical applications: stabilization of a walking rdb@ocket
flight control (Astrom and Murray, 2008), or reclgrpofu-
lar two-wheeled vehicle - "Segway".

Most of studies on inverted pendulum conc
a closedoop control. There is also a way to stabilize
pendulum in the opelvop control, where the pendulL
suspension point performs fast oscillations in veetical
direction (Kapica, 1951; Siemieniako and e£&owski,
2011). Oscillations of the suspension point inhibeizontal
direction gives an interesting result, namely tlosgibility
of stabilizing the pendulum between a horizontal harg-
ing position (Landau andifshitz, 2007; Siemieniako ar
Ciezkowski, 2011). It turns out that it is possiblegeneri-
ize the problem and demonstrate the possibilitgtabiliza-
tion of the pendulum in various positions with dsting
point of suspension at the appropriatglanwhich will be
the subject of this paper.

2. MODEL OF PENDULUM

The perfectly rigid rod has been taken as the m
of the pendulum, with mass m and length |. One erith@
pendulum is the point of suspension. The systeplaised
in a gravitationafield with a value of acceleration g. I. 1
shows the physical model of the pendulum. The sysias
been described by the Lagrange formalism.

The position of the suspension point of the penait
describes vector:

r, = (Acos(@t)sinf3 ) A cos@t )cof )) 1)

where: A — amplitude vibrations of the suspension pi

22

N —the frequency of the vibrationp — angle, the direction
of vibration of the suspension po

ry

Ty

Fig. 1. Physical model of pendult

The position of the mass center of the pendulutiel
to the suspension is:

M =%I(sin6?, cod ) (2)

where:6 —the pendulum angle with respect to tl-axis.
Position of the mass center relative to the orifithe
coordinate system is:

rsm:rb

1, . 1 (3)
(EIS|nH+Acos@t)sm)6 )EI co8+A cosit )cg8( ))

+r0:

The kinetic energy is the sum of thanslational kinetic
energy of the mass center and the rotational kirextergy
of the pendulum relative to the mass ce

T=tm 241 1o0p02
2 sm 212 4
%m(SAZQZ sin? (2t )+ 61 @1 - 3AQ sinB -8 )sint )))

The potential energy of system

V = gm(Acos(B ) cos( )m%l cod )) (5)



The Lagrangian has the form:
L=T-V (6)

Substituting (4) and (5) into equation (6) thenvsaj
the Euler-Lagrange equation we get:

dt 98 06 2l

d oL _a_L:>6;:3(A{.72 sin(B-8)cos(@ }g sirg )1(7)

The obtained equation is an equation of motionhef t
pendulum.

3. MOTION ANALY SISOF PENDULUM
ASTHE MOTION IN A RAPIDLY OSCILLATING
FIELD

Oscillating change of the suspension point's pmsite-
alizes the pendulum’s control. It is assumed that fre-
guency of these oscillations is large compared wiith
oscillation frequency of the system if the movemeaies
place only under the influence of the gravity.dtalso as-
sumed that the changes of the pendulum’s positiaused
by these vibrations, are small. Such an objectbearegard-
ed as an object moving in a rapidly oscillatinddie

0.3F T
D.E;l;,l----:---g
a0 O U R

alrad]

b f |
[|_|:|;._'.|I...L.Ii...!..l....'_f .....  EERETE, U
] || ] 1
0T | R L A 1 O S S AL \

B T Sl M SERER SR Rafinng "I SR 4
RS e IR}

t[=]
Fig. 2. Numerical simulation result

Fig. 2 (Siemieniako and &ikowski, 2011) shows the
simulation results of the pendulum angle’s timeiatéon.
This is a solution of the equation (7) for values:

|=1m,g=9.81" A= 0.m 2= 56% p= ead
S S
6(0) = 0.3rad 8 (0)= 029
S

It can be noted that the swing of the pendulumoisi€
posed of vibrations of high amplitude and low frenoy
(hereinafter referred to a#(t)) and small oscillations
of high frequency{(t)). The presence of small oscillations
appears to be consistent with the assumptionkeifove-
ment takes place in a constant gravity field anplidig
oscillating field which enforces the oscillationkthe sus-
pension point. If the motion is a combination obtascilla-
tions, the position of the pendulum can be writien

o(t) = d(t) +£(t) (8)

acta mechanica et automatica, vol.5 no.4 (2011)

where @ (t) describes the "smooth" movement of the pen-
dulum, averaged due to the rapid oscillations.

Substituting (8) to (7) and expanding the resultha
first-order Taylor series because of thésmall oscillations)
the following is obtained:

_3A{Q* cosB-@ )cot(2 ),

2
3AQ? sin(B- @) cos(2 ), 8¢ coze ) § sidf
2 2 2

Acceleration of the suspension point is proportiona
to 2% and changes quickly. It can be concluded thatéthe
will meet the same relationship. Only the secomohtef the
equation (9) satisfies these conditions (first tésnpropor-
tional toé, so it is small). So you can write:

d+&=

9)

_3AQ%sin(B-®)cos(2 )
2

¢ (10)

The value ofd is equal to the other terms of the equa-
tion (9):

di:_SAf!f cos(,62’|—<D)cost(Q)+ 8¢ co®t )

3gsin@) (1)

2

Double-integrating expression (10) under the assump
tion that® changes so slowly that we can consider them as
constants, we get:
_3Acos{ )sinB-@ )

<= 2

(12)

Substituting equation (12) to (11) and averagire rids
sult due to the rapid oscillationsog(t2) = 0, cos (t2)? =
1/2) we obtain the equation:

9A2!225in(2(ﬂ—<737))+ 3 sin@ )

@ = .
16l 2

(13)

To show why the pendulum is stable it has to berdet
mined what the effective potential energy of thetem is:

AUy = Ue,=——1mlzfd5d¢ =
do 3

iz =-
3
(14)
U, =lglmcos(¢> )—i A’mQ? cos(26-@ )
2 32
Fig. 3 illustrates the graph of function (14) fofferent
values of anglep, for fixed g,m,[,A,Q equal to:

g=981m/s?, m=08kg, l=1m, A=01m,
N =70rad/s.

The meaning of the line is as follows:

solid line: g = 0;

dotted line;g = m/4;
— "dot-dash” line;g = /2;
— dashed lineg = 3/4m.

As shown in the Fig. 3 each plot has a minimumhef t
potential (and thus satisfies the condition of sitbility),
which for fixed parameterg, m, [, A, 2 is dependent on the
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angleg. This relationship has been found, what will be th
subject of the next chapter.

Ugt(®)

Fig. 3. Effective potential of the pendulum for variousued off
4. STABILITY CONDITIONS

Conditions for a minimum potential at a given pang:
the first derivativeU,; is zero and the second derivative of

the effective potential energy is positive at {hisnt.
The first derivative of equation (14) is:

U, 3 . 1 .
= - A’mQ? 26-®))—-—=dl 15
30 - 1o Sin(2(6-@))-— gmsin@) (15)
Denoting:
3A%?
A=
4ql (16)
the extreme condition can be written as:
oU _ 1, .
=0 = sin@)+=Asin(2B-® )= C 17
30 sin@)+2 Asin(2(3-2)) (17)

and can be solved for varialfe Solution of equation (17)
gives the result;

B=P.. %(m - arcsin(z—Si/’;("7 )Y)

The second derivative of the potential b= £, is:

v 1 4sirt @)
Tﬂj | = 8(3A2mQZ\/T —4gimcos)  (19)

Requesting it to be greater than zero, conditiamgte
existence of a minimum of effective potential are:

)

(18)

A > J4sir? @)+ co @ ) for @ D(o,izT) (20)
)

A1>2 for @ =’ET (21)
D)

12 2sin@) fo @O (izT,n) (22)
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These conditions can be compared with the refuits
vertical and horizontal oscillations containedhe publica-
tion Siemieniako and €ikowski (2011): when the
gle® = 0 (the case of vertical oscillations) then according
to (20) the stability condition igt > 1.

When® = arccos (—1/1) (the case of horizontal oscil-
lations) then according to (22) the stability cdiwi is:
A>1.

In both cases, the stability conditions are the esa®m
in the publication of the above mentioned authors.

4.1. Effective potential for afixed parameter 4

The parametek, which determines the stability of the
system is a function of variables describing thatiailed
object (this variable is the length of the penduylum
and variables controlling the pendulum, @ ). Equations
(20), (21), (22) show that for any angkewithin the range
< 0, ) the stability condition can be writteh:> 2.

This condition is satisfied for the example values:
l=1m, g¢g=981m/s?, A=01m, 2=70rad/s,
for which the parameterd =3,74618. The above-
mentioned values and the pendulum mass 0,1 kg will
be used in further analysis of the system.

Fig. 4 shows a graph of the pendulum effectivepot
tial energy as a function of the angle of oscilat
the suspension poilt and the angl@ with the rest system
parameters set above.

e %

00
Fig. 4. Effective potential of the pendulum in functiSnrand®

00 05 1.0 15 2.0 25 3.0

&
Fig. 5. The relationship betweghand®,
at which the pendulum is at a minimuinpatential

The plot's colors reflect the absolute value of finst
derivative ofU,; — the darker the color, the lower the value
of the derivative. With these colors function exrtes are



more visible. The longest dark bar at the graphesgnts
the area where the potential has a minimum valuawibg
a relationship (18) one can show this curve asgn%:

The dashed line in Fig. 5 describes the relatignshi
B = ®. The function (18) shows that with increasinghe
function more and more ,closes" to the relationghip .
This behavior becomes evident after analysis ofdh@ula
(14) describing th&l¢. The first term of this formula comes
from the gravitational potential and the other from
the oscillations. With increasirfigthe second term begins to
dominate over the gravity and takes the highesblates
value (for fixed)), whenf = @.

5. NUMERICAL SIMULATION RESULTS

If the parameteir does not change in the experiment
(and of course satisfies the stability conditiorthg only
problem to solve is to determine the angle at whiehwvant
to set the pendulum and then, according to (18grdene
the angles,,; which will determine the direction of vibra-
tion of the pendulum suspension point. This chapitirbe
presenting numerical results for the specific valoé the
angled. The parameters of the systeng, [, 4,102)
are the same as those listed in Section 4.1, thenpmer
A =3,74618. The simulation is the numerical solution
of equation (7).

5.1. Examplel: & = /4

The direction of oscillations according to (18):

B = 0,5918.
Initial  conditions: 0(0) = /4 + 0,1 rad, 6(0) =
0rad/s.
0.85
-l
; ::; - | i ™% - = - B - -Ar - =M i -7
0.75
0.F 0 1 2 3 4 5 6

t [s]
Fig. 6. Numerical simulation result of equation (7)

0.85

0.75 0.80
8 [rad]

Fig. 7. Phase portrait of the simulation
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Figs. 6 and 7 show the simulation results of thedpe
lum motion. As you can see the pendulum inclined
to a certain angle starts to oscillate around tbe p®int,
in this case equal to/4. Effective potential for this case has
the form as shown:

1.0

Ueﬂ‘bl

24 -2 0
P
Fig. 8. Effective potential of the pendulum

4

As shown in Fig.8, the potential has a minimum tfor
desired angle.

5.2. Example2: & = /2

The direction of oscillations according to (18):
B =1,289.
Initial
Orad/s.

conditions: 6(0) = /24 0,1rad, 6(0) =

1.65

1.6

o [rad]
(S5

1.55

1.5

t[s]
Fig. 9. Numerical simulation result of equation (7)

4 [rad/s)

1.60
@ [rad]

Fig. 10. Phase portrait of the simulation

1.65

1.50

1.55
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1.0

Ug(®)

13
Fig. 11. Effective potential of the pendulum

These figures illustrate the results of the nunadric
simulation of the pendulum fob = /2. As you can see
the system behaves as planned. In Fig. 9, andletter on
the phase portrait can be seen increase of thel syfdast
oscillations relative to the first example. Theqgiuency of
fast oscillations seems to be the same in both pkeam

5.3. Example3: @ =3/4n

B =2,162,0(0) = 3/4m + 0,1 rad, (0) = 0 rad/s.
The following figures show the simulation results.

245

2.4
T

©
[P 4 I | N L Y| O | N | AT A N | O
< 4 ,

2.3

0 1 2 3 4 5 6
t[s]

Fig. 12. Numerical simulation result of equation (7)

2.30 2.35 2.40 2.45
0 [rad]

Fig. 13. Phase portrait of the simulation
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Fig. 14. Effective potential of the pendulum

The figures above illustrate the results of nunaric
simulation of the pendulum far = 3 /4.

6. NUMERICAL SIMULATION
IN THE PRESENCE OF FRICTION FORCE
AND RANDOM DISTURBANCES

The results presented in chapter five, illustrabdy-

ior of the perfect system, that is, without enedigsipation
and noise. In the real world, forces of frictiondamndom
disorders cannot be eliminated. To make the systeme
realistic, numerical simulation in presence of non-
conservative forces was performed.

The Euler-Lagrange equation then takes the form:
doL dL :
———-—z=-kO+ke(t
wo6 og orkE)
where:k; — viscous damping coefficient, — noise coeffi-
cient.

e(t) is a random disturbance and is assumed to obey

_E(t)z

normal distribution with density functiogi:ﬂe 2

The average value of(t) is zero. The perturbation
changes randomly at each simulation time step. Ffy.
illustrates an example of the functie¢t).

(23)

0 1 2 3 4 5 6
t

Fig. 15. Random perturbations of the system

Solution of the equation (23) gives the result:

é_S(AQZ sin(3-8)co(2 ) g si §)) _;ig+é£g(t) (24)
2 I‘m  I"m




The obtained equation is an equation of the pemdsiu
motion in the presence of friction force and randdistur-
bances.

While the viscous friction should help to maintdhe
pendulum in the desired position, a random distucbacan
cause loss of the system’s stability. This will pap when
the pendulum “jumps out” from an effective potehtizell
on the result of existing disturbances. So thdcatitvalue
of the parametek, depends on the depth of potential well.
The parametek, = 0,03Nm will be used in further analy-
sis of the system. For such value of the coeffickgnsome
distortions have been noticed, but the system tiabesen

stable. The adopted value of the damping factor is:

k, = 0,02Nm. The initial conditions and the angteval-
ues are the same as in the examples in chapter 5.

6.1. Examplel: & = /4

0.85

@ [rad]

+ I

0.75

0 5 10 15 20
t(s]

Fig. 16. Numerical simulation result of equation (24)

As shown in Fig. 16, high-amplitude oscillations ar
damped. Small amplitude and high frequency vibratio
still occur. The presence of small oscillationghie result
of the suspension point’s vibrations. Force causgedhese
vibrations is so large that the friction is noteald dampen
the pendulum. You can verify if the random distumt=
force cause these small oscillations. Fig. 17 shibersesult
of the simulation, for the paramekgr= ONm.

0.85

@ [rad]

& 1=

0.75]

0 5 10 15 20
t[s]

Fig. 17. Numerical simulation result of equation (24) fgr= 0

As shown in Fig. 17 the system still performs small
brations. The simulations show that the randomefantro-
duces only a small disturbance to vibration.

acta mechanica et automatica, vol.5 no.4 (2011)

To demonstrate the resistance of the system tardist
bances, additional simulations were performed ffer pa-
rameterk, = 0,3Nm andk, = 1,7Nm. The results of these
simulations are illustrated in Figs. 19 and 20.

0.80 0.85
A [rad]

Fig. 18. Phase portrait of the simulation with random noise

0.75

09
0.85
=)
@
> 'i 4 | . l i |
0.75 L
0.7 ;
0 5 10 15 20
t [s]
Fig. 19. Numerical simulation result of equation (24)
fork, = 0,3Nm

0 5 10 15 20
t[s]
Fig. 20. Numerical simulation result of equation (24)
fork, = 1,7Nm

Fig.19 shows that 10-times greater disturbance doés
cause loss of stability. Fdr, = 1,7Nm (Fig. 20) system

isno longer stable and the pendulum "jumps" to the

neighboring potential well (see Fig. 8).
6.2. Example2: & = /2

As in the first example, the system performs snmafid
oscillations around the set point. Just as in tee avithout
friction and disturbances, the speed of penduluxillas
tions is greater than in exampbe= /4 .
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1.65

1.6

0 [rad]

(S35

1.55]

1.5

10 15 20
t[s]
Fig. 21. Numerical simulation result of equation (24)

0 5

1.50 155 160 165
8 [rad]
Fig. 22. Phase portrait of the simulation

6.3. Example3: & = 3/4m

2.45

@ [rad]

0 5 10 15 20
t[s]
Fig. 23. Numerical simulation result of equation (24)

@ [rad/s]

2.30 235 2.40 2.45
0 [rad]
Fig. 24. Phase portrait of the simulation
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The figures above illustrate the results of nunaric
simulation of the pendulum far = 3 /4.

7. SUMMARY

The results presented in this paper demonstratpdbe
sibility of stabilizing the pendulum in various limations.
The system is stable if its parameters satisfycthraditions
that have been set in chapter four. In additiosdlutions
for the "ideal" system, the possibility of stahitig the pen-
dulum in the presence of friction force and randdistur-
bances has been demonstrated. It is shown thatytem
is highly resistant to disturbances, which increasbe
chances of an experimental realization of the syste
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Abstract: Recent advances in the research of magnetorhedl@igctrorheologic: (MR/ER) fluid based devices have i-
cated the opportunities for smart fluid based deviatilizing more than one operation mode. As subk, purpost
of thepresent research is to draw attention to the egjstiodels of magnetorheological (MR) mourperating in two of the
three fundamental operating modes, namely, the ftmsdle and the squeeze mode, and to highlight ttenpal application:
of these modes in hydraulic mount applications.réfoge, in the paper the authors focus on receplicgicns of MR/ER
fluids in that domain, and then proceed to sumriragizhe modeling principles for the two operatiomdas followec
by a finiteelement magnetostatic analysis of the mount’s ntagnicuit, parameter sensitivity study and exeanplhumi-
ical simulations of each mode. The simulation resules@mverted into the frequency domain and preseintede form
of dynamic stiffness and damping vs. frequency platspectively

1. INTRODUCTION

Nearly all magnetorheological/electrorheologicalRl
ER) devices can belassified as operating in at least «
of the following three operation modes: flow mode, sl
mode, and squeeze mode as showin Fig. 1. The device
operating in either flow mode or shear mode (lifregary
shock absorbers, clutches, engine mourave been com-
mercialized, and the theory well developed (Philip369;
Gavin et al., 1996a; Gavin et al., 1996b; Wiliantsak,
1993, Sproston et al., 1994).

a) stationary
< poles

) MR fluid )

v

b)
,_,.Mot'ion
—

) MR fluid ) Force

o T
¢ Force
4 MR fluid >
5

Fig. 1. Configurations of MR hardware: a) flamode,
b) shear mode, c) squeeze m@dtly et al., 199¢

For example, BWI Group (formerly the Chassis i-
sion of Delphi Corp.) has developed and impleme
an MR flow-mode based shoabsorber (Hopkins et a
2001; Kruckemeyer et al., 2001) (known under thm-
mercial name of MagneRide) and an MR f-mode based
powertrain mount for the automotive industry (Bauis-
tel et al., 2002, Baudedistel et al., 2003). Alsord Corp.

has bee rather active in developing commercial afa-
tions of flowmode MR dampers as well as si-mode
rotary MR dampers (brakes) (Carlson et al., 19%ly,J
1998). To the authors’ best knowledge, no commk
applications of the squee-mode based hardware have
been reported. There is, however, an ongoing eagimg
and research interest in the development of MR/ERI
based hardware operating in the squ-mode (Wiliams et
al., 1993; Sproston et al., 1994; Jolly and Carlsk#96,
Bolter and Janochd998; Tang et al., 1998, Stanway et
2000, Farjoud et al., 2009). In the case of MRdfluhe
devices employ a layer of MR fluid sandwiched betm
two magnetic poles of which at least one is subpkdb
vertical motion. As a result, the distanceween the poles
varies according to the displacement or force [@pfind
the fluid is forced out of the between them. Thaesg«-
mode seems very suitable for |-stroke (few millimeters
or less) and high damping force MR/ER applicatic
namely powertra mounts or gener-purpose vibration
isolaors. As such, controllable sque-mode devices can
be more compact when sized for same damping fce-
quirements. Research challenges are due to the sc-
mode model capable of predicting flow field, pres dis-
tribution across squeezing plates and shear ssréSagouc
et al., 2011), control schemes (Zhang et al., 20MByu-
facturing challenges may arise, though, due tortrge
of displacenents required for effective operati

However, ER fluids may 1t be suitable for implement-
ing a real-world squeezmode device as one of the failt
modes of such hardware is due to the contact afextijng
plates (and electrical short circuit). MR fluid sgze-mode
applications may be less problematic in that re.

At the present moment, the most novel and promi
squeezenode application seems a mi-mode MR fluid-
based damper or an MR mount (Brigley et al., 208inh,
2009). Such a device might utilize the flow mode lfrge
stroke motion damping, and makse of the squeeze flow
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mode in order to enhance the primary flow modeointiol-
ling small amplitude displacements. So far, seversgarch
studies have been conducted in that regard andharra
thorough summary of the recent research efforts deas
scribed by Minh (2009).

Therefore, the purpose of the research is to dittam-a
tion to the existing models of MR mounts operatimgwo
of the above mentioned modes (flow, squeeze), amigh-
light the potential applications of these modesydraulic
mount applications (e.g. automotive powertrain nisun

As such, the authors highlight some applications
of MR/ER fluids in that domain, and then proceedstmn-
marizing the modeling principles for the two opé&rat
modes followed by a finite-element magneto-statialygsis
of the mount’s magnetic circuit, a parametric study
and exemplary simulations of each mode.

2. MR HYDRAULIC MOUNT

The flow-mode MR damper is the smart-fluid based de
vice that has been most commercialized over thesyeaa
number of automotive vehicle platforms in particulAl-
exandridis, 2007). The number of reported autoreokiR
damper applications well exceeds twenty in Eurgisa,
and US. Recent application areas also include anjlive-
hicle suspension applications (Lord Corp.). By devnar-
gin, it is the MR damper of the conventional de@arb
monotube design that is the most often impleme&d
fluid based device. Apparently, another MR devicelar
development is the MR hydraulic mount for powertrai
applications (Baudendistel et al., 2002). The MRunio
is claimed to operate in flow mode. Most ER fluidsbd
mounts or MR fluid based ones follow the same desig
principle that conventional passive mounts are dhagen,
and with smart fluids the mount stiffness and damgpi
characteristics can be controlled in real-time.

Bracket

Diaphragm

orifice
plate

Coils assemy

Rubber
mauTded
assembly

KMaunt
inner insert

Attachment
stud

Fig. 2. MR hydraulic mount (courtesy of BWI Group)

The upper volume is the pumping chamber, and thero
one is the so-called reservoir. In the case of Méumts,
the flow path is designed in such a way to be eped by
the magnetic field generated in the circuit. WithRM
mounts, the presence of the magnetic field causesrmart
fluid’s yield stress to be altered according to léneel of the
magnetic field strength across the flow path height
As described by Baudendistel et al. (2002, 2003) op-
tional components of the MR mount are the so-caled
tia track, and the decoupler. The decoupler is liysua
a partitioning plate located in a bypass flow pattiith
passive mounts it is a feature for providing mefomsen-
hancing the mount in isolating the low-displaceméigh-
frequen-cy inputs, whereas the inertia track (ia fbrm
of a long de-energized fluid channel) is used asaddi-
tional feature for controlling the fluid flow atwofrequen-
cies (Singh et al., 1992). These features have hedealy
used in passive conventional hydraulic mounts; heawe
their applications in MR mounts are none.

Active or semi-active mounts for have been of gieat
terest for the automotive industry OEMs (Origina]ulip-
ment Manufacturers) (Kowalczyk et al., 2004). Those
mounts are capable of overcoming the conflictingigle
requirements of standard passive hydraulic moumtdet
liver a device that is capable of providing a sstfpport
for the engine and good isolation at the same time.

3. MODELING OF MR MOUNTS

The following sections contain a brief summary oRM
mount displacement-driven models operating in froade,
squeeze mode, and the mixed mode (combined flonemod
and squeeze mode), respectively.

3.1. Flow mode

The flow mode MR hydraulic mount exemplary con-
figuration is shown in Fig. 3. The annular gap éstained
Inthe stationary core. The magnetic field strength
is perpendicular to the surfaces of the annulusiénpiston
in order to restrict the fluid motion in the dirxt perpen-
dicular to the surfaces of the annulus. A majodfythe
magnetic field strengthl is generated in the circuit incor-
porating the core, the fluid volume contained ie #nnu-
lus, and the outer ring of the core. The heightefannular
gap ish, b is the mean radius of the annulus, and the cross-
sectional area of the annular gapAisbh. Also, the upper
chamber cross-sectional areaMs The combined length
of the active pole sections Iig (the total length of the an-
nular gap idg). The MR fluid is characterized by the bulk
modulusg, the density, the field-induced yield stress,
and the field-invariant base viscosity The top of the
mount is driven by the known external displacenpofile
X(t) (or the velocityv(t)), and the motion of the upper mem-
ber forces the fluid to flow from one chamber te tther.
The pressure drop across the stationary cor®#P,—P,,

As shown in Fig. 2, the components of each mount whereP; andP, are pressures in the fluid chambers above

are rubber shells each constituting a fluid chanfilkd
with smart fluid and incorporating flow paths fdwet fluid.
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and below the core assembly, respectively. The dange
of the upper chamber ;, and that of the lower one &.



The volume flow rate through the annuluQ. The geome-

try of the mount may contain a bypepath characterized

by the hydraulic diametet, (the discharge coefficierC,
and the aredy,). The volume flow rate through the bypi

is Qb-

I
Cr k G
Purrping y A ' Rubber
chamber L shells
P \\//
0; R.-‘} {
IR core W[
¢ -44-- | Base

PE!I/E

Reservair ES %Cz

Fig. 3. Flow mode MR mountRaudendistel et al., 200
dashed lines show the magnetic field strength IH

To arrive at the equations governing the behavidhe
mount, the volumetric approach is used to desquikssure
variations in each chamber. The method has beed
In analyzing passive shock abisers (Lee, 1997) and
common in engine mount analyses (Adiguna et aD3}(
Also, an inertia track model is implemented intce
mount’s model to account for the lumped mass of flui
the annulus inertigSingh et al., 1992, Kim and Sin¢
1993, He ad Singh, 2007). The hydraulic losses at
entry tothe annulus (and the exit of the annular gap)
the effects of fluid flow development in the anrailare
omitted, too. Then, the following set of equations te
drawn:

dap _ APV_(Q+Qb)
dt C

dp; _Q*Q, W
dt C:
dQ_ A

dt pL, (Pl_ PZ_APMR)

Briefly, Eq. 1 accounts for the pressure variati
in each fluid chambeand the fluid mass inertia whi
bouncing on compliant fluid volumes. The pressurep:
APyr across the annulus can be expressed as give
Gavinet al. (1996a, 1996b):

APMR=S“QL3@+3T{co{laco{1—54( T )j]+1] (2)
b’ 3 1+3T 2

whereT is the nondimensional yield stres

T =bh'ro (3)
12/Q

Eq. 2 utilizesthe solution of the Bingham model v-
erning the quasi-steadfate relationship between the fli
rate through the energized gap and the -induced pres-
sure drop in flow mode (Philips, 1969). - bypass flow
rateQ, is as follows:

acta mechanica et automatica, vol.5 no.4 (2

Q,=Cb Ao ZH;P%QWH—PJ )

In the absencef magnetic field the laminar flow in tt
flow path is assumed. Therefore, the pressure dtojne
de-energized (OFF) condition

HLg (5)
bﬁQ

APyr =12

Moreover, assuminthe masM is attached to the upper
base the equation governing the mass inertia ¢ derived
as follows:

M%"'Crv-'-er:ApPl (6)

wherec, andk; are the rubber damping coefficient and
stiffness ratio, respectively. The equations regmesa se
of expressions governing the force of flow mode
mounts.

3.2. Squeeze mode

The squeeze mode MR mount is shown in Fig. 4.k
configuration the lower pole is stationary, wherdhs
upper pole is driven by the displacemx(t). Also, a planar
plate is attached to the upper fixture. The inijap acros
the upper plate and the upper surface of the shy.

44JTx(ﬂ
C{"J k." Ap / Cl
P,V
1 V1 R
=y .
‘g : ho‘ " H Squeezing
Base | __ Core | plate

SRy

Fig. 4. Squeeze mode MR mount (Gotdasz and i&pi 2011);
the magnetic field strengH shown with dashed lines

Then, the continuity equations and the MR squt
mode expressions can be derived in the followingimes
(Kim et al., 1998, Stanway et al., 2000, Hong et 2002;
Farjoud et al., 2009):

dap, _ AV
dt

éi;TFf %
T 2(h+ )’

3

Csq

FSq gn&)

=ro———S
" 4(h,+ %)
Finally, the masfnertia can be described as follo

dv
Ma+CrV+CSqV+FSq+er:ApPl (8)

wherecsggis the viscous damping coefficient in the abse
of magnetic field,Fs, is the field induced force, andR
is theouter radius of the upper plate. The first of equa-
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tions in the above set accounts for the compliaaféects
of the MR squeeze mode mouthamber complianc.
Theabove equations represent a set of expressionsn-
ing the output of squeeze mode MR mounts.

3.3. Mixed mode

The mixed mode mounshown in Fig. 5include
thepumping chamber, the reservoir chamber, and fa-
tionary core incl. the annular gap. The magnettdfithat
isinduced in the gap (upon the application of curierthe
primary coil) is perpendicular to the fluid flow Igfv
mode). The other coil faces the plate opposing theet
surface of the core.

Cry kr A.U
Pumping G Rubber
chamber shells
%/ P W R AN 2 Squeezing
B ! [ plate

] - Ao -
Base | j_:H ﬁ Non-magnetic

=N spacers
QR Py f ~
. C
Reservoir :

Fig. 5. Mixed-mode MR mount (Minh, 2009)

As a result of the plate displacement squeezingirsc
Both circuits can operate independentlyiroserie. In this
layout the flowmode MR mount equations can be modil
to include the squeeze mode circuit as follows (M
2009):

ap: _ APV_(Q+Qb)

dt C. (9)
dP._Q+Q,

dt Cx
dQ _ A

at oL, (Pl_ PZ_APMR)

dv
Ma+(0r+CSq)V+FSq+er: Ao P2

(10)

where 4Pyr is the field induced pressure drop defii
In Section 3.1. Again, entry/exit effect are omittedthe
analysis. Egs. 9 and 10 reveaket of expressions gan-
ing the dynamic output of mixed mode MR moul
Theequations may present a squeeze mode MR m
aflow mode mount or a mixed mode mounor instance,
freezing the flow in the annulus by setting theld/istress
In the flow path to a high level results in fiow conditions
and reduces the set of Egs. 9 and 10 to the systé&ms. 7
and 8. Also, setting the large initial gap betwethe
squeezing plate and the core remotles squeeze moc
contribution, and the flow mode can &tediec on its own.

4. NUMERICAL SIMULATIONS

The numerical simulations include the developn
of a two-dimensional axdymmetric model of the mixe
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mode MR mount of Fig5, the parameter sensitivity stu

as well as calculations of the complex transfercfiom

of the MR mount when subjected to a sw-sine constant
amplitude displacement input.

The geometry and material properties of a m-mode
mount virtual prototype arshowr in Table 1. The data
contained in the table represent the base configar
of the MR mount virtual prototyp

Tab. 1. Geometry and material properties of the Imount

Symbol Description Value
A, mnt Mount effective are 2827
Cy, N/mn? Pumping chamber compliar 3100
C,, N/mn? Resevoir chamber complian: 120000
Lg, mm Annulus lengt 31
L, mm Active length (flow mode 13
h;, mm Annulus height (gaj 1.8
Ag mn? Annulus crossection are 281.6
R, mm Plate radius (squeeze mo 21
hg, mm Initial gap (squeeze moc {1, 3}

H,, mm Bypass siz 0

p, glen? MR fluid density 3.1
u, Ns/mnf MR fluid viscosity 0.00000003
k;, N/mm Rubber stiffnes 200
¢, Ns/mm Rubber dampin 0.1

4.1. Magnetostatic model

Two-dimensional axsymmetric simulations (using ti
finite-element platform FEMM) were needed to optin
the geometry of the mourindto extract the flux density
data for each gap that are necessary calculatiegyigid
stress levels. Both coils were assumed to takeurrents
up to 500 ampere turns (AT). TIB—H curve for the MR
fluid is shown in Fig. 6 and SAE 1010 material pdjes
were assumed for components in the magnetic cir€ai
exemplary distributions of the magnetic field ir ttircuits
at 500 ampere tas each are shown in Figs. 7 throug

1.6

% ) g 6 8 10 12
H, A/m x 10°
Fig. 6. MR fluid B-H curve (courtesy of BWI Grou
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Fig. 9. Primary coil and secondary coil at ON condition

It is apparent from the illustrations both circuitsn be
operated independently with little influence of ommde
on the other. For example, raising the coil currenthe
squeeze mode circuit even up to 500 ampere tumithia
effect on the magnetic field strength in the swéithoff
flow-mode annulus, and the calculated flux densiyel

is less than 0.04 T.

The averaged flux density distribution (normal camp
nent) in the radial direction for the squeeze mouleuit
AT the initial distance of 1.0 mm is revealed irgFL0,
and the flux density vs. ampere turns vs. plateete dis-
tance mapping is illustrated in Fig. 11. As shownthe

acta mechanica et automatica, vol.5 no.4 (2011)

images, the flux density in the squeeze mode gaptleer
uniform; however, there is a significant differenicethe

flux density level across the inner and outer olea, re-
spectively. The results indicate there is some rfeedm-

provement and further optimization required in sogieeze
mode circuit geometry.

Radial length, mm

Fig. 10.Flux density distribution, squeeze motigz1.0 mm

0.8 T
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Fig. 11. Averaged flux density in the annulus, squeeze mode
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Fig. 12.Flux density distribution, flow mode
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Similarly, the distribution of the averaged fluxndgy
normal component along the annulus (in the axi&ation)
and the flux density vs. ampere turns mapping Herftow
mode circuit are shown in Figs. 12 and 13, respelsti
The flux density distribution in the annulus is abh
symmetrical across the two poles with little flusakage
to the other circuit.

0.7

0.61 4

0.21 4

L L L
GU 200 300 400
Ampere-turns, AT

Fig. 13. Averaged flux density in the annulus, flow mode

Il
100 500

4.2. Parameter sensitivity study

The parameter sensitivity study was required toeand
stand the effect of material properties and geametri-
ables on the performance of the MR mount. To acdisimp
this, the mount model (at OFF condition) in Simklin
was subjected to a sweep-sine constant amplitude di
placement input. The results in time domain were th
transmitted force and the input displacement. litests the
input displacement amplitude was 2 mm, and theutaqy
varied from 0 to 300 Hz. The data were then comeeito
the frequency domain using FFT with Matlab — segsFi
14-25. The MR mount performance metric of interest
In the frequency domain is the so-called dynaniffnsiss
Kayn By definition, the dynamic stiffness is the ratibthe
force to the displacement in frequency domain ef fibl-
lowing form (Kim et al., 1993):

Kdyn(w) =37 (11)

whereF(w) and X(w) are the frequency domain force and
stroke, respectively. It is a complex variable framich the
amplitude Kq,q and phas@ can be calculated. Calculating
the damping effects requires the calculation ofstiealled
dynamic dampin@gampin the following form:

Coun ()= K ayn(c) [sin(c)

12)
Both metrics are common when analyzing dynamic sys-
tem data and have been used in the present studfheA
OFF condition the contribution of squeeze modenisilk
therefore, the study focused on the flow mode gegme
and the material properties at this point. The patac
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study involved the following flow mode parametessnu-
lus lengthLg, gap sizeh, bypass sizél,, pumping chamber
complianceC,, base viscosity, and density.

The influence of the annulus lendthis shown in Figs.
14 and 15. Here, increasing the annulus lengthedses
the fluid resonant frequency. This effect is dudhio larger
mass of the fluid contained in the annulus.

2500 T

T
24.8 mm

31.0 mm
37.2 mm

-
wonon

2000

500+

L L L L Il Il L L
%0 20 30 40 50 60 70 80 90
Frequency, Hz

Fig. 14. Dynamic stiffness: influence of gap length,

100

40

..... Ly = 24.8 mm

35 H —L, = 31.0 mm
L A i
Voo e L, = 37.2 mm

30-

Ns/mm

damp ’

60
Freauency, Hz
Fig. 15.Damping: influence of annular gap lengtl,

100

For comparison, increasing the gap size resulisgher
resonance frequencies of the fluid — see Figs. rib14.
Also, increasing the stiffness of the upper chamaed
decreasing the complian€y) shifts the resonant frequency
towards higher frequencies as seen in Figs. 18 Xhd
In addition to that, the respective effects of biypass size
and the viscosity lower the amplitude of the resbriee-
guency peaks as seen in Figs. 20 through 23. Alstgas-
ing the density of the fluid results in an effduatis similar
to the influence of the annulus length — see Rigsand 25.
It is due to the increased mass of the fluid inaheulus.

Also, it is interesting to note the reduction i thmpli-
tude of the notch frequency (located below thedflteéso-
nance) was achieved through varying the bypass fiath
geometry, and changing the viscosity of the MR dflui
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Other parameters resulted in varying the locatiérthe 60 — —
notch frequency (along with the resonance frequebey || 21 _ 3'1?11 :;ms
. _— = 5.1le- m M
not the amplitude. | ! ; i i
50 —meme C, = 4.le-11 N/m i
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Fig. 25.Damping: influence of fluid density,
4.3. Effect of magnetic field

The effect of magnetic field on the MR mount charac
teristics is illustrated in Figs. 26-33. Again, ttiata were
obtained by running sweep-sine numerical tests lon t
mount model described by Egs. 9 and 10. Each made w
first investigated on its own without the contrilout of the
other mode. For example, the flow mode tests wendig-
ured to minimize the contribution of the squeezitage. As
such, the initial gap between the core surface ted
squeezing plath, was set to 3 mm, and the stroking ampli-
tude to 2 mm. Also, the squeeze mode coil was peaver
OFF. Then, the contribution from the viscous foncehe
squeeze mode gap is almost none, and squeezirgiaf f
does not interfere with flow mode. The results sinewn
In Figs. 26 and 27.

For comparison, the squeeze mode tests first iedolv
cutting off the MR fluid flow in the annulus by sieg the
coil current level to a large value (above 200 amperns),
and powering the squeeze mode coil circuit. Asaalye
mentioned, at this condition the MR mount modelucss
to the configuration described in Section 3.2. Mwe,
in order to observe the contribution of the squeesmsle
on the flow mode performance the flow mode ciraudts
set to the OFF condition, and the squeeze modegoiént
varied from 0 to 500 ampere turns. Also, the ihifiatance
between the squeezing plate and the core surfasesata
down to 1 mm, and the stroking amplitude to 0.7 mm.
The results are revealed in Figs. 28 and 29 (fr@zerulus)
as well as 30 and 31. At this condition, the presgirop
across the annulus is less than the field-indudeld gtress,
and the fluid flow is effectively eliminated so thtoere
is no contribution of the fluid in the annulus teetdamp-
ing, and the performance characteristics of the mhou
are solely controlled by the squeeze mode circuit the
mount rubber stiffness and damping, respectively.

