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Abstract: We solve two-term fractional differential equatiomith left-sided Caputo derivatives. Existence-ueigess theo-
rems are proved using newly-introduced equivalents/metric on the space of continuous functiom® metrics are mod-
ified in such a way that the space of continuougtions is complete and the Banach theorem on d fixént can be ap-
plied. It appears that the general solution is geed by the stationary function of the highesteorderivative and exists

in an arbitrary interval [0,b].

1. INTRODUCTION

Fractional differential equations (FDE) emergedapt
plied mathematics as an important tool to descnizmy
processes and phenomena in physics, mechanicspraeon
ics, control theory, engineering and bioengineeiiogm-
pare monographs and review papers (Agrawal e2@04;
Hilfer, 2000; Kilbas et al., 2006; Magin, 2006; tdier and
Klafter, 2004; West et al., 2003) and the refeesngiven
therein). During the last decades, the theory attfonal
differential equations has become an interesting) mea-
ningful field of mathematics (the results and referes are
summarized in monographs (Diethelm, 2010; Kilbaalgt
2006; Kilbas and Trujillo, 2001, 2002; Klimek, 2009
Lakshmikantham et al., 2009; Miller and Ross, 1993d-
lubny, 1999)). Since 2010 the FDE theory also wassi-
fied in the MSC system: under 34A08 for ordinaction-
al differential equations, 34K37 for functional dtenal
differential equations and under 35R11 for paftiattional
differential equations.

Still, in the theory of fractional differential egtions,
many problems remain open. Even in case of bas& ex
tence-uniqueness results, there is an area fostigations
concerning the efficient proving methods, corresiiom
space of solutions choice and the extension ofiteefnom
basic to more general equations containing mangger
with derivatives, both left- and right-sided.

The present paper is devoted to the study of two-te
fractional differential equations with left-sidedag@uto
derivatives. Existence-uniqueness results are rmddai
for equations of arbitrary fractional order whee thighest
order derivative is given as a sequential operater
it is a composition of two Caputo derivatives. It point
out that the equations from this class of sequeRiZE
were applied in the theory of viscoelasticity (Wa2§10)
and in hydrodynamics (Khan et al., 2009; Shan.e2aD9;
Tian et al., 2006).

The proposed method of deriving the solution iean
tension of the Bielecki method known from differiant
equations theory (Bielecki, 1956). He applied eglgnt
norms/metrics, modified using the exponential fiorct
and the Banach theorem to solve differential equati
of integer order. In the paper (El Raheem, 2003inale
fractional differential equation of the order inetmange
(0,1) was solved using the same approach. Thershinak
kantham and his collaborators (Lakshmikantham et al
2008, 2009) applied in the modification of normstiics
the one-parameter Mittag-Leffler function. This oaled
them to prove the existence and uniqueness resuligua-
tions with the Caputo derivative of order in thega (0,1).
Further results for similar equations are givenhia paper
(Baleanu and Mustafa, 2010). In the papers by Kiime
(Klimek, 2011a, b) they were extended to the nteitin
FDE dependent on a basic Riemann-Liouville, Caputo
or Hadamard derivative.

Here, we study equations with sequential powerGaf
puto derivatives of an arbitrary fractional orddssuming
that the nonlinear term obeys the Lipschitz cooditi
we obtain continuous solutions in an arbitrarilpdointer-
val.

The paper is organized as follows. In Section 2reve
call the basic definitions from fractional calculasd intro-
duce a family of norms in the space of functionsticmous
in a finite interval. They are equivalent to thepemum
norm, thus whenever we endow the space of contsuou
functions with the metric generated by the new norm
we obtain a complete, metric space. We also fortaulze
lemma on the properties of fractional integratiow dur-
ther apply it to solve fractional differential edioans. Sec-
tion 3 is devoted to the existence-uniqueness tresul
for a two-term fractional differential equation titthe
composed Caputo derivatives. The analogous resuoits
a general sequential equation with the composedutBap
derivatives are included in Section 4. The papetlosed
by a short discussion of the presented method lingp
and its possible further applications.
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2. PRELIMINARIES

In this section we recall the basic definition frdrac-
tional calculus and introduce a class of norms \edent
to the supremum norm on the space of continuous-fun
tions. The Riemann-Liouville integral and Caputaive
tive are defined as follows (Samko et al., 1993b&S et
al., 2006).
Definition 2.1. The left-sided Riemann-Liouville integral
of ordera, denoted a#f,, is given by the following formu-
la for Re(a) > O:
1 j f (u)du
M@)y-ut?
Definition 2.2. Let Re(a) € (n — 1,n). The left-sided Ca-
puto derivative of ordet, denoted as’D{, , is given by the
formula:

16, £(t) = (1)

1 I f ™ (u)du
F(n-a)? t-uy* ™

°Dg, f (1) = )

The definition below describes a generalized exptake
function - the Mittag-Leffler function.

Definition 2.3. Lety > 0, § > 0. The two-parameter Mit-
tag-Leffler function is given as the following sesi

0 Zk

E = _ . 3
y,5(2) kgowkw) 3)

Definition 2.4. We denote a&[0, b] the space of functions
continuous in interval0,b]. This space with supremum

norm ||g :tDs[gg]|g(t)| and the respective generated metric

is a complete metric space.

We shall apply the Mittag-Leffler functions in ticen-
struction of a class of norms in spa€¢0,b], indexed
by positive parametet.

Definition 2.5. The following formula defines a one-
parameter class of norms and metrics on sp§es]

la@®)|

= su 4
"g"K tqo,g] E,1(xkt") @
de (@.0):=]g-h], . (5)

Property 2.6. Supremum norml-| and the norms given
by formula (4) are equivalent.
Proof: This property results from the set of inequalities

-1
ol sup £, | <1, <Je.

1o,

which are fulfilled for anyg € C[0,b] andk € R,.

Now, we quote an important result concerning tlae-fr
tional integrals of the Mittag-Leffler function antheir
supremum.

Lemma 2.7. The following integration formula is valid
foranyp,x € R,

1£Epa(t?) = (Epat?) -1, ©

Let § > a > 0. Then, constant A exists so that the fol-
lowing inequality is valid for parametere R,

su 1§.Ep-aa(kt”™) PLEN 7
p /3‘0/ ="/ ( )
toob] Eg-o 1(xt ) K

The first part of the above lemma is a straightfanav
corollary of relation

“Dg, Epa(1”) = KE 51 (k7).
The proof of the second part is rather long antiriemal

so we omit these calculations in the present paper.

3. SOLUTION OF TWO-TERM FRACTIONAL
DIFFERENTIAL EQUATION — CASE |

We shall consider a two-term fractional differehtia
equation in an arbitrary finite interv@l, b] including left
-sided Caputo derivatives in a sequential form:

(D" —a, D) f(t) =g (t, f (1)) (8)
with
D™ f(t) :="Dgt (9)

D f(t):=°D5L°Dgz 1 f(t), a, >a . (10)

The preliminary results for equations of this type
discussed in paper (Klimek, Btasik 2011). In thegent
paper, we shall give full proof of the existencequeness
results for the general solution to equation (8) &r the
initial value problem in case,, o, € (0,1).

In the transformation of the above equation, wellsha
apply the following composition rule for the Caputeriva-
tive and Riemann-Liouville integral. This rule holids any
function continuous in interval [0,b] and we qudtefter
the monographs ( Samko et al 1993; Kilbas et abP00
Property 3.1. Let f € C([0,b],R) andB > a. The follow-
ing equalities hold for any pointe [0, b]

DG, (1) = (1) (11)

DEILF(t) =181 (t) . (12)

Assuming the nonlinear terpto be a continuous func-
tion of two variables and using the above propesty,can
reformulate equation (8) as follows

CDgicDgf_—”l(f 0 -aglg2 - 15200, f (t))) =0, (13)

providedf € C[0,b].

Now, we observe that the function in the brackeds b
longs to the kernel of sequential derivatib&z. Let us
denote this function ag, and write the corresponding
equation for stationary function



D (¢o(t)) = “Dg} “Dg? ™ (4o(1)) =0 (14)
which leads to the explicit formula
n,-1 j n-1 a,—ay+i
Cj K d @9 %
t)= + ' 15

Po)= Z r(j+1 ;r(az—al+i+1) 13)
when the respective orders fulfil the conditions:
O(1 E (n1 - 1, nl) andaz - 0(1 E (nlyz - 1, nlyz).

Equation (13), rewritten using stationary functid®),
becomes the fractional integral equation:

F)—aglgz ™ F() =10zt F (1) =o(t) (16)
which in turn coincides with fixed point condition
f(t) =Ty, F(1) a7)
for mappingTy, generated by stationary functigr
Ty, f(O) = anl g ™ F O+ 1520t F (D) + o (1) - (18)

Assuming functionp € C([0,b] X R,R) and observing that
stationary functiong, is continuous in interval0,b] we
conclude that the above mapping transforms anyiroomts
function into its continuous image.

The discussed transformation of the FDE given in (8
into fixed point condition (17) allows us to forraté the
following result on the existence of a solutionetpuation
(8).

Proposition 3.2.Let a, > a, and functiomp € C([0,b] x
R, R) fulfill the Lipschitz condition:

Wt X) -w,y)| <M dx-y
Ot0[0, b].

(19)
Ux yOR.

Then, each stationary functiaf derivativeD%z given
in (15) yields a unique solution of equation (8}t space
of functions continuous in intervdD, b]. Such a solution
is a limit of the iterations of mappirig,:
f(O) = lim ()X, (20)
wherey is an arbitrary continuous function.

Proof: We reformulate equation (8) as fixed point conditio
(17) with mappingly, defined in (18). We shall consider
the properties of this mapping on the space of tfans

continuous in interval0, b] endowed with a metric gener-
ated by the norm constructed according to Defini2cb :

_ |9
lall, = sup
tr10, b] E(,,2 - 1(xt

(21)

”2_”1) '

For any two continuous functiomsandh, the distance
of their imageg,g andTy,h ( measured using the metric
determined by the above norm) can be estimatedilasvé
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[Ts,h=T,9],
‘al of H(h(t)—g() +147 (éﬂ(t,h(t)‘l//(t,g(t))‘
= sup <
t[0,b] Egy-a 1 (K177T)

|a1||”2“’1|h(t) 9] +1 52y ¢ h®) ~¢ ¢ 9®) _

< Su
b Egy-a,1 (k1727T)
< sup |ay| g2 |n(t) — g(t) + M O g2 | (1) - g(t)] L
{0, b] Ea,-a, 1 (KT 9271
E. _ a,-ay
a0 -go] et )
1 a»—a-
< sup Eg,-a, 2 (K17271) .
0] Egy-a, 1 (K1727%)
Egy-a, 1 (k17277)

M 02 h(t) - g (®)|

Egy-ay 1 (KT727T)

+ =

gy, 2 (K1775)

Daz “E t02-@

“In-gi,| sup| P10 Eneate)

tC[0,b] Eg,-q, 2 (K1727)

443
+M [A J:

K

a -
Ih-g st :
=|h- su
e tD[O,E] Eg-a, 1 (k1727™)

+M [A

460

Js
K

1 a
<=iih-ol, o) +m A

In the above calculations, we have applied Lemnia 2.
on the fractional integration of Mittag-Leffler fations.
They can be summarized in the form of the following
equality

[Ts,n=Toq], <Lv Gh-g], 22)
with a constant given by formula

(] +M A= )
L, =—m*. (23)

K

Relation (22) is fulfilled for any two continuousrfc-
tionsh andg, stationary functiorp, and the value of para-
meterx according to Lemma 2.7. Let us note that the nume-
rator of the fraction defining constahj, does not depend
on the value ofc. Thus, for a parameter large enough
L, € (0,1) and mappindly, is a contraction in the space
of continuous function€([0,b] endowed with the metric
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generated by norm (21). As this space is comphsten
using the Banach theorem on a fixed point, we aatel
that fixed pointf exists and fulfills condition (17)

According to the mentioned theorem, the fixed pasna
limit of iterations of mappindy, as described in the thesis
of Proposition 3.2 and thanks to the compositide ftom
Property 3.1 it also solves initial FDE (8).

Let us point out that the presented constructiomks/o
for any stationary functiornp, of derivative D*z. Thus,
the obtained solution, connected ¢g, is an analogue
of a general solution from the classical theordifferential
equations and it containg, , + n, arbitrary coefficients.
To fix the coefficients, we add a set of initialnciitions.
The next proposition gives the existence-uniquemessilt
for the case when orders of derivatives are in rdmege
of (0,1).

Proposition 3.3. Let the assumptions of Proposition 3.2
be fulfilled anday, a, € (0,1). Then, the unique solution
of equation (8) obeying the initial conditions:

f@=w, “Dgi “f(0)=w

exists in theC([0, b] space. Such a solution is a limit of the
iterations of mappindy, generated by the following sta-
tionary function

a—ay

Po(t) =g + (W, — awp)t

Proof: From Proposition 3.2 it follows that each statigna
function ¢, generates a unique continuous solution
to equation (8). We shall prove that solution f gated
by function wy + (w; — a;wy)t*2~ %1, solves the initial
value problem given in Proposition 3.3. First, frqt6)
we obtain the relation:

W =f0)=¢0)=c.

Equation (16) and composition rule (12) yield fofanu
D () =agf (t) + 12 WL, F (1) +d.

Taking t = 0, we obtain
w="Dg2 “f (0) =a f (0)+°Dgz “¢(0) = aywp + do.

Solving the above equations, we arrive at the falhg
values of coefficients, andd, in general formula (15)

Co=Wp, do=WwW, —aW,

and this ends the proof.

4. SOLUTION OF TWO-TERM SEQUENTIAL
FRACTIONAL DIFFERENTIAL EQUATION
— CASE Il

In this section, we shall solve the general twortese-
quential FDE in a finite interval. This equationoks
as follows:

°Dg2 Dt (1) =W, f(t), DL f (1)), (24)

where the sequential derivative on the left-hande si
is understood differently than that in equation . (8)
The considered FDE can be rewritten in the vedonf

“Dg: f1 (1) = (1) (25)

“Dgi ™ (1) =Wt f.0), (1), (26)
where we denoted;(t) = f(t). Such a transformation
is typical for the above class of equations (cormpabno-
graph by Diethelm (Diethelm, 2010), the referenge®n
therein and papers (Kilbas et al., 2001, 2002)¢ favelty
of our paper is a new method of proof which leazishe
existence result for the solution in an arbitratdpg inter-
val [0, b].

Similar to the calculations in the previous section
we transform the above system of FDE into the syste
of fractional integral equations on the space aftiomous
functions:

f1(0) = g5 (D) + (1)

fo(®) =107 "W f1(0), F2 (1) +¢2(0) -

Functionsg, and ¢, are the corresponding stationary
functions of derivatives’Dy! and D2~ **:

°Dgig,(t) =0

‘Doz “¢,(1)=0.

(27)

(28)

(29)

(30)

The explicit form of the above stationary functiafes
pends on the order of the derivatives. &gte (n; — 1,n,)
and a, —a; € (n;, —1,n;,). Then functions ¢, and
@, look as follows

o)

¢1(t)_§r(j+1) (31)
n -1 c2 [ﬂi

$0= — (32)

4 T(i+])
with coefficientsc; andc? being arbitrary real numbers.

We note that the system of fractional integral ¢igna
can be reformulated as a fixed point conditiontfa two-
component, real-valued function:

[fl- fz] :T(¢l,¢2)[flv fz]

where the components of the mapping are defined
as follows for any two-component continuous funetio

g = [81, 8]
(To00l00 92, =180, + 6,0

(33)

(34)

(Mo plon 92)), =187V 0,0, 9, () +6,0) . (35)

Solving the systems of equations (25, 26) and 287,
we shall prove that the mapping given above is rarao-
tion on the space of continuous functio6g[0,b], R?)



endowed with the respective norm and metric from th

class indexed by positive parameteg R,

lol, = lol, +1eel, (39)

Joil, =

Let us observe that for each positive value of etar
K, the norm and the respective metric defined bynidas
(36, 37) yield a complete metric space as theyeargva-
lent to the standard norm @([0, b], R?):

gj)
= sup —| ] | (37)
10,6 Eq, g 1 (k17271)

lol = o+ o] (3)
|9; [= sup|g ®)- (39)
t[0,b]

Proposition 4.1.Let a, > a, and functiomp € C([0,b] x
RZ%,R) fulfill the Lipschitz condition:

|W(t,xg, X2) =W (t, 1, Yo)| <
< My g = yi| + Mo T = v

Oto[o,b] ,0x,x OR, j=12.

(40)

Then, each pair of stationary functiong;, ¢,
of the derivatives given in (31, 32) yields a ur@colution
of equation (24) in the space of functions contimio

in interval [0, b]. Such a solution is a limit of the iterations

of mappingT(% 02):

[f2®). f2(0] = lim (T Gup) DXLO, X2(D)] (41)

f(©) =10, (42)

wherel,, A, are arbitrary continuous functions determined

in interval [0, b].

Proof: Let us assume, — a; > a, and estimate the dis-

tance between the images of an arbitrary pair o tw

-component functionsgf, g,] and h,, h,] . We obtain the
following inequalities

H(Twl,m)[gl* 921 =T, 9, [0 hy]) .

=[ 16002 - | <

K

I E ta
<|| g, —h, || Osup ored 2 nl'l(Ka ) <
E[Ob] Eal,l(Kt 1)
(kt9) -1
<| g2 =h, |, Osup 1—0J
tDOb] KIEg, 1(kt™)

1
5;[W g2 -h |, S;[ﬁ" 9 ~hy [+ 92— ||K)

valid for the first component of the image.
The presented calculations can be
by the following relation

summarized

acta mechanica et automatica, vol.5 no.2(2011)

< (43)

H(T(¢1,¢z)[91- 021~ Tig, 0. o)) 1‘ )

1
S;["[gl! gZ] - [hlv hZ] ||K .
Respectively, for the second components of the @mag

we obtain

H(T(¢1v¢2)[gl’ 92] _T(¢1,¢2)[h11 hz]) 5

K

=“ Loz ™W(t, 91, 92) = g2 “W(t,hy,

<M [W|a2 01|g1_

« tM, quaz “ g,

1(xt )
1629, (t) - hl(t)|”1ia
al,l(Kt 1)
<M, Dﬂ']sup a
[0,b] Eg (k™)
2 (kt)
1629, () - hz(t)|%7a
Eg 1 (kt™)
+M, Osup <
t[0,b] a1 (KET)
|”2 BE, 4 (Kt
< M I:ng hl" 1( ) +
1 o
] Eg, 1 (k™)
|"2 BE, 4 (Kt
+M El:lgz h2|| 0o+ a, 1( ) <
a
tDOb] Eg, 1 (k™)
a,-2a,
<My g, -h, AT
a,—2a;

+M, Engz_h2”;( P [As
i a,-2a; [ﬁ - - )
< p CAb Rna){Ml, Mz} |91 h1||K +||92 h2||K :

The above calculations yield the following ineqtyali
for the second components of images

H(T(Mfz)[gl' 921~ Tg,.0,) [N hz])Z“K < (44)

1 _
<L 0% 2 tax{My, M} {9y, 9,1~ [y, M1 | -

Now using derived relations (43, 44) we are readgs-
timate the distance between the imaBgs ,,)[91, 9]

andT(,, o,)[h1, ha]:
H Tig.0,)[91, 921 = T4, 4,y [, Do) HK <

<L, [n[gl, 921 = [hy, hy] "K’

where constani, is inversely proportional to the value
of parametek

= % E(Ab"fz"l mnaxM,, M ,} +1) .
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As parameters;, a,, A, b, My, M, do not depend on the
value ofk, we conclude that for a large enoughmapping
Tp,, 0, 1S @ contraction on spacé€([0,b],R?*). Thus,
we can apply the Banach theorem on a fixed poidtiafer

that function[f, 2] € €([0,b], R?) exists so that the fixed
point condition

[f,, fz]:T(¢1,¢2)[f1, f,]

is fulfilled. Such a function can be constructedngsthe
iteration limit as described in formulas (41, 4Zhe first
component of the fixed point solves FDE (24) acoayd
to relation (42).

The proof in case, — a; < a; is analogous.

5. FINAL REMARKS

We developed an efficient method of proving thesexi
tence-uniqueness results for two-term fractionaffedi
rential equations. For equations containing lediedi Ca-
puto derivatives and their composition, we showbdt t
a general solution exists in an arbitrarily longemal
and is generated by the stationary function of highest
order derivative. The applied method of equivalent
norms/metrics extends the idea given by Bielechelggki,
1956) for differential equations of integer ordé&s was
shown in former papers (El-Raheem, 2003; Lakshmikan
tham et al., 2008, 2009; Baleanu and Mustafa, 2610;
mek, 2011a, b), in FDE theory we should modify the-
trics using one- or two-parameter Mittag-Lefflenftions.

In the present paper, the respective version ofnbéhod

is given for two-term fractional differential eqiats con-
sidered on the C[0,b] space. However, careful amly
of the obtained results and their proof implies thya using
Lemma 2.7, they can be extended to multi-term FDéf.
us also point out that this approach seems app@igpto
study and solve fractional differential equations ather
function spaces- for instance on the space of differentiable
functions.
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Abstract: In this paper we consider two ordinary fractionddedential equations with composition of the leftd the right
Caputo derivatives. Analytical solution of this typé equations is known for particular cases, havdngomplex form,
and therefore is difficult in practical calculat®rHere, we present two numerical schemes beingrdigmt on a fractional
order of equation. The results of numerical caliboifes are compared with analytical solutions arehttve illustrate conver-
gence of our schemes. Finally, we show an appicatf the considered equation.

1. INTRODUCTION

This study is devoted to the analysis of ordinaffed
rential equations containing a composed form df lefd
right-sided fractional derivatives, which are definin any
sense, i.e. the Riemann-Liouville and the Caputeson
Moreover, we consider the equations in a restridt@dain.
The equations are obtained by modification the mim
action principle and the application of fractioivgkgration
by parts. It should be noted that many authors dat,
2002; Klimek, 2002; Riewe, 1996) elaborated frawio
forms of the Euler-Lagrange equations. However eiipea-
tions contain only specific compositions of fractb deriv-
atives, i.e. the arbitrary form of Riemann-Liougillleft- or
right-sided) composed with the arbitrary form ofpGto
(also left- or right-sided). Therefore, in the Bulagrange
equations a disadvantage in boundary conditiortsirsc
The disadvantage reveals an introduction of homogen
conditions for one boundary, where the Riemann-iitel
fractional derivative exists (Blaszczyk et al., 201
Leszczynski and Blaszczyk, 2010). To omit such [aois,
we consider a composed form of fractional derivediv
where the left- and the right-sided Caputo opesatane
used. Moreover, we expect that a fractional difficied
equation containing the composition of two Caputoivh-
tives has physical meaning and will be useful irdaiting
complex processes in nature.