The squeeze mode contribution modifies the stifnes
(and the damping) rather uniformly across the fesuy
range. The squeeze mode effect is additive, and doé
interact with the flow-mode directly. It is congst with
observations of other researchers (Minh, 2009). dffect



is related to the addition of a parallel springd@ndashpot)
of variable stiffness (and damping).
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Fig. 26. Dynamic stiffness: magnetic field change; flow raod
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Fig. 27.Damping: magnetic field change; flow mode
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Fig. 28.Dynamic stiffness: magnetic field; squeeze mode
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Finally, a simple control scheme was briefly anelyz
In the present study. The tests involved excitimg tmount
with the sweep-sine displacement profile, powering
the flow mode circuit, and switching the currentionthe
flow mode circuit above the resonance frequency.
The effect is shown in Figs. 32 and 33. In a simitenner
the effect can be controlled below the resonaneguincy.
The purpose of the test was to investigate thetiegi®p-
portunities for controlling the MR mount performanc
characteristics.

5. SUMMARY

The purpose of the modeling study was to present
a lumped parameter model of a mixed mode MR mosint a
well as to examine the opportunities for adapting tly-
namic characteristics of the mount operating at fomela-
mental operation mode (flow or squeeze) or a coatlmn
of two modes (flow and squeeze). In addition to e
effect that was introduced into the analysis by mseaf the
Bingham plastic model the presented models caphge
effects of rubber stiffness and damping, fluid cbham
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compliance and the fluid inertia. The effects o¥itztion
In fluid chambers were not examined in the studyheW
energized, both modes result in distinct performeacicar-
acteristics. The effect of increasing the magrfitid In the
annulus  contribute to  higher  damping/stiffness
(and amplitudes of the peak at the resonance),eslethe
squeeze mode shows as a rather uniformly distdbate
perposition on the flow mode characteristics. Witle
squeeze mode the best effect can be achieved wigii s
gaps between the core and the squeezing plate malll s
amplitude displacements. The squeeze mode effextds
tive. Briefly, the results indicate the mixed maolatential
for varying the stiffness and the damping of theurto
AT any frequency region of interest. Shortly, thpueeze
mode offers interesting engineering benefits; hawev
the device itself presents serious manufacturirglehges
due to the low displacement amplitudes needed dbiea-
ing an optimum performance of the mount. Also, eqee
mode fluid characterization study would need toubder-
taken for further understanding of the materialiealogy
when operating in that mode and a suitable costbéme
developed as well.
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Abstract: A model is suggested for the analysis of the combieffect of viscoelastic properties of bodies adlesive in-
teraction between their surfaces in sliding. Thelehds based on the solution of the contact prolflema 3D wavy surface
sliding on the boundary of a viscoelastic foundatiaking into account the molecular attractionhia gap between the bod-
ies. The influence of adhesion on the contact ségribution, real contact area and hysteretitiém force is analyzed.

1. INTRODUCTION

According to the molecular-mechanical theory o€fri
tion (Kragelski, 1949), the friction force consisi§ two
components. The deformation component arises due
to deformation of materials by surface asperifid®e adhe-
sion component is due to molecular forces betwaen s
faces.

The deformation component of the friction forcevid-
coelastic bodies can be determined by calculatieghtys-
teretic losses as a result of cyclic deformationsofface
layers by asperities of rough surfaces during thaitual
sliding (Goryacheva, 1998).

Molecular forces appear in the gap between surfaces
and act at a distance specified by the potentiah@&cular
interaction (Deryagin et al., 1985). Molecular hatetion
between the surfaces leads not only to tangenmdation
giving the adhesion component of the friction force
At micro- and nano-scale levels of the surface hoegs,
at which the value of the gap is comparable withradius
of adhesive forces action, molecular forces adtingormal
direction to contact surface can also influencedbfrma-
tion component of the friction force. The influenckthe
adhesion attraction between surfaces on the hyistdrie-
tion force was analyzed (Makhovskaya, 2005) forpas
rate asperity with a given shape of tip.

In what follows, the effect of adhesion on the tfdo
In sliding of rough viscoelastic surfaces is modeigith
taking into account the whole surface geometry th kips
of asperities and valleys between them for a 3@hosur-
face. Previously a similar approach was used fatDa
rough surface (Goryacheva and Makhovskaya, 2010).

2. DESCRIPTION OF THE MODEL

Consider a rigid wavy surface sliding with the \aitp
V along the x-axis on the viscoelastic foundatiome T
shape of the wavy surface is described by the gierfonc-
tion:
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(1)

ol 2 o

where h and ! are the height of asperities and distance
between them, respectively,« [ (Fig. 1).

Fig. 1. Scheme of contact between a rigid wavy surface
and a viscoelastic foundation

The mechanical properties of the viscoelastic fauiot
are described by the linear 1-D model:

2
w+T a_W:M( p+T@)

2
£ ot E 7 ot @

wherep andw are the pressure and displacement on the
boundary of the viscoelastic foundatiaR,is the Young
modulus, v is Poisson’s ratioH is the thickness of the
viscoelastic layerT, andT, are the retardation and relaxa-
tion times, respectively. Sinde« !, we assume that
dw,/dx « 1 and then the quantitigs andw are approxi-
mately equal to their projections on the z-axis,andw,,
respectively.

Let the system of coordinateg',(y', z') be connected
with the viscoelastic foundation, and the systencaxirdi-
nates X, y, 2) with the sliding wavy surface so that:

X'=x+Vt y=vy Z=: 3)



In the moving system of coordinatesy, z) relation (2)
has the form:

1,2
wovy Q= 2R o 2] @
0x E 0X

To take into account the adhesive (molecular) etita
between the surfaces, introduce the negative aghesies
p = —p.(8) acting on the boundary of the viscoela
foundation, where§ is the value of gap betwe
the surfaces. We use the Maufisgdale model in whic
the dependence of the adhesive stress on the ¢gapéemn
the surfaces has a form of oskep function(Maugis,
1991):

P,y 0<0<9,

5
0, 0>4, ®)

P.(0) =

where 6, is the maximum value of gap for which t
adhesive attraction acts. The surface eny is specified
by the relation:

y=["p.(0)do= pg, (6)

Since the wavy surface is periodic with the perl,
thecontact problem can be considered in a square m
x € (=1l/2;1/2);y € (—1/2;1/2). This square contair
one asperity of the periodic wavy surface. The dt@th
of periodicityp(x,y) = p(x + L,y) and w(x,y) = w(x +
l,y) must be satisfiedn the moving system of coordinat
(x, ¥, 2, the following boundary conditions for the stres
and displacements take place at the foundationase
(z=0) in the square region regiane (—1/2;1/2);y €
(=1l/2;1/2):

w(x y)= f(x Y+ D (x y0Q°;
(X Y)=-R, (x Yoo, Q)
p(x y) =0, (x YOQ OO*;

Here¢ is the contact regiom)® is the region in whicl

adhesive stressp, acts, andD is the penetration of tr

asperity into the foundation. The equilibrium cdiudi
is also satisfied:

P= [ p(xy dxdy ®)

Q°nQ?

whereP is the normal load applied to each asperity of
wavy surface.

3. METHOD OF SOLUTION

The contact problem is solved by using the striphoe
(Kalker, 1990) which is an exact method for theecat1D
foundation. The square regiorx € (—1/2;1/2); y €
(—1/2;1/2) is divided into2N strips of equal thicknesA
(Fig. 2). The normal displacement of the center of @y
is:

D, =g(cos(27l7mj -1J+D 9)
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If the maximum normal penetratioD of the wavy
surface is prescribed, then for each strip, the immam
normal penetration is given (9). The shape of rigid wavy
surface in this strip is specified:

f (x)=2(cos(zfx)-9, h, =2( coEzl—mj)+ } (10)

Fig. 2. The square € (—1/2;1/2);y € (—1/2;1/2)
and its division into strif

In each strip, the contact problem is formule
andsolved independently. For j-th strip, the conditions
for the displacement;(x) and pressurg;(x) follow from
(7) and they have the forr

w,(¥)=f(¥+D, xOQ
P(¥ =R, x0Q% (11)
p; (¥ =0, x0Q°, 0Q%;

When the contact problem is solved and the col
pressurep;(x) is calculated for each strip, the normal Ic
acting on an asperity is calculated by the summatiich
follows from (8):

N 112
P=2P, R=A[ g(Ydx (12)
=

1 -1/2

If the maximum displacemerD is unknown, while
theload P is prescribed, then some initial valueD is set
and the iteration procedure is applied to attaie fhe-
scribed value of the loa®l.

To determine the tangential stress applied to itiel
wavy surface from the viscoelastic foundation, wse
the relation:

r,(x) = pj(x)sin[arctg(fj '(x)]: P O)F (%) (13)
Then the tangential (friction) force acting on -

ity is calculated as:

N 112
T=2)"T, T =0[7(9dx (14)
i=1 172
This force is different from zero becauthe pressure
distribution is nonsymmetrical with respect to th&is

of symmetry of the asperity due to hysteretic lossethée
viscoelastic material. This force is called the thystic
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or deformation component of the friction force. Tdwre-
sponding friction coefficient is determined fromethela-
tion:

U=TIP (15)

Thus, the problem is reduced to solving a 2-D atinta
problem for each strip to determine the contactssuee
distribution p;(x) in the contact regiornx € £; and the
boundary of the region of adhesive interacti@f, after
which the friction force can be calculated in adzorce
with Egs. (12)-(15).

In order to write the boundary conditions for tlmntact
pressures and displacements in a strip, we shall into
account various regimes of the gap filling.

4. PROBLEM SOLUTION IN A STRIP FOR
DIFFERENT REGIMES OF GAP FILLING

Three possible regimes of the gap filling are coeed:
saturated contact (Fig. 3a), discrete contact witturated
adhesive interaction (Fig. 3b), discrete contadhvziones
of adhesive interaction and zones of free boundary
(Fig. 3c). In eaclj-th strip, one of these regimes is realized,
depending on the displacement of the cedeof this strip
and values of the problem parameters (mechanical
and geometric characteristics of the interactindiés load,
and sliding velocity).

SN N
. f b

contact

molecular attraction B
<\

<

Fig. 3. Regimes og gap filling between the surfaces
in the presence of adhesion

4.1. Saturated contact

In this case (Fig. 3,a), the displacement of thenbary
z = 0 of the viscoelastic foundatiom; (x) satisfies the first
condition of (11) on the entire surface, i.e. otler whole
length of the period € (—1/2;1/2). By solving the differ-
ential equation (4) with the first condition of (1dnd using
the periodicity condition for the pressumg(x —1/2) =
p;j(x +1/2), we obtain the contact pressure in the form:
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2 2 27X
IR +4nz‘l'j\/2)[h(| +477°T, T V)cos— +

pj(x) =
(16)

+271h v/ (T, —'I;)sinzl—nx+ @ TVe+ P 20 - r;)]

where D; and H; are specified by relations (9) and (10).
Normal forceP; acting on the j-th strip is determined by the
relation:

1/2
P=a[ p»x® dx—A—(2 D-h)

-1/2

17)

The saturated contact in tleh strip is realized under
the condition:

min(p; (%)= -p (18)

Note that due to adhesion, the contact pressurebean
negative but not smaller than the adhesive strggs If the
minimum contact pressure injgh strip does not satisfy
condition (18), then the saturated contact is reatlized.
In this case, the solution is sought for the digci@ntact
with saturated adhesive interaction.

4.2. Discrete contact with saturated adhesive
interaction

In this case (Fig. 3,b), the problem solution issid-
ered in the intervak € [—a;,1 — a;]. Two different bound-
ary conditions take place for two zones of intdoact
The differential equation (4) is solved in the zafi€ontact
—a; < x < b; for the contact pressung(x), the displace-
mentw;(x) being specified by the first condition of (11).
In the zone of adhesive interactioh; < x <!l — a;,
the differential equation (4) is solved far(x), the pres-
surep;(x) being prescribed by the second condition of (11).
Thus two boundary conditions are necessary forstia-
tion of these two differential equations. Also, twondi-
tions are needed for the determination of the eidtpa;
andb; of the contact region. As such conditions, thedton
tions of continuity of the functiong;(x) andw;(x) at the
points x = —a; andx = b; and the periodicity condition
are used. These conditions lead to two nonlineaatons
for the numerical determination of the quantitigsand b
in the case where the penetration of interactindiesoD;
in the j-th strip is prescribed. The pressuygx) in the
contact region—a; < x <b; is calculated in accordance
with the relation:

>(761)/&/.'_

p(¥=-pé &l {(F+4rfaﬁv2{oo2’%x—

2H(? + 47V ?)
Halﬁiaj (19)

_dea)a o IR 277&] 2V b- 'Bé SIH— G g
+2Dj|2h(1_éx—al)//f"/)i|+27H @ -h 11_ gq)/ﬂv)

A similar relation is obtained for the determinatio
of the unknown function of displacemewt(x) in the re-



gion of adhesive interactidy) < x <[ — a;.

The normal and tangential forces acting in a stripne
period of the wavy surface are calculated as:

I-a;

P=a[ pMd T=A[7(3d

I-a;

(20)

Discrete contact with saturated adhesive interactio
exists under the condition that in the solutionaiied, the
conditionb; < [ — a; is satisfied. If in the solution obtained
we haveb; =1 — aj, then the case of saturated contact
is realized. The other condition of the existendetl®
discrete contact with saturated adhesive interadtdiows
from the adopted model of adhesion (5) and (6) e th
maximum value of the gap between the surfaces
w;(X) - f,(¥— D should not exceed the prescribed value

o, , i.e., we have:

max(wj x)- f (x)- q)s 780 (21)

If the functionw;(x) in the intervalb; < x <l —a;
does not satisfy condition (21), then in thth strip the
discrete contact with saturated adhesion interaasonot
realized. In this case, we should seek the solutorthe
discrete contact with zones of adhesive interactonl
zones of free surface.

4.3. Discrete contact with zones of adhesive inter action

In this case (Fig 3,c), we have three differentristary
conditions in three zones of interaction. The défdial
equation (4) is solved in the contact zore; < x < b;
for the contact pressurg(x) and on the remaining inter-
vals for the displacememt;(x). As additional conditions,
the conditions of continuity for the pressung(x)
and displacementv;(x) at the pointsx = —aj, x = —q;
and x = b, x = by; and the conditions of periodicity are
used. Also, for the determination of the end powiftghe
zones of adhesive interactian,; andb,;, we use the condi-
tions following from (5) and (6), in accordancewthich the
value of gap between the surfaces at the points
x = —ay; andx = by; must be equal td,. These condi-
tions have the form:

w(-a)- f(-a)-D=y/ p,
w(h)- f(b)-D=y/ n

As a result, we obtain four nonlinear algebraicagipuns
for numerical determination of the quantitigsb;, a,;, and
byj, provided that the penetration of the bodies iajtth
strip D; is prescribed. The pressupg(x) in the contact
zone—a; < x < b; is specified by relation (19).

Note that the regimes of discrete contact with redital
adhesion and discrete contact with zones of adadster-
action include also the cases, where there is mdacb
between the surfaces, and only adhesive interactoars
over the entire surface or in separate zones otsadh
interaction. The solution for these cases can lsdyeab-
tained from Eq. (4) with the second condition df)im-
posed on the entire surface or in a periodicabsebnes.

(22)
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5. RESULTSOF CALCULATIONS
5.1. Solution for a 2-D wavy surface

Below the results of calculations are presentecciii
lustrate the influence of viscoelastic propertgspmetrical
and adhesive parameters on the contact charaitteréstd
sliding friction force for the case of two-dimens#& con-
tact problem. The shape of the wavy surface is riteest
by the functionf (x) = h sin?(mx/1).

In Fig. 4, the distribution of the normal strepgx)
(curves 1) and tangential stres&) (curves 2) is shown.
Fig. 4,a corresponds to no adhesion and Fig. 4bhdaase
of adhesion.

Pt [ a)

‘ 1

T
1
&

(5]
1

\ b)

e 2 i

Fig. 4. Distribution of normal and tangential stresses peeod
for the case of no adhesion (a) and adthesion (b)

In Fig. 4, the stressegs and t are measured in MPa,
thex-coordinate in meters. These results are obtained
forthe material parameters E/H = 2 x 10° Pa/m,

T, =0,003s, T.JT,=1000 load per unit length

P =154 N/m, sliding velocity V = 0,1 m/s, waviness
parametersl = 0,086 mm, h = 0,008 mm, and adhesion
parametersy = 0,05 N/m, p, = 5,5 X 10° Pa. The fric-
tion coefficient calculated for the case withouhesion (a)

is u=0,139, and for the case with adhesion (b) it is
u =0,273. The results indicate that taking into account
adhesion not only leads to increase in the frichoeffi-
cient, but it also can change the regime of cordadt lead
from discrete contact (a) to saturated contact (b).

In Fig. 5, the contact widthh +b (a) and the friction
forceT (b) versus load are presented for the cases without
adhesion (curves 1) and with adhesion (curves 12¢. don-
tact width is measured in meters, the forces pérlength
T andP in N/m. The results are obtained for the material
parametersE/H = 2 X 10° Pa/m, T, = 0,003 s, T./T, =
1000, sliding velocityV = 0,1 m/s, waviness parameters
l=0,1mm, h=001mm, and adhesion parameters
¥y = 0,01 N/m, p, = 5 X 103 Pa. As the load increases the
contact width and friction force increase until ythattain
saturation which means that transition from discrét
saturated contact occurs. The behavior of theactmhar-
acteristics (contact width, shift of the contacgiom with
respect to the symmetry axis, contact pressurehuisibn)
differ significantly in the regimes of discrete asaturated
contact.
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Fig. 5. The contact width (a) and friction force (b) vs maf load
for the case with no adhesion (curves 1) and witieaion
(curves 2)

Comparison of curves 1 and 2 shows that takingaeto
count adhesive interaction leads to a consideralolease
in the real contact area and hysteretic componérihe
friction force in the case of discrete contacths surfaces.
Also, taking into account adhesion leads to appeara
of negative pressure in the contact region. In tase
of saturated contact, adhesion does not influémeedontact
area and friction force, but it may influence thentact
pressure distribution. Results indicate also thigh vaking
into account adhesion, transition from discretesdturated
contact occurs for lower load than without adhesion

ghe==s=Ld o
0.0 02 04 06 08 10

Fig. 6. The friction coefficient vs sliding velocity
for different values of the adhesive stress

Figure 6 shows the friction coefficient vs sliding

velocity [m/s] for various values of the adhesiveess.
Dashed line corresponds to no adhesion (curveutyes 2
and 3 correspond to the cases with adhesion. Ehdtseare
calculated for the mechanical parametgyd! = 10° Pa/
m, T,=0,001s, T.JT,=10, roughness parameters

1 =0,001 mm, h =0,0001l mm and adhesion parameters

y =0,01N/m, p, =5 x 10* Pa (curve 2) andp, = 5 X
10° Pa (curve 3). In the presence of adhesion, the nicti
coefficient nonmonotonically depends on the veloahd
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tends to zero for large and small velocities, as the case
without adhesion. Taking into account adhesiondegadhe
increase in the value of the friction coefficiethis increase
is larger for higherp,, provided that the surface enengy
is constant.

5.2. Solution for a 3-D wavy surface

Below the result of calculations for a 3D wavy sigd
(Fig. 1) are presented, the shape of which is de=trby
the function (1).

In Fig. 7, the distributions of contact pressuyre,y)
in the domainx € (—1/2;1/2); y € (0; l/2) are presented
without adhesion (a) and in the presence of adhgsipfor
the same value of the load per one asperity (ferpariod)
P = 6,3561 H. The results are obtained fbe 0,005 mm,

h =0,0005mm, E/H =2x10°Pa/m, T, =0,0001s,
T./T, =10, V = 1m/s. Similarly to the 2D case, taking
into account the adhesive interaction leads torenease
in the contact areas and, in some conditions, éo therg-
ing and passing to the regime of saturated coliEgt 2b).

pxy) [PV 3 \
i Ve
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Fig. 7. Contact pressure distributions in a period of wasi
without adhesion (a) and with adhesion (b)

The plots of the friction force vs load acting amecas-
perity are presented in Fig. 8 for the case witramesion
(dashed lines) and with adhesion (solid lines). The-
chanical parameters of the material correspondkiocg
of rubber. The sliding velocity i¥ = 0,1 m/s (Fig. 8a)



and V =1m/s (Fig. 8b). The adhesion parameters are
y = 0,01 N/m and p, = 5,5 x 10°> Pa. The waviness pa-
rameters arel = 0,010753 mm and h = 0,000971 mm.
The results show that increase in the friction dodue to
adhesion is smaller for higher velocity (i.e. fomterial
with higher effective compliance). The influence aafhe-
sion on the friction force is significant for ralaly small
loads when the contact is not saturated. Due t@sdh,
the friction force T is nonzero for zero load =0
and in some range of negative loads. Because sffdlot,
the friction coefficienu = T /P becomes very high for very
small loads. This allows us to make the conclusibat
for real rough surfaces, the effect of adhesioesigecially
significant for the asperities which are under d$mal
or negative load, and these asperities can comgrigignifi-
cantly into the total friction force.
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Fig. 8. The friction force vs normal load acting on oneeaiyp
with taking into account adhesion (solid lines)
and without adhesion (dashed lines)

6. CONCLUSION

A model is suggested to study the adhesion effe¢he
hysteretic friction force in sliding of rough visglastic
bodies. The model is based on the solution of aacbn
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problem for a 3-D wavy rigid body sliding on therface

of the viscoelastic foundation taking into accotim mo-

lecular attraction in the gap between the surfaces.

The results of calutions allow us to draw the failog
conclusion:

- taking into account the adhesive interaction leads
to a significant increase in the real contact area
and hysteretic friction forc;

— the transition from discrete to saturated contacthie
presence of adhesion occurs at lower loads thamwit
adhesion;

— due to adhesion, the contact between surfacessexist
even for negative (tensile) loads;

- the effect of adhesion is especially significant
for asperities which are under small or negatiasljo

- as the adhesion stress increases, the frictioneforc
increases, provided that the contact saturatiomois
attained.

The results obtained can be used for the analysis
of the stress-strain state of surface layers armluation

of the friction force at various scale levels ougbness

in sliding of viscoelastic bodies. The mechanisrhgrior-

tion that were studied play a particular role facm- and

nano-scale levels for whith the size of the gapclsse

In order of magnitude to the radius of adhesivederac-

tion.
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Abstract: A heat generation problem due to friction in a pét/ brake system is studied. A linear problemasflonted

and compared with a non-linear in which thermoptsisproperties of materials are temperature-depend® examine
temperature of the pad and the disc during a siawgtka twofold braking process, axisymmetric FEtaonmodel was used.
The obtained results revel insignificant tempemtdifferences at specified axial and radial posgi@f the components
of the friction pair. It was remarked that the lewé discrepancies between the constant and thentheensitive materials

correspond with the coefficient of thermal effugivi

1. INTRODUCTION

Inherent heat generation during slipping of coritact
bodies leads to an increase in temperature onritt@f
surfaces. Over the decades analytical and numericdEls
have been developed to improve the accuracy anshtep
ability of the obtained by their means solutionsapplica-
tion to various types of brake systems (Scieszl®8)
Despite the fact that the analytical methods preédact
solutions on which numerical calculations are baaddan-
tage of the latter is noticeable in applicationcamplex
objects with finite dimensions and non-linear peshs$ (Yi
et al., 2002; Scieszka and Zolnierz, 2007; Adergtiadl.,
2011).

Parameters of braking operation such as a contast p
sure, a sliding velocity, a coefficient of frictipicooling
conditions are frequently brought to constant valaiening
to distinguish markedly an impact of chosen factéwda-
mowicz and Grzes (2011a) developed and compared axi
symmetric two-dimensional and fully three-dimensibon
models of a disc rotor during a single emergen@kibg
process. Braking operation with the constant ad wasl
linearly decreasing velocity of a vehicle was stadi
to evaluate its influence on the temperature distions
of a disc. On the basis of that FE modelling teghaei
the effects of cooling conditions during a periddboaking
with constantly rotating disc from adiabatic coratis
to the firmly forced convection (100 W/{K)) were stud-
ied in ref. (Adamowicz and Grzes, 2011b).

If the system operates markedly above a certairt tem
perature, the friction materials can vary theirrthephysi-
cal properties affecting the conditions of contaad in
consequence a non-linear problem is apparent. Nelesis
only few numerical calculations deal with the temgpere-
dependent thermophysical properties of materialappli-
cation to brake systems (Lee and Barber, 1994;e&son,
2004; Sergienko 2009).

This study aims to examine an effect of thermogiesi
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materials on the thermal behaviour of a pad/digootr
system. The corresponding temperatures are coeftont
with the values of the model which operate withieits
constant equivalents. FE 2D contact model was bssdd
on the author’s previous study (Grzes, 2010). Tiupgr-
ties of materials were adopted and approximatedidigg
methodology with the three constants (Chichinadzal.e
1979).

2. STATEMENT OF THE PROBLEM

The frictional heat generation in a disc brake dtual
is accompanied by its dissipation through the thaeawn
modes of heat transfer. The conduction absorbsggner
from the pad/disc interface by the neighbouringtgar
of the brake assembly and hub. The convection exgsa
heat from the exposed surfaces with the surroundimg-
ronment according to Newton’s law of cooling. Tygllg
disc brakes have vanes whose presence allows &ogenl
the area of convective heat transfer, however evide-
vantages of such type of a rotor emerges duringng-|
lasting processes after disconnection of the gjidindies
or during a multiple brake application (Adamowicada
Grzes, 2011b). The remaining phenomenon that iifiess
cooling of the brake is the thermal radiation. Huereits
share in total heat dissipation is frequently igmbdue to
attained maximal temperatures and the duratiomefna-
lyzed process. Thereby in this study solely coniducand
convection are taken into account.

The mechanisms of the pad operation through the cal
per during brake application vary. However it iatstl that
the amount of heat generated during friction fortaie
dimensions of a rubbing path and assumed constant u
form contact pressure remains equal. The convarted
chanical energy is assumed to be entirely usethfoheat,
whose magnitude expresses the capacity of frighiower
and in application to the rotating system has tiwing
form:



qa(t) = fra(t) po (1)

where: f — friction coefficient, aft) — angular velocity,
t — time,r — radial coordinatgy, — contact pressure.

The separation of heat between contacting bodigs ma
be proceeded in two ways. One of frequently used ap
proaches is a calculation of temperature fieldsnigans
of two individual bodies/models (a stator and @rpintro-
ducing a heat partition ratio (Grzes, 2009; 2011g ather
is a use of contact model which is employed in gtigly
(Bialecki and Wawrzonek, 2008). It is establishbdt tthe
separation of heat between the pad and the disesvdur-
ing the process satisfying two conditions of thefem
thermal contact on the corresponding friction stefa

T 0)=T¢ 0.t),r,sr<R,0st<t,, @)

KM =q(n = fra()p,

r,sr<R,,0sts<t,,

oT
K (T)—
«(M,

@)

z=0

where: +(-) denotes value obtained at the apprtaghrd
plane z = 0 from the +(-) side of the axis OZ,
T — temperaturei, j — the pad and the disc corresponding
radial locations on the contact surfadep — the disc and
the pad, respectively, R — internal and external radius,
respectively.

Fig. 1. Schematic diagram of half of a pad/disc brake syste

Angular velocity of the rotor decreases lineariynfrthe
initial value ayto full stop according to formula:

w(t)=a6(1—tj,0ststs,

tS

4
where:ts— braking time.
3. MATHEMATICAL FORMULATION

The governing equation for the heat conductionyaisl
was the parabolic heat conduction equation givethen
cylindrical coordinate system,(2):

Kgp(T
a[de(T)(’Tj+d'p( Jot,
o\ - or roor (5)
0 oT oT
+aZ(Kd,p(T)aZj = pd,pcd,p(T)E

where:z — axial coordinateK(T) — thermal conductivity,
p— densityc(T) — specific heat.

In order to determine the transient temperaturtiblis
tions in the brake components during frictionaldisig
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process both analytical and numerical techniquese we
employed. Lack of the circumferential componenttlie
above governing equation stems from the assumptian
neither non-axisymmetric thermal load acting asithen-
sity of heat flux directed into the disc and thel per the
resulting heat flow in the circumference, doesrfiea
significantly an average temperature generated het t
pad/disc interface above certain relative slidirgouity
(Peclet number Pe).

The boundary and initial conditions (Fig. 2) are fthl-
lowing:
— on the free surfaces of the pad:

Kp(T)%I = HT(r,zt)-T,],0sz<3,,0st st (6)

Kp(T)%I =HT,-T(R,.zt)],0s z< 4, 0st<t, (/)
=R,

il =0, r,sr<R,,0st<t,; (8)

azzzdp

where:h — heat transfer coefficient, — ambient tempera-
ture, To — initial temperatureg — thickness.
and the free surfaces of the disc:

T =TTt srsr, 0stst O
Zz:O
a =0,-9,<z<0,0<t<t, (10)
or r=ry

aT _ (11)
KeM7  =NL-T(R,zh] - <2<0,0stst,

r=R

Z—T =0,rysr<R,,0st<ty (12)
z

At the initial time moment” =0 the pad and disc
are heated to the same constant temperature:

T(r,z0)=T, r,<sr<R,0<z<4,, (13)

T(r,z0)=T,,ry,sr<R,,-9,<z<0. (14)

where: T, — initial temperature.
4. NUMERICAL FORMULATION

The object of this section is to develop approxenat
time-stepping procedures for axisymmetric transigov-
erning equations.

Using Galerkin’s method the following matrix form
of the Eq. (5) is formulated (Lewis et al., 2004)

[C(T)]{‘f;} HKOIT =R (15)

where: C(T)] is the heat capacity matrixK(T)] is the heat
conductivity matrix, and R} is the thermal force vector.
In order to solve the ordinary differential equati(i5)
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the direct integration method was used. Based enat:
sumption that temperaturel); and {T}..» at timet and
t+ At respectively, the following relation is specified

{Thew =17 +[(1—ﬂ){‘(’;}t +B{(:;}HJN (16)

Substituting Eq. (16) to Eg. (15) we obtain thddot
ing implicit algebraic equation

([C(T)]+ﬂAt[K( D) ]l Them =

(em]-@-pIkm]aty Ty, + (17)

+ (1_ﬁ)4"{ R + BAE Rbii 4t

where: S is the factor which ranges from 0,5 to 1

and is given to determine an integration accuraystable
scheme.

h=0 Pad

T.=T.,; q,+q,=¢q
Fig. 2. Finite element mesh of a disc brake

FE axisymmetric 2D model is shown in Fig. 2. Four

node quad type elements were used. Total numbeteef
ments of the brake model equals 3497, in which 1€I25
ments and 1536 nodes come to the disc, and 20%&pte
and 2175 nodes come to the pad.

The heating of the friction surfaces was accomplish
by means of the total intensity of heat flux diegtinto the
pad. Furthermore by using 75 ‘multi point consttsin
MPC at subsequent pairs of nodes of the frictiorfases
of the pad and the disc separation according tondbey
conditions Eqgns. (2,3) during simulated slippingnteat
took place (constraint of the temperatures). Othafaces
(edges in the FE model) were either cooled or atedl
satisfying Eqns. (6-14).

5. RESULTSAND DISCUSSION

In the study thermal finite element analysis ofthgen-
eration due to friction in a pad/disc brake systeas car-
ried out. The temperature evolutions at specifiedala
and radial positions obtained incorporating thegerature-
independent thermophysical properties of
are calculated and compared with the thermosensitiate-
rials.

5.1. Operation parameters and dimensions
of the pad/disc system

Operation parameters and dimensions of the brage ar

listed in Tab. 1. The single braking process prdseguring
3,96 s from the initial velocity of 100 km/k = 88,464
s1) to standstill with constant retardation (Talatdalalali-
far 2009). In order to develop twofold braking pees the
boundaries conditions after the disengagementebtak-
ing components obviously had to be diverse. Thal time
of the twofold braking process equallgd 40 s. The brak-
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ing schema was as follows, after the moment of $tdip
a vehicle increased velocity with constant accéiena
to the velocity of 100 km/h during 16.04 s. Thee ttycle
was repeated attaining 40 s of the total twofoldkbrg
operation. Despite the fact of change of the véjotie
heat transfer coefficient remained constant (Tgbwkich
was due to the fact of its insignificant impacttbe result-
ing temperature distributions.

Tab. 1. Operation parameters and dimensions
of the disc and the pad (Talati ardlifar, 2009)

materials

item disc pad
inner radiusr [m] 0,066 0,0765
outer radiusR [m] 0,1135 0,1135
thicknesso[m] 0,0055 0,01
initial angular velc_)lclty of the 88.464
rotor, ap [S7]
single/twofold braking time,
t[s] 3,96/40
heat transfer coefficient, 60
h [W/(m?K)]
contact pressur@, [Pa] 147 x10°
coefficient of friction,f 0,5
initial temperatureT, [°C] 20
ambient temperaturd, [°C] 20

5.2. Thermophysical properties of materials

Behaviour of the material properties under theuiafice
of temperature were derived from the measurememtged
out in ref. (Chichinadze et al., 1979). To obtaiathemati-
cal formulas of variations of the essential in that analy-
sis thermophysical properties of materials, thehméblogy
proposed in that paper was used as well. Two ofthhee
available crucial for the calculations propertiesr@vchosen
having in mind possibly the smoothest temperatemedd-
ence. Thus despite the fact that the employed Feda



programme required specific heaaind thermal conductiv-
ity K, only the latter satisfied the criterions. The &t
parameter was the thermal diffusivity whose value al-
lowed to calculate required specific heat.

Below approximate formulas for the thermal conducti
ity and the thermal diffusivity of four different aterials
used in numerical computations are listed:

- for the pad materials:

- FMK-845
K, (T) = 9.806{1.171+ 131572) (18)
1+ 732007 T

§ 10.778
k (T)=10"° -0.823+ (19)
(1) ( 1+1.487010° EI'Z)
- FMK-11
K,(T) = 9.806 4.017+ ~2282 7| 0
1+5.298M10° [T —900
k,(T) =10 ~1.146+ 17207 - @
1+2.122010° [T +100
— and for the disc:
- steel EI-696
K,(T)=0.014T +15.727 (22)
ke (T) = -1.44410°°T +5.502(107° (23)
- cast iron ChNMKh
K,(T)=-0.028T +52.727 (24)
ky(T)=10"°| 5.557+ 15'%62 ° 2 (25)
1+8.018(10°°(T +400

The presented formulas for the thermal conductiaitg
the thermal diffusivity have their equivalent atpagxi-
mately 20 °C which are shown in Tab. 2. As can &ens
the major differences between temperature-indepgnde
thermophysical properties of materials of the dieel El-
696, cast iron ChNMKh) is encountered for the tharm
conductivity K. Less distinct are the constant properties
of the pad FMK-845, FMK-11). However for the thermo
sensitive materials together with the temperathegr tval-
ues vary in a different way (Figs. 3, 4) giving pibdity
to examine such a behaviour on the temperaturésegbad
and the disc.

Tab. 2. Thermophysical properties of materials independent
of temperature (Chichinadze et al., 997

material K [W/(mK)] k[m%s | p[kg/md
El-696 16,3 492x10° 7850
ChNMKh 51 144x10°° 7100
FMK-845 24,5 104x107° 6000
FMK-11 34,3 146x10°7° 4700

Using formulas 18-25 particular properties werecaal
lated and set tabularly into the commercial firslement
based programme (MSC.SOFTWARE). The step of the
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temperature was equal 0.1 °C giving consequent§180
lines. Moreover it was established that the closedue
of the given property from the table was selectedingy
the calculations.

60 o
K [WI(mK)]

50 Cast iron ChNMKh

40

30 FMK-845

N\
\

20 4

\/
Steel EI-696

10 r T T T T 1
0 200 400 T [*Claoo
Fig. 3. Thermal conductivities of a disc and a pad versus
temperature obtained from the measurements (sotices)
and their approximations (dashed curves)
(Chichinadze et al., 1979)

T
600

1.8E-005
k [m?/s]

1.6E-005 —
1.4E-005 —|

1.2E-005 |

\ /’

8E-006 | FMK-845

BE-006 —|

Steel EI-696
4E-006 . T . T : !
0 200 400 T[*Claoo
Fig. 4. Thermal diffusivities of a disc and a pad versus
temperature obtained from the measurements (sofices)
and their approximations (dashed curves)
(Chichinadze et al., 1979)

T
600

As a result of the carried out computations evohsi
of temperature at the pad/disc interface (equaptrature
on the pad and the disc friction surfaces at sjgetifadial
positions) are shown. In Fig. 5 the temperaturelugioms
are depicted for two braking couples, for the disade
of cast iron ChNMKh and two different pad materials
FMK-845 (Fig. 5a) and FMK-11 (Fig. 5b).

As can be seen the temperatures on the friction sur
faces are smooth not revealing any periods of ¢chtamnge-
able heating and cooling which stems from the nasn

49



Piotr Grzég

Influence of Thermosensitivity of Materials on Tremperature of a PAD/DISC System

sumptions of this study of axisymmetric heat flugtdbu-
tion and perfect contact between the pad and tke. di
Comparison of two- and three-dimensional axisymimetr
models was shown is ref. (Adamowicz and Grzes, apll
Evolutions of temperature of the thermosensitivaemals
and their temperature-independent equivalents areked
with dashed and solid lines, respectively. All fat plots
will have the same denotation. The obtained resukike
evident that during the considered single brakipgration,
variations of the thermal conductivity and therrddfusiv-
ity (Fig. 3, 4) do not allow to change firmly thertact
temperatures of the disc brake at any of the ramtiaitions.
However the highest temperature difference betwbese
two friction couplings is observable at the biggdistance
from the axis of rotatior.

500 -
T[C

400 —

300 +

0.0765 m

/N

200

100

Ctisl

r=0.1135m
™~
| T

400
300 4

200

100

0 T T T T T T ]
0 1 2 3 tls] 4
Fig. 5. Evolutions of temperature at the pad/disc interface
for different radial positions, solid curves indiea
temperature-independent thermophysical properties
whereas dashed curves thermosensitive materials:
a) disc (cast iron ChNMKh)/pad (FMK-845)
b) disc (cast iron ChNMKh)/pad (FMK-11)
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In Fig. 6 temperatures of the disc at differenthpiosi-
tions and constant radius= 0,095 m are related to the
braking time. Previous material compositions (FH).
are confronted again. The distances between idtexdrz
positions are not constant to enable clear visatdis
of the results. Since the disc is located under rewtal
coordinate axial values are plotted with minus. iObsly
it can be seen that the temperatures are lower tvéhin-
crease ofz distance. Until half of the braking tintg tem-
peratures at each location in axial direction almooéncide
(regarding thermosensitive and temperature-indegand
materials). After that time temperatures of the elod
with thermosensitive materials are slightly lowkowever,
revealing the same behaviour as materials with teoihs
properties.

400

TI°C]

300 +

200 H

100

300 4

200 +

100 —

0 ‘ T g \ g T y 1
0 1 2 3 t[s] 4

Fig. 6. Evolutions of temperature at different radial &xia

positions of a disc (r = 0.095 m), solid curvesidatk

temperature-independent thermophysical properties

whereas dashed curves thermosensitive materials:

a) disc (cast iron ChNMKh)/pad (FMK-845)

b) disc (cast iron ChNMKh)/pad (FMK-11)




Temperature evolutions at the pad/disc interfacetfe
disc made of steel EI-696 and two different pademals
(the same as in Fig. 5 and Fig. 6) are shown vdrsaling
time in Fig. 7. It may be observed that unlike Fi.
and Fig. 6 the biggest temperature differences eatnate
at about half of the braking time for both of thedpmateri-
als (Fig. 6a, b) and then decreases to equalizbeatnd
of the process.

600 —
T[*C] r=0.1135m
‘r\

500 4

~~~~~~~~

400 H

0.0765 m

300 | A

200

r=0.1135m

™

400 —

300

200

0 T T " T T i 1
0 1 2 3 t[s] 4
Fig. 7. Evolutions of temperature at the pad/disc interface
for different radial positions, solid curves indiea
temperature-independent thermophysical properties
whereas dashed curves thermosensitive materials:
a) disc (steel EI-696)/ pad (FMK-845)
b) disc (steel EI-696)/pad (FMK-11)

Fig. 8 shows the temperature evolutions at spetiie
ial locations (mean radius = 0,095 mm) whose values
correspond with Fig. 6. Spread of the subsequenpéea-
tures atz = 0, -0,0014, -0,0028, -0,0055 m is clearly bigger
than in Fig. 6 due to different material of theaditn this
case the disc made of steel EI-696 has the thecoraluc-
tivity about three times lower. Thereby the gerentaiem-
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perature is slower dissipated through conductiovingi
bigger temperature gradients. Even at the endeoptbcess
the temperature is not equal within the disc thedshboth
with the pad made of FMK-845 and FMK-11. Howeves th
highest temperature obtain during the process461.4 °C
occurs for the friction pair made of steel EI-69@K-845
(Fig. 8a). The same relationship took place for thsc
made of cast iron ChNMKh (Fig. 6).

500 -
T[°C]
400

300

200 +

400

-0.0014 m

[
| e ™

300 +

200 +

0 ‘ T g \ g T y \
0 1 2 3 t[s] 4
Fig. 8. Evolutions of temperature at selected axial pasgio
of a disc (r = 0.095 m), solid curves indicate tenapure-
independent thermophysical properties, dashed surve
thermosensitive materials: a) disc (steel EI-698)/p
(FMK-845) b) disc (steel EI-696)/pad (FMK-11)

The temperature evolutions on the contact surface
at three different distances from the axis of iotaduring
twofold braking procest = 40 s are shown in Fig. 9. The
disc made of steel EI-696 was combined with the ppade
of FMK-845 (Fig. 9a) and FMK-11 (Fig. 9b). Accordiro
the braking schema time from 0 to 3.96 s correspaadhe
braking with constant deceleration to standstillcfeed by
the disengagement of the brake components and tsineu!
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ous acceleration of the vehicle to the prior velpof 100 and the second brake application doesn’t genehatsame
km/h. Then the process was repeated which cleffidgtad behaviour of temperature regarding the case withptra-

the temperature evolutions. Unlike the single bwgkin the ture-dependent and independent material propeitiethe
analyzed cases of twofold braking the temperatdréne figure solely disc temperature are shown. The patie
model with thermosensitive materials was lower ih a jump of temperature after the coupling of the disd the
cases. The occurred phase of vehicle accelerativeals pad at timet = 20 s stems from the temperature difference
opposite situation either for FMK-845 or FMK-11. i$h between these components after their disconnection
relation loses its meaning during the second acaiide and cooling conditions (Fig. 10 a, b).

introducing some inconsistency. However for thetioin
pair steel EI-696/FMK-11 the rule that the tempearat

is higher for constant properties of materials veamained. aaoo .
T[°Cl

700

900 — 4
T[*Chy 600 -

800 —

700

600 —

500

400

300

9 F——

100 4 AN 0 5 10 15 20 25 30 35 t[s] 40
0.0765m 700 —
T[°C
0 T T T T T T T ["Cl
0 5 10 15 20 25 30 35 t[s] 40 600 |
800
T[°C]4
700 — 500
600 - 400
r=0.1135m
500 —
300
400 |
200 |
300 |
100
N o4+ 11—
100 0.0765 m 0 5 10 15 20 25 30 35 t[s]ao

0 —— Fig. 10. Evolutions of temperature at different axial pasit
0 5 10 15 20 25 30 s 1[slao (r = 0,095 m) during twofold braking process

Fig. 9. Evolutions of temperature at the pad/disc interface

during twofold braking process 6. CONCLUSIONS

Fig. 10 shows the temperature evolutions at selezxe
ial positionsz for the constant value of the radius 0,095
m. The process of the vehicle acceleration, jutrahe
braking stage results in the temperature equabmzati
(Fig. 10a, b) within the entire depth and its ferthinear
decrease evoked by the cooling according to Newttaw.
It may be observed that for both of friction paitise first

In this paper axisymmetric thermal analysis by gsir-
isymmetric FE contact model was carried out to wtad
effect of the use of thermosensitive and tempeeatur
independent thermophysical properties of mateigalshe
temperatures of the pad/disc system during singietao-
fold braking. The calculated temperatures on thetidn
surfaces as well as values at the selected axdatitms
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were confronted and compared. The obtained resewesal
that within the range of temperatures variatiomsnfr20 to
800 °C of the brake components, in spite of reddfiv
marked fluctuations of the thermophysical propertibe
use of subsequent constant values correspondid@ t€ is
validated. Both single and twofold braking confirrisat
rule. However relationship between the resultingpera-
ture values obtained during computations by meahs o
thermosensitive properties and temperature-indegrgnd
constants varies during the twofold braking. It was
served that direct relation between the thermaliséfity
and the resulting temperature is evident.
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Abstract: The paper presents results of microscopic obsenstdf selected porcelain bridges prepared on lieebalse.
The aim of microscopic observations was the idieatifon of example wear types which have appeatgthg dental pros-
thetic bridges exploitation. The main attention wiagcted to wear forms that are quite often presercase of such pros-
thetic elements. The wear types comparative arsalyas evaluated. The most frequent types of wearnaaterial's crack-
ing, abrasive wear. Also, the metal corrosion aednvby dental plaque at prosthetic bridge surfasewbserved.

1. INTRODUCTION

Fixed prosthetic restorations such as crowns aidgés
restore loss of human mastication organ functiorse
main tasks of prosthetic dental bridges are: régthenent
(restoration) of missing teeth with a simultanecosrec-
tion of speech disorders caused by loss of teathrave-
ment of food mastication conditions and keep sadstiva-
tion organs and whole organism from harmful aftéeats
of loss a natural teeth. Total or partial defeatsiéntition
do not cause only disorders in proper food chewang
speech disorders. Stomatognatic system disordess, df
self-confidence and avoiding contact with otherpeare
also of great importance. These aspects favourttier
spread of mental complexes forming. Restoratiomss-
ing teeth and further rehabilitation proceedingstipa
eliminate disorders mentioned above §{Maka, 2000;
Shield, 1968).

Clinical investigations indicate that fixed progibees-
torations, particularly bridges are exploited muohger
than was previously thought. The mean clinical ulsefss

period of fixed prostheses ranges from 15 to 25rsyea
(Maslanka, 2000). Only after such period of time, more

than half of the originally deposited replenishmevare
lost, repaired or replaced by new constructions.

It can be assumed that the greatest impact onuree d
bility and reliability of dental bridges have fartcsuch as:
material, manufacturing technology, design and iserv
conditions. Particularly important is proper couostion.
However it is known from experience, that oftenyoafter
the damage of dental bridge there is a possiklityerifi-
cation the correctness of its implementation. Om akther
hand, in the manufacturing process of dental pedth
components, many errors can be traced, but it sekats
the most important are (Spiechowicz, 1980, 2010):

- improperly selected material,
— inappropriate design,
- improperly selected manufacturing parameters.
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Also, abnormal service conditions in the oral cavit

have a huge impact on shortening the time of uke.rmost
negative exploitation factor is treatment the beidgth too
high forces and pressures.

In a general context, the main exploitation cowditi
with more or less influence on the bridge conditiane
(Shillingburg, 1994):

- occlusion,

- bruxism,

- mechanical stress,
- temperature factors,
- diet,

— oral hygiene.

Some of these factors have low-order effect on
bridges than others because of impact specifi€ilyctua-
tions and temperature changes in the mouth arertadl to
have a significantly negatve impact on the durgbitf
dental bridges. Similar situation is in case of thenan
diet. Materials for the construction of bridges astected
in this way that they show satisfactory resistatwenvi-
ronmental effects of saliva and food. This is rathdivid-
ual matter, because literature reports are knowautathe
influence of biofilm on the stability of denturegstivill,
2011; Pusateri, 2009). Possible, rarely occurriogasion
centers of metal parts are mainly the result ofligegce
during the manufacturing stage. All mentioned abfae
tors have an influence on exploitation durabilifyboidges.
However, it seems that decisive are: occlusionxibm,
and mechanical stresses.

2. MATERIALS AND METHODS
OF INVESTIGATIONS

2.1.Materials

Ten dental prosthetic bridges in after-operaticstate
were used for research. These bridges were obtdioed

the



the Department of Prosthodontics, Medical Univgr
of Bialystok. Bridges exploitation history has beenitted
because of general orientation @bnducted researc
in range of forms and types of wear. Main emphast$im
work is general identification of the types of wearex-
ploited bridges removed from the mouth of patie

2.2. Methods

Observations were carried out at macro and micrel.l
Macroobservations were made by the unaided eye
recorded by classic digital camera. Microobservegiorere
performed using scanning electron microscope Hit
S-3000N with an addition for chemloceomposition any-
sis from Thermo Nora®uest (Fig. 1). Microscopic okr-
vations were used primarily for the appropriatefae
selection for the chemical composition anal

Fig. 1. Scanning electron microscope Hitac-3000N

3. RESULTS

Fig. 2. Types of wear: 1,2 — abrasive, gerrosive,
4 — microcracks; b) abrasive wear

acta mehanica et automatica, vol.5 no.4 (20

Fig. 3. Ceramic crack superstructu
a) macrcand b) microobservation (x9(

During the operational time dental bridgespatient's
mouth are subjected to permanent loads. This fallai-
rectly from the process of chewing, crushing andwihg
consumed foods. In addition, it comes to wear afital
prosthetics components due to mutual abrasion e$e
materials or their coatt with the opposing teeth (Gral-
dowa, 1981). In Fig. 2 are presented examples wf den-
tal bridges samples with distinct damg

Both ceramic and acrylic veneers and metal pae
subject to abrasive wear. Fig. 2b shows selectectath-
servation reults of this kind of wee

It is well known that the bridge in the oral cavisyex-
posed, among others on: normal and tangential |dwedd-
ing and stretching. These loads together with tloésture
of the mouth lead to the initiation and spread @fro-and
then macrocrevices in the elements of dental petisth In
case of prolonged use mel- ceramic bridges, the gaps
within the veneers propagate only to the basic inAfeer
reaching this point, they connect round both sidkshe
cracks. Howeverthis does not lead to detachment e-
ramics, which is closely bounded to the metal ea

Fig. 3 shows an example of a ceramic crackedr-
structure.

In relation to this form of wear, we can say tha size
of range of gaps is dependentplasticity - elastic material
properties. It turns out that in materials, whick aasy tc
form (metals), it is possible to retard and remth gaps
On the other hand, in brittle materie- cracks propagate
unhindered. It should be taken into acccthat microgaps
and heterogeneity of the material are formed ajreddhe
firing process stage. They may be the result ofpram
others: the volume changes in ceramics during itfireg f
internal impurity and pores formation as a res#ilineuffi-
cient caoncentration of the materi(Maslanka, 2000).

Both ceramics and metallic parts of dental bridge=
failing by fatigue wear. Constructions between bhielge’s
constituents or tooth crown connection with thelge spar
seem to be especially vulnerabloints. These places are
more vulnerable to fatigue due to cyclic loadinging the
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process of chewing. The result of volume fatigueawn
isthe fatigue crack. A good example of such crackm
destroyed bridge, which is shown in Fig. 4. On krae
see @rtially smooth surface, which is the result of ¢ned-
ual increasing of gap in metal. This type of susfé tyi-
cal for fatigue cracks.

a)

b)

Fig. 4. Example of fatigue crack bridge span:
a) macro- and b) microobservation (x30)

a)

b)

Wp17 1mm 150KV %30 imm

Fig. 5. Corrosive wear: a) macrand b) microobservation (x&

Inappropriate construction of bridges may be als®
reason of bridges cracking. The elements most expts
damage, as mentioned earlier, include connectibrisdi-
vidual members. Thi possibly means that the connec
in place of crack had too small cross section forstmat-
ting applied load.
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Another form of wear which could be seen in no-
scopic observation is the corrosive wear. Corro
is acommon process in the group of noctional causes
of wear. Particularly vulnerable to corrosion are cami
metals and their alloys. Corrosive resistants atdenmd-
als, such as gold or platinum and their alloys.Fig. 5
wecan see clear signs of corrosion and significass
of materid which is its consequence. Presence of corrc
could be the result of mistakes and negligencekdrprcc-
ess of metal parts casting, poor material qualitthe resuli
of diet and oral hygiene.

In relation to oral hygiene and general care ofgtes-
thesis, in Fig. 6 is showed example of dental bridgth
aclearly visible layer of tooth scale. The reasontluf
dental bridge condition was inadequate oral hygidre
bridge was removed from patient, because the tecdhe
caused increased loss tigsue in the area of contact. T
situation may leads to inflammation and a sigaificusage
comfort reduction. The bridge structure is not withsg-
nificance. It could have influence on tooth scalefation.
It is possible that instead of saddlean, a self-cleaning
span was used i could eliminate retention area in whi
tooth scale deposition occurs. However, it is aviddal
matter of approach to the patient and the naturkisfll-
ness.

WD20.0mm 17.0kV x60  500um

Fig. 6. Tooth scale in the lower part of dental bridc
a) macroand b) microobservation (x€

Another cause of tooth scale deposition on theger
surface is the inaccuracy in the quality of itsface fom-
ing. A full of meaning is influence of icro- roughness
of surface.

Tooth scale is present in & 100% of patients cases
among adults. These are highly mineralized depeasiu-
mulated on the tooth surface. The chemical comions
of tooth scale is as follows: mineral salts (%), including
76 (%) of calcium phosphate, (%) magnesium phosphate
and 3 (%)of calcium carbonate. Such elements as: K,
Cu, S, Cl, Sn and Fe are in trace amol(Grosfeldowa,
1981).



Tooth scale visible on the bridge shown in Fig. &sw
put under chemical composition analysis by the sican

electron microscope with an attachment to the study

of chemical composition. Example results of sucéneical
microanalysis of tooth scale are shown in Fig. 7.

3000 -
2000

1000 -

0

Fig. 7. Results of chemical microanalysis of tooth scale
(Pietroczuk, 2008)

In Fig. 7 are shown results of the chemical comjmsi
which indicate a presence of such elements asPCRkIg,
C, F, Cl, Na. Thus, these results comply with thenaical
composition of tooth scale visible on human enamel.

The next stage of research, the summarizing ottite
lected prosthetic bridges for the type of visibleaw was
evaluated. Fig. 8 shows the percentage fractiadesttified
damages in the inspected group of dental bridges.

50

45 -
40 40
40

307
254
204
15 +—

Percentage part, [%]

10 10

AW CR co TS

Wear type

Fig. 8. Percentage damage fraction: AW — abrasive wear,
CR — cracking, CO — corrosion, TS — toathes

The results of macro- and microscopic observations

show that the largest participation in the examigeaup
of dental prosthetic bridges have an abrasion vaat
prosthetic bridge crackings caused by parameteexigf-
nal forces in which bridges were used. In caseboasive
wear important is a friction combination, espegidtind
of materials which are in direct contact with eauther.
However, in the case of cracks significant are pd#sign,
material and also a bridge production technologyrev
over, corrosive wear and presence of tooth scaeatso
very important.

4. SUMMARY AND CONCLUSIONS

Macroscopic and microscopic observations and chemi-

cal composition analysis of tooth scale on theirfase

acta mechanica et automatica, vol.5 no.4 (2011)

(for the examined group of dental bridges), lefdion the
following general conclusions:

1.

The most common types of wear are: fracture — 4
bridges and abrasion wear — 4 bridges. For 10 ssmpl
tested, one bridge has worn out due to corrosion,
and there was one case of wear induced by accumula-
tion of tooth scale.

Damage of all 10 bridges do not allow for theirtifier
exploitation. Actually, the only way to restore ithe
functionality is to remake them, with paying pautar
attention to the causes of their primary wear.

After analyzing the causes of wear, depending @n th
type of damage in the manufacture of bridges, sbeci
attention should be focused on the following cidtethe
construction of the bridge, material, manufacturing
technology.

. An important element is also properly occlusal scef

design and fitting of the bridge at the oral cawfyop-
posite teeth in order to avoid wear due to inadexjoe-
clusion.

Improper design, poorly selected material, wronthie

nology, improper fit of the bridge, wrong usage ditions
and poor oral hygiene seem to be the most commaosesa
of failure in healing with a prosthetic dental lyéd

10.
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Abstract: The most important units of sheet-fed offset pnigtmachine, like the ink and dampening systems &k ag
a printing unit, are composed, in the main, of aotihg rollers of various sizes (in case of themg unit they are named
cylinders). Adequate setting of the said rollergasy important, because it has big influence oaliuof print-outs. The set-
tings are made experimentally by measuring thehadthe contact area in the ink and dampeningegystor by computing
the clamp parameters — in the printing unit. TlEiper includes analysis of compression of two rsliégpending on a width
of the contact area, radiuses of the rollers akagdaheir Poisson’s ratios and Young's modules.

1. INTRODUCTION

Printing unit, ink and dampening systems are comgos
mainly of rollers and cylinders (Fig. 1). A distthe
and extremely important element is the blanket ncigdr
which is located between the plate cylinder andingres-
sion cylinder. There has been fixed a rubber blanke
on a blanket cylinder for the purpose of bettervegimg
the image from metal plate with ink on paper.

The printing unit includes 3 cylinders: plate cyer,
blanket cylinder and impression cylinder (Dejidasl &e-
stree, 2007; Kipphan, 2001). In this part of maehtihere
is a contact between a metal plate fixed onto theeyl-
inder and a rubber blanket fixed onto the blankgihder
as well as between the rubber blanket and the rimapaks-
sion cylinder.

Plate cylinders are in contact with ink form rofeand
with the dampening form roller. Soft — coated wittbber
or other artificial materials and hard — metal edl inside
ink unit are in contact, thus being adequately agtiteto
each other. In the dampening unit, soft — coateti wib-
ber, paper or fabric and hard — metal rollers areantact
alternately.

Setting an inadequate stress between cylinderdief t
printing unit and rollers of the ink and dampensygtems
affects 3 aspects of printings, namely: print-ogtslity,
wear and tear of machine elements and reducticnmia
of making the printing machines ready for operatidhe
elimination of printing errors which are observed frint-
outs at the beginning and in the course of printexdends
time of making the printing machines ready for @pien,
increases consumption of waste paper and ink.

Uneven stress between rollers of ink and dampening
systems may result in irregular ink and water tnaigsion.
Too big stress between ink rollers cause to excedseat
and rubber expansion.

Setting too big stress between ink form rollers plade
cylinder results in bouncing of rollers each frothey while
their conveying above the channel of the platencidr

and stroking the front edge of plate. As a resthig ink
thickness on plate is changed. It brings about igeimg
smudges on print-outs, faster wear and tear ofeplat
too much tone value increase. Uneven setting asstr
between ink form rollers can cause smudges as well

inking unit

dampening
r' v unit
)

y

y
plate cylinder |
\

=]
k<]
]
o
2
a.
9]
=1
)
=
g
a
o
3

N

Fig. 1. An exemplary printing unit, ink and dampening sgsie

Too small stress in the dampening system results
in transmission of too much amounts of water orntepla
It can cause too much amount of water on plate inhd
emulsification. It can involve problems as regardsdry-
ing and ink adhering to ink rollers. In turn, to@ kstress
makes water squeezed from the rollers and on that pl
there is to small water film. In the dampening syst stress
between the dampening form roller and the disthilgut
roller as well as between the dampening form raled the
plate cylinder should be big enough to distributatexr
and to quicken the dampening form roller with thetribu-
tion roller.

For determining an adequate contact between thersol
and cylinders there is not measured or computedttiess.
Printing operators check the stress in the ink dathpen-
ing systems regularly with foil stripes which thput in
between the rollers and, next, take them out. b itik
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system they measure the width of the contact zeteden
the rollers. As regards the printing unit, a clampcom-
puted on the basis of height of the plate over dredngs
(hardened metal rings located at the ends of tlectylin-
ders) of the plate cylinder and the height of rubbeer
bearer rings of the blanket cylinder.

2. STATEMENT OF THE PROBLEM

It becomes apparent that the most essential elesment
of sheet-fed offset printing machine are rollersiclhre-
main in mutual contact (Fig. 2). The contact of teydin-
ders, the axes of which were compressed to distdrmize
to unknown vertical compressing forces P, was icensd.
The contact area has a rectangular shape with wrkno
width 2a. A contact stresp(x), which takes place in the
contact areax € (—a,a), is a symmetric, although un-
known, function angh(a) = p(—a) = 0:

[ p(ydx=P @)

—a

We assume that in rollers a plane strain takeseplac
which is independent on variahe

Boundary condition for the contact of the two rodle
is determined as follows (Jonson, 1985):

f2( - )

where:ul, uZ — displacement of the points located on the
contact surfaces of, accordingly, body 2 and bo@ohg-
side with axisz, this displacement being assumed positive,
d,, d, — indentation of, accordingly, body 2 and body 1
under loading, f;(x) =0,5x2/R;, f,(x)=0,5x2/R,

— equations for surface of body 1 and body 2 beifwden-
tation.

uZ+ul=d,+d, - f,(x), xO(-a,a)

-
'|° \ 0, R,
I~ 2 Q
+v—4
| A

[

\ o, |

A~

Fig. 2. Two contacting rollers

In the assumption of Herz's conditions (Timoshenko,
Goodier, 1962), the problem is to solve the isstibadf-
space. Assuming that displacement does not deperndeo
directiony, the equation of the theory of elasticity for dis-
placements (Lame) shall be as follows (Nowackiy @9

2 )au (%2, 02U, (xz)+()\+ 0 Zuz(x,z):0
0X0z 3)
0°U,(x,2) . 0%U,(x,2) 0%, (x,2) _
(A +2u) P +(A+u)—azax =0

acta mechanica et automatica, vol.5 no.4 (2011)

where: 4,4 — Lame parameterd/,(x, z), U,(x, z) — dis-
placement alongside with axeandx.

The boundary conditions for the considered protdeen
as follows:

-pX),[x<a
Oz (Xr Z) |z=+0: { |XI (4)
0, |xl >a
Oy X0)[z240=0, —00 <X <0 ©)
Oz (%2)|;20=0, 0¢u X0)],.=0 (6)
whereo,,,0,,— normal and shearing stresses:
ou ou
=\ +2u) 2 +N 2 7
Oz =(\+2) L 422 (7)
du, , du,
O, (X2) =l —+—= 8
2(x2) ;{ ] j (®)

3. SOLUTION OF THE PROBLEM

The problem (3)-(6) is solved by using Fourier gntd
transform (Nowacki, 1970). Fot,(x,z) and U,(x,z),
the following equations are obtained:

U, (x.2) =%j U, (£, e %ad¢ ©)
U,(x,2) =%j U, (&, e dé (10)
G, =i (M+ ZEJBJ,EA e
Arme “E ) s
(11)
_ ,K (A+34) _ ZEJD _ﬂc}e—mz
A+me ") ¢
U, = (A+ B)ef? + (C + D)e i (12)

where:A(§), B(§),C(&),D(&) resulted from the four condi-
tions namely (4)-(6).
The final solution of the problem (3)-(6) is asldeVs:

1+v (2xz
U,(X,2) =——=—| — - (- 2v)2arct Op(x 13
X()Em(r( ) gjp() (13)
__20-vy)[ 7 Co, 2
U,(x,2)=- +In(e™°r<) |Op(X (14)
2(%.2) EF(GV) (e™r?) {Op(x)
where: r? = x2 + z%, v — Poisson’s ratio,E— Young’s
modulus, *" — the convolution of function
a
9(x) Ua(x) = jg(X-S)¢(S)dS- (15)
—a
and the following relationships were taken intocaot:
VE E
= , H= (16)
@+v)@-2v) 21+v)
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The constantC, is obtained from the condition
U,(0,R) = 0. Substitution of normal displacement of half-
space’s edgeBl(x,0) = ul, | = 1,2 in the boundary con-
dition (2) led to the integral equation for a cattatress
function p(x). The solution for the considered issue
is as follows (Jonson, 1985):

P9 =52 ,/1

(17)
where:
1 1. 1 1 1-v7
=== == = ,1=12 (18
R R R Eq NetN2, 7 = E 1, (18)

Substituting (17) in the equation (1) led to thei&tipn
of contact area widtBa (Jonson, 1985):

T[a2E0
4Ry

The final equation for compression of the two ndle
d =d, + d, is as follows:

P=

(19)

2 2
= E|:/71|n[em1 4F\;1 J+/72 In(emz %H (20)
m a a
where:a — half of the contact zone widtR,, R, — radius
accordingly of upper roller and lower rollar,, v, — Pois-

son’s ratio accordingly of upper and lower rollefs, E, —
Young's modulus accordingly of upper and lower ecsl
and

v, 1 a?
e V| 4R?

=12 (21)
Stresses placed near the contact area resultedeijoa:
tions known from the literature (Jonson, 1985).
Analogical equation for contact of two spheres lhasn
present in literature for quite a long time (Johmsb985;
Popov, 2010; Timoshenko and Goodier, 1962).

4. NUMERICAL ANALYSIS AND DISCUSSION

The literature provides for various experimentat re
searches and equations on compression of cylinbany
divergences can be avoided if loading areas armnetef
accurately. Fig. 2 shows point, 0,, 0,, A;, A, where
cylinders may be loaded. If cylinders are loadedthie
pointsA;, A, the coefficientm; equalsm; = In4 — 1 (Loo,
1958; Jonson, 1985; Zhuravlev, Karpenko, 2000). [Elsé
two of these authors used the solution consistmgam-
pression of the cylinders by two forces (Muskhelih
1963) and then they obtained compression for aui.ra
The papers (Birger, Panovko, 1968; Jarema, 2006\vsh
the coefficientm; = m, = 0,814, which is most often
used. But in reality this value of coefficients takes place
only for v, = v, = 0,3. The authors (Zhuravlev, Karpenko,
2000) paid attention to this fact. Generally, tleefficient
m; equalsn; =1n4 — 1+ v,(1 —v)).
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If cylinders are loaded in the pointy, 0,, coefficient
m; for n, =n, equalsm; = m, = 2/3 (Chandrasekaran,
1987). The same coefficient; is given in the papers (Din-
nik, 1952; Galin, 1976), where none of the saidgpapn-
cludes correct citation.

Using equations (19) and (20) we will come to dimen
sionless relation between compression of rolters- d/R,
and the contact area width = a/R,.

2
al] RD +1 n |n(em1/2 ZRDJHI‘][ m /2 ZJ (22)
2 Ry(np+d ag an

wheren =n,/n,, R, = R{/R,, as well as to dimensionless
relation between compression of rollets= d/R, and the
dimensionless radiug, = R, /R,:

dmzi{ﬂgln(eml—m‘](“RD)JHn(emZ—n(HRD) j] (23)
s @+np)Ry A+np)PRy

whereP, = Pn,R,.

Fig. 3 shows dependence (23) of dimensionless com-
pression of the distance between axes of cylinders
d, =d/R,, an indentation of lower cylindet; =R,
and an indentation of upper cylindéy = R, on the dimen-
sionless radiuk, = R, /R, for steel cylinderst; = 2,15 -

10°Mpa, ©,=03, [=12, P=215-10’N/m
(P. = 0,84-107%,n, = 1).
0.04 4
dIR,
0.03 4
d,/R
0.02
d,/R,
0.01
Ry/R,
0 T T T T v T v 1
0 1 2 3 4

Fig. 3. Dependence of compression of cylinders’ axes
d/R; =dy/R; +dy/R,
and its components 8) = R{ /R,

From Fig. 3 it can be seen that an increase ohdgli's
indentation is on relation in increase of this egr's ra-
dius. The increase in radius of the bigger cylinder
(R, > 1) causes the increase of compressihn= d/R,.
The reduction in radius of the smaller cylind&, € 1)
causes reduction of the cylinders’ compressionr= d/R,,
although an indentation of the bigger cylinder @ases.
Reduction in distance between the cylinders depetids
rectly on an increase in the cylinders’ loading.

Whenever contact takes place between the steeldeyli
(body 1) and the rubber blanket (body 8),= 0 can be
assumed. The equation (22) shall then take theviaig
form:
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Abstract: Reduction of singular fractional systems to standeadtional systems and decomposition of singufactfonal
discrete-time linear systems into dynamic andcstadits are addressed. It is shown that if theipehsingular fractional li-
near discrete-time system is regular then the sngystem can be reduced to standard one andn ibe decomposed into
dynamic and static parts The proposed proceduredased on modified version of the shuffle algamitand illustrated

by numerical examples.

1. INTRODUCTION

Singular (descriptor) linear systems have been ad-
dressed in many papers and books (Dodig and S2308;
Dai, 1989; Fahmy and O’'Reill, 1989; Gantmacher, Q96
Kaczorek, 1992, 2007a; Kucera and Zagalak, 1988).
The eigenvalues and invariants assignment by state
and output feedbacks have been investigated in i¢Dod
and Stosic, 2009; Dai, 1989; Fahmy and O’Reill, 498
Kucera and Zagalak, 1988; Kaczorek, 2004) and eladi-r
zation problem for singular positive continuousdirays-
tems with delays in Kaczorek (2007b). The compatati
of Kronecker’s canonical form of a singular peral been
analyzed in Van Dooren (1979). The fractional ddfdial
equations have been considered in the monograph
(Podlubny, 1999). Fractional positive linear systehave
been addressed in (Kaczorek, 2008, 2010) and imthe-
graph (Kaczorek, 2011). Luenberger in (Luenbert)er,8)
has proposed the shuffle algorithm to analysithefdingu-
lar linear systems.

In this paper a modified version of the shufflecalthm
will be proposed for the reduction of the singdtaictional
system to equivalent standard fractional system
and for decomposition of the singular fractionadteyn into
dynamic and static parts.

The paper is organized as follows. In section 2
it is shown that if the pencil of the singular systis regu-
lar then the singular system can be reduced tovalgumt
standard fractional system. The decomposition ofidar
fractional system into dynamic and static partaddressed
in section 4. Concluding remarks are given in s&ch.

To the best of the author's knowledge the reduction
and the decomposition of singular fractional lindecrete-
time systems have not been considered yet.

The following notation be used in the paper.

The set ofnxm real matrices will denoted bR™ ™
and R":=R"™1, The set of mxn real matrices
with nonnegative entries will be denoted BRT*"
andR? := R, The set of nonnegative integers will be
denoted byZ, and then x n identity matrix byi,,.
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2. REDUCTION OF SINGULAR FRACTIONAL
SYSTEMS TO EQUIVALENT STANDARD
FRACTIONAL SYSTEMS

Consider the singular fractional discrete-time dineys-
tem described by the state equation:

EATX41 = A% +Bu;, iDZ, ={01,...} (1)

where, x; € R™,u; € R™ are the state and input vectors,
AERV™ME € RV, B € R™™ and the fractional differ-
ence of the ordet is defined by:

i
ATx; = Z(_l)k(ajxi—k ,0<a<1 )
k=0 k
a 1 for k=0
= -1..(a-k+1 3
(kj ala-3..@ ) for k=12... ®)
k!
It is assumed that:
detE =0 (4a)
and
det[Ez —A] # 0 (4b)
for somez € C (the field of complex numbers).
Substituting (2) into (1) we obtain:
i+1
D EcXi ke = AG +BU;, iDZ, )
k=0
where:
a
o = (—1)k[kj (6)

Applying the row elementary operations to (5) we ob
tain:

i+1

3 B

E
Ol}ckxi—kﬂ =[:ﬂxi +|:Bjui S0z, (7)



where E; € R™*" is full row rank andA; € R™*™,
1, € ROTIOXM, B, € R, B, € RN, The equa-
tion (7) can be rewritten as:

fElckXi —k+1 = AX + By (8a)

k=0

and

0= Aox + By (8b)
Substituting in (8b) byi + 1 we obtain:

AoXi41 = ~Ballivg )

The equations (8a) and (9) can be written in thefo

|:E1}XI e {A& ‘31'51}(I |:C2E1}Xi .
Ay 0 0

™= 0
T e o e

If the matrix:

B
11
M -

is nonsingular then premultiplying the equation)(b9 the

(10)

inverse matrw{ Al] ~1 we obtain the standard system:
2

Xi+1 = ApX + AXi—q +...+ AXo + Bolli + Billjg (12)
where:

) BT
o A *_Eﬂ {Ci +01E1} (13)

w2/ T3 3] 1)

If the matrix (11) is singular then applying thewrele-
mentary operations to (10) we obtain:

Sl
S - S 1 e

Ay B2o B21
v s o B o e

whereE, € R™*" is full row rank withn, > n, and4,; €
g}_{nzxn' Ay € RO j=0,1,..,i, B, € RM,
Ay € ROTDXM e = 0,1,

From (14) we have:
0= ApgX; + Ag1X_y +...t AgiXg + Bogllj + Bogllig  (15)

Substituting in (15)i by i + 1 (in state vectorx
and in inputu) we obtain:

AooXi1 = —Pg1X = Booli+1 ~ Bogj+2 (16)

From (2.14) and (2.16) we have:

(14)

—AgiX
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Sl b {3

B B 0 (7)
+[ ZO}Ui +[ 2t }le |: = }UHZ
0 -Byo =By
If the matrix:
E
[_2 } (18)
Axg

is nonsingular then premultiplying the equation )(17
by its inverse we obtain the standard system:

Xi+1= A% + A g+t AXg

. . - (19)
+BoUj + ByUj+q +Bolis o
where:
SIS
%o ['K‘Z} ~Ag | A= Ago| [~Ax2
~ _| B2 | | A
o AfETT]
Ao 0 (20)

w5 5] e R 1)
SN

If the matrix (18) is singular we repeat the praged
Continuing this procedure after at mossteps we finally
obtain a nonsingular matrix and the desired fracticsys-
tem. The procedure can be justified as follows. &leenen-
tary row operations do not change the rank of tlarimn
[Ez — A]. The substitution in the equations (8b) and (15)
ibyi + 1 also does not change the rank of the matrix
[Ez — A] since it is equivalent to multiplication of titgswer
rows by z and by assumption (4b) holds. Therefore,
the following theorem has been proved.

Theorem 1. The singular fractional linear system (5) satisfy-
ing the assumption (4) can be reduced to the stdrfdac-
tional linear system

X1 = AoXi + X+t Ao + Bl 1)
+BUjyg ot Bpui+ p

where 4; € R™", j=0,1,..,i, B, e R™™, k=01,

...,p <n whose dynamics depends on the future inputs

Ujt1) ooy ui+p'
Example 1. Consider the singular fractional linear system
(1) fora = 0,5 with:

50 2 02 2 -2 1 2
E=[2 0 1|, A=| 2 1 0| B=|-1 2|. (22
100 -18 0 -1 2 -1

In this case the conditions (4) are satisfied since
detE =0 and
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5z-02 -2 2z+
detEz-Al=|2z-2 -1 z |=z-02
z+18 O 1

Applying to the matrices (22) the following elemayt
row operationsL[1+2x(-2)], L[3+1x(-1)] we obtain:

502 02 2 -2 1 2
[E AB=[201 2 1 0 -1 2
100-180 -1 2 -1

100 -380 -2 3 -2

2201 2 1 0 -1 2 (23)
000 2 0 1 -1 1

(8 A B

0 A B

and the equations (8) have the form:

iicloo_ _[-s8 0 -2] [3 -2]
Ko o 1/9%17 2 1 o171 2"

k=0

(24a)
and
0=[2 0 1x +[-1 1y (24b)

Using (6) we obtain:

——a =—-q =- = (- 2 a :a(a_l):—i
= [J a=-05, ¢, =(-) [2} 2 3’

ira(a-1..(a-i)

s Ga1 = () o

a=05

and the equation (10) has the form:

100 -33 0 -2 100
2 0 1x4=| 3 1 O.5xi+E201xi_1
2 01 0 0 O 00O
(25)
100 3 -2 0 o0
—.= G412 0 1|Xg+|-1 2 |y +|/0 O |uy
00O 0 0 1 -1

1 0 0

The matrix [2 0 1] is singular and we perform

2 01
the elementary row operatioh[3+2x(-1)] on (25) ob-

taining the following:

100 -33 0 -2 1 00
20 1lxy=| 3 1 05[x+% 2 0 1|xg4
000 -3 -1 -05 -2 0 -1

1 0 0 3 -2 0 O
.= G4l 2 0 1 |X+|-1 2 ju+/0 O Uy

-2 0 -1 1 -2 1 -1

(26)

The matrix:
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1 0 0

=)
2l=l2 0 1 27)
Aol |3 _1 _os

is nonsingular and we obtain the equation (19)
with the matrices:

1 0 071Y-330 -2

-1
~ [E
AO:[_Z} [AEO} 2 0 1 3 1 05
Aol =P |_o 4 _
3 -1 -05| | 025 0 0125

-33 0 -2
=| 485 -05 3625
96 1 45
i 1 0 o0 Y100
Az{_z}{p‘z'}zz 0 1| (201
#20 -3 -1 -05| |0 0 O
1.0 0
=-3 0 -05|
00 1
(28)
e ey 1 0 o]Y3 -2
{_H ]_2 0o 1| |-1 2
Ax| | O
-3 -1 -05| |0 ©
3 -2
=|-55 3
-7 6
) {Ezr{Bu} 1 0 07%o0 o
-1 5 21 1=l 2 0o 1 00
foo] L7B20] | 3 4 _o5] [-1 2
0 0]
=1 -2
0 0

= 1 0 o0
B —{EZ { 0 }— 2 0 1 00
2—_ __ -

-3 -1 -05| |-1 1

3. DECOMPOSITION OF SINGULAR
FRACTIONAL SYSTEM INTO DYNAMIC
AND STATIC PARTS

Consider the singular fractional system (5) switigf
the assumptions (4). Applying the procedure present
in section 2 aftep steps we obtain:



E A A Ay
Ply, —|_PO X + T N e %
{0 }Xﬁl {Apyo} ' {Apz K- Api °

B B B
p.0 pl p.p-1
+ =P u + Uisg ¥t Uit po1
{pro} | {Bpl} " {BP P‘J P

where E, € R™*" is full row rank, 4,; € R"*", A4,; €

(29)

RO j=0,1,..,p and By € R™, B, €
RO-p)>XM | = 0,1, ...,p — 1 with nonsingular matrix:
E
—P |ogmn (30)
Ap,o

Using the elementary column operations we may reduc

the matrix (30) to the form:

In 0
|:A2p1 In—n :|’ A21DD

(n=ny)xn,

(31)

and performing the same elementary operations en th

matrix [, we can find the matrig € R™ " such that:

B (32)
Ap,o A1 In—np

Taking into account (32) and defining the new sage-
tor:

@ _
X =Q7x =[§<z>]’ xoo%™, §P0o™™, 10z, (33)
X

from (29) we obtain:
%%, = EpXian = EpQQ X141 = Ay 0QQ 1 + Ap1QQ x4

1
+..+ AGQQ X+ Bpoli +Bpalisg +..+ Bp pqUispg

1) 1)
=[Aps Ar(nz)][ (z)] [AD) A(Z)]L(z)]

o
+.4[A] A(Z)]{X(()z)] *+Bp ot +Bpati+g

+..+ Bp,p_lqu_l
_ A0 @ 22 D@ 2)5(2
= ABTD + AQRE 1+ ADTS + AT
+Bp,0ui +Bp1ui+1+...+ Bp’p_lqu_l, idz,
(34)
and

=@ _ _ A 0 _ RO 2)<(2
)‘i()‘_Alei()_A;()) ()_AF(J) 2 _
~Bpoli -

A0z @%@
A A0

- Bp,p—1ui+p—1y 0z,

(35)
where:

_1A® A@7 & 120 F@7 - -
AQ=[A ALY Ay =[AY AP j=01..i (36)

Substitution of (34) into (35) yields:
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%D = Aok @ 4+ ALK + B ou;

+...+ Bp’p_lu”p_l, i 0z,

@37)

where

1) 2 O
oo = ASL = Al Aoy, ... Ay = AY)

2) AL
~ABAY
— .
Bp,p-1=Bp,p-1 = A5 0Bp,p-1
(38)

The standard system described by the equation (37)
is called the dynamic part of the system (5) aredsystem
described by the equation (35) is called the stptct
of the system (5).

Therefore, the following theorem has been proved.
Theorem 2. The singular fractional linear system (5) satisfy-
ing the assumption (4) can be decomposed into yhard-
ical part (37) and static part (35) whose dynandepend
on the future input;, 4, ..., Uj1p—1-

Example 2. Consider the singular fractional system (1)
fora = 0,5 with the matrices (22). The matrix (27)
is nonsingular. To reduce this matrix to the forBi)(

-B .-A@F
Bpo=Bpo~ABpo...

we perform the elementary operationR[1+3x(-2)],

R[2x(-1)], R[23]. The matrixQ has the form:
1 0 O
Q=0 0 -1
-2 1 0

and
1 0 Of|1 ool |1 o0 O

=
2lo=l2 0 1|0 0 -1/=l0o 1 o0
A2 -3 -1 -05|-2 1 0| |-2 -05 1