To obtain the analytical solution is one of the dan
mental problem that arises from Euler-Lagrange gojus
The results, based on the fixed point theorem (Ekm
2007), are not capable in practice, because thaticol
is presented in the form of very complex seriesmik
(Klimek, 2008) proposed to use the Mellin transform
in order to obtain the analytical solution. Howeveuch
solution has complex form, which includes seriespcial
functions. For practical applications we cannot tise

analytical solution due to its useless in calcolai There-
fore, we will construct some approximate solutioBeme
numerical basics can be found in the studies (Bladg
2009; Blaszczyk, 2010; Blaszczyk & Ciesielski, 2010

2. FORMULATION OF THE PROBLEM

We consider two ordinary fractional differentialueg
tions with composition of the left- and the rigited Capu-
to derivatives, which have the following forms

“Df_“DE.T(x)-AT(x) =0, 1)
“Dg, “DE.T (x)-AT(x) =0, )

where x € [0,b] and operators®Dg,, “DF_ are defined
as (Kilbas et al., 2006)

X g(n)
- 1 T (r)
)_r(”‘a)'([(x—r)"'“ﬂdr’ forx>0 (3

°DE.T (x

n

°DaT (x) = r((;ll_) dr, forx<b (4)

T 70 (7)
a)s (1=
wheren = [a] + 1.

Here, we mearf D¢, as the left-sided Caputo derivative
and “DZ_ denotes the right-sided Caputo derivative.

For ¢ € (0,1) Egns. (1) and (2) are supplemented
by the adequate boundary conditions

T(0)=To, T(b)=T, 5)
Analytical solutions are known only for some type

of Euler-Lagrange equations (Klimek, 2007; Klimek,
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2008), and they have very complex form. To omis thi
problem we propose a numerical approach.

3. NUMERICAL SCHEMES

In order to develop a discrete form of Eqns. (1 &2),
the homogenous grid of nodes is introduced as

0=X <X <...<X <X,1<...<Xy =b, (6)
where
X =X +i DX, (7)

Function T determined at the poink is denoted
asT; =T (x). We also assume € (0,1).

3.1. Discrete scheme for Eqns. (1) and (2)

We have introduced the discrete form of fractioted
rivatives for Egn. (1). The value of the left-sid€adputo
derivative at poink; can be approximated as

-
1 T'(1
0T, gy ) o
% (Xi _T)
1 L TJ+1 _TJ ¢ 1
O dr (8)
r(1—a)§ M (% -1)
= (87 > T v(i )
j=0
where
.. 1
v(i.i)= r(2-a)
(i-9)- -ite forj=0
(l _ ] +1)1—0/ _ 2(| _ j)l—a (9)
X
+(|_j_1)1—0' forj=1...i-1
1 forj =i

Next, denotingg(x) = D& T(x) in Egn. (1) we find
the discrete form of the right-sided Caputo deveat

°of “o8.T(x),_, =i 9(x)

x=x
(r

%

X
-1 N g- )
= dr
r(1-a) { (r-x)”
N-1 X

-1 Oj+179;
Dr(l—a)z AX

(10)
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where
1
i) =g
1 forj =i
(j-i+1)" - 2(j-i)" (11)
+(j-i-1)" forj=i+1..,N-1

(N=i-2" =(N=i)" forj=N

Using formulas (8) and (10) we obtain a systemaiont
ing the discrete form of Egn. (1) and boundary daors
as

To =T (%)

(AX)—za ZN:{W(L j)zj:v(j,k)Tk]—/]Ti =0, fori=1.N-":

j=i k=0

(12)

Similarly to previous considerations, we write tHis-
crete form of Eqn. (2) as

To =T (%)

(AX)-Z”iZ[V(i- j)Zw(j,k)Tk]—/]Ti =0, fori=1,..N-:

i=0 k

]
Ty =T(xy)
(13)

To obtain full numerical solutions of Egns. (1) and
(2), we need to solve a system of algebraic equat{@2)
and (13) respectively.

3.2. Convergence and error analysis

Including discrete forms of Egns. (1) and (2) walgse
errors and convergence of the numerical schemes. us
assumea € (0,1), x € [0,1], 4 = 0 and boundary condi-
tions as

T(0)=0, T()=1 (14)

Then, the solution of Eqn. (1) has the followingnfio

T(x)=x" (15)
Tab.1 shows errors generated by numerical schefje (1
being dependent on fractional orderand step4x which
was assumed in calculations.
We determine experimental estimation of the conver-
gence row (EOC) as

error[N] J (16)

EOC = |Og2 [W{ZN]

where



1 1 N-1
§|T(XO) —T0| +f2|T(xN ) —TN|+Z:|T(><i ) —Ti|
error[N] = N i=1 ,

17)
In the error calculations we take into account lutzug
conditions (14).

Tab. 1. Errors and experimental estimation of the convecge
row (EOC) generated by the numerical scheme (12)

a=03 a=0.5 a=0.7
AX error | EOC| error | EOC| errorf EO(Q
1/16 1.51e-2 1.46e-2 1.05e-2
1/32 8.47e-8 0.83 | 8.19e-3 0.83 | 6.05e-30.79
1/64 4.60e-8 0.88 | 4.41e-3 0.89 | 3.34e-30.86
1/128 2.44e-B0.91 | 2.32e-3 0.93 (1.80e-30.89
1.0
A=0
0.8+
0.6
%
=
0.4 4
second order differential equation
fractional equation (1) for
0.2 4 —fe— u =09
= a=07
1 L a=05
0.0 T l_o_ m:”'.z T
0.0 02 0.4 X 0.6 0.8 1.0
Fig. 1. Numerical solutions of Eqgn. (1)
1.0+
second order differential equation
fractional equation (2) for :
—e— =09
084 _o> w=07
= =05
—O— =02
0.6
Z
=
0.4
0.2 4
=0
0.0 T T T T
0.0 02 0.4 X 0.6 0.8 1.0

Fig. 2. Numerical solutions of Eqn. (2)

When we solve Eqn. (2) numerically with boundary
conditions

T(0)=1 T()=0
then we obtain identical table of errors. This ésulted

by the effect of relation between considered equatiand
the reflection operator (Blaszczyk and Ciesiel2Ri10).

(18)

acta mechanica et automatica, vol.5 no.2(2011)

Analyzing values of EOC in table 1 one can observe
that the convergence of our numerical scheme®(ly
and does not depend of parameter

Next, we calculated some examples for differenti@sal
of ain order to show graphically how numerical soluson
of Egns. (1) and (2) behave.

In Figure 1 and 2 the solutions &hrs. (1) and (2)
for different values of the parameterare presented. One
can see that both solutions are symmetrical. Arradythe
behavior of solutions we observe thB{x) tends to the
solution of the classical second order ordinaryedéntial
equation fora - 1°.

4. APPLICATION

In order to show a practical application of Eqn) (1
we consider a steady state of heat transfer throglyra-
nular layer as presented by Fig. 3.

Using the idea presented in (US Department of Frans
portation, 2009) the experiment began with fiverte-
couples placed at depths 25 mm, 85 mm, 145 mmp#52
327 mm in the granular material which is used foad
construction. Grains have specific parameters sscther-
mal conductivity, specific heat and density. It sldobe
noted that the surface has been exposed to theheveat
conditions (irradiation, wind speed, relative huityid Data
from the thermocouples (US Department of Transpioria
2009) helped us to create a temperature profile.

Fig. 3. Experimental setup

364 *

304

T[°C)

solution of equation (1) fora =02 and A =0
* experimental data

T T
0 70 140 210 280 330

X [mm]
Fig. 4. Comparison of Egn. (1) with experiment data
(US Department of Transportation, 2009)
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In order to obtain the experimental results we appr
imate a temperature profile using the solutionhef frac-
tional Eqn. (1). Figure 4 presents comparison bebnex-
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Abstract: The paper considers the stability problem of lintsare-invariant continuous-time systems of fracéiborder,
standard and positive, described by the state spadel. Review of previous results is given and same methods for sta-
bility checking are presented. Considerations &usetitated by numerical examples and results of egensimulations.

1. INTRODUCTION

In the last decades, the problem of analysis anthsy
sis of dynamical systems described by fractionalepr
differential (or difference) equations was consaderin
many papers and books. For review of the previesslts
see, for example, the monographs (Caponetto eR@L0;
Das, 2008; Diethelm (2010kaczorek, 2009, 2011a; Kil-
bas et al., 2006; Monje et al., 2010; OstalczylQ®2®Pod-
lubny, 1994, 1999; Sabatier et al., 2007).

The problems of stability and robust stability ofelar
fractional order continuous-time systems were siidi
among others in Matignon (1996, 1998), Bustowid20@a,
2008b, 2009), Petras (2008, 2009), Radwan et DR
Sabatier et al. (2008, 2010), Tavazoei and Her@92@nd
in Ahn et al. (2006), Ahn and Chen (2008), Bustawic
(2008c), Lu and Chen (2009), Tan et al. (2009), atigu
and Yisheng (2010), respectively.

The new class of the linear fractional order system
namely the positive systems of fractional order w@ssid-
ered by Kaczorek (2008a, 2008b, 2009, 2011a, 2011b)

The aim of the paper is to give the review of thethm
ods for stability analysis of fractional continuetirse lin-
ear systems described by the state-space modeirasen-
tation of some new results. The standard and pesitac-
tional order systems will be considered.

2. PROBLEM FORMULATION

Consider a linear continuous-time system of frawtlo
order described by the state equation

oD (1) = AX(t) + Bu(t), (1)

wherex(t) € R, u(t) € R™, A € R™", B € R™™ and
1t x(P(ydr

oD¢ X(t) = O 1<asp, )

F(p-a)p(t-1)%*P

is the Caputo definition for fractionat-order derivative,

wherex®(t) = d"x(t)/dt?, pis a positive integer and

M(a) = [e 't at ©)
0

is the Euler gamma function.
Definition (3) can be written in the equivalentror

M (a) = lim in® .
noooa(a+1)---(a+n)

(3a)

From (2) forp = 1 andp = 2 we have, respectively

a o1t x(l)(T)
oDy x(t) = ri-a) (I)(t Y

dr, O<a<1l (4)

dn 1 tx@mydr
oDrx(®) = I'(2—0()é(t_T)a—1’

The Laplace transform of the Caputo fractional deriv
tive has the form

l<a<2 (5)

L{oDEX )} = "F(s) - 3 % *xkD ("), (6)
k=1

For zero initial conditions, the Laplace transfoi@h re-
duces to

L{oDr' X 1)} =s"F (s).

Definition 1. The fractional system (1) will be called posi-
tive (internally) if x(t) € R} for any initial condition
x(0) € R} and for all inputsc(t) € RG,t = 0.

Positivity condition of the system (1) is known wnl
inthe case of fractional ordes € (0,1]. In Kaczorek
(2008a, 2008b), see also Kaczorek (2009, 2011a)fdh
lowing theorem has been proved.

Theorem 1. The fractional system (1) witl) < a <1
is positive if and only if

(6a)
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AOM,, BOOF™, 7)
whereM,, — the set ol X n real Metzler matrices (matri-
ces with non-negative off-diagonal entrieB].*™ — the set
of n X m real matrices with non-negative entries.

Characteristic function of the fractional systemiglthe
fractional degree polynomial of the form

W(s) =detc®l - A) =a,s™ +a,45" V% + +a;.  (8)
The associated natural degree polynomial has time fo
W) =a A\ +a, A"+ +ah +ag, A=s%. 9)

The polynomial (8) is a multivalued function whose
domain is a Riemann surface. In general, this sarfes
an infinite number of sheets and the fractionalypomial
(8) has an infinite number of zeros. Only a finitember
of which will be in the main sheet of the Riemanmface.
For stability reasons only the main sheet defingd b
—m < args < m can be considered (Petras, 2008, 2009).

From the theory of stability of linear fractionatder
systems given by Matignon (1996, 1998) and Pe2&6§,
2009), we have the following theorem.

Theorem 2.The fractional order system (1) is stable if and
only if the fractional degree characteristic polgnial (8)
has no zeros in the closed right-half of the Riemeom-
plex surface, i.e.

w(s) =dets®| — A) 0 for Res= 0, (10)
or equivalently, the following condition is satisi

n .
[argh; (A) |>0(E, i=12..,n, (12)

wherel; (4) is thei-th eigenvalues of matri&.

From Radwan et al. (2009) it follows that the frantl
system with the characteristic polynomial (8) isstable
for all a > 2. Therefore, in this paper we consider the frac-
tional system (1) of fractional ordere (0,2).

The stability regions of the system (1), described
by (11) are shown in Fig. 1 and 2 fdi<a<1
andl < a < 2, respectively. Parametric description of the
boundary of the stability regions has the form
(j0* =lol" ™2, wh(-ww). (12)

The polynomial (8) withw = 1 is a natural degree poly-
nomial and from (12) foe = 1 we have that the imaginary
axis of the complex plane is the boundary of tlabitity
region.

The aim of this paper is to give the review of theth-
ods for stability analysis of the fractional systefh)
and presentation of some new results. We consider t
stability problem of standard and positive fracéiborder
systems.

3. STABILITY OF FRACTIONAL SYSTEMS

The following lemma can be used to checking the- con
dition (11) of Theorem 2.

16

Lemma 1. The fractional order system (1) is stable
if and only if

1L
y>C(E, (13)
where

y =min [argh; (A)| (14)

and}; (A) is thei-th eigenvalue oA.

A

Im A

stability region

N‘g

»
»

Re A

instability region

Fig. 1. Stability region fol0 < a < 1

Im A

stability region

/I3

instability regiq

=}

Fig. 2. Stability region forl < a < 2

From Theorem 2, Lemma 1 and Fig. 1 and 2 we have
the following important lemmas and remark.
Lemma 2. The fractional system (1) is unstable for all
a € (0,2) if the matrixA has at least one non-negative real
eigenvalue. In particular, this holdsdiét A = 0.
Lemma 3. Assume that the state matéxhas no real non-
negative eigenvalues. Then the fractional systeh (1
is stable if and only ifa € (0, ay), where o, = 2y/n
andy is computed from (14).
Remark 1. If the fractional system (1) is stable for a fixed
a € [1,2) then it is also stable for all fractional orders
a € (0,1].



3.1. Stability of system of fractional ordera € [1, 2)

The system (1) of fractional ordere [1,2) is stable
if and only if all eigenvalues A lie in the stability region
shown in Fig. 2. Hence, this system may be unstiablbe
case of negative real parts of all eigenvalues africn A
if argh;(4) < an/2,i=1,2,..,n.

The following lemma can be used to stability chagki
of the fractional system (1) of ordere [1,2).

Lemma 4 (Anderson et al., 1974; Davison and Ramesh,

1970). The eigenvalues of anx n matrix A lie in the sec-
tor shown in Fig. 2 if and only if the eigenvalues
of 2n X 2n matrix

~ {Acosé —Asiné}

= (15)
Asind Acosd

have negative real parts, whére= (a« — 1)m/2.

From the above and the result given in (Hostetter,

1975), see also (Tavazoei and Haeri, 2009) it ¥edldhat
if p(s) = det(sI — A) then

det@ - A) = p(se®) p(se™%), 8=(a-n/2.

Based on Lemma 4, the following theorem has been

proved in Tavazoei and Haeri (2009).

Theorem 3. The fractional system (1) with < a <2
is stable if and only if the eigenvalues of the nxafl have
negative real parts, where

Ao Asin(art/2)  Acos@Tt/2)
- Acos@t/2) Asin@rt/2) |

(16)

Proof. Substitutiond = (a — 1)m/2 in (15) gives (16).
The proof follows directly from Theorem 2 and Lem#ha

In Molinary (1975) it has been proved that if thesest
positive definite Hermitian matricgs> 0 andQ > 0 such
that
BPA+R ATP=-Q, (17)
wheref = 1 + j& with tan(mt — art/2) = n/¢ (equivalently,
tan(m/2 — 8) = n/¢), then all eigenvalues &k are within
the stable area shown in Fig. 2. From the aboveTdrab-
rem 2 one obtains the following theorem (see albo At.
al. (2006), Sabatier et al. (2008, 2010)).

Theorem 4. The fractional system (1) with < a <2
is stable if and only if there exist positive dé@gnHermi-
tian matrices? > 0 andQ > 0 such that (17) holds.

The stability region shown in Fig. 2 is convex. Tée
fore, to the stability analysis of the system (1)thw
1 < a < 2 the LMI based conditions can be applied.

In Chilali et al. (1999) it has been shown that eligen-
values of matrixA lie in the sector shown in Fig. 2
if and only if there exists a matr& = PT > 0 such that

(AP+PAT)sin@®) (AP -PAT)cosg) <0

(PAT - AP)cos@) (AP+PAT )sin(©) (18)

whered = m — amn/2.
Substitution® = m— am/2 in (18) gives
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(AP+PAT )sin(@mt/2) (AP -PAT)cos@m/2)

T = <0. (19)
(PA' — AP)cos@mt/2) (AP +PA" )sin(art/2)
Hence, we prove the following theorem.
Theorem 5. The fractional system (1) with < a <2
is stable if and only if there exists a matix= PT > 0
such that the condition (19) holds.

The same criterion has been obtained by Sabatial: et
(2008, 2010). In this criterion, the condition (i8)written
in the equivalent form

(ATP+PA)sin@m/2) (ATP-PA)cos@r/2)

T - ) <0.(19a)

(PA-A'P)cos@rt/2) (A'P+PA)sin(art/2)

To checking the condition (19) (or (19a)), a LMhsy
can be used.

3.2. Stability of system of fractional ordera € (0, 1]

The system (1) of fractional ordere (0,1] is stable
if and only if all eigenvalues ok lie in the stability region
shown in Fig. 1. Hence, this system may be stablthé
case when not all eigenvalues Aflie in open left half-
plane. Moreover, this system may be stable wheaigdin-
values of the matriA are complex with positive real parts.
From the above we have the following simple suéfiti
condition for the stability.
Lemma 5. The fractional system (1) withh < a <1
is stable if all eigenvalues & lie in open left half-plane
of the complex plane.
Using Lemma 4 and taking into account that theesyst
(1) with 0 < a« <1 is unstable if all eigenvalues &f lie
in the instability region shown in Fig. 1, we olotahe fol-
lowing theorem.
Theorem 6 (Tavazoei and Haeri, 2009). The fractional
system (1) with0 < a < 1 is unstable and all eigenvalues
of A lie in the instability region shown in Fig. 1 ihd only
if the eigenvalues of have negative real parts, where

— | —Asin(m/2) Acosft/2)
- Acos@T/2) - Asin@t/2) |

(20)

Proof. If all eigenvalues ofA lie in the instability sector
shown in Fig. 1, then all eigenvalues & satisfy the ine-
quality
largh; (-A) [> n—ag, i=12..n, (21)
i.e. lie in sector shown in Fig. 2 if we considengke
m—amn/2 with a € (0,1] instead of angleam/2. Then
8§ = (1 — a)m/2. The proof follows directly from Lemma 4
for 6 = (1 — a)m/2 and substitution-A instead ofA.

Based on instability analysis, the following coruafit
has been given in Sabatier et al. (2008, 2010).
Theorem 7. The fractional system (1) witl) < a <1
is stable if and only if there does not exist any-megative
rank one complex matri® such that

rAQ+QATF =0, (22)
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where r = sin(ant/2) + jcos(an/2) and 7 denotes the
complex conjugate af

The stability region shown in Fig. 1 is not convex.
Therefore, to the stability analysis of the frantbsystem
(1) with 0 < a < 1 the LMI conditions can not be applied.

In Sabatier et al. (2008, 2010) the following sti#fnt
and necessary and sufficient conditions have beared.
Theorem 8. The fractional system (1) with) < a <1
is asymptotically stable if there exists a matfix> 0 such
that
(AVHTP+pAl®) <o, (23)
Theorem 9. The fractional system (1) with < a <1
is stable if and only if there exists a symmetri@trix
P > 0 such that

(_ - A)ll(z—a))T b4 P(— (~A)ME-) )< 0.

Based on the Generalized LMI (GLMI), in Sabatier
et al. (2008, 2010) the following criterion has begven.
Theorem 10. The fractional system (1) with <a <1
is stable if there exist positive definite compleatrices
X, = X7 andX, = X; such that

(24)

FXAT +1AX; +1X,AT +rAX, <0, (25)

wherer = exp (j(1 — a)m/2).
3.3. Generalization of frequency domain methods

The frequency domain methods for stability analysis
of fractional systems described by the transferction
have been proposed in Bustowicz (2008a, 2009),ats®

instead of the polynomial (8), where,(s) is stable

the reference fractional polynomial of degreg i.e.
W (S) #0 for Res= 0. (28)

The reference fractional polynomial can be chosen
in the form

w; () =(s+¢c)®", c¢>0. (29)

Theorem 12. The fractional system (1) with < o < 2
is stable if and only if

Aarg Y(jw) =0,
f](—00,00)

(30)

where Yy(jw) = Yi(s) for s =jw and Y(s) is defined
by (27), i.e. plot of the functiods(jw) does not encircle
or cross the origin of the complex planesasuns from—oo
to oo,

Plot of the functiony(jw), w € (—o, ), is called
the generalised modified Mikhailov plot.

From (8), (27) and (29) we have

W)= lm p(ie)=1 (31)
and
vo ==L, (32)

From (32) it follows thaty(0) < 0 if det (—4) < 0.
Hence, from Theorem 12 we have the following imaott
lemma.

Lemma 6. If det (—A) < 0 then the fractional system (1)
is unstable for allt € (0,2).
Lemma 6 also follows from the Hurwitz stability tes

Kaczorek (2011a, Chapter 9). These methods can be ap pecause ifdet (—A4) < 0 then not all coefficients of the

plied to the system (1) of any fractional ordeg (0,2).

By generalization of the results of Bustowicz (2808
2009) to the case of fractional system (1) we obthie
following methods for stability checking.

Theorem 11.The fractional system (1) with characteristic
polynomial (8) is stable if and only if

Aargw(jw) =ntt/2,
O<w<oo

(26)

wherew(jw) = w(s) for s = jw, i.e. plot of the function
w(jw) starts forw =0 in the point w(0) = det (—A4)
and with w increasing from 0 teo turns strictly counter-
clockwise and goes through quadrants of the complex
plane.

Plot of the functionw(jw) is called the generalised
(to the class of fractional degree polynomials) Mikov
plot.

Checking the condition (26) is difficult in general
(for large values ofn), becausew(jw) quickly tends to
infinity as w grows toco.