A21=[_2 _0.5], n2=2.

The new state vector (33) is:

10 0fxi| req
% =QM =2 0 1|x =[ (2)]
0 -1 0] x3; % (39)

-
g0 = }~<2>=_X2’i_

_ZXLi+X3,i %

In this case the equations (34) and (35) havedirad:
~ 07 -2 0 |- 1 _

0 0 2 gl
>(i(+):l_ 2 05i| () |: ]j|xi( )+ 3 XI(—)l

) -2
T GgXy T t 5 Ui

and

(40)

%@ =12 05%® +[025 0]%Y, )
ot G2 Ox -1 -2u -1 Ly

Substituting (41) into (40) we obtain:
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- 07 -2]_q 1[1 07
1) _ 1) 1)
Xi(+):l._|:0 o}(‘()J’é[o —1}9(‘)1

o[t 0w, [3 2], [0 o,
TGy 9 g o M1 —1fim

The dynamic part of the system is described by (42)
and the static part by (41).

(42)

4. CONCLUDING REMARKS

The singular fractional linear discrete-time systemith
regular pencil have been addressed. It has bemmnsthat
if the assumption (4) are satisfied then: 1) tmgusiar frac-
tional linear system can be reduced to equivaltmdard
fractional system (Theorem 1), 2) the singular tfoal
linear system can be decomposed into dynamic aatit st
parts (Theorem 2). The proposed procedures hava bee
illustrated by numerical examples. The considenatioan
be easily extended to singular fractional lineamtcmous-
time systems.
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Summary: The following paper presents the results of analygemulti-layered elements and thick constructi@swell as
simplifications used for solving structures of 2ss models published in specialist literature, aothpares them with
a different approach involving generalization oftpent problems into 3D classes. An error estioratinethod was pro-
posed, together with a procedure of shaping grit¥asity ensuring necessary computing precisionvigplhuge sets
of equations allowed for practically continuousues of complex functions of stress states. Sewdrtdile presented typical
examples indicate the possibility of applying thgogathms, among others, to heterogeneous stristfreeinforced concrete

constructions.

JUSTIFICATION FOR THE PROCESSES
OF CHANGES IN THE ANALYSIS
OF TYPICAL 2D STRUCTURES

The authors of the present paper aim at presenting
an algorithm that could be practically applied le analy-
sis of complex engineering constructions, or theiypical
integral parts. The analysis processes can be lugmfu
studying rigidity and effort in constructing cregse het-
erogeneous coverings, as well as for examination of
changes in physical properties and mass of maserald
shape of coverings of any given architectural fora
algorithm for coverings of considerable thicknefs, in-
stance thick slabs, turns out to be analogous tithan
algorithm used to describe multilayered surfaceeciogs
with small or huge rises. The problem of approxiorabf
multilayered sandwich-type coatings was only paikst
ingly solved in Marcinkowski, (2003), despite assgm
simplifications such as crosswise symmetry of d$tme
(Fig. 1). By deforming normal, multi-node regulalee
ments, new elements in curvilinear coordinate systere
obtained.

It seems that this operation could yield desirabkults
only for thin-layered coverings of small elevatiohyt
overall, practical value of the solution is evakdas dis-
satisfactory. For instance, it is by no means pracnor
justified to analyze and design covers of thickness
0,635mm with core thickness = 11,430 mm, taking into
account production process measurement tolerafiany
construction materials, as well as their thickneggilation
methods.

Moreover, the accepted assumption that thicknes$iseof
layers in the covering surface can be achieved toildr-
ancet = £0,0001mm is purely academic. Be that as it may,
the methods employed for analyzing architecturamnto of
elevated coverings, such as multi-curve covering trge
spread shown in Fig. 2, based on (Noor and Kimg)l,%re

indeed worthwhile and call for further investigatio
A covering of any given thickness can be thus stidvith

well-founded claims for practical applicability othe

achieved solutions, even in the cases where verialalss
of construction material is an essential and irelisable
factor. The authors of the present paper wish ésqnt the
analysis algorithms proving positive aspects oflyaiag

constructions freely heterogeneous in their stmecthy
changing the discretization class from 2D to 3D.

Fig. 1. Scientific interpretation of symmetrically layered
sandwich type coating

P\

‘?:;\I'\
W W

Fig. 2. An elevated covering of a large spread
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2. CROSSWISE DISCRETIZATION
OF ELEMENTS IN THE PERSPECTIVE
OF VARIABLE ANALYSIS PARAMETERS

While the problem of developing methods for analysi
of spatial elements remains still relevant, the bem
of publications offering practically applicable stbns and
algorithms is relatively small. Among others, thesue
of spatial analysis was addressed in Michalczuk and
Tribito, (2002). The crucial factor determiningethvalue
of results obtained for crosswise heterogeneoustsires
is the node density in the grid discretizing thiekah(z)
of an element. It seems reasonable to generagrithevith
constant node distandg; accordingly, relying on the fact
thath(z) = h; - s, the tests could be created to estimate the
discretization error of, among others, a circulab dreely
supported along its circumference (Fig. 3). Byragion the
middle surface in the layér(z) = h; - (s/2) with the load
q, a classical closed solution is obtained and toeptable
error marginAw, can be established during the discretiza-
tion to suit the practical applicability of the eqted results
(Vilberg and Abdulwahab, 1997). For the establisbeawr
Aw, < 0,01 - (gb*)(64D?), the satisfactory precision
is achieved with the thickness parametes 20, which
is proved by the results in Tab.1, and illustratad the
function drawn in Fig. 4.

Essentially, a faultless solution is obtained whk pa-
rameters = 40, which is illustrated by the following resilt

Aw(&=0,000)= 0,001(gb*)/64D << Awy,
2w(&0,133)= 0,001(gb*)/64D << Awg,
Aw(&0,583)= 0,000(gb*)/64D << Awg,

Aw(&=0,917)= 0,000(gb*)/64D << Awy.

:

2o

i

wi(E hi = h/20
i {€)
olsa7 |-
1,0 ¥4
20 1laEa
30 - /E?;
R,766
__l:f-_

0 T T

po-o—¢—" 4319
5.0 }

0,0 0,2 0,4 0,6 0.8 10 §

Fig. 4. Results of the solution for the circular slab
with the grid density= 20
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Tab. 1. Results of the solution for the circular slab

with the grid density= 20

E=r/R 0,00000 0,00500 0,01000
f(lq\g“)(/EG) o | 4720285 4,720138 4,719698
£=r/R 0,01667 0,03333 0,06667
mﬁéfé o | 4718677 4,713799 4,694335
£=r/R 0,13333 0,20000 0,26667
mq‘t’)v4)(2 o | 4616848 4,491538 4,318911
£=r/R 0,33333 0,41667 0,50000
f(Jq\;)V“)(/EGB) o | 4100396 3,765554 3,367379
E=r/R 0,58333 0,66667 0,75000
f(Jq\;)V“)(/EGB) o | 2911802 2,406222 1,859450
E=r/R 0,83333 0,91667 1,00000
mqvk)v4)(fg o | 1280466 0,696812 0,00000

3. GENERALIZATION OF A CROSSWISE
HETEROGENEOUS STRUCTURE

The principal idea of the generalization involvesilsz-
ing a crosswise heterogeneous covering structurdema
of various materiald/; j = 1, 2, 3, ..., each of them having
different density, elasticity, and boundary coratis “BC".
This kind of approach is graphically presentedim B.

—--MI.P-—-J—- h —= Xy EPB

2

Fig. 5. Generalized structure of a crosswise heterogeneous
covering “p” composed of materiafs

When performing the discretization of a spatialufig
of a covering, its construction materials can kerpreted
as functions:

M, =M, (0.9,E,v), 1)
of the parameterg; — material’s densityg, — acceleration
resulting from the inertia field in the Z-axis diteon,
E; — material’s modulus of elasticity, — Poisson number.

For static problems, the force-balance equations
in the nodes consider also gravitational forceprasented
by the product of density and acceleratiog,, and marked
with the Mg vector. The elastic features of masses can be
expressed by a complex function which takes intmant,
for instance, material’s strength. This is shownthwy rela-
tion
E =F(f,), (2)

f. denoting here material’s compressive stress eggist



The relation (2) has not been widely studied, loutits
interpretation the formula

®3)

can be accepted; incidentally, the formula deseritee
average secant modulus of elasticity of concretenofised
in designing processes. Such relationships fromfitild
of concrete mechanics can be employed in numeaitally-
sis algorithms. The value of function (2) can beastant
for a wide range of materials. As an example ofhamgea-
ble modulus of elasticit§s, steel of classes A-0, A-l, A-1,
A-lll, A-lIlIN produced in Poland can be mentioned.

Algorithms of numerical analysis of 3D elements-for
mulated in (Michalczuk and Tribito, 2002) are used
in a generalized form, specifying the approximatermm
criteria allowing construction design, usually takivalues
of generalizedV, N, Q type forces or the criteria justified
by the stress conditions =1, 2, 3, in the three-dimensional
space.

Empirical and hypothetical norm stress distributicsed
to determine cross-section load-bearing capacity ba
eliminated by solving the mathematical model takintp
account function (1) only. From among several aredy
models, the results of the analysis for the slabwsh
in Fig. 3 are presented, taking advantage of teipusly

F( fc) = 915( fck + 8)1/3 = Ecm !
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documented calculations of grid density which woalldw
for elimination of discretization errors.

The algorithm used with the model is similar foryan
given coordinate system, and the problem is solved
by interpreting stresses in a mixed coordinateesysg, £,

2). A discretized model of the slab is formed asvaman
Fig. 3, with the stresg(¢, f) applied to surfaces of discrete
elements of upper layer as can be seen in Fighé.prop-
erties of construction materials of the crosswis¢etoge-
neous structure can be expressed fo? as:

Mlp:Mp(pl7g'El'V1)’ (4)

~ 38h,

il

J T

‘ Mip

Fig. 6. Section of a crosswise heterogeneous slab jtf2
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Fig. 7. Stress analysis resulis(¢), g,(£), 0,(§) in the parameter structure (4) wjth= 2
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Fig. 8. Crosswise heterogeneous slab with 3

The equations are solved by calculating stresses,,
05 in units €), and the solution is found within @ ¢ <1
interval for any given value oR. It is assumed that
g=10m/& v =v=0,2;k = 1;E; =E; c = 8;a = 3;p1 = p;
p2=3p;q( p) = a.

The actual stress distribution seems to be diftefrem
the empirical norm assumptions in reinforced cotecre
constructions; this conclusion is further substtetl by the
stress functions as drawn in Fig. 7.

From the technological point of view, there is anco
mon problem of designing layered-concrete slabswhre
constrained by concerns related to use of ereatedtric-
tions and not infrequently to transport systemse ntathe-
matical model for the parametgr 3 clearly justifies non-
linear stress distributions in a crosswise hetanegas
structure (Jing Liu and Forster, 2000). Accordinghe slab
presented in Fig. 6 can be augmented with the imahter
M3, = M (1,5;,0,2E,v) as illustrated in Fig. 8. Practical
aspects of the model construction and the parastgy
are formulated following contemporary, realistidtenia
of development of materials technology. The cumeson-
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linear functions of local stress distributions hawvereased;

values of the function are shown in Fig. 9. The eisd
generated with a grid densiyy= 40 ensure the positive

evaluation of discretization criteria fpr= 3, and the grids
with higher density are proper for solving problemisere
i>3.
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Fig. 9. Stress analysis results($), 0, (), 0,(£) in structure (4) augmented with paramefdts, j = 3

The properly-designed and dense enough grid consti-

tutes a practical justification for the insepar@pilof de-
formation and tension, and ensuring the force-twhten
conditions in several thousands of the spatial gddes is,
in engineering, a strong basis for practical intetgtion
of results in terms of continuous functions (Lo,8%9
1988).

4. SUMMING-UP

The results published in the present paper confiren
claim that analysis of layered elements by changjieg2D
class models into the appropriate 3D class modats e
effective. The authors have backed up their assomgpt
with convincing calculations conducted for crosswiet-
erogeneous structures. The most crucial aspebedcdnaly-
sis involved obtaining correct and sufficiently gise stress
distribution functions in materials of various paeters
and elastic properties, also accounting for densftythe
medium and characteristics of gravitational fielthese
non-linear functions can lay mathematical foundatidor
determining of limited load-bearing capacity of thea-
lyzed section, which is often contradictory with @rcal
criteria used ,for instance, in analysis of atypicginforced
concrete elements, particularly under complex stoesdi-
tions. Contemporary progress in computer technojagi-
fies the change in the point of view on reductidntiee
model class. The generalizations allowing for cantihg
of both synthesis and analysis processes with idhgas
of transition from 2D into 3D classes involve emypiay
algorithms for solving huge sets of equations.
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ANALIZA STRUKTUR
POPRZECZNIE NIEJEDNORODNYCH
W WARUNKACH ZMIENNYCH PARAMETROW
MATERIALOW KONSTRUKCYJNYCH

Streszczenie: Na tle analizowanych w literaturze technicznej
elementéw warstwowych a tak konstrukcji grubych i wykorzy-
stania uproszcteumaziwiajacych rozwjzanie struktur modeli
klas 2D, opublikowano wyniki rozwzan uzyskiwanych odmien-
nie przez uogolnienie probleméw do klas 3D. Wskazaa tech-
nikg¢ szacowania btlu i ksztattowania gstasci siatki umaliwia-
jacej uzyskaniezadanej, uzasadnionej technicznie doktadmo
oblicze. W publikowanych kryteriach rozazanie wielkich
uktadéw rowna umaldiwito uzyskanie praktycznie ggtych
wartdéci funkcji ztozonych standéw napren. Zamieszczone nie-
ktore charakterystyczne przyktady wskazoa maliwosé¢ wyko-
rzystania algorytmoéw na przyktad w niejednorodngttukturach
konstrukcjizelbetowych.

Lo S. H. (1985), A new mesh generation for arbitrary planar
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GENERATION OF FRICTIONAL HEAT
DURING UNIFORM SLIDING OF TWO PLANE-PARALLEL STRIPS

Michat KUCIEJ *

"Faculty of Mechanical Engineering, Bialystok Uniigr®f Technology, 45C Wiejska Street, Bialystok, 3%k, Poland

m.kuciej@pb.edu.pl

Abstract: The thermal problem of friction for a tribosystewnsisting of two plane-parallel strips is studi#ds assumed
that the relative sliding speed is constant. Thevective cooling on free surfaces of strips andtikat transfer through
a contact surface are considered, too. The evolatidhe contact temperature and its spatial thistion in materials of fric-

tional pair such as aluminum/steel, was investijate

1. INTRODUCTION

The evolution and distribution of temperature ipla-
ne-parallel strip/the semi-space tribosystem, idtrg) with
a constant speed have been investigated in ar{iglegu-

shenko and Kuciej, 2009a; Yevtushenko et al., 2009)

and with a constant deceleration — in articles (¥ghenko
and Kuciej, 2009b, 2010a). The corresponding smhuti
with a time-dependent contact pressure has beeainehit
in article (Yevtushenko et al., 2011). The influeraf the
duration of increase in pressure from zero (at itfigal
moment of time) to nominal value (at the momenstop)
on the temperature for a friction pair metal-cermmi
strip/cast iron semi-space has been studied iolarfyev-
tushenko et al., 2010). The distribution of the rine
stresses for the same friction couple has beerstigeted
in article (Yevtushenko and Kuciej, 2010b). The lgtical
solution of the contact problem with frictional hegnera-
tion for a two-element tribosystem — the compositiép
sliding on a surface of the homogeneous semi-spadve
been obtained in article (Kuciej, 2011a, 2011b).

In the present article we investigate the transtent-
perature distribution in tribosystem consistingwb plane-
parallel strips. We assumed that the heat conthdhe
strips is imperfect, and on its outer surfacesetae con-
vective heat exchange with environment, accordmthe
Newton’'s law. The exact solution of the problem
is obtained by method of separation of variables.

2. STATEMENT OF THE PROBLEM

The problem of contact interaction of plane-patalle
strips of thicknessd;,i = 1,2 is under consideration.

The scheme of contacting bodies is shown in Fig. 1. 0°T({,1) _1 ATy (L, 1)

The strips are compressed by the normal pressyreap-
plied to their outer surfaces. In the initial tinneoment
t = 0 the relative sliding of the strips begins with stamt
speed/, in the direction ofy-axis of a Cartesian coordinate
systemOxyz. The sliding is accompanied by frictional heat

generation on a contact plane= 0. The sum of the inten-
sities of the frictional heat fluxes directed irgach compo-
nent of friction pair is equal to the specific fitm power
q0 = fVopo (f is africtional coefficient) and the thermal
contact of the strips is imperfect — the heat fiemisetween
the contact surfaces of the strips takes placeth®router
surfacesz = d, andz = —d, of the strips the convective
heat exchange with the environment occurs. It simed
that the contact heat transfer coefficiénand the coeffi-
cients of the heat exchanggi = 1,2 are constant. All the
values and parameters which refer to strips inftingher
considerations will have bottom indexes 1,2.

Fig. 1. Scheme of the contact problem

In such statement, the transient temperatlig,t),
i = 1,2fields in strips can be found, from the solution
of a boundary-value problem of heat conduction:

O’ ) _ 0T ()

0<(<1,1>0, 1
o pu 4 1)
—d7<7<0,1>0, 2
0 0
KD%%L —%%} =1, 1>0, (3)
{=0- {=0+
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KDaaLZD +aall|] +
Clezo- % lg=os (4)
+Bi[T2/0,1) - T{(0,1)] =0, T >0,

oty s P

ra +Bi T (L,1)=0, 1>0, (5)

=1
DaTZD P P
K o - BipTo(-d~1) =0, 1>0, (6)
Z=-d"

TH2,0)=0,0<2<1, THC0)=0, -d"<Z<0. (7)

1=2. Tzk_lzt, ai=92 ¢o-Ko ok g
dl dl d] Kl kl

,i=1,2,

T _ qul BI hd B|| h; dl TD T T
K1 Ky 1 To

where K is a coefficient of thermal conductivity ard
is a coefficient of thermal diffusivity.

3. SOLUTION TO THE PROBLEM

The complete solution to a boundary-value problem

of heat conduction (1)—(7) we shall present inftren:
T2 1) =6,@Q)+0,@1, 0<<1, 120, ©)

T 1) =6, +0,(.1), -d"<{<0, 120,  (10)

where the stationary componegé), i = 1,2 are given
as:

0;(Q) =a{+b;,0< <1,
(11)

8,(Q) =al +by, —-d"<Z <0,
O
by ="[1+%}11, b, {dm“‘g—izjfﬂz, (12)

1

a =

o |8

a; = -Bi{[K"Bi, + (K" +d"Bi,)Bi],

(13)
&, = Bi,[Bi; + (1 + Bi;)Bi],
a=2K"Bi;Bi, +[K{Bi; +Bi,) + (14)
+(K"+d9Bi;Bi,]Bi,

and the dimensionless transient temperatudgeét, 1),

i = 1,2 are taken as the solution of the following homoge

neous boundary-value problem:

%07, 1) _ 007(¢,1)
P& ot

, 0<Z<1,1>0, (15)
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%051 _

10051 _ 1
—dP<7<0,1>0, 16
0 0
KDGO& _aa& =0, 1>0, (17)
[ N .
Kgaeg +aelD .\
% Jezo- % lizps (18)

+Bi[@5(0,1) -©1(0,1)] =0, T >0,

007

o Z:1+Bilelm(1'0:0’ 0 (19)
a
k1992 -Bi,®5(-d"1)=0, 1>0, (20)
a( o
{=—d
o7(€,0=-6,Q), 0ss<1,
(21)
05(,0)=-6,(@), -d"<z<o.

The solution of the transient heat conduction probl
(15)—(21) is constructed by method of separatiorvani-
ables as (Ozisik, 1980):

0101 = SC® Qe N, 02221, 120,  (22)
n=1

0,1 = ¥CoPy @™, ~d77<0, 120, (23)
n=1

where:
®1.0(2) = AlpSiNA Q) + By n COSARL) | (24)
®, Q) = AEnsin(A—“zJJr BEHCO{A—”ZJ, (25)

A‘1|:,|n:(Bi1COS>‘n
[ d"A . d"A
x €Nyl €N, sinf —L | - Bi, cog ——2
ol

: dA - d"A

- Bil e\ ,cog — | + Bi, sif ——2
rete)oe{ )

AZD,n :[)\n()\nSin)\n - Bll COS}\n) -
- Bi(A,cosh, + Biqy sSinA )] x 27)

oot

—ApSinA,) x

(26)

[ —
|

]
-



Bi'n = (A COSA, + Biy sinA,,) x

x a)\n[Biz co{%}—s)\nsin(% ] (28)
d

+

BYn =[An(

+

fortfocd %]

Bij cosh, —A,SinA,) +
Bi(A, cosh, + BiqsinAp)] x (29)

e

Cy :_%' n=12,.., (30)

=k n + Ky n, Ry =05k R 1 +K Ry ), (31)

fin =8lin

+bJjndi =12, (32)

lin= AEn()\F,l sinA,, —COSAp) +

(33)
+BrnlsinA, = A5 (1 - cosh ),
ool (d) o [d,
s n=Asy| —sin -d-co +
I ) B
(34)
5 [? d"A, o[ d5\,
+Bypi—|1-co —d-sin ,
|0 e
2
R1,n=A1']’n (A —SinA,cos\ ) + (35)
+2 A7 BT, sin? A, + BT 2()\ +Sin\,,COSA ;)
,nP1Ln n 1,n n n n/’s
2
Ry =AY, d 2, —sin d A, co d 2, -
TP W) e
-2A5,BY, sin? d A |, (36)
Sh ul
e
vey2 dh, +Sm[dﬂxn}o{d“)\n} |
J1n = Aln(1-cosh ) + B AL sinA (37)
Jon = Agn[co{%] - 1] + Bgnsin(%J : (38)
and 44, A, ..., 4,, ... are the real roots of the characteristic
equation:
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A(A) = g[2A(ASINA - Bij cosh) -
- Bi(Acosh +Bij sinA)] x

eA sin{%} - Bi, co{%} - (39

- Bi(ASinA — Biq COSA) x

_s)\ co{j%] +Bi, sin(%]_ =0,

X

X

where:

0
€ =K—. (40)

i
4. SOLUTION TO THE PROBLEM

The numerical results have been obtained for the fr
tion couple an first strip — aluminunk( = 209Wm~1K1,

k, =86-10"°m?s~') and a second strip — steel
(K, = 22Wm™'K™!, k=1,1-10"°m?s™1). The friction
conditions are: p, = 1MPa, V, = 10ms™!, f =0,45
andd,; = 5 mm. The choice of materials above were taken
from the article (Yevtushenko and Kuciej, 2009a)which
the solution was obtained to the heat conductiarblem

of friction, where the strip is sliding with the regtant speed
on the surface of the semi-space.

The results, presented in Figs. 2-4 have beenrmutai
in the case of the perfect thermal contact of stafh —» o
(Bi — o0) for two variants of boundary conditions on the
outer surfacez = d; of the aluminum strip: a) thermal
isolation ath, - oo (Bi; = o) or b) maintaining initial
temperature alt; — oo (Bi; — o0).

Evolutions of temperature (22)—(25), (30) on thateot
surfacez = 0 for two strips and for three values of steel
strip thicknessl, are presented in the Fig. 2. Thermal isola-
tion on the outer surface of aluminum strip causesease
of the contact surface temperature, nearly 2.5gimeela-
tion to the temperature obtained in the case ohteaance
of the initial temperature at the same surface d,.
At the beginning of sliding temperature increasapidly
atthe contact surface, and after some time it hesc
a steady state. Time to reach the steady stateetaope
increases with increase of the steel strip thicknédter
exceeding valued, = 20 mm, the contact temperature
and duration of reaching the steady state temperalw not
change.

Influence of the coefficient of heat exchange and¢bn-
tact surfacesh(Bi) on the contact surface temperature
of the aluminum and steel strips is shown in Fig. 3
It should be noted that the parameteiis the value in-
versely proportional to the thermal resistancehefdontact
area. The highest jump of temperature on the costac
face is observed wheln— 0 (thermal resistance is great-
est). The value of the temperatures differencdsg mflu-
enced by the boundary conditions on the outer serfa
of the strips i. eBi;. Reducing the thermal resistance of the
contact surface causes the alignment of the cortaot
perature between strips. FBi > 15, the thermal contact
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between the strips becomes perfect. The value eotan-
peratures difference at the contact surface depaisis
on the boundary conditions on the outer surfacaloii-

num strip: maximum difference is aba2ff0°C atBi; — 0

(Fig. 3a) and180°C  (Fig. 3b) atBi; —» ). The largest
temperature changes are noticeable for the stél Biow-

ever, in the case of the aluminum strip after iasee
of the initial temperature, together with a slightrease
Biot numberBi, the temperature gets a steady state.

T[°C]‘a)
300
] 10mm
260
] 20mm d,=5mm
220
180 -
140 -
100 -
60 -
20 T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 t[s] 10
140 -
b)
T[C]
120 4
100 - d,=5mm
80 -
60 -
40
20 ‘ ‘ . : )
0 1 2 3 4 t[s] 5

Fig. 2. Evolution of the temperatuf®(0, t) on the contact surface
atd,; = 5mm, Bi - oo, Bi, — oo, for three values
d, = 5mm, 10mm, 15mm; a) Bi; — 0; b) Bi; — o

To verify exactly the presented solutions for the
strip/strip system, analysis of the evolution ofmdn-
sionless temperatur®*(0, 7) for four valuesd™ of relative
thickness of strips, calculations were carried fout two
tribosystems aluminum /steel and steel /aluminuig. @).

In the case when the first strip is made of aluminthe
contact temperature decreases while thicknesseoftiel
strip increases. However, in other case, whenitkedtrip

is made of steel, the temperature on the contadacau
increases while thickness of the aluminum strigréases,
too. For the first aluminum strip & > 2 and steel strip
atd* = 4 as was established above (in dimension form),
one of the strip (the second one), can be replagddthe
semi-space (Fig. 4). The presented curves dor= 4

in Fig. 5 corresponds closely with the results smow
in Fig. 4 in the article (Yevtushenko and Kucie)02a)
for the strip/semi-space tribosystem.
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Fig. 3. Dependence of the temperatufe, t),i = 1,2
on the contact surfaces on Biot numBéeatd, = 5mm,
d, = 20mm, Bi - oo, Bi, = o0, t = 10s:
a)Bi; — 0; b)Bi; »
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Fig. 4. Evolution of the dimensionless contact temperature
T*(0, t) for four valuesi* atBi — oo, Bi; = 10, Bi; - o0

5. CONCLUSIONS

We obtained the analytical solution to the heatdemn
tion problem of friction for the two-element tribatem.
The heat exchange through the contact surfacedripf s
and convective cooling on their outer surfaces taken
into account.



We carried out the numerical analysis for the alumi
Isteel tribosystem, where one strip is sliding lo@ $urface
of the other strip with the constant velocity. Whevesti-
gated the influence of strip thickness, the contaciductiv-
ity and the type of boundary conditions on the atioh
of the temperature on the contact surface. Thsnatl us
to determine the limits of the thickness of thépstat which
the solution may be replaced with a suitable sotufor the
strip /semi-space tribosystem (Yevtushenko and &uci
2009a). For the relative thickness stipp >3 we can
calculate temperature from the solution obtained
for strip /semi-space, but for smaller valuesddfcalcula-
tion of temperature should be carried out usingstiiation
for the strip /strip system.
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Abstract: A plane problem of frictional contact interactioatlveen two elastic isotropic half planes one ofclfpossesses
a single shallow recess (depression) is examinegtdrcase of successive application of remote aahstormal and shear
forces. The loads steps (compression, and next tooigally increasing shear loads) lead to the nwntact problem
with an unknown stick-slip boundary determined sy Amonton-Coulomb law. It is reduced to a Cauclpetgingular inte-
gral equation for the tangential displacement jumthe unknown sliding region. Its size is derifeam an additional condi-
tion of finiteness of shear stresses at the ed@ebeoslip zone. Considerations are carried outsfmme general shape
of the recess. Analytical results with the chandzétion of the considered contact are given ahsstilated for the certain

form of the initial recess

1. INTRODUCTION

The frictional effects during contact of elastidide are
the subject of the investigation of many authonserlest to
such problems is stimulated by applied requestsngfi-
neering, tribology, geophysics, bulding industrg drome-
chanics. Amonton-Coulomb’s classical friction l&swsed
widely in engineering applications involving corttac
(Kragelsky et al.; 1982). In this law, it is assuhtbat two
contacting bodies either sticks| < fp) or slip (s| = fp)
to each other, whergis the constant coefficient of friction,
s andp are the magnitudes of tangential and normal trac-
tion due to friction. If the equalitjs| = fp is valid for the
whole contact region, then we have the case ahgliffic-
tion. Realistic frictional contact problems reduoefinding
the correct size and location of the stick-slip taary de-
pending on given loading conditions.

In literature dealing with contact problems (Barlaed
Ciavarella; 2000) the overwhelming majority of wserk
consider the contact of bodies with non-conforming
boundaries (see classification by Johnson; 198%). grob-
lem to be considered is referred to contact friwioprob-
lems involving interactions of bodies with confotiea
boundaries. Such a kind of the interaction takimip iac-
count the absence of local contact caused by #sepce of
local small geometric perturbations of initial bdanies is
less investigated although it is quite typical foany con-
tacting joints. In this field basic research regagdfric-
tionless contact has been carried on and documdsés]
for example, Shvets et al., 1996; Katzki and Monastyr-
skyy, 2002; Monastyrskyy and Kaawmki, 2010; and refer-
ences therein). Similar problems involving frictiavere
considered by Martynyak and Kryshtafovych (2000),
Kryshtafovych and Matysiak (2001) and in a seriepa
pers by Martynyak et al. (2005, 2006).

The present paper is devoted to analyze the behavio
of a complete contact couple formed by two seninitd
elastic planes with the presence of a small surfacess
under the combination of remote normal and shearefo
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This is achieved in two steps: first, by solving fiall stick
contact problem and next, using it to pose and esolv
the stick-slip problem with an unknown slip zondimed

by the Amonton-Coulomb law. Research is performed
for some general shape of the recess. The finalltses
are given and illustrated in particular case.

2. FORMULATION OF THE PROBLEM

The problem under study involves the investigation
of frictional contact between two homogeneous eldslf-
planesD, (upper) andD; (lower) made of the same iso-
tropic material. Referring to the Cartesian cooatiénsys-
tem Oxy the boundary ofD, is rectilinear whereas the
boundary ofD; has a small deviation in the form of the
sloping recess located in a segmer [—b, b] as shown in
Fig. 1a. Accordingly, the shape of the lower ha#ne
boundary is described by the smooth functigm) given
by the formula:

o(1-¢/0?)™ | [x<b,

0, x| >b,

r(x)=

@)

wherer, and2b are maximal depth and length of the re-
cessn = 1,2, ... is a natural parameter, and the assumption
0 <1y/b < 1is made.

Fig. 1. Sketch of interaction of half-planes:
a) before contacth) in full contact



The following phases of constant loading at infirare
considered: first, normal compressive for@gdeading to
full contact and subsequently, monotonically insieg
shear forces§ giving rise to partial sliding.

Similar to the well-known Cattaneo procedure used

in partial slip contact under combined normal and
tangential loading (Ciavarella; 1998), the fullckticontact
problem is solved and analyzed first in order ttatessh
correctly the conditions in formulation of the mastick-
slip contact problem of interest.

3. FULL-STICK CONTACT PROBLEM

Consider the problem of full-stick contact of thalfh
planes without slip (Fig. 1b) characterized by bloeindary
conditions at the interface= 0, [x| < oo:

g, (x,0)=0y (x,0), 7y K,0)=Ty &,0),

u"(x,0)-u* (x,0)= 0,v” &,0-Vv" &,0F-r &) (2)
and at infinity:

Oy(X20)==P, 7, (X,+0)=S5, @)
Ox($0,y) =0, 7, (ko,y)=S.

Here and subsequently,, oy, 7,, — the components
of stressesu, v — the components of the displacement
vector; superscripts “—" and “+” denote the limialues
of functions at the interface of the half plaigsandD,.

Additionally, the requirement of the non-negativity
constraint of the contact pressure:
p(X) =-0y(x,0)2 0, [} <o 4)
has to be used to determine a condition for thepbeta
contact.

Following the solution of the above problem empiayi
the well-known technique of analytical continuation
(Muskhelishvili; 1953) and given in Martynyak et. al
(2005 a, b), the stresses and displacements inathies are
expressed by means of the derivative of the funati®) as
follows:

Ux(x,y)+ay(x,y) =4RE{CDI QI_P,
gy (% y) =ity (X y)=® (2)- P @)+
~(z-2)®[(2)-P-iS,

2(3%[U(x,y) +iv(x,y)] =K@ @)+ @)+

)
v 3-«k
-(z-2)9 (9 + P,

in which:

-G b ¢ (t)dt
¢‘1(Z)=—q’2(2)=( ) | © :

ml+k) o t-z (6)
z=x+iyOD,, 1=1,2,
and G is the shear modulusy is Poisson’s ratio,

k = 3 — 4v is Kolosov's constant.
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Inserting (1) into (6) and using (5) gives the nafm
stresses on the contact surface|fgdr< b:

2o (2103 (-

o (x,0)=
y (%.0) @+K)b 2'n!

(X)j—P (7

and for|x| > b:

2Gry(2n+
ai(x,O):—rO( n+y,
@+«)b
on—=1)1 2 n_% ®)
o @D e X[ X +P(a)(x) _p,
2"n! bl{ b?
where:
2 4 n
P@)(x) =a (5) +a (5) +..+a (zj ,
(x) =[5 | +aq| e
no (-1)%n! (2k-2j-3)!
A+ = 2 k(l ) IE( ) ) ,
k=j+1KI(n=K)! (2k-2j-2)!
j=0,1,2,.n-1, € )E 1, 0 1
Accordingly, the shear stresses are:
Tiy(%0)=S, xO(=,+w). (9)

By observing that the global maximum of RHS
in relation (7) is achieved at = 0, we obtain from (4)
the inequality for the value of the normal pressute
that satisfies full contact of the bodies

P> Grg(2n+1)(2n—- !
2"+ kbd

(10)

According to the Amonton-Coulomb law, the increase
in the shear force$ does not affect in sliding if the contact
stresses satisfy the conditian,||< f|a, |, i. €.

S<f{P_GrO(2n+1)(m—1)u} a1

2" niL+4)b

Thus, the slip occurs when this condition is vietht
4. STICK-SLIP CONTACT PROBLEM

Let us consider now the case opposite to (11):

(12)

S> f{P—GrO(Zn“Ll)(?n— 1)!!j

2" ni+ k)b

that is the condition of sliding in the vicinity olie point

x = 0. So we are faced with the stick-slip problem irickh
we assume from the loading and geometry symmety th
there exists a region of local slidifg| < ¢ (see Fig. 2).
Note that the half-length of the slip zoneis unknown.
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Fig. 2. Interaction of half-planes in stick-slip contact

For the present non-trivial problem we have the esam
boundary conditions at infinity given by (3) andeth
following contact condition oy = 0:

a,(x0)=0y (x,0), [ <,
Ty (x.0)= r;('y (x,0), [ < oo,

7, (x,0) = loy (x,0], I <c, (13)

u”(x,0)-u* (x,0)= 0, [¥=c,
V7 (%,0)-V" (x,0)=-r (x), | < co.

Moreover,sign(tx,) = signS is chosen from the slip
behavior.

To determine an unknown coordinateof the stick-slip
boundary, we will use the condition ensuring fingss
of the contact shear stresses at the edges oliplmose:

lim \rxy(x0)\<+oo. (14)
X £C

In dealing with solution to the above posed problem
we use the commonly employed method of intercorgapt
functions, devised by Martynyak (1985).

First we solve an auxiliary problem with the same
boundary conditions of the original problem buttéesl

of (13)% we set:
u”™(x,0)-u" (x,00=U (x), |{<c. (15)

Results for the normal and tangential stresseshat t
nominal interface are expressed as (Martynyak et al

2005b):
_ 2G  br'(t)at
,0)= -P,
Jy(X ) ﬂ(1+K)_jb t—x )
_ __ 26 cU'(t)dt
Dy (X.0)= 71(1+/()_IC t—x S

and comparing with the solution of stick problem see
that the formula for normal stresses doesn’t chahigav

substitution (16) into relationships (}3yields a singular
integral equation for the unknown derivative of dtian

U'(x):

1eU'@Ddt _1+k

n_jc ox 26 (SR
+(2n+1)rof((2n—1!!+p(a)(x)), K<c @7
b 2"n!
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By utilizing the theory of singular equations with
Cauchy kernels (Muskhelishvili; 1953), it is podsilio
obtain the solution of this equation in the clatfuactions
with the natural conditions of continuity of thelatve
tangential shift/ (+¢) = 0. Omitting details, we focus only
on the expressions for the tangential stressdwedhterface
boundary:

= (%)= - 2G(2n+])rof((2h— ) !!_P(w)(X)J, K<,

(I+x)b 2"n!

_ 2G(2 fr(2n-2N W
f -
foem g (30
XL > 18
\/ﬁ' |X| c (18)
-C

where:

PI(x) = dg +da (x/c)? +da(x/c)* +...+ d  (x0) ™,

. (2k-3)!

k=1 (2K ax (/b)™,

n o (2k-2j-3)!

c 2k
Ay | — ,i1=12,..n-1
S (k-2 2‘( ) : "

b

P(W)(x) =Wy +w2(x/c)2 +w4(x/c)4+...+w2ﬂ (x/c)21 ,

D dyp(2m-2j -7
I e I

, 1=0,1,2,..n

In order to close the problem in hand, we have to
modify the above expressions to guarantee theitefinss
in the vicinity of the pointfc according to the condition
(14). By analyzing relation (18), it is sufficietd fulfil the
equation:

(2n+)Grpf (-1 N
2" nib(1+ k)

S-fP+

2G(2n+ Yryf
_#p(d)(c) =0. (19)
(1+x)b
In point of fact, this equation determines the unkn
locationc of the stick-slip boundary.

5. RESULTS

To analyze and illustrate the behavior of the ccinta
couple on the basis of the obtained analytic swmiuti
to the considered problem, calculations are peréorm
for the special form of the recess given by themida (1)
forn = 3.

Considering first the stick contact problem, wedfin
the normal contact stresses from relations (7)(&hnd



2 4 6
O'i(X,O):—l4Gr0 i—1—5)(—+—5X——X— -P, |X|Sb,
y Q+K)b( 16 8p2 2p* pb
gy (x0)= 14Gro
1+K)b
5
2 Y3 2 4 6
x| 24X X g 7 DX OX X b s (20)
16 |b|| p2 8b% 2p* pb

Graphs of contact stresses are given in Fig. 3.sbhid
line corresponds t¢|a,|(a, = g,/G) and the dashed lines
1,2,3 — to tangential stresses, (T, = T4,/G) over
the contact linec = x/b under pressur = 2-10"* (P =
P/G), friction coefficient f =0,1, maximal depth
of the reces$, = r,/b = 10~* and Poisson’s ratio = 0,2
for some values of shear stressés (S=S5/G):
1-§=2-10"%2-5=6,328-10"%,3-5S=15-10"°.

S1G,110°

7,100
25

=3 _

—_2_

1 _

3 -2 A 0 1 2 X3
Fig. 3. Distributions of the contact stresses

In view of (11), ifP > 3[26”’

in full contact. By analyzing the relations (7) ai®) we see
that the increase of the shear forc@sdoes not in sliding

if § < =257 that follows from the conditiont)}, <f|a, |.
8b(1+k) y y

This shows the dashed line 1. However, accordinthéo

3SGTO T
Amonton-Coulomb law, forS = f(P — 8b(1+K)) sliding

starts in the vicinity of the point = 0 (see the dashed lines
2, 3).

Now we pass to the main contact problem involving
sliding in the unknown regiojx| < c for loads:

SZf(P— 3% )

8(1+k)b )
The governing singular integral equation (17) fbe t
unknown derivative of functioti’ (x) has the form:

then the half planes are

10U'@dt _1+k

S-fP)+
n_jc t=x ZG( )
(21)
Trof (5 15x%  5x* x°
| = - -2 <c.
b |16 8b2 2p* p®

The desired solution is:
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1+K fro( 5¢c® 21c*
U (x \/c - X S fP)+ —
(9= [ )* (16[36 16p4
,35¢2 35 3t x® _10__ x®_ 7c%x?
16p2 16  8p*p2 2p2p4 po 4be2

2 4

$22X_TX ] y<c (22)
8 p2 2p*t

From the equation (19), having now the form:

6
_5C_ :0'
16,6

we find the half-length of the slip zone — paramete

c= b\/l—s/i;—gb( fP-S)

and then the tangential contact stresses are:

15¢*
=~ _+
16p4

+ 3&3r0f
8b(1+«)

. _ 1Gryf [Ecz_

A+xp| 16p2

(23)

4 6
r;y(x,0)=fP+14Gr0f _5, 15x2 5L X ’ |x|sc,
(1+k)b| 16 8b2 204 pb
- _ i HGRT( 5 15x% _5x* , Xx©
rxy(x,O)—fP+(l+K)b( 1678 807 2p° b6 +
_/Crf (15_5c¢® ¢ x*, 3c*, c?x? 2_4
(1+K)bl 4 2p2 "p2  4pt p2p2 ot
b‘VbZ b2’ (24)

By assuming the threshold valug= fP we have
¢ = b and the shear contact stresses become:

14Gfry (x® 5x* 15x* 5
rt(x,0)=fP+—0 |2 27 ;=2 , X <b,
w(.0) (L+x)blb® 2p* 8p2 16 2

6 4
r;fy(x,O)= P+ 14Gfr, _5x +15x 5+
(1+«)b e 2b4 8p2 16
e 52
- — , X >b. 25
bl pZ X (25)

Since the condition,, = f|g,| is satisfied at any point
of the contact region, we have the case of slilicgjon.

The results of numerical calculations are perforrfued
the following dimensionless parameters:

x=x/b, T=ro/b, T=¢/b, U=U/b, 7,=0,/G,

= = _ = _104
=1, /G, P=P/G, S=§/G and f =0.1, [ =107,
v=0.2.

Fig. 4 shows the distributions of the relative tamiggal
shift of bodies boundaried in the slip zone under the
pressureP = 2-10~* for the following values of the shear
tractionsS :1-§=10"°2-§=14-10"°,3-5=18"
1075; 4— §=2-10"%. The maximum value of the
modulus of the relative tangential shift of bounésr
increases with the shear tractions and reachdeimdntre
of the recess.
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o0

U=10°
0.2
0.4

-0.6

-0.8

-1 -0.5 0 0.5 X1
Fig. 4. Distributions of the relative tangential shift
of bodies boundaries

1

| 1 |2 [-3
c
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Fig. 5. Half-length of the slip zone versus the exterhales forces

The nonlinear dependence of the half length ofslie
sizet on the shear force&sfor some values of the pressure
P: 1-P=15-10"% 2-P=2-10"% 3—-P=25"
10™* is shown in Fig.5. The horizontal straight lines
of the plots correspond to the case of the stichtam
of the bodies. We can see that the zone of slibezpmes
greater with increasing shear forces.

3
f16,k10°

Tor10°
2 4

0

-2 0 2 x
Fig. 6. Contact stresses in the stick-slip problem

Symmetric distributions of stresses for illustrgtithe
behavior of the slip-stick contact are demonstratdeig. 6.
A graph off|a, | (curve 4) and graphs of tangential stresses
Tyy (curves 1,2, 3) versug =x/b are given under the
pressureP = 2-107* for the following values of the shear
forcesS :11-S=10"%2-S=1,4-10"% 3-S=18"
107°.

It is seen that the normal stresses have a global

6. CONCLUSIONS

In the paper we have investigated the complete fric
tional contact of two half-planes containing logabmetric
perturbation of boundaries accounting for frictibrsip
under sequential remote normal and shear forces.fdm
mulated stick-slip contact problem is reduced ® singu-
lar integral equation for the function of the relattangen-
tial shift of bodies boundaries which is next salve
with the determination of the size of sliding. Ore tbasis
of the analytical solution to the above-mentionedbfem
the dependences of slip zone length and contaess&s
on applied loadings are analyzed.
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GRAIN SIZE DEPENDENCE OF CREEPLIFETIME
MODELED BY MEANSOF CELLULAR AUTOMATA
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Abstract: Grain size dependence of creep is a complex ralati@an be increasing, decreasing or constarttifum accord-
ingly to current conditions and material. It is@sequence of complex nature of microscopic mesh@affecting creep.
Some of them are analyzed in current paper by meanailtiscale model, using simulation of damageeii@ment done
by cellular automata technique. It was shown thdarged sizes of grains, which promote developneénntergranular
microcracks, are compensated by reduced densitgidé forming vacancies. Obtained in simulatiorairysize dependency
follows experimentally observed dependency for sgralins in dislocation creep range.

1. INTRODUCTION
1.1. Grain size dependency of creep rate

The phenomenon of creep of polycrystalline matsrial
depends on number of parameters describing theiromi
structure. One of the most important is grain sifee de-
pendency of steady-state creep rate (or minimunepcre
rate) on grain size was already largely studiedwéier,
no unambiguous formula for this relation was olsdin
It appears that many factors like material struetuem-
perature, loading level and also environment infaee
this relation (Boettner and Robertson, 1961).

It is known that for dislocation creep of pure nietate
of secondary creep does not depend on grain sialrga-
ski, 1996), but the majority of alloys exhibits rmmum
for that relation (Wilshire and Palmer, 2002). hietmini-
mum creep rate is described by equation:

Emin = Ba”(ljp exr{_Qc), )
d RT

where o is applied stressT is temperatured is grain
diameter Q. is creep activation energB, n, p are material

The alloys exhibit also the dependency of creepmd
(Eq. (1)) on grain size: for larger grains the preate
dependency upon stress is stronger, and the vdlue o
is larger (Wilshire and Palmer, 2002). Accuratetstes
showed that similar dependency comes out alsodpper.
E.g. for dislocation creep at temperature aboub Oij
(melting temperature) and for stresses larger taMPa
the value of index is larger for larger grain sizes (see Tab.
1).

Tab. 1. Dependency of creep index n on grain size for eopp

grain size | temperature | creepindex reference
[um] (K] n .
30 723 417 Feltharrlggg Meakin,
0 448 | Baenbough, 2001
100 728 5.24 Evans iggswnshlre,
450 723 584 PahutO\llg%nd others,

These results cannot be used for setting the greela-
tion, as there are differences among laboratoneks tast

constantsR is gas constant, then the grain size dependency cqngitions, but the tendency is obvious. Additityiat can

is characterized by parametpr It is equal to about -2
for large grains, i.e. if the grain is larger thée creep rate

be noticed that the creep rate does not dependaim gjze
for the stress of about 50 MPa, whereas for smatiess

is larger, too. The grain boundaries form obstacles ihe smaller grain is the larger creep rate occurs.

for dislocation motion therefore large grains (léssders
less obstacles) allow for faster creep rate. Fallsgrains

p=1, so the dependency is reverse. The grain boigsdar

are sources of dislocations and vacancies. If trang
are smaller
dislocations. The dependency is strongex2) for diffu-
sional creep at small loading level (Wilshire analnker,
2002).

then there are more borders and more

1.2. Grain size dependency of time and strain to failure

There is much less experimental data for grain iz
tion of damage development in creep conditions, Bsihg
the Monkman-Grant relation in form (Evans, 1984):

g8t =C, 2)

min™ f
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wheret; is time to failure,8 and C are material constants,
the time to failure can be approximately evaluated.
The relation (2) is very well experimentally confied, e.g.
for copper in large temperature range (FelthamMedkin,
1959, Wilshire and Battenbough, 2007). The valueg of
is changing from 0,8 to 1, ar@from 0,003 to 0,6. On this
basis it can be assumed that the grain size depewnde
of time to failure is reverse to the grain size elegency

of creep rate.

More experimental data are available for the amslys
of the strain to failure value. It is influenced &ogreater
extent by mechanisms of tertiary creep. Accordméleck
and others (1970) a critical crack length (Griff@nowan)
in comparison to grain size is crucial in deterrtiora
of strain to failure for large grains. A crack ceasily de-
velop along one grain facet, but it is more diffidior this
crack to pass from one facet to another. Therefbgrain
size is larger than critical size of crack the Uedl starts
at the beginning of third period of creep and sttaifailure
is small. The mechanism of voids development isemor
important in determination of strain to failure fmall
grains (e.g. lesser than 106 in 700 K for copper, Fleck
and others, 1970). As the participation of graimrmtaries
in the whole volume is greater for smaller graimsl @s
grain boundaries are main sources of vacanciesdlene
fraction of voids is greater for them and thus #itr&in to
failure is smaller.

2. MULTISCALE MODEL OF DAMAGE
IN CREEP CONDITIONS

Analysis of grain size dependency of time to falur
should include a number of mechanisms occurring
in microstructure of material and influencing creape and
damage development. Taking into account even thst mo
important of these like dislocation climbing, piles, anni-
hilations, grain boundary sliding, nucleation andvgh
of cavities, crack development leads to very comptedel
and the analysis of it can be very cumbersome. \Ever
mechanism has its own scale relevant to its subjeue
size of single dislocation is about fam, void is about
10°m, grain - 10 m, and the size of crack can be compa-
rable to size of construction. The proper analggigrain
size dependency requires multiscale modeling: octiore
of smaller models appropriate for particular scgl@stoja-
Starzewski, 2007). An example of such proceduAEE
model of creep damage presented by Chrzanowski
and Nowak (2009), Nowak (2011) and used in thidyasiga
This model consists of deformation model in macatesc
defined by Finite Element (FE) method, and damagdah
in microscale built using Cellular Automata (CA)xhei-
que.

2.1. Microstructure of material

Microscopic processes are modeled within Representa
tive Volume Element (RVE). It is very difficult tdefine
RVE for damage process. According to Lemaitre and D
failly (1987) it should be from 50 to 5Q0n for metals and
it is connected with sizes of defects. On the offiée it is
connected with material structure (e.g. RVE sizegsal to
6-7 grains diameters after Hayhurst, 2005). The ehod
analyzing different grain sizes should keep corissize
of RVE with varying number of grains.

The polycrystalline structure of material is built CA
mesh using discrete Voronoi tessellation. Firsg g
number of seed points is randomly distributed dw¥®E.
Every seed point has its own state value alloworgdfffer-
entiate the grains. Next, the grains growing proced
is applied until whole RVE is covered by cells bgjng to
particular grains. If the linear size of planar R&H\, then
mean grain diameter is:

d = NO/V nseed' (3)

Important state of cell to be distinguished by CA
is damage Damaged cellcan move freely like vacancies
or can aggregate into voids. Initial nhumber ddmaged
cellsis specified in relation to whole volume by par&ene
fo. At the beginning thedamaged cellsare distributed
randomly over all RVE.

2.2. Damage model

Two main mechanisms of voids growth are imple-
mented: diffusion of vacancies and deformation aterial
surrounding voids. Diffusional motion of vacanciesnod-
eled by free moves aflamaged cellslt is implemented
In block neighborhood. All cells are divided intax22
blocks anddamaged cellan change its position inside
block randomly. In consecutive CA iteration the ifos
of blocks is shifted so thdamaged cellgan move in any
direction. If adamaged celfeaches anothatamaged cell
especially at grain border they may coalescenae \intd.
The process is controlled by surface energy coiteri
The diffusion movement is possible only when it sloet
contribute to the growth of the value hfdefined as:

=Wy oo * Wcrgl 9-9’

(4)

wherelg.m, lg.q are lengths of borders betwegamagedand
undamagedcells, and between two neighboring grains,
respectively; ws.m Wg.q are weight coefficients for these
kinds of borders. To promote stability of the methihe
lengths are calculating in blocks enlarged by cglkin all

Damage development process is the only one modeled directions (4x4). The diffusion rate is changed Ty,

here in microscale. As damage is discontinuous;retie
Cellular Automata are chosen as an appropriateféodhis
process (Chrzanowski and Nowak, 2010). They allow
for simulation in discrete manner of many procegses
gressing in material structure.
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parameter. It is time period (in seconds) equivaienone
diffusion iteration.

The size of RVE is changed according to applied de-
formation. At beginning of every CA iteration thésternal
deformation is compared with current size of RVEdé-
formation exceeds the current size then dimenémfdVE
measured in cells are changed accordingly. Theraafo



tion is stretched over cells according to proceguoposed
by Matic and Geltmacher (2001) adapted to grainctire
(Chrzanowski and Nowak, 2007). The grain boundaries
are considered as weaker than grain interior sttmg
development of intergranular cracks. Another meidmn
connected with deformation is introduced by control
of voids volume fraction. Precise density measurgme
show that itis decreasing with increasing creepirss
(Boettner and Robertson, 1961). It is due to deuakent

of oids and changes of void volume fraction carcakeu-
lated from relative density changes. The straineddpncy

of void volume fraction (Eq. 5) proposed by Bellcanid
others (1977) is used in current model to contnel hum-
ber ofdamaged cellsluring deformation of RVE:

p = p,[L-He?), 5)

where p, ;p are mass density and initial mass density,
gis strain,H and y are material parameters. The number
of damaged cellgelated to deformation is very important
for damage development process. When there aréttleo
damaged cellsthen the effect of inhibited void growth
is reached, but when there are lots ddmaged cells
the void growth is enhanced by deformation. In tivaly

it simulates the real material behavior.

The aim of CA model is to determine the value aheda
age parameter ) as homogenized value for RVE.
It is calculated as the maximum ratio of linearesi con-
nected path oflamaged celldo current size of RVE. The
RVE is consider as fully damaged when damage paeame
is equal to 1 and path damaged cell§oins two opposite
sides of RVE.

2.3. Deformation model

Macroscopic strains are sum of instantaneous strain
and creep strains. Creep strains are obtained meatigr
by FE method for constitutive equation (Nowak KQ12):

& =B E_z(a-cl'_a%))jnl,
c 1*c 1-w

(6)

whereeg. is creep straingis stressBy, hy, wg are parameters

of deformation model. Damage paramet®ris obtained
from CA model running in every Gauss point of FEsme
Strains calculated according to Eq. (6) are used to
determine current size of RVE in CA model. Paransde,

n, are fitted to primary period of creep curve, where
damage can be neglected for real material. Paramgte

in Eq. (6) compensates non-zero initial value ofmdge

for CA model. It was necessary because non-zetalini
value of f, parameter and large instantaneous (plastic)
strain produce significant value of damage paramete
already in early stages of simulation. The finailufa

is assumed when damage parameter reaches 1 inaarsg G
point.

3. RESULTS

Analysis of grain size dependency has been peridrme
using model described above. The model parametars h
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been suited to the results of creep experimentcémper
in 823 K for grain size of 3(m (Feltham and Meakin,
1959). The deformation model parameters were dsvisi
B,=7.57E-24 (MPd)s®, n,;=9.76, w,=0.15. They were
calculated from values of parameter of primary strain
equation reported by Feltham and Meakin (1959):

e =B, )

wheret is time.

The model uses structure describedNgy641,nse#10.
According to Eqg. (3) it gives mean grain diameter
d=202.7 cells. By comparison to experimental graire s
(30 um) the size of single cell can be estimated as M5
and RVE size as nearly 1@@n. The size of single cell can
be regarded as size of smallest recognized void.rbdel
of intergranular failure is implemented and voidanc
develop only along grain boundariesiy.,=0, Wgg=1.
Parameters of Eq. (5) were setHg1.17 andy=2.3. They
were obtained by regression analysis of data fqpep
in temperatures 673 K - 823 K and stress range Ra M
34 MPa (Boettner and Robertson, 1961). Remaining
parameters of damage model were suited to secondary
creep data: f=0.006, Ts=0.25s (see Fig. 1).
The agreement of times to failure and strains ilaria with
experimental data was obtained.

< Ngeed =0
o Ngeed =10
Fay Ngeed = 12

# experiment

10

g [s]

10

10

20 30 40

c [MPa]

Fig. 1. Dependency of stationary creep rate on parameigr-
simulation results in comparison with experimengsiults
(Cu at 823 K 3@um mean grain size,
Feltham and Meakin, 1959)

50 60

Next, the influence of parametet..q was examined.
The simulations were performed foge..#6, 10 and 12,
keeping other parameters constant (see Fig. 1).
It corresponds to grain sizes: 39, 30,u27. The creep rates
are decreasing for decreasing grain sizes and tbepc
indexesn (Eqg. 1) calculated as tangent of regression line
at Fig. 1 are increasing (3.89, 5.49, 6.45, acooty).

Results for time to failure are compatible with esip
mental relation (2). Times to failure are larger $onaller
grains and the difference is greater for smallersses. This
behavior is typical for large grain sizes as damaggow-
ing faster for larger grains. The diffusion mecisami
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of void growth is prevailing for small stresses andnber

of damaged cellsin relation to lengths of all borders
in RVE becomes deciding parameters in damage
development simulation.

60
o nseed:6
50 O Ngeeq =10
Fi nged:lz
# experiment
= 40
&
2
o
30

500 1000 5000 10000

te [s]

Fig. 2. Dependency of time to failure on parametgr—
simulation results in comparison with experimenésiults
(Cu at 823 K 3@um mean grain size,
Feltham and Meakin, 1959)
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1041 O nge =10 £,-0.006
A Do =12 £,4=0.0067
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2|
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&
% o
106
20 30 40 50 60
c [MPa]

Fig. 3. Dependency of stationary creep rate on parameigrs
andf,q — simulation results

In real materials number of vacancies is connewiitt
surfaces of grain boundaries as grain boundariesdasal
sources of vacancies (Evans, 1984). Therefore, lemal
grains have increased number of vacancies. Toctetfhés
effect the initial density ofdamaged celld,q has to be
corrected. For 3D model of constant RVE size, nhumbe
of grains is changing like &3, surface of single grain
boundaries is like &% so surface of all grains in RVE
is~d*. Similarly for 2D model: number of grains
is changing like & length of single grain boundaries
is like ~d, so length of all grains borders in RVE id
In all cases, to keep the value f§ proportional to the
length (or surface) of grain boundaries it shooéd~d ™.
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The value of parametétl (Eg. 5) is changed in the same
proportion, too.

Results of simulations with corrected values fof
are presented on Figs 3 and 4. Obtained creepaaitesde
very well, showing that there is no dependencyreép rate
on grain size. The larger value ff fully compensates the
smaller size of grains. This is consistent with eyah
relation for metals in dislocation creep range. Tésults
for time to failure exhibit more scatter, but thdsealso
no apparent dependency on grain size. The results
of simulation comply with the Monkman-Grant rulg.(2

60
o
50 i
T 40 e}
=
©
o O
30 — _
O Ny =6 £,,=0.0045 loo
O Nyeeq =10 £,0=0.006 @A
AN =12 £,,=0.0067
500 1000 5000 10000
te [s]

Fig. 4. Dependency of time to failure on parametggsy
andf,o — simulation results

4. CONCLUSIONS

The simulations of damage development in creepieond
tions by means of Cellular Automata show that tinepke
enlargement of grains is not sufficient to explabserved
experimentally dependency on grain size. Besidesngr
size also initial density ofdamaged cellsis important
to properly simulate this dependency. But comparisith
the experiments for copper (see Tab. 1) showsrtbagll
mechanisms connected with grain size are taken dnto
count and thus further investigation has to bequaréd.
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Abstract: This paper investigated the fracture behaviour giezo-electro-magneto-elastic material subjecte@léctro-
magneto-mechanical loads. The PEMO-elastic mediomtains a straight-line crack which is paralleitsopoling direction
and loaded surface of the half-space. Fourier foamstechnique is used to reduce the problem tcstiietion of one Fred-
holm integral equation. This equation is solvedctlya The semi-permeable crack-face magneto-etetimundary condi-
tions are utilized. Field intensity factors of sge electric displacement, magnetic induction, lcrdisplacement, electric
and magnetic potentials, and the energy release as determined. The electric displacement andnetaginduction
of crack interior are discussed. Strong couplingvben stress and electric and magnetic field fearctack tips has been

found.

1. INTRODUCTION

Due to the growth in applications as smart devices,

the mechanical and fracture properties of two-plmazgne-
tostrictive/piezoelectric composites are becomingrem

and more important, see: Huang and Kuo (1997), Pan

(2001), Buchanan (2004), Chen et al. (2005), Amnigieal.
(2006), Lee and Ma (2007), Calas et al. (2008) ldad et
al. (2009), among other, have been published thermsa
on this field. The fracture mechanics of PEMO-étasta-
terials also have attracted much attention and manay
search papers have been published; see e.g. Ll et
(2001), Sih and Song (2003), Gao et al. (2003),uzioal.
(2004), Hu and Li (2005), Wang and Mai (2006b),and
Kardomateas (2007), Feng et al. (2007), Tian anf-Ra
pakse (2008), Zhan and Fan (2008); among others.

For the fracture analysis of a magneto-electrotielas
solid of much interest are the effects of magndtotac
boundary conditions at the crack surfaces on tlaeker
growth as well as the choosing of fracture critdkidang
and Mai, 2006b, Wang et al., 2006a). As an appraton
to areal crack, the magneto-electrically permeabhal
impermeable crack face boundary conditions are girev
in the above stated-works. However these two ideatk
models are only the limiting cases of real dielectrack

(Wang and Mai; 2006b; Rogowski, 2007). However, the
above-mentioned works associated with semi-perrmeeabl

crack problems are only limited to an infinite magn

electro-elastic solid with cracks. Additionally,etmumeri-

cal procedures are used to obtain the results.Vvsitetil by

this consideration this paper investigates a PEN&Stie

half-space with an electrically and magneticallyaiocting

crack under anti-plane mechanical and in-planetmlec
magnetic loadings to shown exact solution in singa-

Iytical form.
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2. BASIC EQUATIONS

For a linearly magneto-electro-elastic medium under
anti-plane shear coupled with in-plane electric anag-
netic fields there are only the non-trivial antapé dis-
placemeniv:

U, =0, uy =0, u, = w(xy) e
strain componentg,, andy,,,:

_ow _ow
yxz_a' yyZ_a_y (2)

stress components, andt,,, in-plane electrical and mag-
netic potentialsp andy, which define electrical and mag-
netic field components,, E,,, H, andH,;:

XY oy ox' Y dy 3)

and electrical displacement components D, and mag-
netic induction component,, B, with all field quantities
being the functions of coordinatesaandy.

The generalized strain-displacement
and (3) have the form:

relations (2)

Vaz =Wgo Ea =@y, Ha :_w,a (4)

wherea = x,y andw, = dw/da.
For linearly magneto-electro-elastic medium the -cou
pled constitutive relations can be written in thatrix form

[722:Da+Ba]" =ClYaz—Eqr—Hy]" 5)

where the superscrifdt denotes the transpose of a matrix
and:



Ca  ©5 Q15
C=le&s —&; —dy (6)
Ois —Cdip —fh

wherec,, is the shear modulus along thelirection, which

is direction of poling and is perpendicular to iketropic

plane f,vy), &, and yu,, are dielectric permittivity and
magnetic permeability coefficientg;s, q,5 and d,; are

piezoelectric, piezo-magnetic and magneto — elecef-

ficients, respectively.

The mechanical equilibrium equation (called as Eule
equation), the charge and current conservation tiemsa
(called as Maxwell equations), in the absence eftibdy
force electric and magnetic charge densities, eawiitten
as:

Taog =0. D, =0. B,,=0. =Xy @)

Subsequently, the Euler and Maxwell equations thke
form:

clozw.02e %] =000l 8)
where V2=

2
;?—i- 9%/ dy? is the two-dimensional Laplace

operator.

Since|C| # 0 one can decouple the equations (8):
0?w=0; O%p=0; 0% =0 )

If we introduce, for convenience of mathematics

in some boundary value problems, two unknown flomsti

b(_elswﬂ _Q15WT = Co[@‘/’]T (10)
where:
-&,; -d
L
Then:
low] =co™lr-eswn - qsn] " (12)
where:
Cot= 1 . {‘/111 _d11 } =|:el ez} (13)
Enphy —dip [ du f11] (& &
The governing field variables are:
T = CagWy = aDy = BB,
p=awtex +er
Y =Pnte)xtey (14)
Dy = Xk
By =n7x: k=xy
0%w=0; 0%y=0; 0%=0 (15)

where:
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Cyq =Cyq + €15 + 5

_ s —diths _ (
a=—"———"=—=-\66 %+ e2‘115)
1y — d121 (16)
_ &1lhis — d11e15 — (
= = —(ehs + €85)
Eqafhy — d121 ° °

Note thatc,, is the piezo-electro-magnetically stiffened
elastic constant.
Note also that:

1 1 a B
Cl'==—|a a°+3,e aB+Ce
C - -
“ B aB+ce B 2+ Gss

These material parameters will appear in our surhgti

(17)

3. FORMULATION OF THE CRACK PROBLEM

Consider a PEMO-elastic half-space containing gittai
line crack of length2a, parallel to the surface of a half-
space which is subjected to electric, magneticraadhani-
cal loads. The crack is located along thaxis from —a
to a at a deptth from the loaded surface with a rectangular
coordinate system, as shown in Fig. 1. The PEMGtela
half-space is poled in thedirection.

To solve the crack problem in linear elastic sqlids
the superposition technique is usually used. Thasfivgt
solve the magneto-electro-elastic field problemhuaiitt the
cracks in the medium under electric, magnetic aret m
chanical loads. This elementary solution is:

Tyz )
Dy, casel
Dy:D: %roq. £+ e-|-5 0+(dll+el5q15jH01
Cas Caa Caa
casell (18)
By, casel
By=B= %TO +[dll+ elsqlsJEo | M +% Ho,
Cyq Cas Cas
casell

Then, we use equal and opposite values as the staick
face traction and utilize the unknowmng and b, in the
crack region. Thus, in this studyzy; —(D —dy), —(B —
by) are, respectively, mechanical, electrical and ratign
loadings applied on the crack surfaces (the sedadkertur-
bation problem).

The boundary conditions can be written as:

sz(x’h+):_ro (Xh+):_D+d0,

B,(x h) =-B+b,. |{.a (19)
[r.,)=o, MDy|l=0, [8,]]=0, {0, y=h (20)
[wl=0, [d]=0 l¥l=0 ><I>a y=h (21)
7,(x0)=0 D,(x0)=0 0)=0. | (22)
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where the notatior|f|] = f*
values forh + while f~ for h —.

—f~ and f* denotes the

dy.by

«—1_—pole
<P

crack

= =, =, = = _—=

Tn
Tx 2 F T o1 T T
Dy and By or E; and H,

Fig. 1. The PEMO-elastic half-space with a crack parallel

to its surface under an anti-plane mechanical

and in-plane electric and magnetic loads.

Inside the crack the unknown electromagnetic

field appearsd, andb, are unknown to be determined)

Dy and By or Ej and Hy,

Of course, in perturbation problem the surface & t
half-space is free. The electric displacemégntand mag-
netic inductionb, inside the crack are obtained from semi-

permeable crack face boundary conditions (Rogowski

(2007)). For two different magneto-electric med?&MO-
material and notch space we have continuity cooliti
of electric and magnetic potential in both materi inter-

face. The semi-permeable crack-face magneto-edectri

boundary conditions are expressed as follows:

) Lol

520 20(x) 23

THo N
where §(x) describes the shape of the notch apdyu,
are the dielectric permittivity and magnetic perbibty
of crack interior. If we assume the elliptic notphofile
such that:

3(x)=(d,/ala® - x?

where §,is the half-thickness of the notch at= 0,
we obtain:

2d0(5o/5c a’-x* = —Hﬂ]
20,(8,/ uNa? = =y

Egs (25) form two coupling linear equations with re
spect tod, andb, since[|¢|] and[|y|]] depends linearly
on these quantities as show boundary condition} &hé
(21).

(24)

(25)

4. THE SOLUTION FOR HALF-SPACE
WITH DISCONTINUITY ATy =h

Define the Fourier transform pair by equations:
cos(sx

=Tf( x)cos@Xdx  f(x —7% (26)

O'—-8

Considering the symmetry abomaxis the Fourier co-
sine transform is only applied in Eqs (15) resgitin ordi-
nary differential equations and their solutions:

s y)= Alge™

(26a)

88

Xsy)= B(9e™
Als y)=Ci(ge™
Ws y)=A(ge™ + A(de”
Xsy)=B,(ge +B,(ge”

Alsy)=C,(9e™ +Cy(9e”

In the domainy > h the solution has the form (26a)
to ensure the regularity conditions at infinity.
The transforms of Eqs (14) yield:

d(sy)=eil(sy)+eilsy)+aifsy)
d(sy)=exl(sy)+ejilsy)+Bisy)

fzy(s’ y) = E44V’§/,y - aﬁ)’ - ﬁéy

y>h

(
(

0<y<h (26b)

(27)
Dy :)?,)h By :,,7\')/

The unknown functions 4;(s), B;(s) and C;(s),
i =1,2,3, are obtained from the boundary conditions (20)
and (22) which in transform domain are:

o; [5=0; |8]}-o

(28)
f,=0. D,=0, B,=0, y=0
where[|f] = f(s,h +) — f (s, h—).
The result is:
AlS)= (9l - &)
B(s)= Y9l -
Cl(S — Hs)(e—sh _esh)
(29)

C, (S) =G, (S) =t

Finally, the solution for the half-space with disddion
density functionsf (s), g(s) andh(s) in the domairy > 0
|x| < o0 is given by:

wxy)= 72;]0 lsgrﬁy Re 1) e 4““]CO$S%S

al —e"s(y"h)]cos( syds (30)

xxy)= 7277 s [Sgr(y

=] Hslsarty- e 7 -t cog s

0



r,(xy)= 7_21 644]'0 sf( s)[e_ﬁ*(rh)‘ —e‘s(y”‘)]coi syds+
_721 T s[ads) + A1 §][e_$(rh)‘ —e’s(y“”h)]cos{ syds

,(xy) =%ng{s[ -4 gdyeh) ]cos(sx)
0

S(xy =7%I [ -yl gmdyeh) ]cos(sx)

wheresgn(y — h) = +1 ory > h ory < h, respectively.
The potentialsp(x,y) andi(x,y) are obtained from
Eqgs (14).

5. FREDHOLM INTEGRAL EQUATION
OF THE SECOND KIND

The unknown functions(s), g(s) and h(s) can be
obtained from the mixed boundary conditions (19)
and (21)which yield:

ET é(s)[l—e‘ZSh]00£€ syds= +(D —d02a+(B—l:b),8

Cas

0

7% J' gj(s)[l— e‘ZS“]cos(sx)ds= ~(D-d,)

) (31a)
%T sf(s)[l— e‘ZS“]cos(sx)ds= ~(B-by): |{.a
Af(s)cos(sx)ds =0
(s)cos(sx)ds =0 (31b)

s)codsx)ds=0 ; {za

O—8 O—8 O—38
= «Q’

The integral equations (31a) may be rewritten as:

To"'(D_do)a"'(B_tb)ﬁx

A(S) 1-e2 G 32)
—J' e S|r(s)ds=— (D-d)x
= (B—Q)x

We introduce the integral representation of thenomkn
functions:

+(D-dy)a+(B-h)8
644 a f(u)
= D-d, J. g(u)
B-hy ° [ Hy)

—+)>
—_
O

(33)

J(sydu

P=aJ(13
v
|
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where J,(su) is the Bessel function of the first kind
and zero order andg(u), g(u), h(u) are new auxiliary
functions. This representation satisfies equatig@sb)
automatically and converts equations (32) to thelAine
integral equation, which can be solved expliciilje result
is the Fredholm integral equation of the secondkin

fu)-] (9K(uvdv=1

° (34)

with the kernel:

K(uv)= \i se?"3 (su)d, (sv)ds 35)

and:
f(u)= glu) = ()

of coursef(s), §(s) and h(s) are dissimilar since
are proportional ta, + (D —dg)a + (B —by)B ; D —d,
and B — b,, respectively, andl,, b, are dissimilar func-
tions, defined by Egs. (23).

(36)

6. THE SOLUTION OF FREDHOLM INTEGRAL
EQUATION OF THE SECOND KIND

The kernel functiork (u, v) may be presented in more
useful form. Using the Neumann’'s theorem (Watson,
1966):

Jo(su)JO(sr) =]—1Tj|'TJO(sR)da

(37)
R? =u? +r? - 2ur cosa
and the integral:
K - 2h
sJ,(Rge>"ds = (38)
[ R? + (20|
the kernel function becomes:
ahv 2 da
K(u, v) =
2 EI; (1— k2 cog a)yz (39)
12 =(u+vfPean?, k2=

| 2

The kernel function is presented by means of &lijpt
tegral. The integral equation (34) can be solvedtdnative
method.

The recurrence formula is:

a

fi (U) = 1+J. fiu

0

(VK(uvidv, f,(\)=1, i=12.n  (40)

The n-th approximation gives:
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f(u):1+afau{1—4—;%}+
Joa Y, ankk)],
TS "

n n
( a ) 1 4h K(ko)
a+u mTo g
whereK (k) is the elliptic integral of the first kind defined
by:

ml2 da
Klo)= | igcogar
(42)
12=(a+u)’ +4n? 2_%

The sum of infinite geometric series convergeshi t
solution asn — oo, giving:

f(u):{l- afu[l—z K(k‘))jr u<a (43)

ml,/2h
The range of convergence is given by inequality:

i) (24

m

lu<a (44)

and is satisfied for all af anda/h.

Forh — oo, (2/m)K(ky) —» 1 andly/2h — 1, while for
h - 0, we have the logarithmic singularity of (k,) for
u=a:

1
L 2au (45)

atu

K(k,)-"

But hK (k,)/l, tends to zero as/h — co.
Thus we have the values:

f[%j ) {l+%¢1i52 K[Jlfdz H
f(O)—\/E, 5=2

The values off (a/h) changes from 1 to 2 for all
of a/h andf (u) is given explicitly by Eq. (43).

(46)

7. FIELDINTENSITY FACTORS

The electric displacement, magnetic induction amehs
stress outside of the crack surface can be exurdgse

{[E)’;((: 23}:727{2:&}3 fludf sysdf-e>Jcokhs (47)
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J[xhs)=- ‘25“)(:05{ syds

udqusJo (

o'—.m

2
m°
Using the integral:

3

-2sh : J ds = n
_([e sm(sx) 0(su) S W (48)
u? =X2(1+52)(1"72) 2h=xén

equations (47) may be written as:
{Dy(xht)}:_z{D—do}djf( u E % n }
B(xhs)| ™ 7|B-h [dx) W2 Ae+7)

(49)
2, df M1
ITTO dX'([ f(u)Ud{X\/Xz 2 x(f2 +/72)

The singular terms of these quantitipg & a™) are in-
cluded in the first term in Eq. (49). Since thegsilar field
near the crack tip exhibits the inverse square-sagajular-
ity we define the stress, electric displacement madnetic
induction intensity factors as follows:

X$50, 750

r,(xh+)=

K T

T zy
Kp =‘Lim+1/2le—ai D, (50)
Ke) B,

The intensity factors are obtained as:
1
Kw :~_(Kr +aKD +M<B)
Cay
Ky =aK, +eKy +e,Kg
=K, 6Ky +eKy

K :%TO f(a)\/g (51)

The jumps of displacement, electric potential aragm
netic potential of the crack surfaces can be eggtsas:

H""”z%ro+(D_d°)a+(B_b°)ﬂTj£u)Udu
()udL (52)

S

M %;{4%+(D—déjf+(8—tb)d +e(D-d)+ g(B_Q)}I f(yudt

X
Substituting Eqgs (52) into Eqs (25) and differettig
both obtained equations with respect o and using
the following rule of differentiation under intedjisign:

Yr{BIA, (6, )+ gfp)




LY ___xi(a) +xj (ﬂj&
dXx\/uz— aja?-x  dul u )2 -y
equations (25) may be converted to two equatiorghich

singular terms atc - a — 0, appear. For the singularity
to vanish atc = a — 0, it must be true that:

(53)

do:—%f(a{gA[ro+<o—do)a+<e—a)d+q(o—do)+%<s—a)

- (54)
u,=—m(a{§4[ro+(D—oma+(e—q)4+g(o—do>+%(a—q>}
where:

2 :]_2_[510 c b = ﬂ%yc (55)
Thus
D-d, {D{l pof(fz esﬂmeo (fﬁ J
+Tci—‘j o+ ugidee, -eﬁ)f]}x
oo
A4 44 44 (56)

NN RN

+%ﬁ t|p+equdae, -eﬁ)f]}x
44

x {1_{50[54 wafrul £ 10 et eé)]}

wheref = f(a/h).

The electric and magnetic intensity factors areaioied
by substitution of Eqs (56) into Egs (51).

Furthermore we consider the behaviour of the jumps
of the displacement, electric and magnetic potentia
and define the following intensity factors:

KW
K,t= Iim ——— (57)
| 2 X
Ky 7
In view of the results in Eq. (52), we have:
1
Kw =~_(Kr +aKD +:6KB)
Caq (58)
K(p = aKw +e.I.KD +%KB

Ky = BKy +&Kp +e5Kg

These field intensity factors satisfy the consiviit
equations:
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Ko, [ =2 K KT (59)

The energy release rate is derived in the following
in similar manner to proposed by Pak (1990).

The energy release rate of the crack-tip is obthfrem
the following integral:

:—I|m—f{ ot +a 0w +a- o)+
D, (r +a0) [|¢1]r+a—5)

B,(r + a,O)[|¢|](r +a- 5)}dr

(60)

where[|w]], [|¢|] and[|y]] are the jumps of displacement,
electric potential and magnetic potential field emsity
factors given by Egs. (52).

The energy release rate is defined as:

1
:E(KTKW+KDK¢,+KBK¢,) (61)
or:
2 .5 1 2) 2
G=—f -d
) (a)a_(—)544 ey — A2 [(511/111 11)70 +
- (044/111 + Q125XD ~do)* - (044511 + ef5XB ~by)? 62)

+ 2(315/111 - Q15d11)T0(D - do) +
+ 2(%5511 - elsdll)TO(B - bo) +

+2(Cqq0h + €505)(D —do )(B - bo)]

8. SOLUTIONSBASED ON IDEAL CRACK-FACE
BOUNDARY CONDITIONS

When the crack is one of four ideal crack modelagm
neto-electrically permeable, magneto-electricathpérme-
able, magnetically permeable and electrically impeable,
magnetically impermeable and electrically permealasies
the limiting cases of the magneto-electrically eotic
crack model.

— fully impermeable case, - 0 andy, » 0,D —d, —

D, B — b, = B and the intensity factors are given by:

K™ -2 flaja (f)\/g (r, + Da +Bp)
T Cyy
imp.imp. - E
K; p f(a)\/gro
impimp. — E
K _ﬂf(a)JED (63)
K [mpimp. — 3 f(aW/aB

Kimp.imp. - m<lmp.lmp. + e_LKimp.imp. +eZKimp.imp.
@ w D B
imp.imp. — imp.imp. imp.imp. imp.imp.

Ky =Ky +6Kp +eKpg

Equations (63) indicate thdf,, K, and K; are inde-

pendent on the material constants, whilg K, and K,
depend. Sincg(a) depend on the parameter of location
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of the crack(the thicknesa), strictly speaking om/a,
these quantities depend on this location.
— full permeable case, - 0 andy, — 0

Then:
T T
D—doz%' B—boz% (64)
44 44
And:
K Per-per. — 2 f(a)\/5
w - Ty
T Cy
Krper.per. :E f(a)\/gro
T
KDper.per. — elE_)Kv\;’)er.per. (65)

per.per. _ per.per.
Kg = thsKy

K ;er. Per. —

Kl;er.per. =0
The energy release rate is:

_2 r2af?(a)
T Cy

— electrically impermeable and magnetically permeable
& — 0andyy, - 0,D—-dy—-D,d, =0

G (66)

imp.per _ | impimp.
KD KD

B_bo{D[ff_ﬂ+ezjf(a)+i°—ﬂ{l+(ﬁ*esﬂ_l

Csa Cas Caa
(67)
kg =2 f(aa(B-b,)
kimeoer = 2 f(a)yafot P, g impper
T C44

The solutions for the electrically impermeable amalg-
netically permeable crack are independent of thelieg
magnetic field.

- electrically permeable and magnetically impermeable

€y, = 0andy, - 0,B—by > B,by = 0

KBE)er.imp. - Kgnp.imp

izt o))

(68)
kg =~ f(aNa(o - a,)
Kvt)enimp :E f(a)\/g Toj B/B + a,KDpenimpA
T C44

The solution for the electrically permeable and negy
cally impermeable crack are independent of the ia@pl
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electric displacement.

In practical applications the following cases appea
- Letg, tends to infinity and, is finite

Then:

g =K o )+ K5 1)
o (69)
Ké)erm;zc - KlE;anmp. (1_ fl(,L_l)) + Kéner.per. fl(,L_l)

where:

- 1 g 1 ;
()= ﬂ:g%iﬂa[ﬂ' s j (70)

1+pm> H1Cys

— Letu, tends to infinity and, is finite
Then:

K = Km0 1)+ ke )

| (71)
K;cperm — Kgnp.per. (1_ fz(g))-'- Ké)er.per. fz(‘?)
where:
_ _]_Tii 1 e_L25
fz(é‘)—1+§, &€= 2 g, 67(55[14- 511C44] 72

In above equations the notati&®¢" ™ denotes the in-
tensity factors (51) and (58) for electrically pemable
and magnetically impermeable crack boundary cooriti
i.e. for the values (68). Similarlj™”Pe" are defined
by Egs (51) or (58) and (67).

The functions of permittivitye, and permeabilitypu,
approaches zero as andy, tends to zero and are unity
ase, andy, tends to infinity.

The solution perfectly matches the exact solution
in both limiting cases, namely permeable and/orampe-
able electric and/or magnetic boundary conditions.

9. RESULT AND DISCUSSION

1,8 /
1,6

0 40 80 120 160 % 200

Fig. 2 Variation of f (a/h) versus ratio ofi/h; stress, electric
displacement and magnetic induction intensity fiscto
are proportional t¢f (a/h) since:f(a/h) = K, /tova(2/
) = Kg/B+a(2/m) in fully impermeable case

The electric and magnetic response, in fully imperm
able case, is proportional to the applied elearnd mag-
netic load, respectively, and is independent omibkehani-
cal loads, as Eq. (63) implies. Similarly is forests inten-



sity factor. The intensity factors of stress, aleatlisplace-
ment and magnetic induction, therefore, are juistnation
of the geometry of the cracked PEMO-elastic ha#esp
as shown in Fig. 2.

From the Fig. 2 we can see that the SIF, EDIF atié M
increase witha/h. For small values ofi/h these quantities
grow at an approximately constant rate with incireas
a/h. For very largea/h (the crack near the boundary
of a half-spacef (a/h) increases slowly tending to 2.

10. CONCLUSIONS

From analytical and numerical several

conclusions can be formulated:

— The electric displacement intensity factor is inelegeent
of the applied magnetic field in the special cakelec-
trically impermeable and magnetically permeablekra

— The magnetic induction intensity factor is indepemd