To remove this difficulty, we consider the ratiofahc-
tion

dets”l - A
W ()

W(s) = (27)
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characteristic polynomial & are non-zero and positive.

3.4. Stability of positive systems

Now we consider the stability problem of the posti
system (1) of fractional ordex € (0,1]. In this case, ac-
cording to Theorem 1, the condition (7) holds, ite ma-
trix A has non-negative off-diagonal entries.

Positive linear systems are sub-class of lineatesys.
Therefore, the stability conditions given in thiapger can
also be applied to the stability analysis of thaifie sys-
tem (1).

Stability conditions of positive natural number t&yss,
continuous-time and discrete-time, are very sinipleom-
parison with the stability conditions of standargstems
(Farina and Rinaldi, 2000; Kaczorek, 2000, 2002)erE-
fore, we consider the possibilities of simplificati of the
stability conditions of standard fractional systéi) with
a € (0,1].

From Theorems 1 and 2 it follows that the positys-
tem (1) witha € (0,1) is stable if and only if all eigenval-
ues of the Metzler matri lie in the stability region shown
in Fig. 1.

From (Farina and Rinaldi, 2000; Kaczorek, 2011b)
we have that the dominant eigenvalue (eigenvaldk thie



largest real part) of the Metzler matrix is reahefefore,

the positive system (1) witk € (0,1) is stable if and only
if all eigenvalues of the Metzler matr&have negative real
parts.

Hence, using the well-known stability conditions
of positive systems given in Kaczorek (2000, 2002),
we obtain the following simple necessary and sigfit
condition for the asymptotic stability.

Lemma 7. The positive system (1) is asymptotically stable

for all @ € (0,1) if and only if one of the following equiva-

lent conditions holds:

1. eigenvaluest,, 4,, ..., A, of the matrixA have negative
real parts,

2. all the leading principal minois,, A,, ..., A, of the ma-
trix —A are positive,

3. all the coefficients of the characteristic polynami
of the matrixA are positive.

It is easy to see that ll € M,, then the matrix (20)
is not a Metzler matrix. This means that is not gile
simplification of the condition given in Theoremf& the
positive system (1).

4. ILLUSTRATIVE EXAMPLES

Example 1.Check stability of the system (1) with

A= 0 1 a, b00 (33)
- —b —a ] 9 .
Eigenvalues oA are as follows
-a+va’-4b
Ap=""T7—7. (34)

If a®> = 4b then A, = —a/2 Hence, from Lemmas 2
and 3 we have the following:
- if a < 0 then eigenvalues & are positive and the sys-
tem is unstable for all fractional orders
- if a> 0 then eigenvalues of are negative and the
system is stable for all fractional order€ (0,2).
If

a?>4b and-a+va?-40>0 or —a-va’-4b =0, (35)

then from Lemma 2 it follows that the system istahke
for all valuesa € (0,2).
If

a’>4p and—aix/az—4b<0,

then from Lemma 5 it follows that the system isbka
for all a € (0,1).

If a2 < 4b then the matrix (33) has two complex eigen-
values

(36)

~a+ jV4b-a?®
A2 =+ (37)
If a < 0 then from (14) and (37) we have
y=arctany4t -1, t1=hb/ a2, (38)
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and
2 _2
Og :]—Ty:EarctanMT -1

From Lemma 3 it follows that the system with < 4b
anda < 0 is stable for anyx € (0, ay) where o, is com-
puted from (39).

Similarly, we can show that # > 0 anda? < 4b then
the system is stable for anye (0, y,) where

(39)

a01:3y:%(n—arctan\/4t—l), 1=b/a’. (40)

T
Plots of a,(t) and ay,(t) for T € [1,10] are shown
in Fig. 3. It is easy to check that, - 1 and ay; » 1

if T— oo,

14

13— - —— 7 —— —

|
|
I
1 2

Fig. 3. Plot of the functions (39) and (40) wse [1,10]

From Fig. 3 and (39), (40) it follows that, < a,,
for all fixed .
If T=4(i.e.b = 4a?), for example, then the system
- with a<0 is stable if and only ifa€ (0,q),
o, = 0.8391
— with a > 0 is stable if and only itx € (0,a,,), Where
®p; = 1.1609.
Assume that the output equation and the input matri
of the system (1), (33) are as follows

y(t) =Cx(t), C=[L 0], B:m.

Then, the transfer function has the form

1 1
det®l -A) s +as® +b

G(s)=C(s"I -A)B=

Step responses of the system for=4, a =1 and
b =4, a = —1 are shown in Figs 4 and 5, respectively, for
few values of fractional order.

Numerical simulations are performed using Ninteger
2.3 — Fractional Control Toolbox for MatLab, see Valério
(2005).

From Figs 4 and 5 it follows that simulations comfi
the above theoretical results that the system with 4a?
and a < 0 is stable for all positivex < 0.8391, whereas
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this system with a >0 is stable for all positive
a < 1.1609.

Now we consider the stability problem of positiwess
tem (1) with (33).

From Theorem 1 it follows that the system (1) wih
of the form (33) anda € (0,1] is positive if and only
if b<0.If b< 0 then from (34) it follows thaf has two
real eigenvalues, one negative and one positivencéle

from the above and Lemma 2 we have that the pesitiv

system (1) with the matrix (33) witth < 0 is unstable
for all fractional orders € (0,1]. In particular, this system
is unstable fox = 1 (the natural number positive system).

step response

Fig. 4. Step responses of the system wite —1,b = 4

step response

Fig. 5. Step responses of the system wite 1,b = 4

Example 2.Consider the fractional system (1) with

-1 08 11
A=|-08 -2 09 | (41)
-03 -12 -16

Check stability of the system far= 1.4 anda = 1.9.
Plot of the function
det((jw)® 1 - A)

(joo+1)3a , W (—00.0), (42)

Y(jw) =

20

with a = 1.4 anda = 1.9 is shown in Figs 6 and 7, respec-
tively.

According to (31) and (32) we have (independently

of the value ofx)

P(eo) = lim P(jo) =1, Y(0) =det(-A) =5.1240.

From Figs 6, 7 and Theorem 12 it follows that thetem
with a = 1.4 is stable (plot of (42) does not encircle the
origin of the complex plane) and with= 1.9 is unstable
(plot of (42) encircles the origin of the compldane).

imag

real

imag

Fig. 7.Plot of the function (42) withx = 1.9

Now we apply Theorem 5. Using the LMI toolbox

of Matlab, we obtain the following feasible solutiof (19):

fora =1.4
[ 07751 -0.0939 0.0750]

=|-0.0939 04212 -0.0232 (43)

| 00750 -0.0232 04510

fora=1.9

[ 14859 -0.6659 0.5467

=|-0.6659 0.2984 -0.2450|. (44)

| 05467 -0.2450 0.2012 |



Computing the leading principal minors of the ns
(43) and (44) we obtain, respectively,

A;=07751, A, =03277, A3 =0.1408

N =14850, A, =— 16760107, Az =-302510"°.

From the above it follows that the matrix (43) csjtive
definite (all the leading principal minors are pivg) and
the matrix (44) is not positive definite. This msaaccord-
ing to Theorem 5, that the system with= 1.4 is stable and
with o« = 1.9 is unstable.

Now we apply Lemma 3 to stability checking of tlyss
tem.

The matrix (41) has the following eigenvalues:

A =-09538 \,3=-18231 j14313

From (14) we havey = 2.4760 and from Lemma 3
it follows that the system is stable for ale (0, a,) where

o, = 2y/m = 1.4305. Hence, the system is stable for

a = 1.4 < a, and unstable fot = 1.9 > «.

Now we assumex = 0.5 and check stability using
Theorems 8 and 9.

Computing the feasible solutions of (23) and (24thw
a = 0.5 we obtain respectively

[ 0.3866 -0.0039 0.1038]

P=|-0.0039 02308 -0.0216| (45)
| 01038 -00216 03173 |
[ 06392 -0.0125 0.1085 ]

P=|-00125 04703 -0.0301|. (46)
| 01085 -0.0301 05521 |

It is easy to check that the matrices (45) and @)
positive definite. From Theorems 8 and 9 it follotee
system witha = 0.5 is stable.

Example 3.Check stability of the system (1) with

-14 0 01 18
01 -15 17 05

A= . (47)
01 008 -14 11
0 04 05 -14

The matrix (47) is a Metzler matrix. Therefore, gyes-
tem (1), (47) witha € (0,1] is a positive system. To stabil-
ity checking of this system we apply simple necessa
and sufficient condition given in Lemma 7.

Computing the characteristic polynomial of the nxatr
(47) we obtain

detl — A) =A% + 5723 + 11284\% + 80684\ + 0.8373

All coefficients of the above polynomial are positi
From Lemma 7 it follows that the positive fractibsgstem
(1) with matrix A of the form (47) is stable for any
a € (0,1].

The matrix (47) has the following eigenvalues:

A1 =-01239 \, =-15683 A,, = -2.003% |0.5404
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From (14) we have = 2.8782 anda, = 1.8323. From

Lemma 3 it follows that the system (1) wighof the form
(47) is stable for any fractional ordere (0, 1.8323).

5.

CONCLUDING REMARKS

Review of the existing methods for stability anédys

of the system (1) of fractional ordere€ (0,2) is given
and the new results are presented.

In particular, generalisation of the classical Mikbv

stability criterion to the class of fractional ordsystems (1)
with a € (0,2) is proposed.

10.

11.

Moreover, it has been shown that:

the fractional system (1) is unstable for alE (0,2)

if the matrixA has at least one non-negative real eigen-
value (Lemma 2);

if A has no real non-negative eigenvalues, then tle fra
tional system (1) is stable if and only df € (0, o)
where a, =2y/mt and y is computed from (14)
(Lemma 3);

the positive system (1) is stable for alE (0,1] if and
only if all coefficients of the characteristic patymial

of the matrixA are positive (Lemma 7).
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Abstract: At the end of the 19th century Liouville and Riemantroduced the notion of a fractional-order detive,
and in the latter half of the 20th century the @piof the so-called Griinewald-Letnikov fractiooadler discrete difference

has been put forward.

In the paper a predictivetrotier for MIMO fractional-order discrete-time stgms is proposed,

and then the concept is extended to nonlinear psesethat can be modelled by Takagi-Sugeno fuzzelmoAt first nonli-
near and linear fractional-order discrete-time dgital models are described. Then a generalizedmeanl fractional-order
TS fuzzy model is defined, for which equations giredictive controller are derived.

1. INTRODUCTION

The effectiveness of nonlinear process controlesgst
depends to a large extent on the quality of theeahaded
for controller synthesis or tuning. Unfortunatetlye choice
of an adequate model for a nonlinear process angaita-
meterization involves difficulties in industrial aatice.
Therefore, nonlinear process models of relativetypse
structure but furnishing a means to synthesizetimtroller
that would ensure satisfactory control performaaiee still
looked for (Domek, 2006).

One of the more effective methods employed to de-
scribe real properties exhibited by many industrial
processes, inclusive of those with distributed peters,
seems to be the description based on fractionaraidriv-
atives. Many examples illustrating possible appiices
of such a description may be found in the literatiomek
and Jaroszewski, 2010; Kaczorek, 2009; Lorenz aastu<
riarachi, 2009; Muddu Madakyaru et al., 2009; Qztyi,
2000l Podlubny et al., 1997; Riewe, 1997; SierocR007;
Sjéberg and Kari, 2002; Suarez et al., 2003; Vieagr
and Feliu, 2002; Xue and Chen, 2002; Zamani e2@0y).

In the paper a way of modelling complex nonlinear
MIMO processes in state space by means of fuzzydiak
Sugeno models of fractional order (Domek, 2006;abak
and Sugeno, 1985; Tatjewski, 2007) is presented
and a generalized predictive algorithm that empleysh
models is introduced.

2. DYNAMICAL MODELS
OF FRACTIONAL ORDER

Let us consider the traditional discrete-time nozdir
process model of integer order in state space -kmneivn
in the form

x(t+1) = f(x(@®),u®) 1)

y() = g(x(®) 2
wherex(t) € R", u(t) € R™, y(t) € RP denote the state,
input and output vectors respectively at time insta
t €{0,1,2,...} of dimensionsn x1, mx 1 andp x 1 re-
spectively.

Equation (1) can be rewritten with the use of the s
called first-order backward difference for the steft):

Ax(t) = x(t) —x(t — 1) 3)
as

A'x(t+1) = fa(x(®),u®) 4
where

fa(x@®),u®) = f(x(@®),u(®)) - x(t) (5)

Now, let us introduce the definition of the realdtion-
al-order o backward difference for the state vecidt),
based on the Grinewald-Letnikov definition (Sieusgci
2007):

A%x(6) = Tioo(— 1! (Dx(t — ), 6)
n—-1<a<ne{123..}
(%)= {i(a—l)....(a—Hl) for i. -0 (7)
i — for i=1,2,..

The definition (6) may be written in a generalifedm
by adopting different orders of backward differesice
for individual state variables of the state veattr) € R™:

AVx(t+1) = [A%x, (t + 1) A%y, (t+1D]T  (8)

Then, similarly to eq. (4), the fractional-orderngea-
lized model of a nonlinear process may be defimestate
space as:

A x(t+1) = fu(x(0), u®)) 9)
which, in view of egs. (6), (7) and (8), may be ri¢éen in
the following form:

x(t+1) = fu(x(@®),u®) - ZEH(=DVx(t + 1 - ) (10)

v =diag|() - (7]

It should be noted that the model (10), (11) irtipatar
may describe properties of a fractional-order lingacess.
By analogy to the integer-order model (1) — (5), vichich
the well-known linear version has the form:

(11)
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x(t+1) = Ax(t) + Bu(t) (12)
y(t) = Cx(¢) (13)
with the state equation (12) written another wsy a
Alx(t + 1) = Agx(t) + Bu(t) (14)
where

Ag=A —1, (15)

(I, € R™™ — identity matrix), the fractional-order genera-

lized model of a linear process, in view of eqs), (®)
and (15), may be given in state space as:

AVx(t +1) = Agx(t) + Bu(t) (16)
or alternatively

x(t+1) = Agx(t) + Bu(t) = X (-Divixt+1-0) (17)

3. FRACTIONAL-ORDER
NONLINEAR FUZZY MODELS

The usefulness of fractional-order models (9) iduisr
trial practice, where processes to be controllesl rapost
often significantly nonlinear, is small. Making ueé the
nonlinear model (10) is not possible in generalceaiuni-
versal methods for nonlinear controller synthesisell
on such models are lacking.

On the other hand, the linear model (16) may be em-

ployed to synthesize a nonlinear process contralldy
if the assumption is made that the control systeimpierat-
ed in a small vicinity of the equilibrium point, rfavhich
the model has been defined.

The approach to modelling integer-order nonlinear

processes that has been employed for many yetirs isse
of the so-called networks (batteries) of Takagi-&wglocal

models (also called Takagi-Sugeno-Kanga model$gj-or

nally proposed in Takagi and Sugeno (1985). Inghmed-
els an antecedent in the form of a fuzzy logicaldpict

for eachi-th fuzzy rule out ofp rules is adopted (Domek,

2006; Tatjewski, 2007):

I {xl(t) C Sj1 AND x,(t) € S, }

AND ... AND x,(t) € S;, (18)

wherex, (t) c S;, denotes membership of the state varia-

ble x,(t) to the fuzzy sef;, with membership function
#Sj‘k(xk(t)):

vxk 3 {luSl’k! ”Sz,k’ o #Sp,k}
32, (x(0) = 1 s, (1) 20 (19)

. aq a,
vy =ane[(3) - () @
and subscrip} denotes a set of parameters of jttle local
model described by a complemented state matix input

matrix B; and output matrixC; and of fractional orders

{al,j' aZ,j' vy an,j}.

It may be shown (Domek, 2006; Tatjewski, 2007)
that the following resultant state equation for thetire
network of local models is obtained after performinfe-
rence and defuzzification by means of the centagrabity
technique (Babuska and Verbrungen, 1996; Domek§200

_ 25.’:1w,-(t)xj(t+1) P~
x(t+1) = w ]-:1Wj(t) [Ad_]-x(t) +

Bju(t) - XHI(-DYyx(t +1-1)] (22)

2 wi©y;® ~
y(©) = Z—W() = 2)_1 W;(8) Cjx () (23)
where weight coefficients determining the so-caliegree
of activation of individual rules are defined by ans of the
fuzzy product operator (Babuska and Verbrungen6x99

w; (8) = [Tk=1 #s;, (xic () (24)

With egs. (22) — (24) in view, the fractional-orden-
linear process (9) may be described in state spmce
a fuzzy-tuned fractional-order quasi-linear modél tbe
form (17) creating a fuzzy network of Takagi-Sugémn®)
local models:

x(t+1) = Ahx(®) + Bu@®) = T (-DYix(t +1-i) (25)

y(t) = C'x(t) (26)
where

Ag = Ag(x(8)) = X7_, W;(t) Agy 27)
B = B(x(1) = X%, W;(t) B; (28)
C'=Clx®) =X, W) G (29)
Yi=Yi(x(®) =X, W)Y (30)

To identify the parameters and the order of frale
order local dynamic models (20), (21), use can lzalen
for example, of Sierociuk (2007), Sierociuk and éhzski
(2006). In Wnuk (2004) there are many remarks tfobhead
concerning choosing the number of local modelsiditig
the operating area into local partitions, establigh
the individual membership functions and validating
the adopted assumptions for fuzzy modeling.

The consequents of rules in the Takagi-Sugeno reodel 4 A FRACTIONAL-ORDER PREDICTIVE

are given by algebraic expressions. For the coreide

in the paper case of a battery of fractional-orderdels
the following consequents are suggested:

THEN (20)

L+1

x(t +1) = Agx(t) + Bju(t) — Z(—l)iYiJ-x(t +1-10)
i=1

y(t) = Cjx(t)

where

24

CONTROLLER

One of the more effective and frequently employed
in industry control methods, especially for multiable
and nonlinear processes, based on the process model
is the predictive control (Domek, 2006; Maciejowsk)02;
Tatjewski, 2007). First attempts to utilize fractad-order
derivatives in predictive control have been desuijb
among others, in Domek and Jaroszewski (2010), Mudd
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Madakyaru et al. (2009) and Romero et al. (2008r&
have been applied selected methods of discretezippa-
tion for fractional-order processes (Xue et alQ@0

In order to determine the manipulated varialft® let us
adopt the quadratic cost function over a finiteizmn in its
general the matrix form;

J@O) =Y, =Y (O] [Y (), - Y ()] +

where
y'(t + Nq|t)
Yr(f)_, — yr(t+1Y1+1|t) (32)

y'(t + Ny |t)

denotes the reference trajectory vector, whichstlways
from the current value of the plant output and thasform
of a smoothed reference signal,

y(t + Nqt)

y(t+ N, +1|t)

Y(t), = (33)

y(t + N,|t)

is the output prediction vector, whereas the veafd()._,
can take the following forms depending on the usigwd-
rithm version:

AUO(t)—» =

[Aou(t|t) Aou(t + 1]t) Agqu(t + Ny, — 1|0)]7 (34)

with increments of the manipulated variable relaedhe
component determined for thel instant

Aou(t +jlt) = u(t +jlt) —u(t-1),

0<j<N,-1 (35)
with an additional assumption respectively
Aug(t+jlt) =0, for N, <j<N,—-1 (36)

4.1. Synthesis of a fractional-order linear prediave
controller

To determine the optimal manipulated variable weeha
to find the dependence of the process output piiedic
vector (33) on the vector of future manipulatedialales
(34). For the process defined by the model (17)stiation
is given by Sierociuk (2007):

x(6) = O (O)x(0) + Zf_lm‘f(i)su(t —i-1),
t=12,.. - (37)

where the matri®" (¢) is defined by the recurrence relation

OV (t+1) = (Ap+Y)O () — Z:j:(—ﬂ)v,-m‘f(t i+ 1),
i=23,.. (38)

with

O'(D) = (Ap+Yy), @Y(0) =1,

Hence, in view of egs. (13) and (37), we get

(39)

y(t) = C[®Y (1)x(0) + XiZ @Y (D)Bu(t — i — 1)] + Du(t) (40)

and consequently, assuming for simplicity= 0, the pre-
diction of the output for thetj instant may be found at the
instant in the following form:

y(t+j[t) = C[®Y (Nx(t) + /g @' (DBu(t +j —i — 1)] (41)
or equivalently
y(t +j|t) = C[®Y (Nx(t) + X1 @' (i — i — DBu(t + )] (42)

Hence, the prediction of the natural process respdre-
comes

yO(t +jIt) = C[®Y (Nx() + /s ®¥ (DBu(t — i) (43)
and that of the forced response becomes
ye(t +j]t) = C[Z/ @Y ( — i — 1)BAu(t + )] (44)

Writing the future values of the natural respor&®) (vithin
the prediction horizon in the vector form

[ yO(t + Nqt) ]

yo(t + Ny + 1]t)

Yo(e),, = (49)

[ yO(t + Ny |t)

Y°(t). =C- (

oY (N,) Tz OV
the output prediction vector (33), in view of e¢3) and
(44), assumes the following form:

where the so-called process dynamics matrix forvdwor
(34) is given by:

o' (V) zi”:glfb‘f(i)

x(t) + [ Bu(t — 1)) (46)

E=CEB 48)
with the matrixg € R™(N2=N1+D)xn-Ny.
Zfl_—lo_le(L) on
E=[2"10Y() Ap+Yy I (49)
T 0" Ar+Y,
-Zi:o K NOREE Zévzz(;Nu o' ()
and the block matriceB € R™Nu*"Nu
andC € RP (N2=Ni+1)xn-(Nz=N1+1).
B - 0 cC - 0
B=[: ~ |, C=|t = (50)
0O - B 0 - C

In view of egs. (31) and (47), the optimal contbecomes

[3]:

AUOpt(t)ﬁ = P[Yr(t)—» - Yo(t)ﬁ] (51)
where the controller gain matrix is:
P=(E"E+A-lpy,) ET (52)
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In view of the fact that, according to the prineigf the
moving horizon, only the first component of the quted
control vector is utilized at the given instanwe get final-
ly from egs. (35), (51) and (52):

u(tt) = ult —1) +p[Y" (), — Y°(t)-]

wherep is the first row of the gain matrix.

In the proposed predictive controller, as with thessic
predictive control, it is possible to determine thgtimal
control in the presence of constraints imposedhencon-
trol signal, its increments and/or process outputsuch
a situation, in view of eqs. (46) — (50), the quasidr pro-

(53)

gramming (QP) problem should be solved numerically

at each step(Domek, 2006; Maciejowski, 2002).

4.2. A fuzzy, fractional-order, state model prediate
controller

The above presented synthesis of the fractionadrdid
near predictive controller can be extended in atinedly
simple way to nonlinear processes by employingpite
posed fuzzy TS model. In such an event a fractiondér
linear predictive controller is to be determineceath step
for the current quasi-linear process (25), (26).other
natural approach is utilizing the above presentethod to
synthesize a controller for linear processes, desfgocal
linear controllers for eachj-th local submodel (20)
and employing all found controllers in the consetuse
of the rules (18), (19). Therefore, a fuzzy netw(rattery)
of local controllers is obtained in such a way.

5. CONCLUDING REMARKS

In the paper an approach to synthesis of a fraation

order nonlinear predictive controller for fractidiwader

nonlinear MIMO processes is presented. The approach

is based on utilizing the proposed fuzzy TS modethe
fractional-order nonlinear process. The individwsthte

variables in the generalized model are assumedeto b

of different orders. A more simple case is represgrby

the model of identical orders, the particular casevhich

is the integer-order model including the linear lod
In such a case the proposed predictive controeluces
to the known SMPC controller (Maciejowski, 2002).
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Abstract: In the paper the short theoretical backgrounds talastic-plastic fracture mechanics were presented
and the O’Dowd-Shih theory was discussed. UsingM®Bystem program, the values of the Q-stress ohirted for vari-
ous elastic-plastic materials for SEN(T) specimesingle edge notched plates in tensiowere presented. The influence
of kind of the specimen, crack length and matqaiaperties (work-hardening exponent and yield sjres the Q-parameter
were tested. The numerical results were approxinbyethe closed form formulas. Presented in theepagsults are com-
plementary of the two papers published in 2007 [§&r2007) and in 2010 (Graba, 2010), which showdssdribe influence

of the material properties and crack length for @hstress value for SEN(B) and CC(T) specimens reispéct Presented
and mentioned papers show such catalogue of thee@ssralue, which may be used in engineering argafgr calculation

of the real fracture toughness.

1. INTRODUCTION TO ELASTIC-PLASTIC
FRACTURE MECHANICS

In 1968 J. W. Hutchinson (ADINA 8.4.1, 2006a) pub-
lished the fundamental paper, which characterizeelss
fields in front of a crack for non-linear Ramberggood
(R-O) material in the form:

j 5. (o) ®

where r and 6 are polar coordinates of the coordinate
system located at the crack tip;; are the components
of the stress tensof,is theJ-integral,n is R-O exponent,

a is R-O constantg is yield stressg, is strain related to
gp throughe, = g, /E. Functionsg;;(n, ), I,(n) must be
found by solving the fourth order non-linear homoges
differential equation independently for plane <tres
and plane strain (Hutchinson, 1968). Equation §1¥am-
monly called the “HRR solution” (Fig. 1).

The HRR solution includes the first term of theinite
series only. The numerical analysis shown, thatltes
obtained using the HRR solution are different froime
results obtained using the finite element methodMF -
see Fig. 2. To eliminate this difference, it's resagy to use
more terms in the HRR solution.

In 1985 Li and et. (Li and Wang, 1985) proposed the
another stress field description, which was useal thvms
in the Airy function. They obtained the second term
of the asymptotic expansion for the two materiagsaibed
by two different work-hardening exponemt=3 andn=10.
Next, they compared their results with the HRRdseand
FEM results. Their analysis shown, that using the term
solution to describe the stress field near thekctige brings
closer analytical results to FEM results. Two tesotution
much better describes the stress field near thekdtip,
and the value of the second term, which may nbietmeg-

o —3
0
! Ao, T

ligible depends on the material properties andgg@emetry
specimen.

E = 206000MPa n=5
g 0, =315MPa v =0.30
€, = 0,/E = 0.00153
results for angle 6 =0
©—o—> plane stress
©—e—o plane strain

\ \ \ \ \ \
0 2 4 6 8 10

Y =rlg,/J
Fig. 1. The crack opening stress distribution for elaptastic
materials, obtained using the HRR solution

In 1993 Yang and et. (Yang et al., 1993) usingAhg
function with the separate variables in the inéngeries
form, proposed, that stress field near the crgckrtay be
described by the Eq. (2) in the infinite seriegrfor

95 =3 AF=G¥(6) @
Uo k=1
wherek is the number of the series termg,is the ampli-

tude for thek series termz is the normalized distance from

the crack tip,s; is power exponent for thk series term,
and&i(jk) is “stress” function.

Using only three terms of the infinite series, KE2)
may be written in the following form:
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2
%= Ara0(6)+ AraP (6)+ 2 raPe) @)
g, AL

where the&i(jk)functions must be found by solving the

fourth order non-linear homogenous differential atpn
independently for plane stress and plane straiis the
power exponent, which is identical to the one ia HRR
solution & may be calculated &s-1/(n+1)), t is the power
exponent for the second term of the asymptotic esipa,
which must be found numerically by solving the thur
order non-linear homogenous differential equatiodet
pendently for plane stress and plane straiis, the normal-
ized distance from the crack tip calculatedasr/(J/a,),
A; is the amplitude of the first term of the infiniseries
evaluated ad; = (agyl,,)~ Y@V andA; is the amplitude
of the second term, which is calculated by fittthg Eq. (3)
to the numerical results of the stress fields cltuserack

tip.

CC(T) a/W=0.50 W =40mm
E =206000MPa n=5
0, =315MPa v =0.30
€, = 0,/E =0.00153

8 results for angle 6 =0
6—e—o plane strain - HRR
+—+—+ plane strain - FEM
o—o—= plane stress - HRR

6 Y —— plane stress - FEM

J = 48.35kN/m
I R \ \ \

0 2 4 6 8 10
Y =rld,/Jd

Fig. 2. Comparison the FEM results and HRR solution
for plane stress and plane strain for centerkedplate
in tension (CC(T))

In 1993 Shih et al. (1993) proposed simplified solu
They assumed, that the FEM results are exact ant co
puted the difference between the numerical and H&R
sults. They proposed, that the stress field neacthck tip,
may be described using only two terms, by followarmpa-

tion:
1/(n+1) "
g. @:n)+
j ”( ) Q[J/ o,

q
9 :[ J j 5. (en) @
o, \ae,o,l,r :
where 6;;(8,n) are functions evaluated numerically,
g is the power exponent, which value changes irrdinge
(0; 0.071), andQ is the parameter, which is the amplitude
of the second term asymptotic solution. Tpparameter is

commonly called theQ®-stress”.
O’Dowd and Shih (1991, 1992), tested tBearameter
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in the rangel/ gy<r<5J/ gy near the crack tip. They showed,
that theQ-parameter weakly depend on crack tip distance
in the range of thetv2 angle. O'Dowd and Shih proposed
only two terms to describe the stress field nearctack tip:

0 =(0} ), + Q045 (6) ®)

W =40mm a/W =0.50

0, =315MPa v =0.30

E =206000MPa n=5
o—o—0 CC(T) plane stress
6—e—o0 CC(T) plane strain

0.4 a—2—a SEN(B) plane stress
| %—x—x SEN(B) plane strain

0.4

O |

-0.8 1

-1.2 4

-1.6 T T T \
0 40 80 120 160

J [kN/m]

Fig. 3. The comparison of the J-Q trajectories
for CC(T) and SEN(B)

To avoid the ambiguity during the calculation oé t®-
stress, O’'Dowd and Shih (O’'Dowd, Shih, 1991), (OhRb
Shih, 1992) have suggested, where @stress may be
evaluated. It was assumed, that @istress should be com-
puted at distance from crack tip, which is equal=dJ/ g,
for &0 direction. O'Dowd and Shih postulated, that for
6=0 the functionggyy (0 = 0) is equal to 1. That's why, the
Q-stress may be calculated from following relatidpsh

0= (o) eem ~(T0)er for 620 and% =2 (6)
0-0

where (dgg)rem is the stress value calculated using FEM
and(gggurr IS stress value evaluated form HRR solution.
During analysis, O’'Dowd and Shih shown, that in thege

of 8=£174, the following relationships take plac@&,y ~
Q6yr, Ggg/0rr =1 and Qb9 =0 (becauseQd,q <<
Qdgg)- Thus, theQ-stress value determines the level of the
hydrostatic stress. For plane stress,Qhgarameter is equal
to zero, but for plane strain, tiig parameter is in the most
cases smaller than zero (Fig. 3).

2. DISCUSSION ABOUT ENGINEERING
APPLICATIONS OF THE J-Q THEORY

To describe the stress field near the crack tipefastic-
plastic materials, the HRR solution is most oftesed
(Eqg. 1). However the results obtained are usuallgresti-



mated and analysis is conservative. The HRR saiutio
includes the first term of the infinite series anly

The numerical analysis shown, that results obtaud
ing the HRR solution are different from the reswlbdained
using the finite element method (FEM) — see Fig. 2.
To eliminate this difference, it's necessary to usere
terms in the HRR solution, for example theA, theory
suggested by Yang and et. (Yang et al., 1993),her t
O’Dowd and Shih approach — tlieQ theory (O’'Dowd, and
Shih, 1991).

For using the O’Dowd approach, engineer needs only
the Q-stress distribution, which must be calculated niiime
cally. That's why O’'Dowd approach is easier andapln-
ter in use in contrast td-A, theory. Using thel-A, theory
proposed by Yang and el., first engineer must séueth
order nonlinear differential equation to determthe &l.(jk)
function and the power exponent. Next, the engineer using
FEM results calculated th, amplitude by fitting the Eq. 3
to numerical results.

The J-Q theory found application in European Engi-
neering Programs, like SINTAP (Sintap, 1999) or NHET
(Fitnet, 2006). The&Q-stress are applied under construction
the fracture criterion and to assessment the fradibugh-
ness of the structural component. Thus O’Dowd théas
practical application in engineering issues.

Sometimes using thd-Q theory may be limited, be-
cause there is no value of tigestress for given material
and specimen. Using any fracture criterion, for repke
proposed by O’Dowd (O’Dowd, 1995), or another cids,
the engineer can estimate fracture toughness qtiést
if the Q-stress are known. Literature doesn’t announce the
Q-stress catalogue ar@stress value as function of exter-
nal load, material properties or geometry of thecémen.

In some articles, the engineer may find 8h@ graphs for
certain group of material.

The best solution will be, origin the cataloguahs J-Q
graphs for materials characterized by various yidngth,
different work-hardening exponent. Such catalogoeukd
take into consideration the influence of the exaérload,
kind of the specimen (SEN(B) specimen — bending\ St
specimen — tension) and geometry of the specinoen Ror
SEN(B) and CC(T) specimens, such catalogues wexe pr
sented by Graba in 2007 (Graba, 2007) and in arid 20
(Graba, 2010) respectively.

In the next parts of the paper, the values ofQkstress
will be determined for various elastic-plastic miatks for
single edge notched specimens in tension (SEN(Hg
SEN(T) specimen is the basic structural elemenichvis
used in the FITNET procedures to modeling real trons
tions. All results will be approximated by the adsform
formulas.

3. DETAILS OF NUMERICAL ANALYSIS

In the numerical analysis, the single edge notcpsst
cimens in tension (SEN(T)) were used (Fig. 4). Disiens
of the specimens satisfy the standard requiremdrnthwy
is set up in FEM calculationl->2W, whereW is the width
of the specimen and is the measuring length of the speci-
men. Computations were performed for plane straingu
small strain option. The relative crack length veamial to
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a/W={0.20, 0.50, 0.70} whera is a crack length and the
width of specimendV was equal to 40mm. For this case,
the measuring length satisfied the conditioh=80mm.

e
|
|
d 3 a
I
e -

Fig. 4. The single edge notched specimen in tension (SEN(T)
used in the numerical analysis

The choice of the SEN(T) specimen was intentiobed,
cause the SEN(T) specimens are used in the FITNBT p
cedures to modeling real structural elements. Also
in FITNET procedures, the limit load and stressfisity
factors solutions for SEN(T) specimens are presente
However in the EPRI procedures (Kumar et al.,, 1981)
the hybrid method for calculation thkintegral is given.
Also some laboratory test in order to determire dtitical
values of theJ-integral, may be done using the SEN(T)
specimen.

Computations were performed using ADINA SYSTEM
8.4 (Adina, 2006a, b). Due to the symmetry, onlyadf
of the specimen was modeled. The finite elementhmess
filled with the 9-node plane strain elements withen(3x3)
Gauss integration points. The size of the finiter@nts in
the radial direction was decreasing towards thelctip,
while in the angular direction the size of eachmedat was
kept constant. The crack tip region was modeledgusi0
semicircles. The first of them, was at least 20e8rsmaller
then the last one. It also means, that the firstefielement
behind to crack tip is smaller 2000 times than width
of the specimen. The crack tip was modeled as quart
ofthe arc which radius was equal tg=110°m (it's
(0.00002%W). The whole SEN(T) specimen was modeled
using 323 finite elements and 1353 nodes. Extelwed
was applied to bottom edge of the specimen. Thenpia
finite element model for SEN(T) specimen used ia -
merical analysis is presented on Fig. 5.

In the FEM simulation, the deformation theory oa!
ticity and the von Misses vyield criterion were atkp In
the model the stress—strain curve was approximayethe
relation:

& _{U/Uo

& |alojo,)

foro< o,
= ° )
& foro> o,

where a=1. The tensile properties for the materials which
were used in the numerical analysis are presengbawb
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inthe Tab.1. In the FEM analysis, calculations avdbne
for sixteen materials, which were differed by yiedttess
and the work hardening exponent.

a)

HERE EXTERNAL LOAD WAS APPLIED TO THE
MODEL USING “PRESCRIBED Z-
DISPLACEMENT" METHOD

N

TIME 30.00 Z

A
D
|
N

A

b)

vy

BOUNDARY
CONDITIONS
U2 U3
B./-
Y - DISPLACEMENT

ALLOWED ONLY (U,)
Z - DISPLACEMENT

FIXED (U,)
PRESCRIBED
DISPLACEMENT
TIME 30.00
- H lo.oooasoo
BBB B BB
CRACK TIP
HERE BOUNDARY
CONDITIONS WERE
APPLIED TO THE MODEL
B BBBBBBBB
HERE BOUNDARY CRACKTIP

CONDITIONS WERE APPLIED
TO THE MODEL

Fig. 5.a) The finite element model for SEN(T) specimen

used in the numerical analysis; b) The finienednts
mesh near crack tip using in the numerical aisly

Tab. 1. The mechanical properties of the materials used in

numerical analysis and the HRR parameters for plaams

o) =~ —

[MPOa] EMPal| v | a=a/E |a| n|de@=0] 1,
315 0.00153 3 1.94 | 551
500 0.00243 5 222 | 5.02
1000 | 296990 | 0300485 | 1 [ 10 250 | 454
1500 0.00728 20 268 | 4.21
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The J-integral were calculated using two methods.
The first method, called the “virtual shift methodises
concept of the virtual crack growth to compute tir¢ual
energy change. The second method is based on the
J—integral definition:

J = [[wdx, ~t(0u/ax, )ds] ®)

wherew is the strain energy densityjs the stress vector
acting on the contouC drawn around the crack tip,
u denotes displacement vector adsl is the infinitesimal
segment of contouE.

In summary, in the numerical analysis 48 SEN(T)
specimens were used, which were differed by craokth
and material properties.

4. ANALYSIS OF THE NUMERICAL RESULTS

The analysis of the results obtained was made én th
rangeJ/ g,<r<6J/ g, near the crack tip, and its shown, that
the Q-stress decrease if the distance from the crackntip
crease (Fig. 6). If the external load increases,Q¥stress
decreases and the difference betwégstress calculated
in the following measurement points increase (B)glf the
crack length decrease th€rstress reaches more negative
value for the samé-integral level (Fig. 7).

For the sake of the fact, that tiggparameter, which
is used in fracture criterion is calculated at aiste equal
to r=2J/oy, it's necessary to notice some comments about
obtained results. If the yield stress increaseg h
parameter increase too, and it reflects for all SEN
specimen with different crack lengdtW (Fig. 8). For
smaller yield stress thd-Q trajectories shape up well
lower and it's observed faster changes of @aparameter
if the external load is increase (Fig. 8).

For SEN(T) specimens, the ambiguous behavior of the
J-Q trajectories depending of the work-hardening expo-
nent is observed. For specimens with short cracks
(a/W=0.20) and the same yield stress, for smaller walue
of the work-hardening exponent n (erg5), theQ-stress
become less negative (Fig. 9). For specimens with t
normative crack lengthe(\W=0.50) or with the long cracks
(a/W=0.70), the cutting of the-Q trajectories was ob-
served (Fig. 10 and Fig. 11) - first the higherues of the
Q-stress were observed for specimen characterized
by strongly hardening material, but for increasaxgernal
load the reversal of the trend took place and tighdr
Q-stress were observed for specimens characterized
by weakly hardening material.

For short cracks th@-stress value drops more rapidly

then for long ones in the range of the small exdkfoad
(Fig. 7). For specimen with long cracka/\(4=0.70), the
another nature of thd-Q trajectories was observed than
for specimen with relative cracks lengdiw<0.50 (Fig.
7). It may be a consequence of the absence inrtalysis
of the stress field, the consideration of the begditress
near the crack tip, which was discussed by Chaal.et
(2004).



o—o—o 1 = 10/g,
o—e—or = 20/o,

a—a—ar =3/g,

x—x%—xXr = 4/0,
*—+*—=r = 5[J/g,

o—B—8r =6/,

|SEN(T) plane strain
-1.6 4W =40mm a/W = 0.50
/n=10 v=0.30 E=206000MPa

0, = 1000MPa (o,/E = 0.00485)
'2 T ‘ T ‘ T ‘ T ‘ T ‘

0 400 800 1200 1600 2000
J [KN/m]
Fig. 6.“The J-Q family curves” for SEN(T) specimen calculated
at six distances from crack tip

0 — —o— a/W=0.05
—e— a/W=0.20
—2— a/W =0.50
—%— a/Ww=0.70

1 SEN(T) plane strain W =40mm
n=10 v =0.30 E =206000MPa
0, = 1000MPa (o,/E = 0.00485)
\ ‘ \ ‘ \
0 200 400 600
J [KN/m]
Fig. 7. The influence of the crack length & trajectories
for SEN(T) specimens

—o— 0, = 315MPa (6,/E = 0.00153)
—e— 0, = 500MP (0,/E = 0.00243)
—a— 0, = 1000MPa (0,/E = 0.00485)
-0.4-%—x— 0, = 1500MPa (0,/E = 0.00728)

1 SEN(T) plane strain
W =40mm a/W = 0.20
-167n=10 v=0.30 E=206000MPa

0 400 800 1200 1600
J [KN/m]
Fig. 8. The influence of the yield stress & trajectories for
SEN(T)
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SEN(T) plane strain
W =40mm a/W =0.20
0 v =0.30 E =206000MPa
0, = 315MPa (o,/E = 0.00153)
X —<—n=3
—o—n=5

-1.6 \ \ \ \
0 100 200 300 400
J [KN/m]
Fig. 9. The influence of the work hardening exponengdp
trajectories for SEN(T) specimers\(/=0.20, g;=315MPa)

SEN(T) plane strain

W =40mm a/W =0.50
0 v=0.30 E =206000MPa
0, = 500MPa (g, /E = 0.00243)
—0—n=3

—6— n=5

-1.6 \ \ \ \ \
0 100 200 300 400 500
J [KN/m]
Fig. 10.The influence of the work hardening exponendp
trajectories for SEN(T) specimer&g\(=0.50, g;=500MPa)

——nN=3
'0.27 497[‘]:5

| SEN(T) plane strain

-1+ W=40mm a/W=0.70

v=0.30 E =206000MPa

L 0, = 1000MPa (0,/E = 0.00485)

-1 ‘ T ‘ I T 1
0 100 200 300 400

J [KN/m]

Fig. 11.The influence of the work hardening exponengdp
trajectories for SEN(T) specimera\(=0.70,,=1000MPa)

31



Marcin Graba

The Influence of Geometry of the Specimen and Mat@mperties on the Q-Stress Value Near the Creipkfor SEN(T) Specimen

5. APPROXIMATION OF THE NUMERICAL
RESULTS

In the literature the mathematic formulas, to ckdltai
the Q-stress taking into consideration the level of exaé
load, material properties and geometry of the speni
are not known for the most of the cases. Preseint¢de
paper numerical computations provided with h@ cata-
logue and the universal formula (9), which allowscal-
culate theQ-stress and take into consideration all the
parameters influencing the value of t@estress. All re-
sults, were presented in th@®=f(log(J/(aldo))) graph
forms. Next all graphs were approximated by thepsem
mathematical formulas, taking the material progssti
external load and geometry specimen into considerat
All the approximations were made for results obedirat
the distance=2.00/o. Each of the obtained trajectories
Q=f(log(J/(aldy))), was approximated by the third order
polynomial in the form:

AJ.a0,)=A+B [Elog((aéjo)ﬂ '

+C EEIog((a;%)sz +D EEIog (alé%)f

where theA, B, C, D coefficients depend on the work-
hardening exponenm, yield stressgy and crack length
a/W. The rank of the fitting the formula (9) to nunui
results for the worst case was eqB&0.95. For different
work hardening exponents yield stressegp and ratios
a/W, which were not include in the numerical analyti®,
coefficients A, B, C and D may be evaluated using the
linear or quadratic approximation. Results of tippraxi-
mation (all coefficients of the approximation nuigcat
results by Eq. (9)) are presented in Tables 2-4.