of the applied electric displacement in the specéde
of electrically permeable and magnetically imperbtea
crack;

— Applications of electric and magnetic fields do atier
the stress intensity factors;

— The analytical solution (43) is new to the authoest
knowledge. Accordingly, the behaviour of a crack
which lies near of the boundary of the medium may b
investigated exactly;

— Note that the planec =0 is a plane of symmetry
(to, = 0,D, = 0 and B, = 0 on this plane). In conse-
quence the solutions are valid for quarter-plane
with edge crack of length.

results,
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Abstract: This paper considers cylindrical bending of theteoleontaining a crack parallel to plate’s facese Emalytical
model of the problem is obtained using the improttegory of plates bending, which considers trarsvateformation
of the plate. Received analytical results are coegawith the numerical data of the boundary elemapproach,
which is modified to suit the considered contaaibpem. The results of analytical and numerical méghes are in a good

agreement both for the isotropic and anisotropitgsl.

1. INTRODUCTION

The problem of analysis of thin plates weakened

by cracks is especially important in the case ahposite
materials, due to the possibility of interlayeratalnating.

However, crack growth parallel to the median swefac

of plate is less dangerous than the perpendiculackc
growth, the problem of analysis of such elementtif

actual. This problem is studied in the monograplgs b
Panasyuk etal.,, (1975), Marchuk and Homyak (2003),
Serensen and Zaytsev (1982), Cherepanov (1983), etc

Some of the problems for edge cracks are solvediby

merical methods. One can see them in the well-known
handbook edited by Murakami (1987). In the study of

Gnuni and Yegnazarian (2002) stability and bendirap-
lems of thin plates containing internal cracks examined
under the classical bending theory conditionshinpresent
work, the problem of cylindrical bending of plateithw
internal crack is solved basing on the equationthefim-

proved theory of the middle thickness plate bending

(Shvabyuk, 1974). The influence of transversal @nipy
and length of the crack on stress and displacemktite
plate is studied.

2. STATEMENT OF THE PROBLEM.
BOUNDARY CONDITIONS

Cylindrical bending of the plate of a thickne2h
is considered. The plate is hinge-supported onetthges

x = +a. The plate is weakened by a symmetric tunnel

internal crack (at-l < x < l), which is placed at the depth
of z = h — h, parallel to the median surface (Fig. 1).

The plate is bended with the uniform logd which
is applied at the outer surfage= —h. To solve the stated
problem one can utilize the technique (Gnuni andy-Ye
nazarian, 2002), according to which the plate isnfdly
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decomposed into two domains with different bendiig
gidities: the domain containing a crack, which wgilical
rigidity equals the algebraic sum of rigidities tbhe upper
and lower plate elements:

D,=D; +D; =4D
1)
(0=1-38+36%,B=hy/ D);

and a domain without a crack, which cylindricalidity (1)
equals D, = D = 2Eh3/3(1 — v?). Thus, D = E(2h —
ho)3/12 = (1 — B)3D is a rigidity of the upper plate part
over the crack; and; = 3D is a rigidity of the lower
plate part under the crack;= E/(1 — v)?; E is an elastic-
ity modulus;v is a Poisson ratio.

/‘1
y 1 0 | 1 x
Z/OE ______ — 7 — — — —
! 5
M) O
N* = M) \>
M;(I)i X h Ol $
N_ | 0

Fig. 1. Scheme of plate loading

It should be noted that the used technique carppkeal
in cases, when the plate model does not take itttoumt
the transverse compression, i.e. when vertical laisp
ments do not depend on the transverse coordinatéthin



this technique it is impossible to determine thal reormal
stresso,., which act in the upper and lower parts of thaela
over and under the crack, respectively. Therefbemce-
forward (with the use of equations (1), (2)) a nlode
of plates of medium thickness (Shvabyuk, 1974), cWwhi
utilize the improved equations of bending, is usédrre-
sponding equations for the vertical displacem@fix, z)
and normal stress, allow studying the stress-strain state
more precisely and satisfy the boundary conditfongach
part of the plate both on the domains’ interfacd an the
faces of the plate.

Assume that the contact pressprewhich acts on the
crack faces is constant along the whole crack aot that
it can be obtained using the displacement of thddtai
surfacew, of the lower part of the plate under the crack
by classic formula for deflection under cylindridgsnding:
p = Dyw}V. For the upper part of the plate and for the
whole cracked domain this equation can be writteaugh
corresponding displacements, and w in the following
form: g —p = Dfwl and q = (D + DP))wW!Y = sDw'V.
Neglecting on thls stage of the transversal congwas
(w; = w, =w) one can obtain an approximate equation
for contact pressure on the crack faces:

__ PFa
1-38+36°
Taking into account thav, = —p and substituting

B =1/2(1 —z/h) in the equation (2) one can obtain ex-

pression for contact stregg as a function of transversal
coordinatez:

q (z/h-1)°
og,=————"—.
2 (1+32% In?)

D q
D +Dg

p= ¥

®3)

For estimation of stress-strain state of the platpja-
tions of improved model of transtropic (transvessal
isotropic) plates (Shvabyuk, 1974), which take iatzount
both the transverse shear and transverse compmgssio
are used:

Dw" =g, -alfdy-eaf d%,

"(1+v)dy,

where:D; =D = IE, I = 2h%/3, K' = 4G'h/3, q;, = q~,
qi1 = —0,597, u;, wi, wir, hy = u, w, wy, h for the domain
|X| > l; U, Wi, Wiz = Uy, Wy Wyr, qi1 = Qu1 =
(oz(h—ho) —q7)/2=—-(+q7)/2} qz=qua=q +

(4)

Kiwy =62, Eul =-v

oz(h —hy) = q”—p = CI(1~—(33/(1 - 38 +3B%));
B = ho/2h; D; = Dif = IJ'E; = 2h(1-B)%/3;
hh=hif=(01-p) or D;=D; =I{E, I} =h3/12;
K'y =2G"hy/3; qi1 = 9 = —0,5p; iz = Q12 =

qﬁS/(l - Bﬁ + 3ﬁ2)1 Uiy, Wiy Wi, hi = U, WL! Wig, hg/z

for the domain |x|<1[; & =1/20(1—a)E/E', E =
E/(1-v?); a=0,5v"G'/G;, E, E', G', v are elastic
moduli and Poisson ratio of plate material in theditudi-
nal and transverse (with primes) directiong; =gq

is a distributed load applied to the upper surfaicine plate

(z = —h); u is a horizontal displacement of the median
surface of the platey, w; are total and shear components
of vertical displacement of plat median surface;maa

acta mechanica et automatica, vol.5 no.4 (2011)

numeral superscripts ofv, w;, u and q;, q, denote
the order of derivative by the variable subscripts “u”
and “I" denote respectively upper and lower partstie
plate at the cracked domai2k is a height of cross-section
of the plate;h, is a thickness of the plate part which
is under the crack. Further, the caseqdf= 0 is consid-
ered.

Expressions for stresses,, o, and displacements
U(x,z), W(x,z) of the plate outside the cracked domain,
according to this model are as follows (Shvaby@k4):

N My,
X 2h |
2 2
z(z —0.6h ) G
V" _O Ilh2_
3l (1-v) (G )(qz = E'j
1 z z3
O, =g += :
1 .+ - .
@=5@ -a) %= +q) (5)
U(x,2) =u(x)
2 1-a
g W 1—(1—a)z— +—( , )%23;
dx dx 312 8E'h dx
W(X%,2) =w(X)
+20'02B(L+A’dj WGZ—+ OmJZEIB(Z)
E' dx? 2 8Eh
where: B(z) = 6A222 - 2_4- LA
= AE'
ap=05-v'[A, W=w+1.5505h/E, =1+ :
0 202 A 20,G
" h 2~
VAE d“w 2
Ay - = | zoydz=-D—-gh"q,,
A=Ay 4a OG My __‘-h X a2 1 12
, dw, du
, Ny = d 2Eh—+2Ah

are a bending moment, transverse and longitudimrales
in the plate;u is a tangential displacement of median sur-
face of the plate.

The system of equations (4) is solved separately
for each domain of the plate. Herewith, the coroesiing
boundary conditions are satisfied joining the <doha
for each section, and the conditions of problem retny
are taken into account.

In particular, for the domaitx| > [ the following rela-
tions hold:

w=Co+Cox? +ax*/(24D);
(6)
=C, - x?/(2K'); u=v"(1+v)ax /(2E )+ Ry

For the domain|x| < [, if it concerns the lower part
of the plate under the crack, which face is loadéth
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the normal stresso;(h — hy) = —qB3/(1 — 38 + 352,
the displacement (3) are as follows:
W =Cio+Cx° +q 2X4/(24DI)?
)
- 2 e =
Wz =G — QX /(ZKI)' U =Rx+Rg
Here constantg, C,, C;, Ry, Cyg, Cp2, Ciz, Ry, Ryg @re ob-

tained using the boundary conditions on the edgea
of the plate:

w(a) =M, (a)=Ny(a)=0; Q(a)=-da (8)

and joining the solutions on the cracked domainniemy

x =1 for upper and lower parts of the plate, which are

studied as separate objects, loaded (except ekteating)
with additional surface contact pressyran the cracked
domain. For example, for the lower part of the glat

W (|)=W(I,h—ho/2); u (|):U(|,h—h0/2);

oy (1,19 /2) =0, (1,h); Nx_(l):j:—rbaxdz- 9)

where:

- -\ _ Ny My _
G'X(X,Z ):—X+—_Xz
ho

+

z ((z')2 —0.1Eh§) G
3

GI
—'_V" q _0.123]" hz—,),
317 (1-v) )( 2 Z0E
- _ = .1 ] . - _ -~ 2 .
Ny =hoEu +hoA'qy; My =-Dy W' —0.255hq 2;

QG ()= (1)+aual , &(1)=-al; z =z-h+hy/2

is a thickness coordinate of the lower plate partien
the crack.
Satisfying the boundary conditions (5), one carawbt

the factorsC,, C,, C, along with the equations for the bend-

ing momentM, and displacements and w, in the un-
cracked domain:

Co =5qa” /(24D) +q&a?h? /( D),

G :‘(2M|x(|)+Q|2|2+0-551Q|2h%)/(‘Di) ;

(g _Aa) 3da®( 1% o h® ) d
F?O—(Rl ZE)|+4Eh2[3a2 Zslaz l]+4G’f('B)
. S 2D”
R1:N|x(|)/(Eho)‘AQ|1/Ei C'Tz_T{C'Z;
Ro=0; f(8)=0-p)B-(1-8) a-a);
W(I,h=hy/2) =w(l)
. |2 2 h

a0 (1= B)B- a(B) Ao~ Aol (1)

V2 (1-B)°E
21-v-2V" )G’

Ny (1) =38(1- B)My (1) /-

A, =
(G/IG'-v")ah
4(1-v)
My (1)=-Ng (1)ho/6+0.28M, (1)h§ h?
+0.2¢ (a-q)(G /G -v") 16(1-v) ;

f(B)=@-B)E+28-57);

f2(B);

f2(8) = -2 (262~ 26- 03+ 0..

3. BASIC EQUATIONS

Thus, proceeding from equations (6) — (8) the tastl
forces and bending moment for the part of plateeund
the crack are as follows:

Nk (x)= N (1)5 Qx (X)=-azx;
(12)
M;(x):M;(|)+q'_2?(|2-x2)

Taking into consideration that the longitudinal des

C, =-ga’/(4D)-qe;h? /(2D), inthe plate parts above the crack and under tlaekcr
(x <1) are equal in magnitude and are opposite in sign
N7 (x) = —N,f (x), the value of the boundary bending mo-
mentM;! (1) for the upper plate paxt < [ is obtained from
the boundary condition of equality of normal stessen the

outer £ = —h) surface of the plate:

C, =qa’(1+25h? /a2) /(XK');
M, =q@2 -x%)/2; Q(x)=-ox; (10)

w=q(x*-a*)/(24D)

ox (1.-h(1-B)) =0, (1.-h) (13)
+0a? (a2 - x?)(L+ 2502 /a?) /(4D) hus
w, =ga’(1+25h? /a?) (2K')-gx? I XK') M; (1) = -(1- B)Ng (1)h/3+(1= B)2 My (1)
(14)

Utilizing conditions (6) one receives the rest of u 200 22 [ G _ . _
known factors: +0.40°(1- B)"(d-d2) c Y {Fv)
Together these quantities have to satisfy the émuat
of the moments’ balance in the plate at the cradadain
(Fig. 1b):

Cio :W(I,h—h0/2)—C|2I2—q|2I4/(24D1);
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M (1) + M5 (1) + N (1) =My (1) (15)

Hered is a distance between the points of application

of longitudinal forces to the transverse crossofithe plate
parts; d = h for the linear distribution of the normal
stresseg, .

It should be noted that the equation of the mombals
ance (12) includes a term, which takes into accdhat
influence of longitudinal forces and which was maken
into consideration by G.P. Cherepanov in his “gah#re-
ory of delaminating of the multilayer shells” (Ckepanov,
1983, p. 267). It was explained by the fact that distance
d was considered to be less then the linear sizbeofrack
(d < 1).

At the same time an account of the longitudinatésr
N7 (D), acting in the transverse cross-section of theeupp
and lower plate parts, allow, under the conditidrstatic
equilibrium of plate part, which is “cut” along claplane,
and on its extension, to determine the shear (tahderce,
acting at the extension of the crack:

a —
T(1) = rdx =N (1). (16)
where 72, = —36(1 — )Q,/h is a “background” stress
acting on the horizontal cross-section of the platinout
a crack but on its depth.
Approximate value of stress intensity factor (SHy)
can be determined by the formula:

K =2, ()2 = -2/25(-p) 2

Maximal (¢ = 0) normal displacements; (without ac-
count of compression), as well as a stressthat appear
on the external and internal surfaces of the loplate part
can be written as follows:

(17)

sqa* | (6% +2.465%02 1a%) 62
24D 1-38+ 382

+2.4e, (1-62 02 Ja% + 1—94] ;

2 2
o (o,rb,z):éa_(l_ﬂgz]q

W

2 2
4h 1-38+38 18)
LL1(G/G"-v")
5 (1—v) '
_ _ 3qa2 2
oy (0,-hy /2) ‘Z?[“‘ 28)(1-6°)
S6°

_ _E(G/G'—v") 1 4
133 4 (1) q(ﬂfzw)+5}

In the case, when the crack is placed along thdaned
surface of the platef(= 0,5; h, = h), edge bending mo-
mentsM,,,. (1), M, (1) and longitudinal forc&V,, (1), acting
at the edges of plate parts in the cracked donzam,ex-
pressed through the bending moméft(l) of the whole
plate by the following formulas:

acta mechanica et automatica, vol.5 no.4 (2011)

M ()= ()= MX(I)+%%;

(19)
~m_3 (G/G'-v")

Ny (1) = MX(I)/h_%W

Consider an extreme case, when the crack is loaated
the median surface of a plate. Formulas for maximoainal
stresses (in the cross-section=0) on the internal
and outer surfaces of the plate parts, dividedhaydrack,
take the following form:

_ 3a? 2\ 1(GIG"-v")
) ( ) (20)
+0) =73 2 —EG/G—'_V"
crx(0,+0)—+2hz a¥ =)

where 8 = l/a is relative length of the crack; upper and
lower signs of notations®” and “¥” in formulas (17)
correspond to the outer surfaces of the lower appleu
parts of the plate, respectively. Streg$0, +0) acts on the
internal surfaces of the plate parts located uifsign “—")
and above (sign “+") the crack.

Maximal displacement of the median surface
of the lower part of the plate can be written ia fbllowing
form:

5qa* 4 C g2 0
=——|1+30"-0.A (-4
M =%mD S
) 3 (21)
+2.4€1(1— 0.2 h? az)h— _ %o0hB
2| 16E
where ag -1 VWV R=5105-Y (46E"/G +V,E" /G)
2 1-v 16(1-v-2'v")

In expression (18) terms with multipliekd /a? anda,
are corrections to the classical thin plate thetmgt take
into account transverse shear and compression.nisgu
that they are zero ones, one can obtain the simples
proximate expression for calculation of the veiticés-
placement of a thin plate containing a crack atmtedian
surface:

5qa4
24D

If the cylindrical stiffnes9 in the latter equation is re-
placed with the valueEl, one obtains the formula
for a vertical displacement of the beam of a cartstaction
containing a crack along the middle line. Howewis
expression is not precise enough for thick plates short
beams, especially those made of composite materials
In this case it is necessary to use the completauia (18)
along with the correspondent expression (2) fopldise-
mentW, utilizing certain corrections for parameters q,
andh.

This problem can be also solved using a hypothesis
based on one of the Timoshenko-type theories (gakito
account the expression fot). However, in this case for-

W = (1+ 394) . (22)
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mulas (15) — (17) don’t contain second term, whadh

counts the influence of transverse shear and casjore
on the nonlinearity of distribution of the normatessao,.

Correction, which accounts the transverse shearcant
pression, in formulas (15) — (17) is a constanti@athough
it is not constant for stresses on the external iatetnal
surfaces of the parts of the plate and it also dép@n the
plate material.

4. NUMERICAL MODELING OF THE PROBLEM.
DUAL BOUNDARY ELEMENT METHOD

Numerical modeling of the considered problem isduse
for verification of the obtained results. Dual bdary ele-
ment method (Portela et al., 1992) for the plaastektatics
is utilized for this purpose. It is well-known thefassical

nents of displacement and traction vectdng; = u; — u;,

Aty =t —t7, Xu; =uf +u;, Xt =t +t7;nf arethe
components of a unit normal vector to a surfBge signs

“+” and “-“ denote the values concerned with thefaces

¢ andIg, formed by a cuf.. Subscripts in notations
correspond to the projections of vectors on the axis
of global coordinate syster®x;x,. Einstein summation
convention is assumed. Kernels of integral equationthto
plane problem elasticity at —» y possess the following
singularities:

T;j(x,y)~1/In|x — y|
Diji(x,y)~1/In[x —y|, S;(x,y)~ (1/In|x —y|)?

For modeling of closed cracks, the equation (20) Ehou
be modified with account of additional conditions zefro
value of normal displacement discontinuities and shear

Uij(x,y)~In|x —yl[, 25)

boundary element method degenerate when considering contact stresses on the mathematical’guts follows:

crack problems due to the lack of equations conisige
load of crack faces (Portela et al.,, 1992). Thessfdhe
dual boundary element method (Portela et al., 19829
developed, which proceed with a system2afequations
basing on Somigliana identityr displacement equations
(as in classical BEM) and additionalty stress equations
obtained from the Somigliana identity by differeitn.
Thus, for the problems of cracks theory, dual BEltégral
equations take the following form (Portela et 3092):

- for collocation point §” placed on a smooth surfade

of a solid —

Zu ()= Uy (xy)t () (x)
=[Tip (xy)uj (x)dr ()
I -y (x,y)2t; ()dr (x)
(

J (x,y)Au; ()dr (x);

(23)

- for collocation point §” placed on a smooth surfadg"
of a crack:

)= Uij (0 y)t; (x)dr (x)
T () () ()
+_"rE Ujj (%, y) Zt; ()dr (x)

‘IrgT” (x,y) Au (x)dr (x);

(v) = Ji- D (e y) 0} (v)t (x)dr (x)
=Ji- Sik (< y)n (y)ue (x)dr (x)

+_"rE Dijk (%)} (y) =ty (x)dr (x)
‘Irg Sik (x.y)ni (y) Bug ()dr ().

Herex is an arbitrary point of the surfadg;;, T;;, Dy,
Sijx are the singular and hypersingular kernels of integra
equations for plane problem of elasticity, which exelic-

itly written in Portela et al. (1992)y;, t; are the compo-

1
EZui (y

(24)
In
2
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Bun (y) = Quj (v) Ay, (y)‘ymrc °

(26)
r=0y; (v)t; (¥)| . =0

2t (y)‘yDrC =0

Here components of rotation tens@r of the vectors
equal:

Q1(y)=m(y), Qua(y)=na(y),

Qa1(y) =-1a(y), Q2a(y) =m(y)

Thus, equation (21) on a mathematical €gtshould
be solved for the unknown discontinuitiedu, =
Q,;(y)Au;(y) of tangent displacement and normal contact
stressp, = —1/2Q,;(y)At;(y). Proceeding from this, the
following system of integral equations can be atedi

=Qy (y “ Ujit;dr - j
I (xy)Qy; (x )AUT(X)dF(X)]
)[J; Dt (x

+[ Sk () Q2 (x) By (x)dr(x) ,
y |:J. Dljktkdr +jr Sjiudr

X, ¥)Qpj (x )Au,(x)dr(x) .

(27)

T.u. dlrf

1
EZUT ijUj

I Slkukdr
(28)

P (y) =" (y)nj (v

0=0y (y)nj (

+jrg Sik (

The following numerical solution procedure for igitel
equations (20), (25) using the dual BEM is propodeat
evaluation of curvilinear integrals, curvEsI: are divided
into parts, which are approximated with the remtifir sec-
tionsTy (boundary elements). Thus, equations (20), (2&) ar
written as sums of integrals along boundary elemént
n nodal pointsx??(p = 1,n) are set on each elemelt
As a rule, discontinuous boundary elements (Poselal.,
1992), i.e. elements with no node placed at the pidt
of a boundary element, are used to solve crackyhaob-
lems.




Particularly, often used are rectilinear quadrateind-
ary elements with three nodes placed as follows:iorthe
center and the other two at the distancd &£ of element
length from the central point. This allows modelioigthe
non-smooth surfaces, because collocation pointrnesia-
cide the corner or a brunching point of a Egt Boundary
functions t;, u;, p,, Au, are interpolated on elemeny
using their node values as follows:

(6.0 Ao ](€) = 32 [197.49° 3P AuSP 0P (6)  (29)
p=1

n

§(6)= 200 (¢)

p=1

(30)

whereé is a parameter of a point position at the boundary
element, defined on the intervatl <¢ <1. dIy =
(Lq/2)dE = ]4d¢€, ], is a Jacobian of a variable change on
I4. For a rectilinear quadratic discontinuous bouwpdze-
ment @ = 3 the values of the parametef = {—2/3;0;
2/3} correspond to its nodes?. Thus, interpolation poly-
nomialsg? (¢) are expressed as follows:

N
¢f°’=<‘(§<‘+gj

Thus, the system of singular integral equationseis
duced to a system of linear algebraic equationsictwh
is sought for the nodal values of boundary fundio@b-
tained solutions of the integral equation system @sed
for calculation of stresss,/q, displacementw = w;E/

(2qh) and stress intensity factor (SIE} = K /Vrl.

(31)

5. NUMERICAL RESULTS

Analysis of numerical results of plane problem lafse
ticity and formula (17) for stresseg allows to state that
the growth of crack in a plate causes the increéstresses
in parts of the plate according to formulas (17 campli-
ance with quadratic parabola law, while plane @adgt
behaves according to the rule close to hyperbala @ne
can see that in the second case the growth is slogler.
Therefore, formulas (17) should be modified by aepig
paramete®? with parameted* and written in the follow-
ing form:

a (1+94)q+l_(G/G'—V")

h? "5 (1-v)
? y (32)
Oy (0,-T—O) :.T.Ea_94 _T_Ew
2n? 4 (1-v)

To prove that such modification is reasonable, \thle
ues of stresw;/q on the outer surface of the lower part
of the plate is evaluated utilizing formula (17)daermula
(28), placed in a separate column in bold font @ox 0
and 6 =1 they are the same), and using dual BEM

acta mechanica et automatica, vol.5 no.4 (2011)

for plane problem of elasticity (in brackets). Thegsults
are presented in Tables 1 and 2.

Tab. 1. Stress values in isotropic plate

a oy 1q (isotropy)
h =0 8=05 =1
18.95 23.64 37.7
5 (18.85) @os8) | 2012 (38.6)
75.20 93.95 150.2
10 7500 ©169) | 8 | (1528)
300.2 375.2 600.2
20 (299.7) (325.7) 308.9 (610.4)
Tab. 2. Stress values in transtropic plate
a oy /q (wood)
h 6=0 6=05 6=1
5 21.52 22.69 40.27
(21.03) (22.69) (38.30)
10 77.77 82.46 152.8
(76.51) (83.35) (148.6)
20 302.8 321.52 602.8
(301.7) (328.7) (596.3)

The value of contact pressure on crack faces, which
is determined by stregs completely coincides with corre-
sponding numerical results of the plane problerelastic-
ity along the whole length of the cracks excepimalsarea
near the crack tips.

Fig. 2 shows plots of stress /q versus the transverse
coordinate z/2h for parametersd = 0,5 and 6 = 0,9,
ata/h = 10, obtained using the improved formulas (28)
(solid line), and the dual boundary element methioplane
problem of elasticity (dashed line). Dash-dot |presents
the corresponding plot for plate without a craclatd) ob-
tained by dual BEM of plane problem of elasticity,
are presented in Fig. 2 in brackets.

Data analysis for stresses, presented in Tab. 1
and in Fig. 2 for isotropic and transtropic (wooddterials,
prove that formulae of applied theory of mediunckimess
plates are quite precise (in comparison with nucadata
of plane elasticity, the error is less than 2.5%J aonven-
ient for calculations.

Analysis of formulas (15) — (19) shows that growth
of crack length increases stresses and displacsneitihe
plate up to the values which can appear in two rsgpa
plates put one onto another without friction. Thtme
stresses in them will increase twice and displacgsne
in four times. Corrections, which account transvesikear
and compression, are insignificant for stressescase
of isotropic material. At the same time these adioms
may be important for transtropic materials (fibass plas-
tics, wood, etc.). For example, for woa@/G' = 10;v"' =
v =0,3), when a/h =0,5; 6 =0,5, errors of classical
theory for the first and second formulas are asdsidl2%
and 37%, respectively. These errors are even higgen
determining the maximal vertical displacement= w;.
See comparative table for relative displacements
w = w,E/(2gh) below (Table 2).
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s TOOCBLY) 0.5 1502C151.6)
: N\ : x=0 ' \ VIS o
2i2h) ] \ alh=10
" 0=1
0.25— © 025 \-
\
T ] \
o " -150.2(-151.6) \
\ \ 150.2(151.6)
4 i \
\
-0.25 {025 \
7 ) - WNI50-2(151.6
: : PN 75.1"
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Fig. 2. Plots of stress, /q against the transverse coordinat@h
Tab. 3. Values of vertical displacements for isotropictela
a W=w E/(th) (isotropy)
h =0 (p.p) =0 =05 (pp) 6=05 =1 (pp) =1
5 100.8 96.85(88.87) 105.4 114.3(105.5) 384.9 365.5
10 1459 1454(1422) 1522 1723(1688) 5917 5728
20 22.86-1b 22.88-18 23.79-18 27.15.18 94.13-18 91.16-18
Tab. 4. Values of vertical displacements for wooden board
a W=w E/(th) (wood)
h =0 (p.p) 6=0 6=0.5 (pp) =05 =1 (pp) =1 6=1()
5 184.9 184.3 192.6 201.5 446.7 452.9 355.5
10 1755 1805 1840 2073 5910 6078 5688
20 24.01-1% 24.28-18 25.10-18 28.56-18 90.92.18 92.56-18 91.0-18
Data in Tables 3 and 4 in brackets present thdatisp REFERENCES

ments calculated according to the simplified foran(16)
for thicknessest/h = 5; 10 without account of transverse
shear and compression. These data are shown ifaghe
column of Table 3 and are the same both for trapgir
(wood) and for isotropic materials. Values, caltedusing

=

Cherepanov G.P. (1983), Fracture mechanics of composite
materials, NaukaMoscow (in Russian).

2. Gnuni V.C,, Yegnazarian T.A. (2002), On strength of plates

the dual boundary element method of plane problem

of elasticity, are put into columns (p.p.). The sa@f maxi-

weakened by crackdn collected articles «Optimal control
over durability and strength of mechanical systems». Yerevan.
Publishing house of Yerevan State University, 37{A1Rus-
sian).

and plates, Pidstryhach Institute for Applied Problems of Me-

PortelaA., Aliabadi M.H., RookeD.P. (1992) The dual

(1982), Bearing capacity

mum result deviation of displacemeri#s calculated using 3. Marchuk M.V., Homyak M.M. (2003), On a mixed finite
the applied theories of plates, are similar to ¢hdstected element analysis calculation of composite laminated shells
while stress calculations. Thus, the real charaofedis-
p|acements gI’O\Nth in a p|ate caused by crack |eng.th phanics and Mathematics NAS of Ukraine, L'viv. Li)rkrain-
crease are, in fact, much slower than it is deteeshiby the 4 Il\(’/lirl]J)t:akami Y. ed. (1987) Stress intensity factors handbook
formulas of applied theorle_s of plates. This isspkcial Vols. 1. 2. — Pergamon Press, New York.
importance for the following values of parametér 5. Panasyuk V.V., Savruk M.P., Datsyshyn A.P. (1975), Dis-
05<6<0. tribution of strains in crack areas in plates and membranes,
Naukova Dumka, Kyiv (in Russian).
6. CONCLUSION 6.
boundary element method: Effective implementatimmcfack
This_ paper obtains the analytic dependences coeweni 4 g;(r)grlgr;nslsn\t/.] r\lzug/vters.e\l:ﬂgthngng., 33, P. 1269-1287.
for engineering applications and calculation oésses and of thin-slab structures built of reinforced plastics with defects,
displacements in isotropic and transversally-igutro Naukova Dumka, Kyiv (in Russian).
plates, damaged by horizontal cracks. These realitis/ 8.

predicting with enough practical accuracy the gten
and rigidity of plates using the geometrical partare
of acrack in a plate, as well as physical chargsties
of material and its transversal anisotropy.
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TESTING OF A COMPOSITE BLADE

Pawet SKALSKI"

"Center of New Technologies, Institute of Aviatiorl, Krakowska 110/114, 02-256 Warszawa
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Abstract: The research presented in this paper focuses anuastigation of helicopter composite blade. Thgot of tests
is a blade from main rotor of the 1S-2 helicoptEne author describes briefly basic elements of amite blade manufac-
tured at the Institute of Aviation in Warsaw. Themposite blade was investigated by the Experimévitadial Analysis
(EMA) to evaluate dynamic properties of tested cttrice. Based on the experimental data collectionadyc properties
of a research object were estimated. The modahpaeas have been estimated using PolyMAX — modulevis Test.Lab

software.

1. INTRODUCTION

The helicopter blade is a very important part ofmra-
tor. It is a light weight construction but has ts&in heavy
loads and harsh environment conditions. There eed
to improve the characteristics of helicopter bladexom-
panied by dynamic loads. Application of new methémts
testing the dynamic susceptibility can divide a pter
system into simpler components, allowing to analyze
the impact of changes in susceptibility of indiadlitems
on the general characteristics of complex vibraggatem
and the selection parameters of the system duisriigrima-
tion.

Modal analysis is a widely used technique in pcagti
the study of dynamic properties of the structure.aAresult
of modal analysis the modal model is obtained aseta
of frequencies own form of vibration and dampinggftie
cients. Knowing these parameters allows the priedict
of the behaviour of an object due to any imbalarf{Eegns,
2000; Heylen et al., 1998).

Modes are used as a simple and efficient meankaof ¢
acterizing resonant vibration. Resonant vibratiortaused
by an interaction between the inertial and elgstaperties
of the materials within a structure (Ewins, 200Gyten
et al., 1998).

The research presented in this paper focuses opazm
ite structure tests. The basic methodology whiclused
is the Experimental Modal Analysis (EMA). The EMA
technique is an established tool for the identifiza
of dynamic properties of structures (Luczak et2010).

As in most practical applications of modal analysis
is required for multi-channel experiment and thenptex
calculations associated with the processing of oreas
signals and estimation of model parameters. Tisé djppli-
cation of the method of modal analysis has alrelagign
documented in the late 40's, and their rapid dewaetnt
occurred in the 80's, due to the development ofprder
techniques (Ewins, 2000; Heylen et al., 1998; Kearozyk
et al., 2008).

In the present study performed a computer-aidedsmea
urement and subsequent analysis were used LMSL@bst.
software. LMS Test.Lab offers a complete portfolio
for noise and vibration testing, including soluton
for acoustic, rotating machinery, structural tegtirenvi-
ronmental testing, vibration control, reporting addta
management (LMS Company — marketing materials).

The software naturally follows the test campaigacpr
ess, guiding for measurement and analysis parasneter
Its includes a lot of different modulus, which arseful
in a computer-aided design (CAD), like, LMS TeshlLa
Geometry and LMS Test.Lab Modification Prediction.
LMS Test.Lab Geometry provides fast wireframe ganer
tion and full 3D visualization of test and analységsults.
Point coordinates are defined in Excel-like tablesile
connections and surfaces are graphically definedha
display. The geometry can be copy/pasted. LMS Iaist.
Modification Prediction evaluates structural mochtions
(mass, stiffness and damping). Based on the moddem
and on the modification element definition, a modfthe
structure can be calculated. The effect of suchef s
of modifications on a modal model can be calculated
and compared to the original situation (LMS Company
marketing materials).

2. RESEARCH OBJECT

The object of the investigation is a blade from mmia-
tor of the 1S-2 helicopter presented in a work dtéfig. 1).
Dimensions of the investigated object are: leng@b3m,
width 0,20 m. Approximate weight of the structure
is 12,60 kg.

The tested blade was manufactured at the Institute
of Aviation. The production process is very comaled.
Blades are formed by combining two halves into one
whole, which is followed is annealed in the oveig(Pb).

The basic instrumentation used in the manufacture
of rotor blades are moulds (Fig. 2): a upper mopédt
and a lower mould part. Both moulds have a sinstanc-
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ture. A working surface of moulds is made of a ritidhi-
nar coating of fibeepoxy composite covered with gelcc
The high rigidty of the surface of moulds ensures prc
representation of the external geometry of bladeshe
cross-section (Fig. 6).

Composite blade base on carbfiber ccmposites, rov-
ing, epoxy and lead (Fig. 3), (Fig. 4).

Fig. 1.Blade mounted in a test stand

[

Ea |

Fig. 2. Moulds of blade

S

Fig. 6. Cross-section of aompositeblade

Performed helicopter blade controlled by thermogra-
phy system to detect defects such as a delaminadio
bubbles Kaczmarczyk et al., 2008; Meinlschmidt and-
erhold, 2006 Swiderski, 200). Proven blade structure
is released for vibration testing, so as to excludedfiec
of defects on the vibration tests. Thermographyrg

- of the most common nodestructive testing methc
Fig. 3. Mould with fiber composite of composites. It is used tietect material defects a
evaluate the structure of materials without hatimghange
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their performance (Kaczmarczgt al., 2008; Meinlschmic
and Aderhold, 2006Swiderski and Vavilov, 201). A re-
sult sample of the experiment with a thermograpduyera
is presented in Fig. 7.

Fig. 7. Thermal image taken frothermograph measurement

In a vibration test campaign tli@lowing measuremer

and analysis tools were used (Fig. 8):

— 1 electromagnetic shaker, with impedance headsr-
porating acceleration and force sensor in the daons-
ing to measure reference point FRF's

— 4triaxial modal piezoelectric accelerometers I

- 16 channels in fronted LMS SCADAS Mob
with computer a Test.Lab acquisition and analysis ;

— bandwidth 128 Hz, resolution 0,05 .

A4
Fig. 8.Vibration test setup of a blade from main ro
of the IS-2 helicopter

Fig. 9. Cartesian coordinate system for piezoelectric ser
in LMS Test.Lab Geometry

The shaker was attached to the structure usinmges
(long slender rod), so that the shaker will only#&ut force

to the structure along the axis of the ster, the axis

of force measurement.

A dense grid of measurement points is defined \adr
the blade surface, in order to successfully idegrttie cy-
namic properties of this structurdleasurement poini

acta mechanica et automatica, vol.5 no.4 (2011)

areset with distance of 0,20 one from each other
in thespanwise (X) direction a1 0,20 m in the edgewise
direction (Z). Geometry definitionfor blade is presented
on Fig. 9 It consists of 39 points, 38 of which are aci-
tion locations and the remaining 1 is the refergrmiat.

3. EXPERIMENTAL RESULTS AND ANALYSIS

The measurement was done in “sets” which mean:
all the points were measured at the same 1
As aconsequence a number of partial modal models
estimated for each of the sNext the partial models were
merged ito a global model by means of m-run modal
synthesis l(uczak et al., 201). Modal models have to be
validated to prode confident information abol
the structural dynamics of eesearch object (Fig. 10).

e

Fig. 10.View of measured blade in LMTest.Lab Geometry

Due to a high number of measurement pc
andlimited number of piezoelectric sensors appliedh®
structure (in order to reduce the mass loading pimema),
a large number of test was carried (Random signal were
applied.

Based on the experimental data collection, m
models were estimated. The modal parameters hame
estimated using PolyMAX (Polyreference Modal Anédy
eXtended) algorithm providi by LMS software. Fig. 11
presents a window of PolyMAX in LMS Test.L (LMS
Company -marketing material.

Fig. 11.Stabilization diagram obtaine
by LMS PolyMAX methot

PolyMAX is an advanced modal parameter estime
technique that offers superior identification of dab fa-

103



Pawet Skalski
Testing of a Composite Blade

rameters. Its main advantagensists in damped structt
identification, where more modes can be identifiatb
a higher frequency rangéLMS Company— marketing
materials).

During results analysis, the experimental naturaties
and damping were estimated: flapwise - frequency
7,0 Hz and damping 1,54 %; flapwise 4— frequency
19,0 Hz and damping 0,54 %; ardwise 1< — frequency
34,4 Hz and damping 0,4%; torsion 1¢ — frequency
43,0 Hz and damping 0,60 %.

Visual inspection of the mode shapes presented
on Fig. 12, Fig, 13, Fig. 14.

Fig. 12.Identified flapwise %

Fig. 14.Identified torsion T

Fig. 15. Mass modification of blade in LMS Test.L
Modification Prediction
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Using LMS Test.LabModification Prediction we ca
change i.e. a mass of the blade in this case. \&rgehthe
mass and we change the modal moA comparison be-
tween blade with additional mass and regullade mass
is presented on Fig. 15.

4. CONCLUSIONS

This paper presentsome aspects of the multidisd-
nary and interdisciplinary research oriented for bt date
variability. It was presented a test campaign leadthe
composite material main rotor helicopter blade.t Betup
include measurement technique of contape. Experimen-
tal test data examples are shown and used for nmooidéls
estimation.

Experimental Modal Analysis (EMA) is currently o
of the key technologies in structural dynamics wsial
Based on the academic fundaments of system ideattdi,
it has evolved to become a “standard” approach e-
chanical product developmentThe PolyMAX method
brings arevolutionary modal parameter estimation h-
nigue that is easy to use, quick to perform, surbistiy
reduces operatatependent judgment, and thdelivers
high quality modal parameter estimation, even ommex
data.

Varying mass loading or constraint effects betweer-
tial measurements may determine several errorbefirtal
conclusionsMass loading effect from adding piezoelec
acceleromters and instrumentation should be analy
In next tests, thought a comparison between the nmead
contact and nogentact measurement techniques (i.e. |
vibrometer).
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Abstract: Nanocomposite samples of the copolymer of ethybame vinyl acetate containing carbon nanofibers raautb-
tubes have been prepared by mixing in solutiorartfer to improve interfacial interactions in thdymoer-nanofiller system
they were subjected to a preliminary chemical fiomalization. The efficiency of functionalizationaw estimated by the IR
spectroscopy. The X-ray diffraction and strengtlarelteristics of the obtained nanocomposites filbgdthe untreated
and functionalized carbon nanofibers and nanotulitbsdifferent filling degree were compared.

1. INTRODUCTION

Carbon nanomaterials (CNM) are considered to be pro
mising fillers for nanocomposites thanks to théghhme-
chanical, adhesive and other properties. Theseeptiep
may improve essentially technical characteristitsiano-
composites (Cipiriano, 2007; Yang, 2004). It isyenthe-
less a difficult task to create such a nanocomeosit
The difficulties in application of nanostructurednofillers
consist in attaining their optimal dispersion ire tmatrix
polymer, and the efficient bonding with the polynmeac-
romolecules. The most applicable method of reaching
the optimal dispersion of nanofillers is the expesto the
ultrasonic field (Kodgire, 2006; Lin, 2005). The timed
of efficient fixing of the single-wall (Bahr, 200D)yke,
2004; Haggenmueller et al, 2006) and multiwallecagd
etal, 2008; Lin, 2002; Grimes, 2001) nanotubestha
polymer matrix consists in their preliminary covaléunc-
tionalization by the polar groups. There is, howelaek
of information on the expediency and possibility fahc-
tionalizing carbon nanomaterials in the form of atore
of nanofibers and nanotubes.

In the present work the nanofiller was introducetb i
the polymer matrix by the method of mixing in sabuat
This method is considered in literature as a méfatient
one for obtaining CNM-filled nanocomposites. And as