(9)

Tab. 2. The coefficients of equation (9) for SEN(T) speaime

with the crack leng#W=0.20
a, = 315MPa a/E = 0.00153
n A B C D R
3 -2.476 -2.221 -1.165 -0.228 0.993
5 -2.128 -1.722 -0.999 -0.223 0.997
10| -1.752 -0.991 -0.604 -0.163 0.998
20| -1.677 -0.683 -0.379 -0.121 0.997
d, = 500MPa ay/E = 0.00243
n A B C D R
3 -1.618 -0.876 -0.397 -0.087 0.986
5 -1.105 0.104 0.119 -0.008 0.996
10| -1.365 -0.139 0.029 -0.026 0.996
20| -1.465 -0.145 0.075 -0.017 0.996
0, = 1000MPa 0/E = 0.00485
n A B C D R
3 -1.875 -1.438 -0.651 -0.119 0.958
5 -1.198 0.007 0.217 0.037 0.990
10| -1.065 0.552 0.622 0.116 0.995
20| -1.163 0.533 0.654 0.122 0.996
0, = 1500MPa ag/E = 0.00728
n A B C D R
3 -1.601 -1.099 -0.477 -0.089 0.982
5 -1.469 -0.537 -0.056 -0.002 0.990
10| -1.401 -0.078 0.328 0.080 0.996
20| -1.486 -0.085 0.364 0.088 0.996

Tab. 3. The coefficients of equation (9) for SEN(T) speaime
with the crack lengtla/\WW=0.50

0, = 315MPa Gy/E = 0.00153
n A B C D R
3| -2.743 -1.606 -0.456 -0.059 0.990
5| -2.909 -1.516 -0.334 -0.038 0.990
10| -0.621 1.913 1.291 0.205 0.996
20| 0.238 3.364 2.03142 0.320 0.996
0, = 500MPa Gy/E = 0.00243
n A B C D R
3| -3.927 -3.615 -1.435 -0.209 0.982
5| -3.383 -2.414 -0.728 -0.088 0.995
10| -2.009 -0.132 0.435 0.094 0.997
20| -1.810 0.450 0.811 0.160 0.997
0, = 1000MPa 0o/E = 0.00485
n A B C D R
3| -4.009 -4.031 -1.629 -0.229 0.977
5| -2.662 -1.869 -0.545 -0.059 0.997
10| -2.773 -1.760 -0.403 -0.032 0.996
20| -2.971 -1.789 -0.312 -0.006 0.997
0o = 1500MPa 0,/E = 0.00728
n A B C D R
3| -2.612 -2.335 -0.943 -0.138 0.994
5| -2.505 -1.895 -0.629 -0.078 0.999
10| -2.559 -1.688 -0.420 -0.035 0.996
20| -2.357 -1.041 0.048 0.059 0.997

Fig. 12 presents the comparison of the numericallte
and their approximation fod-Q trajectories for several
cases of the SEN(T) specimens. Fig.s 13-15 presgeie
graphical form some numerical results obtainedSiBN(T)
specimens in plain strain. All results are presgniging the
J-Q trajectories.

Tab. 4. The coefficients of equation (9) for SEN(T) speaime
with the crack lengtla/\W=0.70

0, = 315MPa 0,/E = 0.00153
n A B C D R
3| -6.051 -4.762 -1.512 -0.179 0.989
5| -3.287 -0.872 0.171 0.049 0.991]
10| 0.290 3.710 2.045 0.294 0.993
20| 4.424 8.931 4.175 0.574 0.993
0, = 500MPa 0,/E = 0.00243
n A B C D R
3| -8575 -8.072 -2.818 -0.341 0.989
5| -10.470 -9.908 -3.417 -0.410 0.997]
10| -11.036 -9.958 -3.227 -0.365 0.998
20| -0.753 2.846 1.979 0.325 0.993
d, = 1000MPa 0o/E = 0.00485
n A B C D R
3| -6.703 -6.471 -2.323 -0.286 0.985
5| -7.237 -6.937 -2.456 -0.301 0.996
10| -7.642 -7.198 -2.481 -0.297 0.998
20| -8.527 -8.058 -2.747 -0.325 0.997
a, = 1500MPa G,/E = 0.00728
n A B C D R
3| -5.580 -5.462 -2.021 -0.256 0.976
5| -5.819 -5.576 -2.011 -0.250 0.995
10| -5.990 -5.608 -1.961 -0.238 0.998
20| -7.453 -7.315 -2.617 -0.322 0.999
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0,/E =0.00153 n=5
numerical result
0,/E =0.00153 n=5

—=— result of the approximation

R%=0.99 0

0+ o,/E =0.00243 n=10

numerical result

0,/E =0.00243 n=10
—6&— result of the approximation
R?=0.997

SEN(T) plane strain
W=40mm a/W=0.70
n=10 v=0.30 E=206000MPa
—— 0,=315MPa (0,/E=0.00153)
—e— 0,=500MPa (0,/E=0.00243)
—a— 0,=1000MPa (0,/E=0.00485)
B —x— 0,=1500MPa (0,/E=0.00728)

-1.2 -

SEN(T) plane strain
4 W=40mm a/W=0.50

E = 206000MPa v =0.30 -1.6 T T 1 1
-1.6 L e \ 0 200 400 600 800
0 100 200 300 400 500 J [kN/m]
J [kN/m] Fig. 15.Sample numerical results obtained for SEN(T) spens:

Fig. 12. Comparison of the numerical results and their agpration
for J-Q trajectories for SEN(T) specimens with relativaak
lengtha/W=0.50: g;={315, 500}MPa,n={5, 10}

the influence of the yield stress $1Q trajectories
for specimens with crack lengéiW=0.70
and for power exponenis10

SEN(T) plane strain

W=40mm a/W=0.20

n=20 v=0.30 E=206000MPa
0 —— 0,=315MPa (0,/E=0.00153)
—o— 0,=500MPa (0,/E=0.00243)
% —a— 0,=1000MPa (0,/E=0.00485)

04— x— 6,=1500MPa (6,/E=0.00728)

6. SUMMARY

In the paper the values of the Q-stress were détedm
for various elastic-plastic materials for singlegechotched
specimens in tension (SEN(T)). The influence of yedd
strength, the work-hardening exponent and the dexugth
on theQ-parameter was tested. The numerical results were
approximated by the closed form formulas. The niost
portant results are summarized as follows:
- theQ-stress depends on geometry and external the load;
different values of th&-stress are obtained for center
8 cracked plane in tension (CC(T)) and different tioe
16 ‘ ‘ ‘ ‘ SEN(T) specimgn, which are characterized by theesam
o 400 800 1200 1600 material properties;
J [N/m] - the Q-parameter is a function of the material properties
Fig. 13. Sample numerical results obtained for SEN(T) speans: its value depends on the work-hardening exponemich
the influ_ence of t_he yield stress & trajectories the yield stressg;
for specimens with crack lengé#w=0.20 — if the crack length decrease th@rstress reaches more
and for power exponents-20 .
negative value for the external load.

SEN(T) plane strain

W=40mm a/W=0.50

n=5 v=0.30 E=206000MPa
0o —%— 0,=315MPa (0,/E=0.00153)
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Abstract: In this paper nine of formulas (theoretical anderkpental) for the heat partition ratio were emgldyto study
the temperature distributions of two different getrical types of the solid disc brake during emeoyebrake application.
A two-dimensional finite element analysis incorgorg specific values of the heat partition ratiogswcarried out.
The boundary heat flux uniformly distributed ovéietcircumference of a rubbing path to simulate libat generated
at the pad/disc interface was applied to the modlelumber of factors over the heat partition rdkiat affects the tempera-

ture fields are included and their importance s&cdssed.

1. INTRODUCTION

Frictional heating problem is an important issueirdy
operation of the brake system. When the slidinguadut
process occurs the mechanical energy is converitd i
thermal energy, chemical bonding energy and phasesit
tion energy at the interface of two mating bodNanethe-
less thermal energy is prevalent. Thus it is e&seitt de-
velop critical temperature above which various widdle
effects such as softening or sintering of materfasmature
wear, friction coefficient fluctuations or breakdowf the
system may take place (Olesiak et al., 1997; ‘4il.e2002).

Various techniques have been so far developedhtor t
calculation of maximum temperatures in sliding syss.
Analytical methods for solution of thermal problexfric-
tion during braking are limited to the contact wbtsemi-
spaces or the plane-parallel strip and semi-sp&bécli-
nadze et al., 1979; Balakin 1999; Grylytskyy, 1996ytu-
shenko and Kuciej, 2010). More accurate for thatefin
object, transform techniques have been used, buerus
mathematical difficulties implies simplificationa geome-
try. The finite element method among numerical témphes
is held as one of the most suitable for thermalbjem
investigation. Review of FEM-solutions of thermalob-
lems of friction during braking are given in aréaf Yevtu-
shenko and Grzg2010).

The calculation of temperature during braking reegii
appropriate model where sufficient number of vedalare
included to obtain reliable outcomes. One of thautrpa-
rameters for FEM-calculations of temperature in/gesd
brake system is the heat partition ratio (Perewerzand
Balakin, 1992; Evtushenko et al., 2000). The sdjmra
of heat between two sliding bodies depends prigaril the
relative velocity, the thermophysical propertiesratterials,
the interface contact length, the amount of wedbride
(third body) whose magnitude varies during the pssc
The settlement of the heat partition at the interfaf two
sliding bodies within the years was somewhat cormpled
remains in fact unsolved.

The problem of the heat partition in a three-dinizmes
FE model of a pad/disc brake system subjected to no
axisymmetric thermal load was studied in articleyefitu-
shenko and Grzg2011).

In this paper the finite element analysis of footl
heating problem in an axisymmetric arrangemenhefdisc
brake model to assess the impact of separatiootaif ieat
generated between members of sliding system waedar
out. Irresistible advantages of this numerical téghe
approach were reported within the past years. Nieotess
several disadvantages, namely partition of heanhguric-
tional heating process became apparent. This shimg
to compare the temperatures obtained with the @isgne
various formulas, both experimental and theoreficalthe
heat partition ratio. The comparison of outcomesthef
thermal finite element analysis with experimentaitad
of two different circumstances of braking actiono@ko
etal, 2009; Zhu et al.,, 2009) dimensions and ptoEs
of materials was accomplished as well.

2. FRICTION HEAT DISTRIBUTION
BETWEEN A PAD AND A DISC

The thermal energy is generated at the interfacthas
heat fluxes with the specified intensity, and & shme time
is divided into contact surfaces of two bodiesotder to
analyze thermal processes, the heat partition deimtedy
is employed, e.g. if the heat flux with the inténsif q; = )q
enters into body “1”, the intensity of heat fluxtered into
body “2” equalsy, = (1 —))g. Noticeablyq = q; + g,, where
the power of friction equalg = f\Vp, andf denotes the coef-
ficient of friction, V is the relative velocity of sliding bodies,
p is the contact pressure. The heat partition r&i;m was
introduced in 1937 by Blok (1937), who considerédirsy
of single roughness with squara X a) or circular (with
radiusa) shape and the lateral surface of cylinder (harrow
layer of contact zone) along surface of semi-spades
dimensions of contact area in comparison to whaieed-
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sions of contacting bodies were insignificant, hseathe
semi-space was considered. It was assumed thabehie
generation takes place directly on contact surfand, heat
expansion process is unidirectional perpendicaaontact
surface. The intensity of heat flux was constarth wime
and independent of spatial distribution, accordingthe
same law as the contact pressure. Dividing vijguadintact-
ing bodies, two problems of frictional heating ateained,
namely: with the surface of semi-space heating it
intensity ofq, (for roughness), and with the local surface
of semi-space heating where the intensity of haat @,
is moving. The magnitude of heat partition ratio fow
sliding velocities ¥ < 8k, /25a or Pe< 032) Blok speci-

fies as follows

y= %

= : M)
K, +K,

where:K — thermal conductivity, subscripts 1 and 2 indicat
the first and the second body, respectively.

It was concluded, that for high sliding velocities
(V > 8k,/a or Pe > 8) of the roughness, the maximum tem-
perature on the friction surface, according tortiet model,
is obtained near the edge of the roughness, ogpisilid-
ing direction. In the case of lateral surface yincler slid-
ing over the plane surface of semi-space Blok @sfinigh
velocity asV > 4(k,/a (Pe> 40). In order to find the coeffi-
cienty, Blok equates the maximum temperatures on the
contact area of roughness and semi-space. As &, réwu
following formula for the heat partition ratio ibtined:

K

L (2)
K, + 044K ,/Pe

Kl
= 0
YK K Pel6

where: Pe — Peclet number.
The cases of sliding with constant velocity of semi
infinite rod of rectangular or quadrate profile otke sur-

face of semi-space were considered by Jaeger (1942)

Unlike to Blok, Jaeger, defining compared the mean tem-
peratures on the contact surface. In case of th@frguad-
rate cross-sectiora(x a) with a thermally insulated lateral
surface, and one tip sliding with constant high espe
(Pe > 20) over the surface of semi-space, Jaegeined
the following formula to calculate heat partiticatio

125K, K,

= 3)
125K, + K,/Pe/2 K, + 056K,/Pe

O

From formula (3) it results that an increase idislj ve-
locity (the Peclet number Pe) evokes decreasg affid,
consequently, the amount of heat which heats tte Jae-
ger explains this fact by two sources of heating gemi-
space: heat generated as a result of friction,haad previ-
ously heating layers of the rod. At the same tithe, tip
of the rod is heated only by frictional heatingdasooled
by forthcoming “cooler” areas of semi-spaces. Thghér
speed of sliding there is, the more amount of hbabrbed
by the semi-space.

Jaeger also improves formula (3) for the case onfeo-
tional heat transfer with constant heat transfeffament h
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between lateral surface of rod and ambient envigsrim

y= VK
JK, + 067K ,+/Pe/ Bi

where: Bi — Biot number.

From the formula (4) it may be concluded that the i
crease of heat transfer coefficigmtleads to an increase
of the amount of heat directed into the rod.

One of typically used formulas to calculate thet -
tition ratio in braking systems is the Charron'snfola

(1943)
y= VK010 ’
VKio1e +4/K 0,0,
where:p — densityc — specific heat capacity,
The Charron's formula (5), which is recommendedsi®
for calculating the temperature of clutches ankésawhen
the coefficient of mutual overlag equals approximately
to one.
_ &
2’

(4)

®)

(6)

where: & — cover angle of pad. << 1, then correction
of Charron's formula has the form (Newcomb, 1958-59

y= ,7K1\/k>2 = I7 . (7)
I7Kl\/k>2+ KZ\/El ,7+£

In order to comply real thickness of the frictioainpd;,
which cumulate the heat generated during frictibwe, fol-
lowing formula for determination of the heat paotit ratio
was proposed by Hasselgruber (1963):

y=_ delk
dlcl\/E + d2(':2\/k>2
where the efficient depth of heatidgthe distance at which

the temperature is equal 5% of the maximum tempegat
on the contact surface) equals (Chichinadze et @64):

,d,<8,i=12, (8)

o =173/kt,, i =12 9)

If the thicknesses; of the braking elements are greater
then thicknesses of thermal layeyg9), then it is necessary
to replaced; ond, i = 1, 2 in the formula (8). Consequently,
substituting the thicknessed (9) into the formula (8),

we obtain
y=— G 55d.i=12.
K, + Ck,

Transformation of formula (8) to comply effectivatis-
rated heat of bodies volumé&, was made by Chichinadze
et al. (1979):

yo_ Vol
Viek +ViGfk,

(10)

d<d.,i=12, (11)




whereV, = Sd;, § — nominal contact area of body 1, 2.
If § > d;, then replacing in the formula (1d) on 4§ (8),
we find

y=— 554, i=12, (12)
Gk + ¢k,

where the coefficient of mutual overlap was defined

by the formula (6).

The frictional heat generation in the pad/discasis-
tem, using the solution of thermal problem of faat for
two layers with thicknesd;, i = 1, 2 on the assumption that
g =const, i = 1, 2 and the external surfaces are insulated
was studied in article (Ginzburg, 1973). From thadition
of equality of temperatures on a surface of contaetime-
dependent formula for calculation of the heat fartiratio
is obtained:

Wt) = 1K,d,6(7;) 0<t<t,. (13)
nK,d,0(z,) + K,d,6(r,)
where
6(r) —7+r +2Z( 1) C0SM) oy ()1 |
(rrn)°* (14)
7 =%,di <3,i=12

If 7, > 0.3, then the functiofi(z;)) (14) may be written
in the following form

H(r.)z}+r.,i=12 (15)
I 3 I

As above, in case wheh > g;, it is necessary in the for-
mula (13) to replace the thicknesses of frictioir pawith

appropriate effective thicknessési = 1, 2 (9).
Tab. 1. Heat patrtition ratios
Curve  Number of the formula Author
number and type of a brake
1 1) A B Blok, 1937
2 A, B Blok, 1937
3 (3)A,B Jaeger, 1942
4 4)A B Jaeger, 1942
5 (B)A,B Charron, 1943
6 (A B Newcomb, 1958-59
7 (10) A, (8) B Hasselgruber, 1963
8 (12)A,(11) B Chichinadze et al., 1979
9 (13)A, B Ginzburg, 1973

The thermal conductivity of the pad material is gidn
erably less than the thermal conductivity of thecdinate-
rial, i.e.K; << K,. For that reason, the temperature increases
on the external surface of the pad near the moofestnd-
still t, and it differs slightly from the initial period.
As a result, pad may be considered as the semitmfbody
(the semi-space), and disc — as the strip. Them filoe
formula (13) it follows
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nK,d,8(z,)

P800+ 2K

The formulas shown in this section are found byousr
ways and differ significantly from each other. Tdfere,
comparison of the results of the numerical analgbisined
with their help with appropriate experimental d&athe
actual problem.

Wt) = (16)

Ost<t,

3. STATEMENT OF THE PROBLEM

When the friction force acts on the members of érak
system being in sliding contact, the energy conears
should be considered as an essential. The work done
is converted into heat and the vehicle deceleraits the
certain rate. The disc brake system consists pilymartwo
major parts, namely: rotating axisymmetric disc and
movable non-axisymmetric pads (Fig. 1). The geeerat
thermal energy dissipated by the conduction frost/gad
interface to adjacent components of brake system, by
convection to atmosphere due to Newton's law. Olslip
the third of mode of heat transfer takes place al§ wone-
theless by virtue of relatively low temperaturesaiaed
during slipping and short time of the operationeaglected.

Fig. 1. A schematic diagram of a disc brake system

In actual thermal load of a disc is non-axisymneetri
which stems from the geometry of a pad coveringindp
path partly. Thereby, for the selected spot onctreumfer-
ence of the friction surface the temperature wiffled peri-
odically with time. Such a distribution both in dep
and circumferential direction can be obtained byamnse
of the three-dimensional model.

Despite the fact of comprehensive outcomes possible
to obtain by means of the spatial model of a ditherto
have been made calculations of transient temp@&susing
two-dimensional configurations of the same phenamen
make a case for theirs application (Talati and lifata
2009). The accuracy of such an approximation irsgea
when the Peclet number is higher for considerdubsgis-
tem. In an automotive disc brakes the Peclet nusrdlenost
always are in order of £gChichinadze et al., 1979). There-
fore, the transient heat conduction problem for thsc
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and the pad has been analysed in the axisymmeate-s
ment (uniformly distributed heat source over thébing
path of the disc), assuming boundary thermal flakng
on the lateral surfaces of a disc.

An analytical solution of one-dimensional boundary-
value problem of heat conductivity for tribosysteransist-
ing of a plane-parallel strip and semi-space, wrained by
Nosko et al. (2009). The temperature evolution aam
radius of pad contact surface was illustrated. ffictional

qd(r,t):%(l—y) foraxt) .r, <r <R,,0<tst.. (20)

where:q — intensity of the heat fluy/— heat partition ratio,
f — friction coefficientp — contact pressure.

From the formulas (19) and (20) it follows that tihe
tensities of thermal fluxes, which enter the pad #re disc
respectively, depends directly on value of the Ipeatition
ratio y. Consequently, it is essential to specify itsuafice

heating phenomenon of a brake shoe including spread on the temperature at the pad/disc interface.

of heat on its depth during hoist's emergency lmgkivas
studied by Zhu et al. (2009). The integral transfonethod
was adopted in the three-dimensional analysis.

In the proposed article two types of a real diskbrsys-
tem including disc and pad volume during singleking
action with a special respect to different heatipyan ratios
were studied. In order to validate further transimmerical
analysis, dimensions, material properties and dipgra
parameters were adopted from the experimental asiko
et al. (2009) and Zhu et al. (2009).

For the purpose of thermal analysis, it is assuthatl
the contact pressurp is constant during entire process
of braking and the angular velocity decreases tligeaith
time

w(t)zab(l—ttj, O<tst,.

(17)

where: w — angular velocity,w — initial angular velocity,
t — time,ts — braking time.

In order to calculate transient temperature distiims
in the pad and the disc, the following heat condactqua-
tion for an axisymmetric problem given in the cyliital
coordinate system was employed:

0T 19T 0°T _ 10T

T +—=—"""r <r<R,
o’ ror 0z k,ot " P
0<z<9,,t>0; (18)
0°T 10T  9°T _ 14T

+ + ==——r,<r<R,,

oZ ror 02  k, ot
0<z<g,t>0

where: T — temperaturer, z — radial, axial coordinate re-
spectively k — thermal diffusivity,r, R — internal and exter-
nal radius, respectively. The bottom indepesndd, denote
the pad and the disc, respectively.

Taking account of the symmetry of a given problem,
the insulation on mid-plane of the disc as wellttas inner
surface represented by the edge of two-dimensiomalel
was established. On the remained surfaces of thkebr
models the forced convection takes place with thestant
value of heat transfer coefficient. It is also ased that the
material properties of the pad and the disc ar&rdp
and independent of temperature.

q,(r,t)=ppraft).r, <r <R, 0<t<t,, (19)
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4. FEFORMULATION

The understanding of overall formulation (18)—(20)

is crucial for the solution of a considered thermpedblem

of friction by means of the approximate time-steygppro-
cedures for axisymmetric transient governing equati
of heat conductivity. The main idea of two-dimemsib
discretization of the boundary-value heat conditgtprob-
lem consists in the following reference (Lewis ket 2004).
Using the Galerkin’s method we write Eq. (18) i thatrix
form:

CERSRECY

where: [C] — heat capacity matrixK[] — heat conductivity
matrix, {Q} — thermal force matrix.

The solution of the first order ordinary differaitequa-
tion (21) was obtained using the Crank-Nicolson hodt
with approximation relations (Crank and Nicolso847T)

(21)

1 dar dT

Bl =(1-p0) — - , 22
Aplt e X THI=E ﬁ){ " }t+ﬂ{ m }Hm (22)
where: {T}; — temperature vector at tinte The weight
parameter 0.5 ¥ < 1 was chosen from the conditions
of achievement of necessary accuracy of integrasiod
stable scheme. Taking the relation (22) into actofnam
Eqg. (21) we obtain the system of linear algebrgica¢ions

(IC1+ AMIKIN They = (C1- A= A)IKIALTY
+(1- B)AH Q}, + BAK QY o

for determination of the temperatur@ }.,; in the time
momentt + At.

The temperature distributions in the pad and discew
analyzed using the finite element method basedrpnoge.
In the thermal analysis of disc brake an approprfatite
element division is indispensable. In this studurfnode
quadratic elements were used for the finite eleraaatysis.
In order to avoid inaccurate or unstable resultgpraper
initial time stepAt associated with spatial mesh si&r
(smallest element dimension) is essential

(23)

At = pve oo
10K , 4

(24)

where:Ax — mesh size (smallest element dimension).