reported in some scientific papers (Mark, 2005 thethod
most enables to solve the problem of nanopartetggom-
eration at introduction into the polymer matrix ateden-
sure a better interfacial interaction between tlodymer
matrix and nanofiller particles.

2. EXPERIMENTAL DETAILS
2.1. CNM and itsfunctionalization

The CNM used in the present investigations wasvddri
by methane decomposition under a high-voltage diggh

plasma in the Institute of Heat and Mass Transfé&tASB.
It is a soot-like matter consisting of carbon néberfs,
nanotubes as well as the particles of amorphougeayhi-
tized carbon. The dimensions of CNM nano-structwere
determined from the SEM micrographs.

The functionalized CNM (f-CNM) was obtained by tre-
ating with a mixture of concentrated mineral acids.
The CNM were treated with the acids during 3-4 bkour
under 80 = 5°C with constant agitation, followed by cool-
ing and settling of the mixture. Thus produced jmigant
was washed repeatedly by distilled water and diilethe
full removal of the water.

2.2. Preparation of the nanocomposites

The polymer matrix under study was the copolymer
of ethylene and vinyl acetate (EVA) produced by OAO
SEVILEN (Kazan, Russia), grade 11808-340 with vinyl
acetate content 26-30 wt%. The nanocomposite was pr
pared by mixing CNM in the EVA solution in oxygen
AT exposure to the ultrasonic field. With this aitine EVA
granulate was placed into a flask with a slice, antkces-
sary amount of CNM (0+0,5 wt%) with a solvent. Treesk
was placed into an ultrasonic bath Bandelin Son&eper
(of 80 Wt power and 35 kHz frequency) fit with aaker.
The polymer was dissolved under 50+36 within 1 h.
To avoid gaseous losses of the solvent a backflom ¢
denser was installed in the slice inside the flagie CNM
nanofiller was subjected to the ultrasonic dismersi
for 30 min after complete dissolving of the polymer
The prepared solutions of EVA with suspended inmthe
CNM were poured into the Petri dishes and placéadl @&m
exhaust hood for 12 hours. Then, the dishes weaeef!
into a thermostat under 60C temperature for a day.
The resultant dry precipitant was milled. Seven EHem
of nanomodified EVA with CNM and f-CNM content
0+0,5wt% were prepared following above procedure
To produce experimental samples of glued EVA splice

105



Anatoly Sviridenok, Aliaksei Krautsevich, Olga Ma&ako, Vladimir Voina

Structure and Adhesive Properties of Nanocomposites Based on Functionalized Nancfillers

and to continue the investigations, thus obtainagonom-
posites were ground into a powder using a cryayenil
“Pulverisette-14” and a vibration feeder “Labore2e’
for continuous feeding of the ground material. Lénitro-
gen was used as a cooling agent. The compositerialate
ground into the powder was then dried afCQemperature
during 8 hours to remove condensation water.

To study the effect of CNM nanofiller on structupsl-
rameters of the EVA matrix, the prepared powderonan
composites underwent hot pressing to obtain 2001280
thick films.

To define variations in adhesive properties of EWA
wards metal surfaces induced by introduction of GNM
we have prepared model samples of glued joints from
the powder nanocomposites. The metal surfaceslfiimgy
were strips of aluminum sheets having width b = 208,
and thickness k 0,2 mm. The strips were glued with over-
lap to the EVA nanocomposite by hot pressing urdbeve
130°C. The overlapping length was a = 150 mm, thickness
of the glue joint t = 200 um (Fig. 1). The samples were
prepared and the adhesive bond was tested forltiheate

strength at shear following the State Standard GOST

14759-69 “Glue joints of metals. A method for detaring
shear strength”. (Airapetyan, 1980). The maximaddio
on the adhesive bond till failure by shear wasneet@d
on a testing machine Instron 5567 at velocity & gnips
10 mm/min.

h t
'
4
a
b 4

R

Fig. 1. Scheme of a sample from aluminum sheets
with a glue joint on EVA nanocomposite

2.3. Investigation methods

The efficiency of CNM functionalization was estiradt
by the IR spectra recorded by a spectrophotomeiteléd
5700 FTIR. The spectra were recorded on a NaCsglas

The radiograms of the composite films were recorded
using diffractometer Dron-2,0 with radiation dfuK,,
filtered A = 0,1542 nm. The X-ray diffraction parameters

were obtained by processing the radiograms keeping

to the traditional procedures.

It is common knowledge (Jale, 1968; Martynov, 1972)
that the presence of a clearly isolated diffusicaloh
and narrow reflexes on the radiogram assists imnidef
radiologic crystallinity degreey by the relation:

& 000 (1)
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whereS = 2sim@/A — vector of reciprocal space] — total
scattering intensity of X-ray beams in the intergbbngles
©; and O, J. — total scattering intensity in the region
of narrow reflexes.

The interplanar distances corresponding to thiexe$
were determined by Bregg-Wolf's formula (Wanderlich
1976):

d_
n 2sin®,’

(2)

whered — distance between planes of reflectior; whole
number; ©, — the angle formed by the incident beam
and the plane; in our case= 1; 1 = 1,514 A).

The dimensions of crystallites were calculated
by Sherrer’s formula (Martynov M.A., 1972):
0,91
=, 3)
BLEosO,

where L — crystallite size, A;8 — line width, radian;
A —wavelength, A.

The radiograms were recorded on a chart strip veth
calculation so as to consider the scale. In oue,case
angular degree corresponded on the strip to a 6dism
tance, one radian corresponded to the angle°’5%@ Eq.
(3) for valueL expressed in A, will take the form:

0.9, 542 Al6m57,3
Lrmm[€0sO, .

(4)

To describe the changes in the supermoleculartateic
of the matrix in response to nanofiller effectse®hould
study the following parameters: relative sharehef toarse
crystals in the crystalline regid®:

__S
%7545
whereS;; S; are the integral intensities of reflexes 2 and 3,

respectively; the relative share of the fine crgstain the
amorphous region determined by:

_ s
%=g+s,

(5)

(6)

whereS,, S, are the integral intensities of reflex 2 and the
amorphous region, correspondingly.

3. RESULTSAND DISCUSSION

3.1. CNM and resultsof itsfunctionalization

SEM investigations (Fig. 2) have shown that the CNM
consists of 100200 nm in diameter and 1+fuB long
carbon nanofibers; multiwall carbon nanotubes 20:40
in diameter and 1+1@um long in the form of a branched
interweaving. Notice that the particles of the aphmus
and nanotube carbon are seen on all SEM microphoto-
graphs. Proceeding from the above, we can sayGNai



is a polydispersed product containing different sinape
and size nanoparticles with the admixture of miartiples
and amorphous carbon nanoparticles.

The CNM and f-CNM were characterized using
the method of IR spectroscopy. There were no asgreml
differences after CNM treating with a mixture ofmaral
acids (Fig. 3). Both curves display the bands & riégion
1725 cnt that correspond to oscillations of the C=0 link
in carboxyl and a wide peak between 3000 and 3606 c
correlated with hydroxide (-OH) oscillations in baxyl.
The appearance or intensification of named bandbkein
same regions was also observed in the works (H20@Q
and Anoshkin, 2008) after the acid treatment ofotaipes
and nanofibers. Proceeding from these results, vag m
assume that there is insignificant content of pgerups
on the surface of nanostructures of the initial CNMhile
the acids treatment augments their amount.

SEM HV: 20.00 kv Date(m/d#y): 08/31/10
View field: 9.92 ym Det: SE Detector 2 um
Date({m/dfy): 08/31/10 Name: 6.tif

Fig. 2. SEM image of CNM

VEGAW TESCAN g/’
Digital Microscopy Imaging n

Transmission a. u.

4000 3000 2000 1000 o

wavenumber, sm’
Fig. 3. IR spectra of CNM (1) and f-CNM (2)
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3.2. X-ray diffraction parameters of the nanocomposite

Fig. 4 presents most typical radiograms of the filted
EVA film, nanocomposite EVA + CNM films and those
of EVA + f-CNM. The radiogram of the EVA film dispys
a single clear-cut reflex 2 and a considerable area
of a symmetric amorphous halo. In the case withnifueo-
composite films, their radiograms show reflexes31,4
and reduced a little area of the amorphous haldchwh
is a proof to variations in the supermolecular cttue
of the nanocomposite. The essential differencesaio-
grams of the films EVA and f-CNM consist in the alge
and relative intensities of some reflexes, as @aelthe sha-
pe and size of the amorphous halo. It should becdhttat
the number of reflexes and their angular positiontioe
radiograms is similar for all samples under studsth(in
the limits of test sensitivity and measurement rsjro

il
T 4 r/\\n 1
AL
P \ Al
h\ “\wﬂwﬂjb
WVM\MWMJ /! [ a
M e

55 50 45 40 35 30 25 20 15 10 5 0

&—— 2 O, degree

Fig. 4. Characteristic radiograms of the films:
a—-EVA, b — EVA + CNM); c — EVA +f-CNM

intensity

Tab. 1. X-ray diffraction parameters of films EVA

Struct. Reflex No.
Samples| para- a
meter 1 2 3 4
20 weak | 21°33'| 24°66 weak
EVA dA 2,12 1,85 0,11
(granulate)— - i : - '
LA - 47 210 -
EVA 20 | weak | 21°33'| 24°66 weak
(from | d,A - 2,12 1,85 - |o011
solution) LA R 73 276 -
EVA+ | 20 | 12°20'| 21°20'| 24°66| 26°5(Q
CNM dA | 3,65 2,13 1,85 1,73| 0,16
0iwt% | LA | 163 73 210 247
EVA+ 20 | 12°20'| 21°20'| 24°66] 26°5(Q
f-CNM | dA | 3,65 2,13 1,85 1,73| 0,22
01wt% | LA | 122 63 210 267

The calculated X-ray structural parameters of thm-s
ples are shown in Tab. 1.

The calculations using formula (4) have shown that
crystalline phase in the studied samples consistatber
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fine crystals 4% 73 A (reflex 2), average ones 12263 A
(reflex 1) and coarse crystals 2£0276 A (reflexes 3
and 4). A negligible effect is imposed on the caystize
by preliminary dissolving of the polymer matrix ithe
organic solvent. The crystals are a little largerthese
films. Introduction of CNM into the EVA matrix foes the
coarse crystals to return from 276 down to 210 Ze si.e.
to the size similar to the initial EVA not subjedteo pre-
liminary dissolving.

The calculation of crystallinity degreey) using formu-
la (1) has shown that the non-filled EVA films have
« = 0,11. Introduction of CNM into the EVA matrix-in
creases the degree of crystallinity, while the metivalue
of w, = 0,24 was reached in the EVA samples with 0,5 wt%
concentration of f-CNM.

Depending on the content (wt%) and the typeCdiV
in these films EVA differently changes the ratio lafge
and small crystals. Figure 5 presents the depeedehthe
fraction of small crystals in the amorphous region.

0.16 5s

0.15

0.14

0.13
0.12 I
0.11 +

0.1

0.09

0.08 4 . . r . . T . . T
0 005 01 015 02 025 03 035 04 045 05
C. mac.%
Fig. 5. Variations in relative share of fine crystals
in the amorphous phase depending owt¥tecontent
of nanofiller in EVA + CNM (1)
and EVA + f- CNM films (2)

The introduction of all types of CNM leads to acrie+
ase in the relative share of small crystals inahmrphous
region. The maximum value of the relative sharesrogll
crystals is achieved for films of EVA f-CNM at arm®en-
tration of 0,1 wt.%. Similar variations in the polgr crys-
tal dimensions upon introduction of functionalizeakrbon
nanoparticles were observed by other researcherthen
example of polybutylene terephthalate (Mago et2008).
The relative share of the coarse crystals in th@oampo-
site EVA films increased too, and there were not aoti-
ceable differences between the films EVA + CNM MAE
and f-CNM in what concerns this parameter.

Based on the results obtained, we have made tte fol
wing conclusions. The major effect induced by thHeMC
introduction is the formation of a fine-crystallinghase.
Itis to be noted that the layer-to-layer distantehe fine
crystals (reflex 2d = 2,12 A) coincides with the mean
interlayer distance in the amorphous phase. Swituation
may occur if the crystalline region created by timeolled
molecular balls, in which the straightened macraoolar
chains are forming the crystals (Wanderlich, 19R&med
structures are characterized by the presencearha hum-
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ber of transit chains, which improves in a numbkecases
physico-mechanical characteristics. The nanostrestu
f-CNM assist most efficiently the formation of ctaks
from the straightened macromolecular chains whezir th
concentration is 0,1 wt%.

3.3. Adhesive properties of the nanocomposite

The results of testing mechanical properties ofghe
joints in which EVA was used for lap splicing ofiatinum
sheets are shown in Table 2.

The data proves that introduction of CNM into théAe
matrix enhances strength of the glue joint. Mosirgy glue
joints with EVA are obtained when the f-CNM is used
as a filler, which is evidently related to optimina of the
interfacialinteractiondn the nanofiller-matrix contact.

Tab. 2. Mechanical test results of glue joints with EVAsaear

Strength
- . Ultimate | variation
Glue jgiltri]ct)rc]:ompo- UI:;“}Z?Elrgad strength, | related to
MPa check
sample, %
EVA (check) 42.5 14.2 -
EVA + CNM
0.05 Wt% 52.4 17.5 23.2
EVA + CNM
0.1 Wi% 514 17.1 20.9
EVA + f-CNM
0,05 Wt% 55.1 18.4 29.7
EVA + f-CNM
0.1 Wt% 57.3 19.1 34.9

1 2 3

Fig. 6. Failure mode of glue joints: 1 — CNM; 2 — EVA + CNM;
3 - EVA + f-CNM

It should be noted that the majority of the teshgkes
has shown the adhesive failure mode in the gluetgoi
As for the samples containing EVA and f-CNM, thépw
simultaneously the signs of adhesive and cohesiitaré
in the splice (Fig. 6). This fact speaks in favbthe incre-
asing adhesive strength.

4. CONCLUSIONS

The test results have proved that the acid tredtmen
augments the content of polar groups in the CNM
on the surface of nanostructures. All nanomodifiathples
display the enhanced crystallinity degree, its mmaxh
being observed in the case of using the f-CNM. ditystal-



linity degree growth takes place mainly due to ithere-
asing amount of fine crystals in the amorphous omgi
The maximal strength increase 8y35% in the glue joint
with the EVA nanocomposite was recorded when f-CNM
was introduced.
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Abstract: The paper presents the mathematical analysis &édésign of a new tennis ball launcher in ordeadsess the
possibilities for its technical implementation. $tjrtraditional launchers are described. Next, isdvgew requirements im-
proving training possibilities of such machines avggested. The motion equation of the flying tertrll is formulated
and numerically solved. This makes it possiblertalyze the trajectories of the ball for differenitial conditions: elevation
and heading angles, as well as the rollers andglen;Tthe mathematical analysis of the launcher twih counter rotating
rollers is presented. Stiffness (Young's) modulng fiction coefficients for the typical tennis balve been determined ex-
perimentally. Based on these, initial conditions tlee throw have been found: rotating speeds ofrdtlers and powers

of the driving motors.

1. INTRODUCTION

Ball launchers are quite popular among tennis esithu
asts and there are many different types of sudniriga
machines available in the market. The main diffeeen
between them lies in the number of controlled patens
and possible ranges of their adjusting.

Generally, regarding the way the ball is throwmnie
ball launchers can be divided into two groups:He ma-
chines using compressed air — further called asippaéc
launchers, and 2) the machines using rotating reolle
(or wheels) — further called as mechanical laureher

In pneumatic launchers the ball is thrown using dfre
jet. The air is compressed with the attached cosgmreand
stored inside the chamber. The initial velocitytioé ball
depends on the output pressure of the compressara-E
tion and heading angles can be adjusted by setting
the direction of the outlet tube. The tube can d&tensanu-
ally or using electric motors. The spin can be addg
using the special tube ending (adaptor) slowing rdawe
side of the ball, what makes it rotate about thguired
axis. The adaptor needs to be rotated about thestuatxis
in order to change between the slice and the top bjow-
ever, the spin velocity cannot be set separatedyit ae-
pends on the initial velocity of the throw.

Due to the compressor, pneumatic launchers are pow-
ered from the mains voltage of 230/110 V. They oféag
durability, reliability, and resistance to variowgeather
conditions. However, pneumatic launchers allow one
to practice only basic strokes and cannot be usednbre
complex training programs. That is why they are niyai
chosen by beginners.

Mechanical launchers shoot the ball by pulling é b
tween two counter rotating rollers. The initial ogty
of the ball depends on the rotating velocity of tders.
The heading angle can be changed by turning thdewho
machine, or only its launching mechanism, left/riGraw-
ing the rollers). Similarly the elevation angle cée
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changed by turning the launching mechanism up/down
(pitching the rollers). The spin can be added bgnging

the rotating velocity of one (or two) rollers. Thyven
model of the launcher can only have the rollerstpoed
horizontally (or vertically) what restricts the piisle planes

of ball rotation.

Usually, mechanical launchers are powered from-accu
mulators and that is why they can be used at thetzavith
no mains supply or in case of its malfunction. Hoere
accumulators could also be the disadvantage, as rtie
strict the time of the uninterruptible operationh& com-
pared with pneumatic mechanisms the rollers prolsetéer
accuracy and a wider range of the possible strokisy
allow one to intensify his/her efforts and to pieetmore
advanced training programs.

Analyzing both types of tennis launchers it carstaged
that better parameters and a greater control patdrve
mechanical launchers. The launching mechanism @
form of two rollers provides a great repeatabilibcreases
the initial velocity and makes it possible to snidpt
and accurately control the flying velocity of thellbIt can
also spin the ball in a required manner. Mechanaahch-
ers can control the throw better; in case of pnéditnmaa-
chines the ball hit by the air jet rolls inside thatlet tube
in an unpredictable manner. This introduces maoplpms
making it difficult to control the throw and thedht of the
ball and resulting in worse accuracy and repeatgbil
of pneumatic machines.

To the authors’ knowledge there are hardly no mefea
articles concerning the problem of designing terivedl
launchers. Existing reports focus mainly on thevdgnam-
ics of different flying sport balls (Alam, 2007, Gawill,
2004, Mehta, 1985, Naumov, 1993, Sayers, 1999)-esp
cially on the problem of calculating the Magnus cfor
(Alam, 2007, Goodwill, 2004), determining drag aliftl
coefficients (Alam, 2007) or on the problems otihg or
bouncing the ball in a required manner (Sayers9)19ehat
is why we decided to create a simple mathematicadeh



of the mechanical tennis launcher, to simulatédésavior,
and establish the main principles of their designin

The aim of the present work is to analyze the [bissi
ties of improving the performance and training [jméses
of mechanical launchers. By studying the matherahtic
basis of the throw and the flight of the ball timétial pa-
rameters for the required trajectory are determiriEue
parameters include: initial elevation and headimgles,
rollers angle, rotational speeds and powers ofnto¢ors
driving the rollers. These can be very helpful tee design
of the new mechanical tennis ball launcher.

2. BRIEF FORDESIGN

For the purposes of the mathematical analysisfdhe
lowing brief fordesign for the new launcher werenfo-
lated:

— the ball can be thrown from different altitudesoirder
to practice the return of serve; the maximum algtu
of the throw can be set to 3 meters above the devet
(average player’'s height + arm’s reach + lengthhef
racket= 3 meters) with the step value of 0.1 meter;

- initial velocity of the balls can be set from 30 260
km/h with the step value of 1 km/h; the minimumocel
ity is for the youngest players; the maximum —he t
average serve velocity of the advanced players thith
several years’ playing experience;

- throw angles:

— elevation angle can be set from -20 to 80 degrees

(from -0.38 to 1.4 radians) with the step value

of 1 degree; the negative angles are needed te prac

tice the return of serve; the maximum angle
is to practice the lob strokes;

- heading angle can be set from -40 to 40 degrees

(from -0.7 to 0.7 radians) with the step value
of 1 degree; the minimum/maximum angles are cho-

acta mechanica et automatica, vol.5 no.4 (2011)

Only the drag force resulting from the translatioma-
tion of the ball is considered. The influence oé ttirag
resulting from the rotation is neglected. The viden
cordings confirm that during the hit at the coum¢ trota-
tional speed of the ball is almost the same asgfist the
serve, i.e. the rotational speed drop during tighfflis quite
negligible. This means that the moment of the eagdorce
during the rotation does not influence the flighttee ball
in a noticeable manner. However, the lift forceultsg
from the rotation of the ball around its axis; fram the so
called Magnus effect is taken into consideration.

F, g
Fig. 1.Forces: gravity, lift (Magnus)F,, dragFy,
and drag momeni,,, and velocities:
translational/ and rotationadv of the flying ball

Drag forceF4 is the component of the aerodynamic
force appearing during the motion of the solicadts oppo-
site to the direction of motion (Prosnak, 1970):

F, =-1c o’V 1)

where: c¢q is the drag force coefficient depending on the
shape of the solidp is air density,r is ball radius,

sen in such a way that the ball can be passed from andV — ball translational velocity.

one sideline to the other near the net;
— time period between subsequent ball shots (lauate) r

Magnus effect lies in the generation of the liftce per-
pendicular to the translational velocity of the ingler

can be set from 1 to 15 seconds with the step value (or other solid of revolution, e.g. the ball) sgimy in the

of 1 second; the minimum is the average value durin
the normal play; the maximum allows the coach to
comment the last return of the player;

- the ball can be rotated around its axis in any elan
by rotating the throwing mechanism around its sym-
metry axis from -180to +18C (from -3.14 to 3.14 ra-
dians) with the step value of 1 degree;

— rotating speed of the ball can be set from 0 to02@dn
(from O to 209,4 rad/s) with the step value of inyphe
maximum is the average value of the advanced @ayer

— the points at the court surface at which the badiutd
bounce can be freely chosen — the same points €an b
hit by different launch parameters depending on the
practiced stroke.

3. MODEL OF THE FLYING BALL

The flying ball is impacted by three main forcesag
ity, drag and lift (Fig. 1).

surrounding fluid (Fig. 2). Rotating ball influersccehe

surrounding air and makes it rotate too. On thewkand,
the air pushing the ball in the translational motitows

AT one side of the ball at the same direction asrtftation
of the ball. At this side the air is accelerated &s pressure
drops. At the other side the flow direction of th&

is opposite to the rotation. This decelerates thesd in-

creases its pressure. Consequently, the pressifieeedce
between the two sides of the ball evolves and obmrige
motion trajectory of the ball.

Fig
=X
0+0Q):

Fig. 2. Magnus effect: Magnus fordg,, translationaVl/,
and rotationad velocities
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Lift force |F;| can be calculated, as (Prosnak, 1970):
|F|=3gm?ovv )

wherec; is the lift force coefficient.

Introducing rotational speed instead of the scalar
linear velocityV in Eq. (2), the Magnus force for the ball

can be presented, as:
F =3V o (3)

The values of the lift force and similarly of thead

force coefficients can be determined experimentally

in a wind tunnel. Alam et al., 2007) investigateiffedent
tennis balls for various translational and rotatiospeeds.
They found out that the drag coefficient changesf,55
to 0,85, while the lift coefficient — from 0,30 €70 if
translational speeds ranging from 20 to 140 km#h raxta-
tional speeds from 0 to 3000 rpm are consideredcdy-
paring the computational and experimental resufisy t
stated, that lift and drag forces depend not oniytloe
speed of the ball, but also on the state (roughnafs#s
surface. Similar results obtained Goodwill et &o6dwill,
2004) who in a wind tunnel investigated aerodynapnap-
erties of a range of new and used tennis balls feglocity
range from 20 to 60 m/s. Mehta (Mehta, 1985, 2(i4}
sented many visualizations and obtained sets af dral
lift coefficient values for different sports balkpinning
in a wind tunnel. Sayers and Hill (Sayers, 199%spnted
experimental results of drag and lift coefficiefds station-
ary and rotating cricket balls. Naumov et. al. (May,

1993) compared numerical and experimental restlthe
research of the falling ball and determined thduarice
of the initial angular velocity on the deviationofn the
vertical.

Ball trajectory

0=-6° p=-11+12° 4=0°

T V=200km/h 0=0rpm

Elevation z [m]
[8:]

Width y [m]
15
Length x [m]

10

0 5

Fig. 3. Ball trajectories for different heading angJ&s3D view

Although aerodynamics problems of the flying sport

balls, especially the Magnus effect, have beenietudy
many researches, there is no acceptable solutidregpla-
nation to this problem up till now. Thus, in theepent
study the simplified model will be applied, in whimo
additional effects such as 3D air flow around thé# or the
flow turbulence will be included.

Acceleration x

omtesx |

Tim

P
Yy

Welocity

£

droga _x

h 4

Magnus force x

1im

will

Initial velocity Wy

Initial position x

P Drrag force y

Magnus force y

yvYy

1.
}{DS

Wy

Initial velocity Wy

|

Initial position y Acceleration z

Magnus force z A

Yy

1/m
1 Wz
5%

Initial velocity vz

s
=
" Velacity 2

Position z

End of simulation

Fig. 4. Block diagram of the flying ball simulation model
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The general motion equation of the flying ball dam
presented, as:

d2
m

dt’

Applying Egs. (1), (3), after projecting the aboegua-

tion on the three axes of the Cartesian coordisgstem,
the following formulas forx, y, andz directions are ob-

tained
dz
— W, 5
p y) )

_'I'II

=R +R+ (4)

2

dx_ ,, dx dy
—=-ircqmpV,—-1icrm| —w,-
dtz 2 dm xdt Zq m(dt z

d’y _ dz dx
m— dt2 r Cd]wv 2 q FW( dt x dthj (6)
d’z _ . dz dx __dy
Mz =~mg-3 F o\ T @Prw( & dthj (7)
whereV,, V,, V, andw,, w,, w, are the components of the
translationaV and rotationadv speedsin is the mass of the
ball, g is gravity acceleration.

Based on Egs. (5)-(7), the simulation model of ftiie
ing ball was created in Matlab/Simulink. The modkbws
one to simulate various trajectories of the flylwgl in de-
pendency of initial throw parameters: elevatimnheading
B, rotationy angles, as well as, lined, and rotationad
speeds of the ball.

The block diagram of the simulation model is présdn
in Fig. 4. The drag and lift coefficients can béraduced
directly by the user or calculated from a specidigigned
function approximating the values given by Alamatt
(2007). The user decides which values are chosefufe
ther calculations. This way, he/she can easilyyaeawhat
is the influence of the drag or lift force on thallltrajec-
tory. However, he/she must be aware, that thehleliee-
sults can be obtained only, if the values suggesyedlam
et al., (2007) or other researches are chosentatdhe
allowable translational (20 to 140 km/h) and ratasl
(0 to 3000 rpm) initial speeds are not exceeded.

Several shots, e.g. serves differing only in thadirg

angle B can be presented at the same diagram, as it is

shown in Fig. 3. The trajectory can be plotted imeo
of three planesyxy, xz, or yz. The simulations in Fig. 3

were conducted for the typical tennis ball of mass

m = 0,058 kg, and radiug = 0,333 m.
4. ANALYSIS OF THE BALL THROW

In order to throw the ball using two counter-raigti
rollers two conditions should be met. The firsthis condi-
tion for pulling the ball in between the rollersh& second
is the condition for throwing the ball away fromtleen
the rollers.

4.1. Pulling the ball

When the ball is being pulled by the rollers, twaim
forces appear at the contact points between thebdlthe
rollers. These are: the pressure folgwhich is normal
to the contact surface, and the tangent frictiond@ (Fig.
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5). The ball can be pulled in between the balls/ ahthe

horizontal component},,, of the friction forceT is equal
or greater than the horizontal compon#&ptof the pressure
force N (Wusatowski, 1960).

Tcosd = N sind (8)

where 14 is the so called “grab angle” between the plane
containing the axes of the rollers and the plangaining
the axis of one of the rollers and the contact {pbé&tween
the ball and the roller.

AsT = uN, whereu is the friction coefficient, then:

U =1gA 9)
Having in mind that:
H=1an (10)

wheren is friction angle, the condition for dragging thall

in between the rollers can be presented, as:
A<n (11)

Friction coefficienty will be determined experimen-
tally, what is presented further.

Fig. 5.Forces and geometry at the contact between the ball
and the rollers during pulling the ball in between
the rollers: horizontal componehi}, of the pressure
force N, horizontal componerf, of the friction forceT,
grab anglel

4.2. Throwing the ball

The condition for throwing the ball away from beame
the rollers states that the friction force betweka ball
and the rollers should be equal or greater thanirtbeia
force of the ball (Fig. 6).

This condition ensures that there is no slip betwee
the rollers and the ball:

F,=2T (12)

The inertia force depends on the required line&ooity
of the flying ball, or more exactly on its accelaa
that should be transmitted from the rollers in orgeobtain
the required initial velocity of the throw.

The friction force between the rollers and the lokd}
pends on the friction coefficient and on the presdorce
between the rollers and the ball. The pressureefoen be
obtained from the definition of Young's modulus ftire
ball:
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N:EsAI
2r

with Young's modulugt, ball deformatiom! and the area
at the deformation surface

(13)

Fig. 6. Forces and geometry at the contact between the ball
and the rollers during throwing the ball away: tiadirtia
forceF,,, pressure forc#, friction forceT, ball radiusr,
rollers radius;., distance between rolleks, radiusr;
of the ball deformed (squeezed) by the rollers,
ball deformatiom! due to the rollers pressure

For further analysis following parameters were as-
sumed: rollers radius = 0,1 m, and distance between axes
of the rollersd,, = 0,25 m. The Young’s modulus will be
determined experimentally, what is presented furthe

5. EXPERIMENTAL INVESTIGATION
OF BALL PARAMETERS

The values of the Young’s modulus for the ball #mel
friction coefficient between the ball and the plastover-
ings of the rollers were determined experimentally.

5.1. Young's modulus

Young’s modulus was determined by measuring the
value of the ball deformation resulting from thepkgd
load force. The ball was located between two flattgs
(Fig. 7).

The upper plate was gradually loaded with ten wisigh
of 0,55 kg each, i.e. the overall loading weightuted
from 0,55 kg to 5,5 kg. The deformation was measdure
along three different axes of the ball. As the ffiresult for
the given load the arithmetic average of the redoit each
of the axes was assumed. The values obtained fee th

114

different axes of the ball differed in about 3% e%a differ-
ences were due to the irregular structure of the b&g. at
the location of the seams, the ball did not defexmnly.

1

alred

A2

Fig. 7. Schematic diagram of the test stand for Young'’s uhasl
measurements

Several tests of the examined ball were perforried-
ing the loads and corresponding deformations Yaaing’
moduli were calculated. Their values are presented
in Tab. 1. The dependency between the loading farm
the deformation of the examined ball is shown ig. R,
where the Young's modulus can be read out as tigetda
of the curve’s slope angle.

The averaged value of the Young’s modulus for the
examined ball is 3,63 MPa. The smallest value 88 MPa
was obtained for the loading weight of 1,65 kg, lehi
the biggest (4,50 MPa) — for the loading weight¢f5 kg.
The variability range is 1,60 MPa for all loads.

Tab. 1. Results of the Young’s modulus measurements
for the examined tennis ball

Loading | Loading Averaged ball Calculated
weight force deformation Young's modulus
(ka] [N] [m] [MPa]
0,55 5,40 0,0005 3,40
1,10 10,79 0,0011 3,09
1,65 16,19 0,0018 2,83
2,20 21,58 0,0021 3,24
2,75 26,99 0,0025 3,40
3,30 32,37 0,0029 3,52
3,85 37,77 0,0030 3,96
4,40 43,16 0,0033 4,12
4,95 48,56 0,0036 4,50
5,50 53,96 0,0040 4,25

In order to assess the correctness of the expet@nen
tests, the results obtained for the examined bateveom-
pared with the results calculated for the so cdiandard-
ized” tennis balls.

The requirements concerning loads and deformations
for the standardized tennis balls are strictly miedi (Romer,
2005). Three different types of the standardizells bare
allowed to be used for playing tennis. Primary defation



for the type 1 (fast) ball should be greater tha49B cm
(0,29 in) and less than 0,597 cm (0,24 in), whdeandary
deformation should be greater than 0,637 cm (026
and less than 0,914 cm (0,36 in) if the loading ghti
of 8,165 kg (18 Ib) is applied. For type 2 (mediuand
type 3 (slow) balls primary deformation should beager
than 0,559 cm (0,22 in) and less than 0,737 crm9(hp
while secondary deformation should be greater th&00
cm (0,31 in) and less than 1,080 cm (0,43 in) fer same
loading weight of 8,165 kg. The primary deformation
is measured directly for the given load of 8,165 Wdile
the secondary one is also for the load of 8,16®gjust
after applying the load which reduces the ball diten
to 2,54 cm (1 in). These two deformations shouldthm
averaged values for three different axes of thé kbdlile

acta mechanica et automatica, vol.5 no.4 (2011)

5.2. Friction coefficient

Friction coefficient between two bodies in contaah
be experimentally determined by locating the tediedy
on an inclined plane and gradually changing itpslangle
(Fig.- 9). The angle; at which the tested body begins to
slide down is the so called friction angle, fromieththe
friction coefficienty can be calculated (see Eq. (10)).

In order to determine the friction coefficient beem
the real tennis ball and the roller, this simpl&t &tand was
modified by placing the ball not on the plane, butthe
roller segment located on the inclined plane (Ei. Thus,
following configurations were tested

the ball on the inclined plane (Fig. 10);

two subsequent measurements cannot differ more than~ the ball on the roller segment located on the iecli

for 0,076 cm (0,03 in).

L I I R R

| | | | \ \ | 53
oL IS S R FASPN (SO SO M < 1| ot
| | | | \ \ \
| | | | | | 4318 |
L e e e ) e T
w | | | | | g 413777 | |
8 a5 I D B R | N
5 I [ 'I' |~ 726 T‘ \ \
| | | \ \ \
ool pediss
g | | | \ \ \ \
B | | 16,19 | \ \ \ \
10’**5*0'#** ET I A S A
' | | | \ \ \ \
0 | | ! | | ! | |

0 0,0005 0,001 00015 0,002 00025 0,003 0,0035 0,004
Ball deformation Al [m]

Fig. 8.Force versus ball deformation

The Young's moduli for the standardized tennis dall
were calculated for two deformation limits of eatyipe.
They are presented in Tab. 2. The averaged valuheof
Young’s modulus for the standardized ball is 4,2@ay
with the variability range of 1,68 MPa.

As can be seen the values of the Young’s modulus fo

the examined ball and for the standardized badissanilar.
However, for further calculations the value of 4 &Pa
was assumed.

Tab. 2. Results of the Young’s modulus calculations
for the standardized tennis balls

Loadina | Loadin Averaged Calculated
wei htg force g ball Type of | Young'’s
9 deformation | the ball modulus
k N
[kgl [N] (] (MPa]
8,165 80,1 0,00495 Fast 5,10
8,165 80,1 0,00597 Fast 4,22
8,165 80,1 0,00559 Medium 4,51
8,165 80,1 0,00737 Medium 3,42
8,165 80,1 0,00559 Slow 4,51
8,165 80,1 0,00737 Slow 3,42

plane (Fig. 11).

Fig. 9. Derivation of friction coefficient on an inclinedgme:
friction forceT, pressure forcdy, friction anglen

/

Fig. 10.Derivation of friction coefficient between the batd the
inclined plane: friction anglg, length in contact

Fig. 11.Derivation of friction coefficient between the bald the
roller segment: friction angkg length in contact
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The normal tennis ball was cut into two equal psece
along its diameter. In the first case the cut k&b located
on the inclined plane, and in the second — on alerrseg-
ment located on the inclined plane. The plane aedaller
segment were made of plastic (polypropylene). i
part of the half of the ball was pressed in oradeintrease
the contact surface between the ball and the roiler
to better reproduce the real throw. Next, the slapgle
at which the ball started to slide down, and thgik of the
ball in contact with the plane (or with the rollenere
measured. The results are presented in Tab. 3.

Tab. 3. Experimental determination of friction coefficient
measurements and calculations

Length - -
Configuration | in cor?tact Frlct|o°n angle Friction
[mi [°] coefficient
0,008 32 0,63
0,010 34 0,67
0,015 37 0,75
Inclined plane 0,020 39 0,80
0,025 41 0,87
0,030 43 0,93
0,035 44 0,97
0,005 30 0,58
0,010 34 0,67
Roller 0,015 40 0,84
on an inclined 0,020 46 1,04
plane 0,025 53 1,33
0,030 59 1,66
0,035 64 2,05

Figures 12 and 13 present the friction coefficiegntsus
the length in contact for two considered casesc#s be
seen the friction coefficient increases for higlventact
lengths. Its value depends also on the shape ofwbe
bodies in contact — for the given contact length fifiction
coefficient is higher for the roller segment thasr the
plane.

50

45 7

40

35 7

30

Friction angle []

25 7

20
0,008 0,01 0,015 0,02 0025

Contact length [m]

Fig. 12.Friction coefficient versus length in contact;
the ball on the inclined plane

During the throw the ball is squeezed by the reller
the contact length (surface) increases, and thaspre
forces act in different directions (normally to thentact
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surface) what results in the increase of the #@ictiorce.
That is why the value of 2,05 for friction coefgcit
was chosen for further calculations. This is th&ueaob-
tained for the maximum pressure and maximum contact
length between the ball and the roller segmentis Hup-
posed, that such configuration resembles the rellbe-
tween the rollers best.
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6. ROTATING SPEEDS OF THE ROLLERS

The linear and angular speed of the ball depend the
circumferential speeds of the rollers:

—_ Vl +V2
2
o :V2 -V
' 2
whereV;, V, — circumferential speeds of the first and the
second rollery; — ball radius after deformation (Fig. 14).