5. NUMERICAL ANALYSIS

The temperature distributions of two types of d disc
brake system including disc and pad volume duringls
braking action regarding different heat partitiatias were
studied (Tab. 1).

h=0

r r
V4 _| Z ’l

Fig. 2. FE models with the boundary conditions,
a) A type, b) B Type

The FE element models with the boundary conditions
are shown in Fig. 2. In order to validate furtheansient
numerical analysis, the thermophysical materialpprtes,
dimensions and operating parameters have been eatiopt
from the experimental data of Nosko et al. (20G8g (A
type) and Zhu et al. (2009) (the B type), and aesented
in Tab. 2. In the A type the brake pad is madpatymeric
material of the type 145-40, and the brake disenéle
of cast iron of the type 15-32. The materials cilier pad
and brake disc in the B type are asbestos-freeléivh,
respectively.

The heat transfer coefficient of 100 Wt was as-
sumed. The FE model of A type of a disc brake «i®si
of 3680 elements and 3864 nodes for the disc a®dd2
elements and 13065 nodes for the pad, and the B typ
model consists of 660 elements and 732 nodes éodist
and 2000 elements and 2121 nodes for the pad. éthe t
perature evolutions on the contact surface for tymes
of disc brake employing nine of formulas for thehparti-
tion ratio were determined and compared with thpeex
mental outcomes for the A type (Nosko et al., 208%) B
type (Zhu et al.,, 2009). Conformity of numbers bEt
curves presented on the following figures to formsul
for calculation of heat partition ratio, is shownTiab. 1.

The evolution of temperature on the contact surface
of the pad and the disc are shown in Figs. 3 anéspec-
tively. The character of evolution of temperatuee the
following: with the beginning of braking the tempaire
sharply raises, reaches the maximum value and, thiie
it decreases to the minimum level in the stop tinwement.
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The change of temperature in time on the frictian s
face of the pad in A type of brake is shown in Rg.
We see, that the evolution of contact temperatafteutated
with use of Charron’s formula (5) (the curve 5) aofd
Ginzburg formula (13) (the curve 9) significantlyffelrs,
both qualitatively and quantitatively, from expeeintal
curve (Nosko et al. 2009). The curve denoted ddasgel-
gruber H., 1963) coincides with the experimentaiveu
from the initial instant of time untik = 008s, then sur-
passes the experimental values of temperaturesmbke
mum temperature reached of curve 7 eqiats304.3°C,
whereas the maximum value of temperature of theeréxp
ment equals approximatelly = 250°C, and appears earlier.
Then, it decreases considerably to standstill. Midsthe
solutions illustrated in Fig. 3a range beneath grpmtal
curve of temperature. The cooling conditions haveim-
pact on the temperature values on the averagestatlie to
comparatively large distance from the outer surfatéhe
disc. A slightly different plot of temperature eutbn
on friction surface of pad in the B type of brakebserved
in Fig. 3b.

a)s00 - o
T[°C]
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300 |
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b) g0 _
T[°C]
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140
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80 —
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40

2,348

20 L e S e e —

0 1 2 3 4 5 6
Fig. 3. Evolution of temperature at the mean radius
of contact surface of a pad: a) A type, b) B type
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Tab. 2. Operation and geometrical parameters

A type (Nosko et al., 2009)

B type (Zhu et al., 2009

Parameters Disc Pad Disc Pad
thermal conductivityK (W/mK) 59 0.64 53.2 0.295
specific heate (J/kgK) 500 1100 473 2530
density,o (kg/n?) 7100 2500 7866 2206
inner radiusr (M) 0.03 0.05 0.1325 0.1375
outer radiusR (m) 0.11 0.1 0.1625 0.1625
mean radius of pad,, (m) 0.075 0.15
cover angle of padg (rad) 0.384 0.167
thickness,o (m) 0.01 0.015 0.004 0.006
pressurep (Pa) 4x10° 138x10°
braking timef{; (s) 1.1 7.23
initial angular velocitya (s) 200 66.667
coefficient of friction,f 0.38 0.4
initial temperatureT, (°C) 20 20
ambient temperaturdy (°C) 20 20
time step At (s) 0.0002 0.001 0.0002 0.005
Peclet number, Pe 4136.7 3014.6
Biot number, Bi 0.00777 0.00810

a) g -

T[*Cl]

1,2,3,4,6,8
70 2348,

60 —
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40
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20 ; ‘ ; ; : ‘ ; . . ;
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60
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20 4——m—————
o 1 2 3 4 5 6

T T 1
7 t[s] 8
Fig. 4. Evolution of temperature at the mean radius

of contact surface of a disc: a) A type, b) B type
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However, curve denoted 5 is similar to the same one
as in Fig. 3a. Previously correct temperature cutyveur-
rently provides overlapped values relating to tkigegimen-
tal data. The character of the temperature chaigydise
same as in A type (Fig. 3a), except the curve dsh&
(Ginzburg, 1973), which results from the variabtetime
heat partition ratio. In this case the sharp rit¢he tem-
perature at the initial period of braking is no&ibee.

At time t = 005s temperatures of the curve 9 and the ex-
perimental one coincide, to separate after this emantill

standstill.

In Fig. 4a the temperature evolutions of the digtibn
surface of A type obtained from the numerical asialy
including different representations of heat pantitiratios
are plotted against time. For A type of a brakis impor-
tant to know the location of the curve 7, becauss the
curve, as seen from Fig. 3a, which gives the besicc

dence of experimental data. We see in Fig. 4a thisatem-
perature curve denoted 7 lays between the curve8 5,

and 1-4, 6, 8. The closeness of the last six cucaesbe
explained by the fact that the value of the heditfmn ratio
calculated with their help, equals nearly zeranéans, that
almost all heat energy, generated on the surfadectibn,
is absorbed by the disc, whereas influence of aiquor
of heat entering the pad is negligibly small. Theves 5
and 9 give the worst approximation of the experimen
data. Thus, the analysis of evolution of tempegtan
surfaces of the pad and the disc, allows to contegaon-
clusion that the most authentic results for A tjypake can
be obtained with use of the Hasselgruber's forrfi.0.

The evolutions of temperature on the contact sarfac
of the disc in B type of brake at the mean radiusibbing
path are shown in Fig. 4b. The curve 9, which Ipetten-
cides with experimental data in Fig. 3b, is locabetween
curves 5 and 7 (the worst coincidence to experiatefzta)
and curves 1-4,6,8. The temperature reaches themuax
value after time ranged betweeénr 6.34s for curve 9 and
t = 6.35s for curve 3 and decreases slightly after that mo-
ment. This may indicate that the disc is heatethénentire



volume, and cooling by the absorption to adjacemsaa
is difficult.

The highest value of temperature on the contadacarr
of the disc of type B equal§ = 528°C (the curve 4) and
is reached at tim¢ = 634s (the curve 4). The lowest tem-
peratureT =50.07°C is reached after = 6.34s (the curve
5). The discrepancy between the peak values of éeanp
tures of the curves 4,8,3,2,6,1 equals 0.34 %. artadysis
of evolution of temperature on friction surfacestloé pad
and the disc in B type of brake show, that the raasftentic
distribution of temperature can be find, using timae-
dependent ratio of heat partition given by Ginztsifgr-
mula (13).

6. CONCLUSIONS

In this paper two-dimensional finite element anialys
was carried out to study the effect of use of déife heat
partition ratios on the contact temperatures ofdilse brake
components during single braking process. The ke
temperatures on the friction surfaces of the brajstem
were compared with experimental results (Nosko let a
2009; Zhu et al., 2009), which allow us make thfeang
conclusions:

— the heat partition ratio is a key factor when apaly
the pad friction surface temperature, which is ¢ond
tioned by the substantial variation of its valueeimch
case of applied formulas;

- the investigation of the pad/disc contact surfamm-t
peratures provides an important information abdsit i
maximum value reached during frictional heatingare
theless the obtained results reveal that the nahteiih
lower thermal conductivity is more susceptiblehe se-
lection of the heat partition ratio included in tepres-
sion of the intensity of a heat flux calculation;

— the thickness of the pad plays a significant ralevall.
Its slender growth may firmly change the actualueal
of heat patrtition ratio entering the pad and thec die-
spectively, whereas in actual, temperatures opttkal-
ter only in the immediate vicinity of the contaatfaice;

— relatively small thickness (B type) demonstrated the
entire volume may be nearly uniformly heated frdma t
initial moment of operation without causing sigo#nt
temperature gradients.
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Abstract: Conditions for the positivity of fractional lineafeetrical circuits composed of resistors, coilsn@ensators
and voltage (current) sources are established.dhown that: 1) the fractional electrical ciratdimposed of resistors, coils
and voltage source is positive for any values efrthesistances, inductances and source voltagegdifonly if the number
of coils is less or equal to the number of its dirlg independent meshes, 2) the fractional eladtgacuit is not positive
for any values of its resistances, capacitancessancce voltages if each its branch contains @sisapacitor and voltage
source, It is also shown that the fractional pesitlectrical circuits oR, C, e type are reachable if and only if the conduc-
tances between their nodes are zero and the fnattaositive electrical circuits @R, L, e type are reachable if and only
if the resistances belonging to two meshes are zero

1. INTRODUCTION The paper is organized as follows. In section 2stiage
equations of the fractional linear electrical citswand their
solutions are presented. The positive fractionaddr elec-
trical circuits composed of resistors, condensatmiés and
voltage sources are analyzed in section 3. Thehadxdity
of the fractional positive electrical circuits isvestigated
in section 4. Concluding remarks are given in sech.

The following notation will be used? — the set of real
numbers R™™ — the set ofr x m real matricesR*™ —
the set ofn X m matrices with nonnegative entries and

n — gpnxi i
The notion of controllability and observability atide He N R " M;, — the se_t oh X n Metzler ma_ltnces (real
decomposition of linear systems have been intradiuce matncgs W'.th nonnegatwe off-diagonal entrie),— the
by Kalman (1960, 1963). These notions are the beasic nXn identity matrix.
cepts of the modern control theory (Antsaklis, MicR0O0G6;
Kaczorek 1999, 2002; Kailath 1980; Rosenbrock 1970; 2. FRACTIONAL STATE EQUATIONS
Wolovich 1970). They have been also extended titipes AND THEIR SOLUTIONS
linear systems (Farina and Rinaldi 2000; Kaczoré®22.
The decomposition of the paiA,B) and A,C) of the posi- , . _
tive discrete-time linear system has been addressed . ' this paper the following Caputo definition ofetde-
in Kaczorek (2010b). rivative-integral of fractional order will be usélaczorek
The reachability of linear systems is closely et ~ 2008a, 2011c)
to the controllability of the systems. Specially feositive a t )
linear systems the conditions for the controllapili d’f@m __ 1 J' () dr (2.1)
are much stronger than for the reachability (Kaekor dt?  T(n-a)? t-r)a*™"
2002). Tests for the reachability and controllapibf stan-
dard and positive linear systems are given in Kezlzo n-1<a<n, nON={12,...} where
(2008b, 2002; Klamka 1991). The stability, robustbgity

A dynamical system is called positive if its tramy
starting from any nonnegative initial state remdmgver
in the positive orthant for all nonnegative inpuAs over-
view of state of the art in positive systems theigrgiven
in the monographs (Farina and Rinaldi 2000; Kadzore
2002). Variety of models having positive behavian de
found in engineering, economics, social sciencedpdy
and medicine, etc..

0

and stabilization of positive linear systems hagerbinves- < w1t
tigated in (Bustowicz 2008a, 2008b, 2008c, 20091@0 (X = I t™ e 'dt, Re(x)>0 (2.2)
Kaczorek 2002, 2011c). Analysis of fractional efieci 0
(Z:I(;(iliIE)S) has been addressed in Kaczorek (2010al1&01 is the gamma function and
In this paper the necessary and sufficient conustio ") d"f(7)
for the positivity and reachability of fractionkmear elec- ) =—0 (2.3)
trical circuits composed of resistors, coils, camsbgors dr
(supercondensators) and voltage (current) souréksbey is the classicah order derivative.
established.
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Let the currenic(t) in a supercondensator (shortly con-
densator) with the capaci€y be thex order derivative of its
chargeq(t) (Kaczorek 2010a, 2011c)

=990 o g 2.4)
dt?
Using q(t) = Cuc (t) we obtain
o(=cduc® 2.5)
dt?

whereuc(t) is the voltage on the condensator.

Similarly, let the voltageu (t) on coil (inductor) with
the inductance. be thes order derivative of its magnetic
flux W(t) (Kaczorek 2010a, 2011c)

u(t)= i w(t) , 0<p<1 (2.6)
Taking into account tha(t) = Li (t) we obtain
d”i (1)
u (t)=L 2.9
: dt?

whereil (t) is the current in the coil.

Consider an electrical circuit composed of ressstar
capacitors anan voltage sources. Using the equation (2.5)
and the Kirchhoff's laws we may describe the transi
states in the electrical circuit by the fractiondifferential
equation

d7x(t)

= Ax(t) +Bu(t), 0<a <1 (2.8)

wherex(t) € R", u(t) € R™, A € R™", B € R™™. The
components of the state vectoft) and input vectou(t)
are the voltages on the condensators and sourtagesl
respectively.

Consider an electrical circuit composed of ressstor
n coils andm sources. Similarly, using the equation (2.6)
and the Kirchhoff's laws we may describe the transi
states in the electrical circuit by the fractiondifferential
equation

d@x(t)
B

= AX(t) + Bu(t), 0< B<1 (2.9)

where x(t) € R", u(t) € R, A € R, B R™V™. In
this case the components of the state veeto) are the
currents in the coils.

Theorem 2.1. Solution of the equation (2.8) satisfying
the initial conditionx(0) = x, has the form

t
X(t) = Do (t)Xo +jq>(t - 7)Bu(r)dr

(2.10)
0
where
o akika o pki(k+Da-1
Do)=Y O<a<1
0 kzzol'(kcHl) Z ¢ M[k+Da] ’
(2.11)

acta mechanica et automatica, vol.5 n0.2(2011)

Proof is given in Kaczorek (2008a, 2011c) .

Now let us consider electrical circuit composedesis-
tors, capacitors, coils and voltage (current) seu/s the
state variables (the components of the state vegtgrwe
choose the voltages on the capacitors and thentsrirethe
coils. Using the equations (2.5), (2.7) and Kirdilsdaws
we may write for the fractional linear circuits the tran-
sient states the state equation

daXC

dﬂta :['AM A&Z}{XC}+{B‘L},O<a,ﬂ<1(2.12a)
dPx | [Ar AxzlxL] [B2

dt?

where the components. € R™ are voltages on the con-
densators, the componentg € R™2 are currents in the
coils and the components ofe R™ are the source voltag-
es
A, 007N B OO, i, j=12. (2.12b)
Some examples of electrical circuits described Hy t
equation (2.12) are given in (Kaczorek 2010c, 2011c
Theorem 2.2. The solution of the equation (2.12)

for 0 < a < 1,0 < g <1 with initial conditions
Xc (0) = X9 and x; (0) = X5q (2.13)

has the form

t
X(t) = Po ()% * [[ @1t ~1)Bio + Dt ~1)Bogu(@)dr (2.142)

0
where
ot o) 2[5} el
X(t) = y = s = , =
_XL (t) _X20 BlO 0 BOl BZ
| n f(_)r k=I=
[AM F12 for k=11 =
0 0
=1 To o (2.14b)
[ } for k=0,1=1
A1 A
TioTk-1y +To1Tk . for k+1>0
ZZ tka+1pB
Do(t) = K—————<
icoio | (ka+1B+1)

t(k+1)0/+|,6’—1

(1) = T
1(0) kZ:=0|§;) Tk +Da +14]

® oo tka+(+1)5-1
P,(t) = Ti
2 kzzoé Mka +(+14]

Proof is given in Kaczorek (2010c, 2011c).

The extension of Theorem 2.2 to systems consisting
of n subsystems with different fractional order is give
in Kaczorek (2011b).
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3. POSITIVE FRACTIONAL ELECTRICAL
CIRCUITS

Definition 3.1. The fractional electrical circuit (2.8)
(or (2.9), (2.12)) is called the (internally) posi fractional
system if the state vectar(t) € R%, t = 0 for any initial
conditionsx, € R"T and allu(t) € RT,t = 0.

Definition 3.2. A square real matrixd = [a;;] is called
the Metzler matrix if its off-diagonal entries anennega-
tive, i.e.a;; = 0 for i # j (Kaczorek, 2002, 2011c).
Theorem 3.1.The fractional electrical circuit (2.8) is (in-
ternally) positive if and only if
AOM,, BOOF™M (3.1)

whereM,, is the set oh x n Metzler matrices.
Proof is given in Kaczorek (2002, 2011c).

From Theorem 3.1 applied to the fractional circuit

(2.12) it follows that the electrical circuit is gitive if and
only if

Ak OMp , k=12; A, 000%™, A 002™,

B OOY™, B,OOX™ (3.2)

3.1. FractionalR, C, e type electrical circuits

Theorem 3.2.The fractional electrical circuit is not posi-
tive if each its branch contains resistors, condtns
and voltage source.

The proof is similar to the proof of Theorem 3.1Ka-
czorek (2011a).

Consider the fractional electrical circuit shown ig-
ure 3.1 with given conductancé&g, k =0,1,...,n; capa-
citances(;, j = 1,...,n and source voltages

\'

Y

G, Cﬂ——juﬂC2 juz C. jun
bt 7 3
V0=0 ] o
Fig. 3.1.Fractional electrical circuit

Using (2.5) and the Kirchhoff's laws we may writeet
equations

d”uk
Ck ta :Gk(V—Uk),k: 1,...n (33)
and
n
Go(e-Vv) =) Gj(v-uj). (3.4)

=1
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From (3.4) we have

1 n n
v=E[GDe+ZGjuJ}, G=>G. (3.5)
j=1 i=0
Substitution of (3.5) into (3.3) yields
4@ U Up
—| 1 [=A i |+Be (3.6)
dt?
un un
where
. , _
_G,G-Gf GG, GG,
C,G C,G C,G
G,G, _ G,G-G2 G,Gh,
A=l c,G C,G C,G |
GhGy GhG» _G,G-G a7
| C.G C,G C.G '
| GGy
C,G
B=| : |
GOGn
C.G

From (3.7) it follows thad € M, andB € R’. There-
fore, the following theorem has been proved.
Theorem 3.3. The fractional electrical circuit shown
on Fig. 3.1 is positive for any values of the coctduces
Gk, k =0,1,..,n; capacitances§;, j = 1,..,n and source
voltagee.

In general case let us consider the fractionaltedzd
circuit composed ofqg conductancesG,k =1,...,q;
r capacitancesC;, i =1,..,r and m source voltages
ej, j =1,..,m. Letn be the number of linearly indepen-
dent nodes of the electrical circuit and> r.

Using the Kirchhoff's laws we may write the equatio

U Up Vi €

=A|E[+A) By

Uy Uy Vi €m

a
a (3.8)
dt?
whereu; is the voltage on theth (i = 1, ...,r) capacitory,
is the voltage of thg-th node [ = 1,...n), A, € R™*"
is the diagonal Metzler matri¥,, € R"™*" andB,, € R"*™.

Using the node method we obtain

Vi Up Sl

Gl : |=-F| : |-H| : (3.9
Vn Ur €m

where G € R™" is a Metzler matrix, F € ™"

andH € ™™,
Taking into account that-G~! € ®R¥*" from (3.9)
we obtain

vy Up Sl
=-GF| : |-GH
Vi U, €m

(3.10)



Substitution of (3.10) into (3.8) yields

qe Up U Sl
—| i |=A |+ (3.11)
dt?
u, uy [
where
A=A -AGF,B=B,-AGH. (3.12)

The electrical circuit described by the equatiorl{3
is positive if and only if the matri is a Metzler matrix
and the matrixB has nonnegative entries. Therefore,
the following theorem has been proved.
Theorem 3.4.The linear electrical circuit composed of
resistors,r capacitors andn source voltages is positive
if and only ifr < n and

A -AGIFOM,, By,-AG HOON™ (3.13)

3.2. FractionalR, L, etype electrical circuits

Consider the electrical circuit shown on Figure 3.2
with given resistancesR, R,, R; inductances Ly, L,, L4
and source voltages, e,.

R, R,
VWA A
L,
guiy 70 &3
R,
() ()
N N o
e‘] e2

Fig. 3.2.Fractional electrical circuit

Using (2.7) and the mesh method for the electrial
cuit we obtain the following equations

['—11 ‘le}ﬁrl}{‘lﬁl RlZ}[il]{ei} (3.143)
—Lp1 Ly JdtPliz] [ Ra1 —Realiz] |& '

where

Ri=R +R;, Ro=Ry1=R;, R =R, +R,,

1= R+ R Rz 2R =Rs Rep =R+ R o 1)
Lip=Li+Ll3 Lip=Lp=L3 Lypp=Ly+Ls.

Note that the inverse matrix
-1
—le} _ 1 {Lzz '—12}

Lo Li(Lp +Lg) +Lolg| Lor Ly
(3.15)

L :{ L1
Ly

has positive entries. From (3.14) we have

acta mechanica et automatica, vol.5 no.2(2011)

A
dt? iz I2 €
where
A= L—l|:_ Ri R } _ 1
Ro1 —Rap| Li(lp+Llg)+Lsolg
[E‘ Lo(R +Rs)— LRy LoRs — L3Ry } (3.17)
LRs — L3Ry —L(Re +Rg) — L3Ry
B=L'oO22.
From (3.17) it follows thatd € M, if and only if
L,oRs > L3R, and LRy > LgR, . (3.18)

Therefore, the fractional electrical circuit is v
if and only ifA € M, i.e. the condition (3.18) is met.

In general case let us consider the fractiomahesh
electrical circuit with given resistance®,,k =1, ...,q,
inductancesl,, ..., L, for r =n and m <n mesh source
voltagese;;,j = 1, ..., m. Denote byiy, ..., i,, the mesh cur-
rents. In a similar way as for the electrical citcshown
on Fig 3.2 using the mesh method we obtain thetequa

af | L
L |= Al |+] (3.19a)
dt? |-
|n |n emm
where
Lin —Li2 —Lin
-L L .. —L
I
- I—n,l - I—n,2 Lnn
(3.19b)
“Riu R Rin
R -R R
A= :21 ‘22 2n
Rn,l Rn,2 ~Rnn
Note that—L € M,, , A’ € M,, and L™ € R"",
Premultiplying (3.19a) by.~! we obtain
af ||
—| :|=A :|+Bl : (3.20a)
dt? |
'n 'n emm
where
A=L" A, B=LtDoOM". (3.20b)

The fractional electrical circuit is positive if é@ronly
if the matrixL=1A’ is a Metzler matrix, i.e.
LtAOM,. (3.21)

Therefore, the following theorem has been proved.
Theorem 3.4.The fractional linear electrical circuit com-
posed of resistors, coils and voltage sources mtipe
for r > n if its resistances and inductances satisfy the con
dition (3.21).
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Remark 3.1.In the case = n if it is possible to choose the
n linearly independent meshes so that to each melsimdps
only one coil. Then the matrik = diag|[L,, ..., L, ] and the
condition (3.21) is met for any values of the resises and
inductances of the electrical circuit.
Remark 3.2. Note that it is impossible to choose the
linearly independent meshes so that to each melsimdgse
only one colil if all branches belonging to the sanuele
contain the coils. In this case we can eliminate ofthe
branch currents using the fact that the sum ofctineents
in the coils is equal to zero.

From Theorem 3.4 and Remark 3.1 we have the follow-
ing important theorem.
Theorem 3.5.The fractional linear electrical circuit com-
posed of resistors, coils and voltage sources sitige for
almost all values of the resistances, inductanoessaurce
voltages if and only if the number of coils is lessequal to
the number of its linearly independent meshes &eddi-
rections of the mesh currents are consistent vhighdirec-
tions of the mesh source voltages.

3.3. FractionalR, L, C type electrical circuits

Consider the fractional electrical circuit shown eig-
ure 3.3 with given resistané® inductance., capacitanc€
and source voltage

L
4118

u
P

e C R

Fig. 3.3.Fractional electrical circuit

Using the Kirchhoff's laws we can write the equato

which can be written in the form

d%u
dt? =AY+ Be 3.23a
d”i A{l} (3:232
dt?
where
0 é 0
A= 1 R} B= % (3.23b)
L L

The matrix A has negative off-diagonal entry )/
and it is not a Metzler matrix for any values RfL, C.
Therefore, the fractional electrical circuit is mpatsitive one
for any values of the resistancBs inductancel, capaci-
tanceC.

In general case we have the following theorem.
Theorem 3.6.The fractional electrical circuits d®, L, C
type is not positive for almost all values of iesistances,
inductances, capacitances and source voltageseifstt one
its branch contains inductance and capacitance.

Proof. It is well-known that the linear independent meshe
of the electrical circuits can be chosen so thathhanch
containing the inductance and capacitanc€ belongs to
the first one. The equation for the first mesh aorg the
following term

e —Ld'g1+u + (3.24)
l - 1 e .
dt?

wheree;; andi; are the source voltage and current of the
first mesh andi; is the voltage on the capacitanCeFrom
(3.24) andi; = C((d%u,)/dt%) it follows that the matriXA
of the electrical circuit has at least one negatofé
diagonal entry. Therefore the matri is not a Metzler
matrix and the electrical circuit is not positiveeo

Consider the electrical circuit shown on Fig. 3.4

a
I=C : : with given resistances Ry, k = 1,...,n, inductances
dt 5 (3.22) Ly, Ly ..., Ly, , capacitances§;, C; ...,C,, and source vol-
e= Ri+LE+u tagesel, €y ...,en.
dt?
—~\NN——¢—--- > AAA
In, an R 4 R > R i lg
—~\W\ & M-
¢ ) : i i “L ¢ )
—Ju ~- Yy
ny ny C:3 ) u3 C1 j U1 5 5
% L N, E L4 ng LB g
R3 o R1
Ro, R%
ol | 7
en Yt \/ "
3 €, e, 6
& a
Mo (<)

Fig. 3.4.Fractional electrical circuit
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Using the Kirchhoff's laws we can write the equato

a

el=Rkad 3k+uk for k=13....;y (3.25a)
dt
d#i;
e +ej =L; +Rjij for j=24..n, (3.25b)
dt
which can be written in the form
d%u
dt? |- AY |+ Be 3.26a
d”i AH (8:262)
dt?
where
Uy i &
u i €
u= .3,i= fl,u= e, (3.26h)
Up, in, e
and
A:diaq—i,— L 1 R R i]DMn,
RC RC3 RCn L2 L4 Ln,
L oo0.0
nz A
”{**ﬂ — 00 ..0
B=[§jm+ * Bl RG ,
Rn;: 00 ..0
L L 1 (3.260)
— 0 0
L L
1L 0oL 0
Bl L
1 5 0 1
| Ln, L, |

The electrical circuit described by the equatior?63
is positive for all value of the resistanckg, k =1, ..., n,
inductances Ly, k = 2,4, ...,n,, capacitancesCy, k =
1,3,...,n,. Therefore, the following theorem has been
proved.
Theorem 3.7. The fractional linear electrical circuit
of the structure shown on Fig. 3.4 is positive day values
of its resistances, inductances and capacitances.

4. REACHABILITY OF FRACTIONAL
POSITIVE LINEAR ELECTRICAL CIRCUITS

Consider the fractional positive linear electriciicuit
described by the equations (2.8), (2.9) and (2.12).
Definition 4.1. The fractional positive electrical circuit
(2.8) is called reachable in timigf for any given final state

acta mechanica et automatica, vol.5 n0.2(2011)

xr € Ry there exists an input(t) € RY, for t € [0, t¢]
that steers the state of the circuit from zeroiahistate
x(0) = 0 to the final state , i.e.x(t;) = x;. If every state
xr € R} is reachable in timé , then the circuit is called
reachable in timg. The fractional positive electrical circuit
is called reachable if for every € R} there exist time
and inputu(t) € RY, fort € [0,t;] which steers the state
of the circuit fromx(0) = 0 to x; .

A real square matrix is called monomial if eachrasy
and each its column contains only one positive yentr
and the remaining entries are zero.

Theorem 4.1.The fractional positive electrical circuit (2.8)
is reachable in timg if the matrix
ty
R(t;) = jcb(r)BBTq:T(r)dr, t; >0
0
is monomial. The input that steers the state ofefleetrical
circuit in time t; from x(0) = 0 to the statex is given
by the formula

(4.1)

ut) =BT (t; —t)R™I(ts)xs for tO[Ots]. (4.2)
The proof is given in Kaczorek (2010a).
Theorem 4.2.If the matrixA = diag[ay, a,, ... a,] € R

and B € R*™ for m =n are monomial matrices then
the fractional positive electrical circuit (2.8)risachable.
Proof. From (2.11) it follows that ifA is diagonal then the
matrix ®(t) and ®(t)B are also monomial for monomial
matrix B. From (4.1) written in the form

t

Rt) = [(2) B o(7)B]" dr (4.3)
0

it follows that the matrix (4.3) is monomial. Théaee, by
Theorem 4.1 the fractional system is reachable.

Example 4.1. Consider the fractional electrical circuit
shown on Figure 4.1 with given conductanegsG,, G';,
G',, G,,, capacitance;, C, and source voltages, e,.

—W\ T
o1
GT C1 ) 1 CZ juz Gg
e/ G’ Gr e,
vc;=0

Fig. 4.1.Fractional electrical circuit

Using the Kirchhoff's laws we can write the equatio

daUk ,
Ck :Gk(Vk —Uk), k=1,2 (44)
dt?
and
Vo 0 G'2 us 0 G2 5]
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where

Ge {‘ (G +G'1+Gyp)

4.6
Gy (4.6)

Gr2 }
= (G, +G'2+Gyp)

is an Metzler matrix and—G'lﬂDf"z. From (4.5) we
obtain

B 2fibets 2l e
Vo 0 Gz us 0 G2 €

Substitution of (4.7) into

G, Gy
d? | ug C U C v
S I M
dt” [Uz2 0 -—2|Ww 0 2 ||V2
C 2
we obtain
aiu u
sl el da]
dt? [ Uz up €
where

ool fe o]
A: 1 | _ C]_ | G—l 1 ,
_2 0 & 0 G
C C
2 2 (4.10)
G1
B=- T G_l[Gl 0}
0 =2 0 G
G

From (4.10) it follows thaf is a Metzler matrix and the
matrix B has nonnegative entries. Therefore, the fractional
electrical circuit is positive for all values ofethconduc-
tances and capacitances.

We shall show that the fractional positive eleétricir-
cuit shown on Fig 4.1 is reachable if and onlgif = 0.

Note that the matrix (4.6) is diagonal if and only
if G;, =0. In this case from (4.10) it follows thak
is a diagonal Metzler matrix anl is a diagonal matrix
with positive diagonal entries. Therefore, by Tlesor4.2
the fractional positive electrical circuit is reabie.

In general case let us consider the fractionaitetal
circut shown on Fig 4.2 with conductances
Gy, G'k, Gj, k,j=1,..,n; capacitancesCy, k =1,..,n
and source voltages, k =1, ...,n.

Fig. 4.2.Fractional electrical circuit

Theorem 4.3. The fractional electrical circuit shown
on Fig. 4.2 is positive for all values of the cootéunces,
capacitances and source voltages.

Proof. Using the Kirchhoff's laws and the node method
for the electrical circuit we may write the equaso

q@ Up U Vi
—|i|==C g [+cle (4.11a)
dt un un Vn
and
! U il
G| :|=-G| |-G (4.11b)
Vn un en
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where
cl=diadc;t...C Y, G'=diadG,",....G,'],

G =diadGy,....Gy], (4.11c)
-Gp1 Gpo Gin

_ G -G G

e :12 :22 2n
G:Ln G2,n - Gn,n

G;; is the sum of conductances of all branches befmngi
to thei-th nodej = 1,...n.

The matrixG € M,, and—G~! has nonnegative entries.
Substituting (4.11b) into (4.11a) we obtain



4@ U U Sl

ol N N = (4.123)
dt?

un un en

where

A=-Cle[l,+Ge10M, (4.12D)
and

B=-C'¢'G lcoor" (4.12¢)

since the matrices~%,G',G and—G~! have nonnegative
entries. Therefore, the electrical circuit is piosit

Theorem 4.4. The fractional positive electrical circuit
shown on Fig. 4.2 is reachable if and only if

Gy,j =0 for k#j and k,j=1..n. (4.13)

Proof. The matrixG defined by (4.11c) is diagonal if and
only if the condition (4.13) is met. In this case tmatrices
G~1G', A andB are also diagonal and from (4.12) we obtain

T - L (6 GGG L GG GE k=1
dt” G C«
(4.14a)
where
Gk =Gk +G'y, k=1..n. (4.14b)

Note that the subsystem (4.14a) is reachable. Tdrere
the positive electrical circuit is reachable if amadly if the
condition (4.13) is satisfied.

Example 4.2. Consider the fractional electricatuwit
shown on Figure 4.3 with given resistandgsR,, R, in-
ductanced,,, L, and source voltages, e,.

-
NI

)
(N
e1 e2

Fig. 4.3.Fractional electrical circuit

Using the Kirchhoff's laws we can write the equato

o . d”i;
& = Rg(iy —ip) + Riiy + le—/g
t (4.15)

. . . d |2
€ = Ry(ip —ip) +Rjip + Ly
dt?

which can be written in the form

acta mechanica et automatica, vol.5 n0.2(2011)

ﬁ . .
d—[.'l} = A{'l} + B{el} (4.16a)
dt? |iz 12 €
where
_R*tRs  Rs 10
_ Ly Ly _| kL
AX Rl Rk | BT o (4.16b)
Lo Lo Lo

The fractional electrical circuit is positive sinttee ma-
trix A is Metzler matrix and the matr has nonnegative
entries.

We shall show that the fractional positive circuit
is reachable iR; = 0. In this case

B
A=| 1 (4.17)
0 R
Lo
and
_%T
1 0
eAT e _&T (8)1
0 e b2
and from (4.1) we obtain
_ R -
1 . 7
tf T tf _Ze Ll 0
Ry = J.eATBBTeA Tdr=J' Ly or, A7
0 0 T
0 ize L2
L L2 ]
(4.19)

The matrix (4.19) is monomial and by Theorem 44 th
fractional positive electrical circuit is reachaifl&; = 0.
Now let us consider the fractionaimesh electrical cir-
cuit with given resistance®,, k =1, ...,q, inductances
L, i=1,..,n and mmesh source voltagese;;,
j=1,..,m. Itis assumed that to each linearly independent
mesh belongs only one inductance. In this casentitex L
defined by (3.19b) is diagonal one and the conali{®21)
is met.
Theorem 4.5.The fractional positiven-meshes electrical
circuit with only one inductance in each lineamhdépen-
dent mesh is reachable if

Rj=0forizj,i,j=1..,n (4.20)
whereR;; are entries of the matri' defined by (3.19b).
Proof. If the condition (4.20) is met then the Metzlertra
A’ is diagonal. The matrik defined by (3.19b) is also di-
agonal since by assumption only one inductancenisl¢o
each linearly independent mesh. In this case th&ixma
A = L7'A" is diagonal Metzler matrix anBl = L™ € R*"

is also diagonal. For diagonal Metzler matixand diagon-
al B the matrixe4*B is also diagonal and the matri
defined by (4.1) is monomial. By Theorem 4.1 thsifiee
electrical circuit is reachable.
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Remark 4.1. The condition (4.20) is met if the resistance
of the branch belonging to two linearly independmeshes

is zero. This result is consistent with the oneauisd

in Example 4.2.

Consider the fractional electrical circuit shown Big.
4.4 with given resistance®,, k =1,...,5, inductances
L4, L,, capacitanc€ and source voltage

Using the Kirchhoff's laws we can write the equatio

N L .
& =Ry + Llﬁ ~Rsiz +(Rg + Rs)ig

d”i, . .
L2 +u+ (R2 + R3)|3 - Rzll =0 (4218)
dt?
d%u
C =
dt? 2
R (R +Ry)(Rs+Rs) RoRs —RsRy
L L(R+Rs+Ry+Rs) Li(Ro+Rs+Ry+Rs)
A= RoRs —RsRy (Rp + R3)(R4 + Rs)
Lo(Ry+Rs + Ry +Ry) |—2(R2+Rls+R4+R5)
0 =
N C

Fig. 4.4.Fractional electrical circuit

From (4.23b) it follows that the matri is not a Metz-
ler matrix if

RoRs = RgRy

If the condition (4.24) is met then the voltagevimsn
the pointsa, b is equal to zero and, = O,LZ‘Z—L:= 0,
i, = 0. In this case the equation (4.23a) takes the form
di _(_R__(Re*+Ry)(Rs+Rs) )
dt L Li(Ry+Ry+Ry+Rs) )"
The fractional electrical circuit described by thgua-

tion (4.25) is positive. Therefore, we have theoiwing
corollary.

(4.24)

1
t—8

™ (4.25)
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and

(Rz +Ry)iy +(Ry +Rs)i; —(Ry + Rg + Ry +Rg)i3 =0.(4.21b)
From (4.21b) we have

i = (R +Ry)iy + (Ry + Ry)iy

(4.22)
Ry +Rg+ Ry +Rg
Substituting (4.22) into (4.21a) we obtain
_dﬁil -
A%z |- i, |+ Be (4.23a)
dt?
d%u !
L dta -
where
1
1 L
. B=| 0 | (4.23b)
2 0
0

Corollary 4.1. If the resistances of the electrical circuit
satisfy the condition (4.24) then the fractionagodtical
circuit is positive.

In general case we have.
Corollary 4.2. Fractional nonpositive electrical circuit
for some special choice of the parameters (resisgncan
be positive one.

Using (4.23b) it is easy to check that
ran{B AB AZB]=3 (4.26)
if and only if the condition (4.24) is not satisfieTherefore,
we have the following corollary.
Corollary 4.3. The fractional standard (nonpositive) elec-
trical circuit shown on Fig. 4.4 is reachable ifdaanly
if the condition (4.24) is not satisfied.

From (4.25) it follows that the reduced fractiopaisi-
tive electrical circuit is reachable.

These considerations can be extended for genesal ca
of R, L, C, etype electrical circuits.

5. CONCLUDING REMARKS

The conditions for the positivity of fractional éar
electrical circuits composed of resistors, coitmadensators
and voltage (current) sources have been establishbds
been shown that:

1. The fractional electrical circuits composed of sémis
coils and voltage sources (shortly calledL, e type)
are positive for any values of their resistanceguc-



tances and source voltages if and only if the numbe

of coils is less or equal to the number of its dirkg in-
dependent meshes (Theorem 3.5).

2. The fractional electrical circuits composed of s&mis,
condensators and voltage sources (shortly c&ljeg| e
type) are not positive for any values of its resises,

capacitances and voltage sources if each theirchran

contains resistor capacitor and voltage sourcedidme
3.2).
3. The fractional nonpositive electrical circuits bR, L,

C, etype can be positive for some special choice eif th

parameters (Corollary 4.2).

The conditions for the reachability of the fractbn
positive electrical circuits have been establislieldas been
shown that the fractional positive electrical citaf R, C,
e type are reachable if and only if the conductarioes
tween their nodes are zero (Theorem 4.4) and #utidnal

positive electrical circuits oR, L, e type are reachable

if and only if the resistances belonging to two hessare
zero (Theorem 4.5). The fractional standard (noitipe}

electrical circuits ofR, C, L, e type are usually reachable

and are unreachable only for some special choicthef
parameters.

The considerations have been illustrated by exasnple

of linear electrical circuits.

Some of these results can be also extended facahe
trollability and observability of the fractionalnkar elec-
trical circuit. Open problem are extension of thesasid-
erations for the following classes of the fractiosystems:
1. disturbed parameters linear systems;

2. nonlinear electrical circuits.
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Abstract: Necessary and sufficient conditions for the asymiptstability of fractional positive continuous-tarinear sys-
tems are established. It is shown that the matriaf Ahe stable fractional positive system has rigérevalues in the part

of stability region located in the right half oftltomplex plane.

1. INTRODUCTION

A dynamical system is called positive if its tramy
starting from any nonnegative initial state remdmever
in the positive orthant for all nonnegative inpuds over-
view of state of the art in positive theory is given the
monographs (Farina and Rinaldi, 2000; Kaczorek,2200
Variety of models having positive behavior can bend
in engineering, economics, social sciences, biokgyy me-
dicine, etc.

Simple conditions for practical stability of distadime
linear systems have been proposed by BustowiczKand
czorek (2009) and next have been extended to raitast
bility of fractional discrete-time linear systems Busto-
wicz (2010). The stability and stabilization of fine frac-
tional linear systems by state-feedbacks have baalyzed
in Kaczorek (2010, 2011b). The Hurwitz stability Mg&tz-
ler matrices has been investigated in NarendraSimaiten
(2010) and some new tests for checking the asyioptot
stability of positive standard and fractional lineystems
have been proposed in Kaczorek (2011a).

In this paper necessary and sufficient conditianstlie
asymptotic stability of fractional positive confius-time
linear systems will be established. It will be simotliat the
matrix A of the stable fractional positive system has not
eigenvalues in the part of stability region locaiaedthe
right half of the complex plane.

The paper is organized as follows. In section 2chdes-
finitions and theorems concerning the fractionakifpee
continuous-time linear systems and their stabititg re-
called. The main result of the paper is given iotisa 3
where it is shown that the matri of the stable fractional
positive system has not eigenvalues in the pastatbility
region located in the right half complex plane dhe ne-
cessary and sufficient stability conditions areablshed.
Concluding remarks are given in section 4.

The following notation will be used? — the set of real
numbers R — the set ofr X m real matricesRT*™ —
the set ofn X m matrices with nonnegative entries and
R = R M, —the set ol x n Metzler matrices (real
matrices with nonnegative off-diagonal entrieg),— the
n X n identity matrix.
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2. PRELIMINARIES

Consider the continuous-time linear system
oDfx(t) = AX(t), O<a <1 (2.1)
wherex(t) € R" is the state vector ande R™™,

dx(t) _
dt?

oDX(t) = X0 gy, X(r):% 2.2)

1t
r(l‘a’)'([(t—r)”

is the Caputo definition af € R order derivative and

Ma) = j e 't Lt
0

is the Euler gamma function.

The fractional system (2.1) will be called (intdipp
positive if x(t) € R, t =0 for any initial conditions
x(0) = x, € R}.
Theorem 2.1. (Kaczorek, 2011b) The fractional system
(2.1) is positive if and only if
AOM,

whereM,, is the set oh X n Metzler matrices.
Theorem 2.2.(Kaczorek, 2011b) The solution of equation
(2.1) with initial conditionsc, € R™ is given by

(2.3)

(2.4)

X(t) = Po(t)%o (2.5)
where

_ an 00 Aktka
Do(t) = E, (At )_kzzo—r(kwl) (2.6)

andE, (At%) is the Mittage-Leffler matrix function.

The fractional positive system (2.1) will be called
asymptotically stable (shortly stable) if
lim ®q(t)xy =0 for all x, OOF (2.7)
| N

The characteristic polynomial of the matixof the frac-
tional system (2.1) has the form



pa(d) =detll ;A - Al = A" +a, A"+ +agd +ag, 28)
A=s7

Theorem 2.3. (Kaczorek, 2011b) The fractional system
(2.1) is stable if and only if

: 7l
minfarg/;| > ay (2.9)
|
where4; is thei-th eigenvalue of the matrik.
imag ~ . . T .
boundary of
the jstability —
region
stability region ; om /2
0
am/ 2
- real

Fig. 2.1. Stability region

Theorem 2.4. (Kaczorek, 2011b) The fractional system
(2.1) is unstable if at least one diagonal entryhef matrix
Ais positive.

3. MAIN RESULT

In this section necessary and sufficient stabitibndi-
tions of the fractional positive system (2.1) vk estab-
lished.

Theorem 3.1. The fractional positive system (2.1)
for 0 < a < 1is (asymptotically) stable if and only if

ReA <0 fori=1..,n (3.1)

Proof. By Theorem 2.1 the fractional system (2slposi-

tive if and only ifA is a Metzler matrix. It is well-known
(Farina and Rinaldi, 2000; Mitkowski, 2008) tha¢ tthomi-

nant eigenvalug,; = 4, i.e.

Ag >Rej; fori=2..,n 3.2)

of the Metzler matrixA is real. Therefore, the fractional
positive system (2.1) is stable if and only if thendition
(3.1) is satisfied.

From Theorem 3.1 we have the following important co
rollary.
Corollary 3.1. The matrixA of stable fractional positive
system (2.1) has not eigenvalues in the part dfildta
region located in the right half complex plane kdeggion
on Fig. 2.1).

Let A = [a;] € R™™ be a Metzler matrix with nega-
tive diagonal entrieéa;; <0, i =1, ...,n).

acta mechanica et automatica, vol.5 no.2(2011)

Let define
(0) 0)
&1 - A © Lo
AO =pa=| ¢ f [=[M1 Pna
© © C(0) ©) |’
an,l ann n-1 -1
29 . &
((1)1= : s (3.33)
0
ay) - agh
0
0) (0) (0) 0) aél)
bn—lz[alZ aln]’ Cn— = :
20
nl
and
kD kD
() — KD _nk “nk
A’I—k -k (k-1)
A+ 1k+L
. (k k
Aun + Bn [a(k) b ]
_ : S 2| ek Pkl
: U " '
o | Los Al
[A(K) (k) 3.3b
® ak+g,k+2 e aki:Z,n ( )
Aka= (k:) :k '
8 k+2 aﬁu)]
(k)
(k) (k) 0 1 G | Ek
brcka =[Bcakez - Bcanl Gk =]
(k)
A k41

fork=1,...n-1.