V (14)

(15)

Fig. 14.Velocities during the throw?, w — linear and rotational
speeds of the bally, V,, w,, w, — circumferential
and rotational speeds of the rollets;- rollers radius,
r; — radius of the deformed bal] — ball deformation
due to the rollers pressure



If the ball has to rotate about its own axis afeaving
the launcher, the circumferential speeds of thdenm®l
should be different. Otherwise, the ball will have rota-
tion.

Given the required linear and rotational speedshef
flying ball, the rotational speeds of the rolleexde calcu-
lated, as:

_V -y
r

r

(16)

2V
@=—"q (17)

r

From Egs. (16) and (17) it is clear, that for thaxm

mum linear speed of 200 km/h with no ball rotation,

the rotational speed of the rollers should be 5306.
Similarly, for the ball flying with its maximum lear (200
km/h) and rotational (2000 rpm) speeds, the roldrsuld
rotate with velocities); = 5800 rpm andw, = 4800 rpm.

7. POWER OF THE MOTORS

During the throw, the ball takes some energy from
the rollers while going through them. This decrsase

the rotational speeds of the rollers.

Kinetic energy change of the rollers during theottr
can be presented, as the difference between tinailr A,
and initial E}, energies:

BE =B - Bo =3[ (of +ed)-(efrei)]  8)
with roller moment of inertia,,
I =3m¢? (19)

and rotational speeds of the rollers: initialy, wsyq,
and during the throw, and,.

For the ball it can be assumed, that its initialelic en-
ergy is zero, while the final energy (just aftee tthrow)
depends on its linear and rotational speeds:

AEY = “EP =imV? +1 Ipa)2 (20)
where the ball’s moment of inertiais given by:

I, =2mr? (21)

p

Including Egs. (17) and (19) the required initiahekic
energy of the ball can be calculated, as:

Eo =31, (faf +*af)+(3mV2+3 1,0%) (22)
Let us assume, that:

Ho A4 23)

a)ZO wz

Then, the initial rotational speeds of the rollerseded
to throw the ball with the required linerand rotationalb
velocities can be calculated, as:

Wy = @+ 11,0 (24)

acta mechanica et automatica, vol.5 no.4 (2011)

W, :a)2+‘/§lpw2 (25)

As we can see the rotational speeds of the rddlensid
be increased by a small value depending on theiresju
rotational speed of the ball. For the ball flyingthwits
maximum rotational speed of 2000 rpm, the rotafiona
speeds of the rollers should be increased by 90 (iEm
by 1,5% for the first, and by 1,8% for the secooitkr).

The power of the motors driving the rollers candee
termined by calculating separately the work donetlisy
motors during the start-up and the work needetirm the
ball.

Including Egs. (17) and (21) the work needed towhr
the ball can be expressed, as:

AW, = E - Eo=[41,(af +*af)]-
[%Ir (kaf + kaf)+%(mvz+ Ipa)z)] = (26)

-1(mV? + 1,a?)

where the minus sign denotes the fact, that theggneas
returned by the rollers.

On the other hand, the work needed to start-updhe
ers can be presented, as:

AW, = B, =11, (af +af)+3(mVP+ La?) (27)
that is for the first roller:

AW =1 1o +3(mV? + 1| o) (28)
and for the second:

AW =31 e +3(mV? + | o) (29)

The required power depends on the throw tige
or on the time of starting-up:

W,

P, =2t (30)
d
P = 3)

For the minimum throw time of; = 1 s (see the intro-
ductory requirements), the power needed to drieadtiers
and throw the ball i®; = 45 W. On the other hand for the
45 W motors, the time needed to start-up the oliertheir
nominal rotational speeds is= 35 s, what is the accept-
able value.

8. CONCLUSION

Based on the mathematical analysis several conditio
and parameters for the design of the new type etehnis
ball launcher have been found.

The parameters of the typical ball such, as itsngs
modulus and friction coefficient have been expentally
tested and determined. Using the mathematical nafdbk
ball between two counter rotating rollers, thedevatd us
to calculate the required initial parameters ofttirew, i.e.
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the rotational speeds of the rollers and the posfethe
motors.

The presented model of the flying tennis ball isteu
simple, yet it allows one to analyze the trajeesrof the
ball for different initial conditions in a reliabl@anner. The
results of such analysis can be very useful whitplé-
menting the control system for the new tennis laalhcher.
Based on calculated ball trajectories, the databsifer-
ent possible hits and training programs can betedea
and implemented in the control system.

Using the presented analysis and its results tieoesi
are currently working on the design and techniogple-
mentation of the new type of the tennis ball lawarch
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ANALIZA MATEMATYCZNA
NOWEGO TYPU WYRZUTNI PILEK TENISOWYCH

Streszczenie:W artykule przeprowadzono analimatematycza
nowego typu wyrzutni pitek tenisowych, na podstawi®re]
oceniono meliwosci technicznej implementacji takiego adze-
nia. Opisano tradycyjne rodzaje wyrzutni, a gaste sformuto-
wano wymagania usprawnige maliwosci treningowe takich
maszyn. Sformutowano i numerycznie rozzano réwnania lotu
pitki tenisowej, umaliwiajace analiz trajektorii przy danych
warunkach pocgkowych: latach wzniosu i szerokoi oraz kcie
obrotu rolek. Nasgpnie przedstawiono wyniki analizy wyrzutu
pitki wyrzucanej za pomacdwdch przeciwnie wiragcych rolek.
Na podstawie przeprowadzonych badiswiadczalnych wyzna-
czono sztywn& (modut Young'a) oraz wspoéiczynniki tarcia
typowej pitki tenisowej. Dziki temu obliczono parametry pagz
kowe wyrzutu: pgdkosci obrotowe rolek i moce silnikdw nep
dowych.



acta mechanica et automatica, vol.5 no.4 (2011)

THE STATIC PERFORMANCE ANALYSISOF THE FOIL BEARING STRUCTURE
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Abstract: Foil bearings are a variety of slide bearings, imiclr an extra compliant foil set is applied betwgearnal
and bush, in order to improve the selected statitdynamic properties. Bearings of this type arestigated by engineers
and researchers from all over the world since mesays — both from simulation as well as experimgmént of view. Due
to the complexity of construction, the reliable slation models are still being searched for. Thipgr discusses the most
important stages of elaboration of the structurgdprting layer of the foil bearing as well as teswof verification tests.
The main goal of the conducted study was assessmhegliability of the elaborated numerical modelorder to ensure that
in future it could play a role of a reliable resgatool, which could be used for elaboration of tinenerical model of the en-

tire foil bearing.

1. INTRODUCTION

Constant development characterizes field of bearing

systems. In recent years the most dynamic developoam
be observed especially in the field of small-dimens
high-rotational bearing systems for rotors of maekisuch
as: micro-turbines, turbo-compressors or turbo-papes.
One of the relatively new approaches is the foirbey
technology (Agrawal, 1997; Rubio and San Ander€)620
Heshmat et al., 1983; Ku and Heshmat, 1992). Bgsrin
of this type, thanks to the application of the ctieng foil
set (Fig. 1), exhibit a number of advantages coegbar
to the classic bearing methods. First of all, te®mgetry
of the lubricating gap in the bearing alters wille tactual
working conditions of the system. Thanks to thehhadpili-

ty to damp vibrations, foil bearings exhibit aniibration
properties. It is especially important in case ightrotatio-
nal speeds, when high dynamic loads occur andytters
operates on the stability limit. Additionally, asyéoil be-
arings may operate under very high temperaturesn ep
to 700°C, which makes them irreplaceable in sonpdicp
tions.

2) U

BUMP FOIL ,»/ T
A
TOP FOIL ‘

SLEEVE

JOURNAL

Fig. 1. Basic parts of a foil bearing

The characteristic property of foil bearings is raai
versatility of specific construction solutions. Asresult,

each foil bearing has to be designed and constiucte

for a particular machine, considering the followjpgyame-

ters: static and dynamic load, range of operaticpaleds,
temperature of operation, type of a lubricating medetc.
Due to this reason, new methods enabling the dodesi-
gn of foil bearings, which do not require the time-
consuming and costly experiments, are still undeestiga-
tion. Numerical models may become very useful iis th
range, since they enable the determination of ptigse
of new construction solutions, prior to their reation.
The basic difficulty while modelling and performirsgmu-
lation analysis is connected with the reliabilifytioe results
that are obtained. This applies particularly ineca§ com-
plex mechanical systems, such as foil bearings.falk@aw-
ing needs to be considered when such bearings ate m
elled: nonlinear deformation of a compliant foilt,sbow

of the medium in a deformed lubricating gap as veall
contact and heat phenomena. Although those aspeets
thoroughly described in literature (Rubio and Sardéys,
2006; Ku and Heshmat, 1992; Braun et al., 1996el$al
and heshmat, 2000; Lee et al., 2004; &Ski et al., 2008;
San Anders and Kim, 2008, 2009; Kim and park, 2009)
the credible and tested solutions are still missifigs pa-
per also focuses on the topic of modelling and yeisl
of foil bearings.

The research aimed at development of the simulation
model of foil bearings are conducted also in th&MF
PASci. in Gdansk since couple of years. So farestiga-
tion focused mainly on the analysis of the progsrti
of a foil set fragment, rolled on a flat surfaceiqski
et al., 2008;Zywica, 2008). Currently conducted research
works concentrate on the analysis of the propedfethe
whole foil set without any geometrical simplificatis and
are aimed to elaborate the complete model of tilebés
aring, including both the structural as well asmMlsuppor-
ting layer. In this paper the following stages eEearch
works dealing with the foil bearing model developme
such as elaboration of the FEM model of the stmattu
supporting layer of the foil bearing and validatiests, are
discussed.
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2. NUMERICAL MODEL
OF THE FOIL BEARING STRUCTURE

2.1. Model geometry

The complex geometry of the model of the structural
supporting layer of the foil bearing was elaborabgdme-
ans of the Autodesk Inventor 2011 software. Thaokihe
wide range of software capabilities in terms of elbdg,
a parametric model was developed, which enablesick q
alteration of selected geometric parameters ofbéwing.
Due to the low computational efficiency, which sacacte-
ristic for 3D models, the investigation under cdesation
was based on the simplified, 2D geometry of thé lier
aring. Such a model fully reproduced the geomefrihe
investigated bearing in the plane perpendiculah&orota-
tion axis, however the changes in shape along ttthvof
the bearing were not considered. By means of sunbdel
it was thus possible to imitate the structural swppg
layer of the foil bearing of 1st and 2nd generation

Basic dimensions of the investigated bearing were s
lected basing on the literature data (Rubio and Aafers,
2006), which approach enables the comparison afitha-
lation results with results of experiments obtaitgdother
researchers. The selected dimensions and paranéties
foil bearing are presented in Tab. 1.

Tab. 1. Nominal dimensions, parameters
and material specifications of the fwglaring

No Dimension/Par ameter Value

1 | Inner diameter 38.17 mm
2 | Bearing length 38.10 mm
3 | Nominal journal diameter 38.10 mm
4 | Nominal radial clearance 0.035 mm
5 | Number of bumps 25

6 | Bump pitch 4.57 mm
7 | Bump length 4.06 mm
8 | Bump height 0.38 mm
9 | Bump and top foil thickness 0.1 mm
10 | Poisson’s ratio 0.29

11 | Young’'s modulus 2.110" Pa

Bump foil of the real bearing, based on which ttedel
was created, consisted of five foil sectors ofsame type,
distributed evenly around the circumference of biush.
The total number of bump foil convexities amounted
to 25 around the whole circumference. Additionadlyery
sector of the bump foil in the real bearing comsisbf four
narrow metal plates of the same type, distributeenky
along the bearing width. The division of the bunwl f
sectors into four smaller foils was not imitatedhe model
due to its 2D character. Due to the fact that jalrn
and bush of the foil bearing are elements charaeir
with significantly higher stiffness than top andniqu foil,
both journal and bush were treated as rigid bodiging
the investigation.
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2.2. Numerical model and boundary conditions

Numerical model was elaborated in ABAQUS CAE
software, version 6.10. Simulation was planned imaaner
enabling imitation of the conditions of the expegimh con-
ducted by the American researchers, during theysisal
(Rubio and San Anders, 2006). During the simulation
the journal of the bearing under investigation waeded
with a static force with maximum value of 224 N.
The value of the force was increasing in a lineanner
with time of analysis, and it reached its maximuifteral
second. One end of the top foil and one end ofbilmap
foil were fixed to the bush surface. Displacemesftdree
fragments of foil were limited by the surfaces otijnal
and bush, between which a contact was modelledy wit
a friction coefficient equal to 0.1. The journaltbé bearing
could be displaced only in a vertical directiong@cling
to the force direction) in the surface perpendicula
to theaxis of the journal. The described system is presken
in the Fig. 2.

Fixing

Fig. 2. FEM model with fixing and load

Fig. 2 depicts also discretisation of the model.delo
consisted of 9778 degrees of freedom by total. Ridef
elements marked as CPE4RH were used. These were
a four-nod elements with linear shape functions amd
duced integration. Elements of this type are deditdor
analysis of deformations. Deformations of journad &ush
were not considered during the investigation, sittoey
were treated as rigid elements. Properties of cactadn
materials used during calculations are given in. Tlab

Selection of particular finite elements as wellasplied
means of discretisation of the bearing were pretede
by thorough investigation. Based on that, the optim
parameters of the FEM mesh were chosen for theystud
presented in this paper, enabling the achievemieakact
results within the shortest possible time of arialys

3. VERIFICATION TESTS

As a verification of the numerical model, the reésul
of the computational analysis were compared with rig
sults of the experiments. The procedure of vetificawas



divided into two stages. In the first stage of fieaition the
stiffness characteristics of the system, obtainmdstatic
load, were compared. The team conducting experahent
study noticed, that the size of the nominal cleegan
has a strong influence on the stiffness of the lf@iring
(Rubio and San Anders, 2006). Because of thatithals-
tion study, similarly to the experiment, was cortédcfor
bearings with three different sizes of the nomuiahrance.
The variable size of the clearance was obtainedlteya-
tion of the journal diameter, which was equal te tbllow-
ing values: 38,07, 38,10, 38,13 mm. Thanks to¢hanges,
the nominal radial clearance with values equal @50
0,035, 0,02 mm was obtained. One needs to notmegth
that the value of the nominal radial clearancehe foil
bearing stems mainly from the design assumptions.
The dimensions of the real bearing, due to thecditfes in
its actual construction, differ slightly from theesign as-
sumptions. This results mainly from the limitatioothe
technology of production of top and bump foil, whidoes
not allow for preparation of these elements with #s-
sumed precision of pm. Foils used for construction of the
structural supporting layer are elastic elements] neir
assembling is most often achieved with a certaitialn
tension. Due to all this, the achievement of theedisional
accuracy over the entire circumference and lendtthe
bearing is practically unrealizable. Therefore, thigen
value of the nominal clearance for foil bearing lishwee
treated as an approximate value.

The below figures (Fig. 3-5) exhibit the comparison
of the results of computer-aided simulations widsults
of the experiments presented in paper (Rubio amd/a
ders, 2006). The characteristic feature of theesgstinder
investigation was a small initial stiffness, whialas a re-
sult of the incidence of clearance. When clearanes
eliminated, the system under investigation waseasing
its stiffness, and its characteristic in the inigeged range
of loads was close to the linear one. The abovenuemnts
are related to the three bearings with journalslitierent
diameter. In case of the bearing with journal & Higgest
diameter, no clear area with incidence of clearawes
noticed in the results of the experiment, whatifiest the
formerly described difficulties with achievement die
dimensional accuracy of top and bump foils.

The compatibility of results from simulations ang- e
periments was compared for each of the investighésa-
ings separately. The highest compatibility of reswas
obtained for the system with the lowest cleararoethe
range of load above 50 N one could observe overlap
of simulation and experimental characteristics. taer
incompatibilities occurring for lower loads candsglained
by some inaccuracy in realization of the foil setjch was
the cause of the loss of clearance in a real bgahincase
of two other bearings, with journal diameter of B8,
and 38,10 mm, the compatibility of the characterist
was lower. In these two cases, model representerefults
of the measurements with low load in a satisfactogn-
ner, with respect to the elimination of the radildarance,
which this time revealed itself also at the testirg.
At higher values of load, the differences betweesults
of displacements determined by calculations andemxp
ments reached ca. 20%. It should be however notited
in each of the cases under consideration, the suteter-
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mined by simulations and experiments, after elitidma
of the clearance in the bearing, exhibited a cloakie
of the inclination angle.

Shaft diameter - 38,07 mm
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Fig. 3. Foil bearing structure deflection versus statialloa
(nominal clearance 0,05 mm)
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Fig. 4. Foil bearing structure deflection versus staticlloa
(nominal clearance 0,035 mm)
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Fig. 5. Foil bearing structure deflection versus static
load (nominal clearance 0,02 mm)

In the second stage of verification, in order tdtdre
identify the model of structural supporting layértioe foil
bearing, investigation enabling the assessmerteofitodel
in terms of energy dissipation during the loading
and unloading processes was conducted. In the modelr
investigation the dissipation of energy occurrecaagsult
of the sliding friction between cooperating elenseot the
bearing. For the purpose of the comparison of tleleh
characteristics with results of the research phbtis
in already mentioned article (Rubio and San And2066),
only procedure of the loading of the system was ifremt
in a previously developed model. During the firstend
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of the analysis the system was loaded linearly witlorce
of maximal value of 224N, and in the second of gsial
this force was decreasing linearly to 0. Comparigbtthe
obtained characteristics is shown in figure 6. Fivestiga-
tion under consideration was realized only for liearing
of journal diameter equal to 38,10 mm.

Shaft diameter - 38,10 mm
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Fig. 6. Foil bearing structure deflection versus statialing
and unloading

The characteristics shown in Fig. 6 confirms thghhi
compatibility of the developed model. A very highnsis-
tency of characteristics during the process of shstem
loading was obtained. Slightly worse matching oérae-
teristics was obtained during the unloading of slystem.
The results of simulations showed, that duringdbereas-
ing load, the values of journal displacement cqroesling
to the same values of the force were higher thanase
of the loading process. It was consistent with tesults
of the experiments and was connected with theidrict
phenomenon occurring during the journal displacemen
inside the bearing. As a result of the dissipatidnpart
o the energy supplied to the system so-called resite
loop was created. The surface area of the hystelesp
obtained as a result of experiments was slightihéi than
the one obtained as a result of calculations, wiih be
explained by the fact that some simplificationgtef model
were assumed, such as: omission of the interneticni
or two-dimensional character. Due to the fact, that me-
chanical system under investigation was very cory@ed
apart from deformation of elements with complex gee
try, the contact phenomena occurred as well - it ba
stated that the obtained results are satisfactory.

4. SUMMARY AND CONCLUSIONS

This paper discusses the results of verificatiostste
of the numerical model of the structural supportlager
of the foil bearing. The developed model was vedfi
in two stages in terms of the static loads. Thelte®f the
investigation confirmed the validity of assumptiomade
while developing the model. Because the developedein
can be treated as reliable, it can be used asyaugaful
research tool and will be applied for investigatiohthe
influences of selected parameters on the staticactexis-
tics of the foil bearing structure. Soon the modatbler
consideration will be also tested in terms of dyitalmads,
which will be the topic of the following publicatis.
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Finally, the comprehensively tested FEM model @& th
foil bearing structure, after connection with awflanodel
developed in parallel, will be applied for develogrh
of the simulation model of the whole foil bearing.

REFERENCES

1. Agrawal G.L. (1997),Foil Air/Gas Bearing Technology - An
Overview. International Gas Turbine & Aero engine §ass
& Exhibition, Orlando (USA).

2. Braun M. J., Choy F. K., Dzodzo M., Hsu J. (1996), Two-
dimensional dynamic simulation of a continuous fméaring,
Tribology InternationalVol. 29, No. 1, 61-68.

3. DélaCorte C. (1997),A New Foil Air Bearing Test Rig for
Use to 700 °C and 70,000 rpiASA TM—107405.

4. Heshmat H., Walowit J., Pinkus O. (1983), Analysis of Gas-
Lubricated Foil Journal Bearing8SME Journal of Lubricate
TechnologyVol. 105, 1983, 647-655.

5. Kicinski J., Zywica G., Rzadkowski R., Drewczynski M.
(2008), Modelowanie strukturalnej warstwysnej tozyska fo-
liowego,Acta Mechanica et Automaticsol. 2, No 1, 45-50.

6. Kim D., Park S. (2009), Hydrostatic air foil bearings: Ana-
Iytical and experimental investigatiori[ribology Interna-
tional, 42, 413-425.

7. Ku R., Heshmat H. (1992), Compliant Foil Bearing Struc-
tural Stiffness Analysis: Part | - Theoretical Mbdiecluding
Strip and Variable Bump Foil GeometrASME Journal
of Tribology Vol. 114, 394-400.

8. LeeY.B,KimT.H.,KimC.H., LeeN.S, Choi D.H. (2004),
Unbalance Response of a Super-Critical Rotor Suppdyed
Foil Bearings - Comparison with Test Resuli&jbology
Transactions47: 1, 54-60.

9. Rubio D., San Andres L. (2006), Bump-Type Foil Bearing
Structural Stiffness: Experiments and PredictioASME
Journal of Engineering for Gas Turbines and Power
Vol. 128, 653-660.

10. Salehi M., Heshmat H. (2000), On the Fluid Flow and Ther-
mal Analysis of a Compliant Surface Foil Bearing &whl,
Tribology Transactions43: 2, 318 — 324.

11.San AndresL., Kim T. H. (2008), Forced nonlinear response
of gas foil bearing supported rotor3yribology International
41, 704-715.

12.San Andres L., Kim T.H. (2009), Analysis of gas foil bear-
ings integrating FE top foil model3ribology International
42,111-120.

13.Zywica G. (2008), Ksztattowanie wiashd strukturalnej
warstwy nanej tozyska foliowego,Sympozjum Diagnostyka
Maszyn Wegierska Gorka.

The research work was supported by scientific ptoje
No POIG.01.03.01-00-027/08 “Application intelligenmaterials
and structures to develop and implement the comdepe innovative
bearing system for power micro-turbine rotors”



acta mechanica et automatica, vol.5 no.4 (2011)

ABSTRACTS

Aneta Bohojto
Numerical Analysis of Thermal Comfort Parametersin Living Quarters

This paper includes an evaluation of ventilationditions in a given living quarters — a room isimagle-family house, based on local parameters
of thermal comfort determined by numerical caldotz. Global parameters (Predicted Mean Vote ardi€ted Percentage of Dissatisfied)
and local parameters (including: Resultant TempeeaiRelative Humidity) were determined from nuroafisolution of transient case of living
quarters ventilation in ANSYS-CFX software.

Viktor Bozhydarnyk, laroslav Pasternak, Heorhiy Sulym, Nazar Oliyarnyk
BEM Approach for the Antiplane Shear of Anisotropic Solids Containing Thin Inhomogeneities

This paper considers a development of the bounglargent approach for studying of the antiplane isbealastic anisotropic solids containing

cracks and thin inclusions. For modeling of thidedes the coupling principle for continua of diet dimension is utilized, and the problem

is decomposed onto two separate problems. Thadiest external one, which considers solid contgjtines of displacement and stress disconti-
nuities and is solved using boundary element agprodhe second is internal one, which considersrdeition of a thin inhomogeneity under

the applied load. Compatible solution of exterrmad &ternal problems gives the solution of the ¢éamne. Stroh formalism is utilized to account
the anisotropy of a solid and inclusion. Numereample shows the efficiency and advantages gbribygosed approach.

Mikotaj Bustowicz
Sability of The Second Fornasini-Marchesini Type Model of Continuous-Discrete Linear Systems

The problem of asymptotic stability of continuousedete linear systems is considered. Simple nacgs®nditions and two computer methods
for investigation of asymptotic stability of thecead Fornasini-Marchesini type model are given. fits¢ method requires computation of the ei-
genvalue-loci of complex matrices, the second nektteguires computation of determinants of some ioesr Effectiveness of the methods
is demonstrated on numerical example.

Maciej Ciezkowski
Sabilization of Pendulumin Various Inclinations Using Open-Loop Control

The paper presents the stabilization method ofiphlypendulum in various inclinations. The theofyttte motion in a rapidly oscillating field
has been applied to explain the phenomenon ofligitinn and to set conditions for the stability thie pendulum. The paper shows results
of computer simulations which confirm that the piosi control of the pendulum in the open-loop isgible.

Janusz Gotdasz, Bogdan Sapski
Modeling of Magnetorheological Mountsin Various Operation Modes

Recent advances in the research of magnetorhealteéctrorheological (MR/ER) fluid based devicesvd indicated the opportunities for smart
fluid based devices utilizing more than one operathode. As such, the purpose of the present @seato draw attention to the existing models
of magnetorheological (MR) mounts operating in wfdhe three fundamental operating modes, namle¢y/flow mode and the squeeze mode,
and to highlight the potential applications of #n@sodes in hydraulic mount applications. Thereforehe paper the authors focus on recent ap-
plications of MR/ER fluids in that domain, and thproceed to summarizing the modeling principles tfa two operation modes followed
by a finite-element magnetostatic analysis of theunt’'s magnetic circuit, parameter sensitivity stuahd exemplary numerical simulations
of each mode. The simulation results are convéntedthe frequency domain and presented in the fafrdynamic stiffness and damping vs. fre-
quency plots, respectively.

Irina Goryacheva, Yulia Makhovskaya
Modelling of Adhesion Effect in Friction of Viscoelastic Materials

A model is suggested for the analysis of the coetbieffect of viscoelastic properties of bodies adtesive interaction between their surfaces
in sliding. The model is based on the solutionhaf tontact problem for a 3D wavy surface slidingto® boundary of a viscoelastic foundation
taking into account the molecular attraction in ¢fa@ between the bodies. The influence of adhesidhe contact stress distribution, real contact
area and hysteretic friction force is analyzed.

Piotr Grzes
Influence of Thermosensitivity of Materials on the Temperature of a PAD/DISC System

A heat generation problem due to friction in a p&tf brake system is studied. A linear problemosfionted and compared with a non-linear
in which thermophysical properties of materials temperature-dependent. To examine temperaturbeopad and the disc during a single
and a twofold braking process, axisymmetric FE adntodel was used. The obtained results revejrnifgiant temperature differences at speci-
fied axial and radial positions of the componenftshe friction pair. It was remarked that the lew#l discrepancies between the constant
and the thermosensitive materials correspond Wwitrcoefficient of thermal effusivity.
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Marek Jatbrzykowski, Joanna Mystkowska, Dariusz Urkan, Ewa Kulesza, Edyta Andrysewicz
Aspects of Exploitation Stability of Selected Dental Prosthetic Bridges

The paper presents results of microscopic obsenabf selected porcelain bridges prepared on licebaise. The aim of microscopic observa-
tions was the identification of example wear typddch have appeared during dental prosthetic bsidggloitation. The main attention was di-
rected to wear forms that are quite often presenase of such prosthetic elements. The wear g@eparative analysis was evaluated. The most
frequent types of wear are: material's crackingasibe wear. Also, the metal corrosion and weadéytal plaque at prosthetic bridge surface
were observed.

Agnieszka Jurkiewicz, Yuriy Pyr'yev
Compression of Two Rollersin Sheet-Fed Offset Printing Machine

The most important units of sheet-fed offset pnigtmachine, like the ink and dampening systems elsag a printing unit, are composed,

in the main, of contacting rollers of various sifi@scase of the printing unit they are named déirs). Adequate setting of the said rollers is very
important, because it has big influence on qualftprint-outs. The settings are made experimentaflyneasuring the width of the contact area
in the ink and dampening systems or by computiegctamp parameters — in the printing unit. Thisguapcludes analysis of compression of two

rollers depending on a width of the contact aradiuses of the rollers as well as their Poissatiss and Young’'s modules.

Tadeusz Kaczorek
Reduction and Decomposition of Singular Fractional Discrete-Time Linear Systems

Reduction of singular fractional systems to staddaactional systems and decomposition of singfiactional discrete-time linear systems
into dynamic and static parts are addressedslidasvn that if the pencil of singular fractionaldar discrete-time system is regular then the singu-
lar system can be reduced to standard one arah ibe decomposed into dynamic and static partgiidposed procedures are based on modified
version of the shuffle algorithm and illustratedriymerical examples.

Janusz Krentowski, RaGcistaw Tribitto
Numerical Analysis of Crosswise Heterogeneous Covering Sructuresin 3D Class Structure Conditions

The following paper presents the results of analygenulti-layered elements and thick constructi@swell as simplifications used for solving
structures of 2D class models published in spetitierature, and compares them with a differgaraach involving generalization of pertinent
problems into 3D classes. An error estimation metlvas proposed, together with a procedure of siyagriid’s density ensuring necessary com-
puting precision. Solving huge sets of equatiofead for practically continuous values of complerctions of stress states. Several of the pre-
sented typical examples indicate the possibilitgblying the algorithms, among others, to hetaregas structures of reinforced concrete con-
structions.

Michat Kuciej
Generation of Frictional Heat During Uniform Siding of Two Plane-Parallel Srips

The thermal problem of friction for a tribosystemmnsisting of two plane-parallel strips is studi#ds assumed that the relative sliding speed
is constant. The convective cooling on free sudamfestrips and the heat transfer through a corstadace are considered, too. The evolution
of the contact temperature and its spatial distiéioun materials of frictional pair such as aluomin/steel, was investigated.

Nataliya Malanchuk, Andrzej Kaczynski
Sick-Sip Contact Problem of Two Half Planes with a Local Recess

A plane problem of frictional contact interactioaetiveen two elastic isotropic half planes one ofchtpossesses a single shallow recess (depres-
sion) is examined in the case of successive apiolicaf remote constant normal and shear forces.|®ads steps (compression, and next mono-
tonically increasing shear loads) lead to the noaimtact problem with an unknown stick-slip bounddeyermined by the Amonton-Coulomb law.

It is reduced to a Cauchy-type singular integralatimpn for the tangential displacement jump in tiniknown sliding region. Its size is derived
from an additional condition of finiteness of shetresses at the edges of the slip zone. Consinlesadre carried out for some general shape
of the recess. Analytical results with the chanazation of the considered contact are given ahdtiiated for the certain form of the initial re-
cess.

Krzysztof Nowak
Grain Sze Dependence of Creep Lifetime Modeled by Means of Cellular Automata

Grain size dependence of creep is a complex ralatiocan be increasing, decreasing or constarttifum accordingly to current conditions

and material. It is a consequence of complex natfin@icroscopic mechanisms affecting creep. Somthefn are analyzed in current paper
by means of multiscale model, using simulation afndge development done by cellular automata tealnif was shown that enlarged sizes
of grains, which promote development of intergranuhicrocracks, are compensated by reduced deofsitgids forming vacancies. Obtained

in simulations grain size dependency follows experitally observed dependency for small grainsstodation creep range.
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Bogdan Rogowski
Exact Solution of a Dielectric Crack of Mode 111 in Magneto-Electro-Elastic Half-Space

This paper investigated the fracture behaviour gbiezo-electro-magneto-elastic material subjectdelectro-magneto-mechanical loads.
The PEMO-elastic medium contains a straight-lireckrwhich is parallel to its poling direction ar@htled surface of the half-space. Fourier
transform technique is used to reduce the probéethe solution of one Fredholm integral equatiohisTequation is solved exactly. The semi-
permeable crack-face magneto-electric boundaryitiond are utilized. Field intensity factors ofests, electric displacement, magnetic induction,
crack displacement, electric and magnetic potentiid the energy release rate are determineckl&bieic displacement and magnetic induction
of crack interior are discussed. Strong couplintyveen stress and electric and magnetic field feactack tips has been found.

Vasyl Shvabyuk, laroslav Pasternak, Heorhiy Sulym
Bending of Orthotropic Plate Containing a Crack Parallel to the Median Plane

This paper considers cylindrical bending of theeleontaining a crack parallel to plate’s facese @halytical model of the problem is obtained
using the improved theory of plates bending, wiidnsiders transverse deformation of the plate. iRedeanalytical results are compared
with the numerical data of the boundary elementr@ggh, which is modified to suit the consideredtaohproblem. The results of analytical
and numerical techniques are in a good agreemdénffdaothe isotropic and anisotropic plates.

Pawet Skalski
Testing of a Composite Blade

The research presented in this paper focuses omvbstigation of helicopter composite blade. Tieot of tests is a blade from main rotor
of the 1S-2 helicopter. The author describes byridihsic elements of composite blade manufacturettheatinstitute of Aviation in Warsaw.
The composite blade was investigated by the Exmerial Modal Analysis (EMA) to evaluate dynamic pedfes of tested structure. Based
on the experimental data collection, dynamic pripgrof a research object were estimated. The mpa@meters have been estimated using
PolyMAX — module of LMS Test.Lab software.

Anatoly Sviridenok, Aliaksei Krautsevich, Olga Makarenko, Vladimir Voina
Sructure and Adhesive Properties of Nanocomposites Based on Functionalized Nanofillers

Nanocomposite samples of the copolymer of ethyéembvinyl acetate containing carbon nanofibersrarbtubes have been prepared by mixing
in solution. In order to improve interfacial intetimns in the polymer-nanofiller system they waubjected to a preliminary chemical functionali-
zation. The efficiency of functionalization wasigsited by the IR spectroscopy. The X-ray diffractémd strength characteristics of the obtained
nanocomposites filled by the untreated and funefiaad carbon nanofibers and nanotubes with diffefifing degree were compared.

Krzysztof Wéjcicki, Kazimierz Pucitowski, Zbigniew Kulesza
Mathematical Analysisfor a New Tennis Ball Launcher

The paper presents the mathematical analysis éodélsign of a new tennis ball launcher in ordeassess the possibilities for its technical im-
plementation. First, traditional launchers are dbsd. Next, several new requirements improvingning possibilities of such machines are sug-
gested. The motion equation of the flying tenni# Isaformulated and numerically solved. This makepossible to analyze the trajectories
of the ball for different initial conditions: eletian and heading angles, as well as the rolleréeafitnen, the mathematical analysis of the launch-
er with two counter rotating rollers is present8tiffness (Young’s) modulus and friction coefficierior the typical tennis ball have been deter-
mined experimentally. Based on these, initial cthads for the throw have been found: rotating sgeefdthe rollers and powers of the driving
motors.

Grzegorz Zywica
The Satic Performance Analysis of the Foil Bearing Structure

Foil bearings are a variety of slide bearings, ol an extra compliant foil set is applied betwgarnal and bush, in order to improve the se-
lected static and dynamic properties. Bearinghisftype are investigated by engineers and reseerétom all over the world since many years —
both from simulation as well as experimental paihtiew. Due to the complexity of construction, tiediable simulation models are still being

searched for. This paper discusses the most impastages of elaboration of the structural suppgriayer of the foil bearing as well as results
of verification tests. The main goal of the conedcstudy was assessment of reliability of the etatied numerical model, in order to ensure
that in future it could play a role of a reliab&search tool, which could be used for elaboratfdh@numerical model of the entire foil bearing.
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