Let us denote bR[i + j X c] the following elementary
column operation on the matrix addition to the-th col-
umn thej-th column multiplied by a scalar. It is well-
known that using these elementary operations we may
duce the matrix

81 a2 ain
a a a

A=| 72 22 an (3.4)
an,l an,2 an,n

to the lower triangular form
¥, 0 .. O

~ |a a . 0

A=|2t T2 v (3.5)
5n,1 5n,2 él-n,n

To check the stability of the fractional positivesgem
(2.1) the following theorem is recommended.
Theorem 3.2.The fractional positive linear system (2.1)
for 0 < a < 1 is (asymptotically) stable if and only if one
of the equivalent conditions is satisfied:
1. All principal minors4;, i =i =1,...,n of the matrix
—A = [—ay;] are positive, i.e.
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Al =—d41 > O,
—a;; —@&
A, = 11 125 0,
“d “—ap (3.6)
A, =det-A] >0
2. The diagonal entries of the matrices (3.3)
A% fork=1,.n-1 (3.7)

are negative,
3. The diagonal entries of the lower triangular ma(8:5)
are negative, i.e.

A <0 fork=1,...n (3.8)

Proof is given in Kaczorek (2011a).
Example 3.1 Consider the fractional system (2.1) with the
matrix

-2 0 1
A=|1 -3 O (3.9)
2 1 -a

Find the values of for which the fractional positive
system is stable. The fractional system is posiforeall
values of the entrg.

Using the conditions (3.6) for (3.9) we obtain

A]_:_a.11=2>0,

a, = 21 T2 :‘2 j:6>0 (3.10a)
—ap; —agyl |71
and
2 0 -
det[-A]=|-1 3 0|=6a-7>0fora>7/6. (3.10b)
-2 -1 a

Therefore, the fractional positive system is stable
for a > 7/6.
Using the conditions (3.7) for (3.9) we obtain

-3 0 1 -3 05
Sk PO R Pt
a a (3.11)
A1(2)=[1—a]+1[0‘5=%—a,
The condition 2) of Theorem 3.2 is satisfied

and the fractional positive system is stabledfor 7/6.
Similarly, using the elementary column operations
to the matrix (3.9) we obtain

-2 0 1 -2 0 0
A=| 1 -3 o |oBR®® .| 1 -3 o5
2 1 -a 2 1 1-a
(3.12)
F[{ME%} -2 0 0
ooof.l 1 -3 0
7
2 1 —-a
6

The condition 3) of Theorem 3.2 is also satisfied
and the fractional positive system is asymptoticaliable
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fora > 7/6.
The characteristic polynomial of the matrix (3.9)
A+2 0 -1
pa(A) =detllgA-Al=| -1 A+3 O
—2 -1 A+ (3.13)

=23+ (B+a)l’ +(Ga+HA+6a-7

has all positive coefficients if and only if > 7/6.
This also confirm Kaczorek (2011a) that the frawdio
positive system is stabledf> 7/6.

4. CONCLUDING REMARKS

Necessary and sufficient conditions for the asymipto
stability of fractional positive continuous-timendiar sys-
tems have been established (Theorem 3.1). It has be
shown (Corollary 3.1) that the matri of the stable frac-
tional positive system has not eigenvalues in tlagt p
of stability region (Fig. 2.1) located in the righalf of the
complex plane. These considerations can be extended
to positive fractional continuous-time linear sysge with
delays.
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Abstract: In the paper unconstrained local controllabilitplglem of finite-dimensional fractional discrete-&irsemilinear
systems with constant coefficients is addressethgugeneral formula of solution of difference statpiation sufficient con-
dition for local unconstrained controllability ingiaven number of steps is formulated and proveahp® illustrative example

is also presented.

1. INTRODUCTION

Controllability is one of the fundamental concepts
in modern mathematical control theory. This is gative
property of control systems and is of particulapartance
in control theory. The basic concepts of contraligh
reachability and the weaker notion of stabilizabilplay
an essential, fundamental role in dynamical systenay-
sis and in the solutions of many different impottaptimal
control problems.

Many dynamical systems are such that the contresdo
not affect the complete state of the dynamical esyst
but only a part of it. Therefore, it is very impanmt to de-
termine whether or not control of the completeestait the
dynamical system is possible. Roughly speakingtrotia-
bility generally means, that it is possible to stégnamical
system from an arbitrary initial state to an adyijr final
state using the set of admissible controls.

During last few years many results concerning theor
of fractional control systems both discrete-timed aron-
tinuous-time have been published in the litera{see e.g.
(Kaczorek, 2007a, 2007b, 2009; Klamka, 2002, 2008))
However, it should be pointed out, that the mosttrla-
bility results are known only for linear fractionabntrol
systems both without delays or with delays in aantr
or state variables.

Controllability problems studied in this paper cerrc
semilinear fractional discrete-time control systerikre
precisely, in the present paper unconstrained logatrol-
lability problem of finite-dimensional fractionalisgtrete-
time semilinear systems is addressed. Using gerieral
mula of solution of difference state equation, isight
condition for local controllability in a given nurab
of steps is formulated and proved. The present mpage
tends for semilinear discrete-time fractional cohtiystems
with constant coefficients controllability resultgiven
in Kaczorek (2007a, 2007b, 2009) and Klamka (2002,
2008) for linear fractional systems.

The paper is organized as follows. In section Bgise-
sults presented in (Kaczorek, 2007b), general ismut

of the difference state equation for finite-dimemsil frac-
tional linear systems is recalled. Sufficient caoiodi
for local unconstrained controllability of the sdimear
fractional discrete-time control system with constpa-
rameters is established in section 3. Section 4agu
simple numerical example, which illustrates theoedt
considerations. Finally, concluding remarks andppsd
tions for future works are given in section 5.

2. FRACTIONAL SYSTEMS

The set of nonnegative integers will be denotedZhy
Let xJR", uOR™, kOZ,. In this paper well known extended
definition of the fractional difference of the forifiKa-
czorek, 2007a, 2007b, 2009; Klamka, 2002, 2008)

=k
A, = Z(—l)l[cj_']xk_j forn-1<a<nON={12..}, k0z, (1)
j=0

will be used, wherex € R is the order of the fractional
difference and

1 for j=0
m = 2)
j a'(a'—l)..J:|(a—J+1) for j = 12,...
where(j-() is so called generalized Newton symbol. Let us

observe, that in the case wher= n we have well known
standard Newton symbol

e
JANTOR]

Let us consider the fractional discrete-time linsgs-
tem, described by the semilinear difference stptes
equation

D7 %41 = A+ BU + T (X, Uc)

3)
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wherex[JR", uJR" are the state and input aAcandB are
nxn andnxm constant matrices; R™<R" - R" is nonlinear
function differentiable near zero in the spaB8xR"
and such théft(0,0) =0.

Let us observe, that semilinear discrete-time cbistys-
tem is described by the difference state equatidmich
contains both pure linear and pure nonlinear pirtthe
right hand side of the state equation.

Using definition of fractional difference (1) we gna
write semilinear difference equation (3) in the ieglent
form

j=k+1
(a
X1+ Z (_1)J[jjxk—j+1:Axk+Buk+f(anuk)
j=1

Next, using standard linearization method (Klamka,
1995) it is possible to find the associated lingdference
state equation

j=k+1
ia
X1+ z (_1)1(-jxk—j+1:AXk+Buk+FXk+Guk
& j
j=1

wherenxn dimensional matrix

x=0,

d
F=—f(u
dx ( )u=0

andnxm dimensional matrix

d
G = a f (X,u) X:O,

u=0

Moreover, for simplicity of notation let us denote
A+F=CandD=B+G.
Thus we have
j=k+1 (a
X1t Z (_1)J(jjxk—j+l = Cx + Duy
j=1

(4)

Lemma 1. (Kaczorek, 2007b) The solution of linear differ-
ence equation (4) with initial conditiogdR" is given by
i=k-1

X =®yXo + Z(cbk—i—lDui)
i=0

(5)

where nxn dimensional state transition matrice@,
k=0,1,2,... are determined by the recurrent formula
i=k+1

i a
Pys1 = (CHIA) Py + z (_1)J+l(i Jq)k—iﬂ
i=2

(6)

with @, =1,, , wherel, is nxn dimensional identity matrix
and by assumption matriceg = 0 fork < 0.

Moreover, it should be pointed out, that the masig,
k=0,1,2,... defined above are extensions for fractiona
linear discrete-time control systems, the well knostate
transition matrices (see e.g. (Klamka, 1991)) fiandard
linear discrete-time control systems.
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3. CONTROLLABILITY

First of all, in order to define global and localntrolla-
bility concepts for semilinear and linear finitevdnsional
discrete-time control systems let us introduce tlogon
of reachable set or in other words attainable sef steps
(Kaczorek, 2007a, 2007b, 2009; Klamka, 1991, 12962,
2008).

Definition 1. For fractional semilinear system (3) or linear
system (4) reachable set insteps from initial condition
Xo = 0 is defined as follows:

Kq = {x(g)OR" x(q) is a solution of semilinear system (3)
or linear system (4) in stepfor sequence of admissible
controls i,uy,...U,..., U1} (7

Definition 2. The fractional semilinear discrete-time con-
trol system (3) is locally controllable ig-steps if there
exists a neighborhood of zelhIR", such that
Kg=N (8)
Definition 3. The fractional linear discrete-time linear con-
trol system (4) is globally controllable gasteps if
Kg=N 9)

For linear control system (4) let us introduce thgm
dimensional controllability matrix

Hq =[D,(®.D),(®,D),...(®;D),...(Pq-1D)] (20)

In order to prove sufficient condition for local riool-
lability of semilinear discrete-time fractional dool sys-
tems (3), we shall use certain result taken diyefrbm
nonlinear functional analysis. This result concesogalled
nonlinear covering operators.

Lemma 2. (Robinson, 1986) Let W: ZY be a nonlinear
operator from a Banach space Z into a Banach spface
and W(0)= 0. Moreover, it is assumed, that operator W has
the Frechet derivative dW((%-Y, whose image coin-
cides with the whole space Y. Then the image ofojhera-

tor W will contain a neighborhood of the point WI(D).

Now, we are in the position to formulate and prove
the main result on the local unconstrained corahbality
in the interval [0g] for the nonlinear discrete-time system
(). This result is known for semilinear or nonkneconti-
nuous-time control system and is given in Klamka98),
as a sufficient condition for local controllability
Theorem 1. Semilinear discrete-time control system (3)
is locally controllable ing steps if the associated linear
discrete-time control system (4) is globally cofitiole
in g-steps.
Proof. Proof of the Theorem 1 is based on Lemmas 1
and 2. Let the nonlinear operator W transform tpace
of admissible control sequenceau(): 0<i<q} into the
space of solutions at the stqdor the semilinear discrete-
time fractional control system (3).

More precisely, the nonlinear operator

W: R™xR™%.. . xR" . R"



asssociated with semilinear control system (3) efingd
as follows (Klamka, 1995):

W{u(0), u(1), u(2),...,u(i),...,u(q — 1)} = Xem(Q)

wherexsn(q) is the solution at the stapof the semilinear
discrete-time fractional control system (3) cormggting
to an admissible controls sequemnge {u(i): 0<i <g}.

Therefore, for zero initial condition Frechet dative
at point zero of the nonlinear operator W denoted\&/(0)
is a linear bounded operator defined by the foliayfor-
mula

dW(0){u(0), u(1), u(2),...,u(i),...,u(q - 1)} =xin()

wherex;in(q) is the solution at the stepof the linear system
(4) corresponding to an admissible controls seqeenc
Ug = {u(i): 0<i <q} for zero initial condition.

Since from the assumption nonlinear functi@0)= 0,
then for zero initial condition the nonlinear operaW
transforms zero in the space of admissible conintdszero
in the state space i.e., W@).

Moreover, let us observe, that if the associatadali
discrete-time fractional control system (4) is glthp con-
trollable in the interval [Og], then by Definition 1 the im-
age of the Frechet derivative dW(0) covers whoketest
spaceR".

Therefore, by the result stated at the beginninghef
proof, the nonlinear operator W covers some neigiuid
of zero in the state spa&. Hence, by Definition 2 semili-
near discrete-time fractional control system (3)osally
controllable in the interval [@)]. This completes the proof.

Now, for the convenience, let us recall some well
known (see e.g. (Kaczorek, 2007a, 2007b, 2009; Kiam
1991, 2002, 2008)) facts from the controllabilityeory
of linear finite-dimensional discrete-time fractarcontrol
systems.

Theorem 2. (Klamka, 2008) The fractional discrete-time
linear system (4) is globally controllable énsteps if and
only if

rankHg =n (11)
Taking into account the form of controllability miat
from Theorem 2 immediately follows the simple Ctan}.
Corollary 1. (Klamka, 2008)The fractional linear control
system (4) is controllable ig steps if and only if: X n di-
mensional constant matrik,H; is invertible, i.e. there
exists the inverse matrixi{H; ) -
Corollary 2. The fractional semilinear control system (3) is
controllable inq steps if equality (11) holds or equivalently
if nxn dimensional constant matfiyH; is invertible,
i.e. there exists the inverse matng](-Ig)‘l.

4. EXAMPLE

Let us consider the semilinear fractional disctates
control system with constant coefficients of themnio(3)
for0 < a <1 with the following matrices and vectors
in the difference state equation

acta mechanica et automatica, vol.5 no.2(2011)

|10 10 _ | e'-1
A—{O J, B-[J, f(x,u)—f(xl,xz,u)—{%inx}(lz)

1

Hence we have

f (000) :m

d 0O
F=—1f(x.%,u) :0{ }
dx =l2 0

=0 ~
iz L0

Hence we have

10 1
C=A+F= , D=B+G=
21 1

Using formula (6) fok = 0 we obtain

1+a 0
P, =(C+la)dg = > 1+g

d
Gzif ’ ’
U (X, X2, )

Controllability matrix (10) forg = 2 has the form

1 1+a}

Ha :[D,(mlo)l{1 oo

Therefore, sincerank H, =2=n then taking into ac-
count Theorem 2 the fractional associated lineacrdie-
time system with constant coefficients is globalbntrolla-
ble in two steps, hence by Theorem 1 the semilifrear
tional discrete-time system (12) is locally confble
in two steps.

For comparison let us consider linear fractionacdite
system (4) with the matrices andB given equalities (12).
In this case using formula (6) fer= 0 we have

1+a 0
P =(A+1a)dg = 0 1+q

Controllability matrix (10) forg = 2 has the form
0 O
Hy =[B,(®:8)] =[1 MJ

Therefore, sinceankH, =1 <n then taking into ac-
count Corollary 1 the fractional linear discreited system
with constant coefficients is not globally conteddle in two
steps and consequently in any number of steps.

5. CONCLUDING REMARKS

In the present paper unconstrained local contritithab
problem of finite-dimensional fractional discrete¢ semi-
linear systems has been addressed. Using lingarizat
method and solution formula for linear differenacpuation
sufficient condition for unconstrained local coffigbility
in g steps of the discrete-time fractional control sgsthas
been established as rank condition of suitablyneeficon-

57



Jerzy Klamka
Local Controllability of Fractional Discrete-Time Semilinear Systems

trollability matrix. In the proof of the main resutertain
theorem taken directly from nonlinear functionakbysis
has been used. Moreover, simple illustrative nucagri
example has been also presented.

There are many possible extensions of the resiveng
in the paper. First of all it is possible to comsidemilinear
infinite-dimensional fractional control systems. idover,
it should be mentioned, that controllability coresiations
presented in the paper can be extended for fraadtidis-
crete-time linear systems with multiple delays bmththe
controls and in the state variables.
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Abstract: The article discusses main problems of implementireggPID control law in the FPGA integrated circi@on-
secutive steps of discretizing and choosing thedfigoint representation of the continuous, floapiegnt PID algorithm
are described. The FPGA controller is going to §eduin the active hetero-polar magnetic bearinggesy consisting of two
radial and one axial bearings. The results of #peemental tests of the controller are preserité@. dynamic performance
of the controller is better when compared with dis*ACE controller, that was used so far. The deditpaedware and soft-
ware, the developed implementation procedure am@xperience acquired during this stage of the evhobject are going to
be used during the implementation of more soplaitgit control laws (e.g. robust) in the FPGA for Alightrollers.

1. INTRODUCTION

Reconfigurable hardware is becoming a promising al-
ternative to both application specific integratenlcudt
(ASIC) and digital signal processors (DSP) for cohnt
applications (Chen and Lin, 2002; Krach et al.,200sor-
nio-Rios et al., 2008). As a reconfigurable hardydfield
Programmable Gate Array, or FPGA, is gaining pariyla
FPGA-based systems have been applied in applisation
ranging from signal processing, image processiogyet-
work processors and robotics, just to name a fehe T
speed and size of the FPGAs are comparable with8ie
ICs, but FPGAs are more flexible and their desigdeis
shorter because of their reconfigurability. FPGAplza-
tions go beyond the simple implementation of diditgic.
They can be used for implementations of specifahidec-
tures for speeding up some algorithm. A given athon,
implemented into FPGA could have 100-1000 time$dig
performance than its implementation on a DSP omanic
processor. This is because FPGA has a naturallglaral
architecture for high-speed computation.

Active magnetic bearing (AMB) is a collection okel
tromagnets used to levitate the object via feedlmackrol
(Chiba et al., 2005). The obvious feature of the BAM
is a contact-free motion control, which leads tedo rotat-
ing losses, higher speeds, elimination of lubramasystem,
and long life. Since an active magnetic bearingherently
nonlinear and unstable, feedback control is indispble to
stabilize the system. A conventional PID controlepften
employed as a feedback compensator and this mefter
yields enough stability and performance. This téapnm
works efficiently as long as the system remainthévicin-
ity of the linearizing point and the uncertaintaasd distur-
bances are small. More sophisticated methods, divdu
robust control, can improve the dynamic propertaéshe
AMB system, especially in case of strong nonlirtgesi
(Gosiewski and Mystkowski, 2008; Hung et al., 2003)

The view of the examined hetero-polar AMB system
(Gosiewski and Mystkowski, 2008) is presented i E.
The rotor is supported by two radial and one axiagnetic
bearings. The bearings include the necessary positn-
sors and power amplifiers. The magnetic force aleagh
axis is generated by a pair of opposing electrortyn
The displacements of the shaft along axes are meghsu
by five eddy-current sensors.

amplifiers

Radial active magnetic
bearings

Axial magnetic bearing

Fig. 1. View of the active magnetic bearing system

The aim of this paper is to discuss the probleminef
plementation of the PID algorithm for the AMB syste
in the FPGA. This task is a part of a bigger profmcern-
ing the design of an electromechanical flywheelrgpe
storage. The flywheel is going to levitate in aetimagnetic
bearing system and one of the tasks here is togmlesi
a stand-alone, FPGA-based controller. The impleatiemt
of the PID algorithm is the first stage of the gesof such
controller. The next will be the implementation wiore
sophisticated control law#l,, robust, for example.
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2. REQUIREMENTS

The controller should have five separate contr@n-
nels to control each axis of the whole Al system. Since
the measured and control signals are analog, reagestD
and D/A converters must be designed. The signats
change from10 V to +10 V. The PID algorithm must
based on integer or fixgobint mathematics. This ise-
cause the FPGA used this project has 400,000 gates
no floating point unit. Certainly, it is also pdsie to m-
plement the floating point mathematics in the FPBRU
this would absorb almost all its resources.

3. HARDWARE

The PID controller for the AMB system is desigr
with the use of two Spartan-3 LCeRelopment Board
from Memec (2004). SparteéhLC board is equipped wit
Xilinx Spartan-3 family, XC3S40@- PQ208CES, FPG.
chip (Spartan-3, 2006)The FPGA has 400,000 ga
andthis is quite enough to implement three Fcontroller
algorithms. The chip has sixteen configurable-bit em-
bedded multipliers, sixteen, kit embedded RAM block
and two hundred and sixty four user defined inpupat
signals. The Sparta®- LC board utilizes the Xilin:
XCF02S Platform Flash I8ystem Programmable (IS
PROM, allowing designers to store an FPGA desigmoir-
volatile memory.

Fig. 2. Active magnetic bearingsontroller hardwal

The board is also equipped with two p-button
and four slide switches, two LEDne seve-segment
LED display, RS232 and USB ports and two P160 cc-
tors. FPGA can be clocked with external 50 MHz klc
There are no A/D or D/A converters on the boardws
were forced to design the external converters baend
power supplies foriem and the whole controller. Wie-
signed and made five A/D and D/A converters bo— one
for each channel of the controller. This additiobakrds
communicate with the Spart&LC board through P1¢€
connectors and expansion boards. Each of the fards is
made of one AD976 analog to digital b&-converter ant
one twoehannel AD5547 digital to analog -bit converter
from Analog Devices (1®it, 100 kSPS/200 kSPS C-
MOS A/D Converters AD976/AD976A199¢; Dual Cur-
rent Output, Parallel Input, 16-/Bit Multiplying DACs
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with  4-Quadrant Resistors AD6647/AD55572004).
Thesampling frequency of the converters is limited2@D
kSPS.

The view of the disassembled hardware of the A
controller is shown in Fig. 2.

4. CONTROLLER ALGORITHM
IMPLEMENTATION

4.1. Difference recurrence equation

The following transfer function of the PID contrex
has been adopted for the AMB control

G(s) =%=kp [1+%+%flj, @

where parameters,, T;, T, T can change in the following
ranges:
k,=0.1...,10.0, T, =0.01,..,2.0
T, =0.001,.. ,0.05 T =0.00001,.. ,1.0
For further calculations, we will assume, tik, = 1,5;

T; =0,1; T; = 0,001; andT = 0,0001. Transfer function,
(Eg. 1) can be transformed to the following fa

_Y(s) _as +as+a,

- 2 ) (2)
U(s) bs +bs+b,

G(s)

where: a, = k,Ti(Ta +T), ay =ky(T; +T), ag=ky,
bz = TLT, b1 = TL’ bo = 0

Transfer function (Eq. 2) can be also transforneethée
following linear differential equatio
du_ du

d’y , dy,
bZ dt2 +b1 dt+b0y a2 dt2 +aldt +ad.]. (3)

In order to avoid hazards that could arise in the d-
natorial system, the controller algorithm shouldrealized
as the synchronic digital system, this is the sgbeat
calculation steps should be taken in accordancé thi¢
clock signal. To realize thj Eq. (2) must be converted
the difference recurrence equation and discretizitd the
constant sample period. The discretization procesn-
volves determining the difference representatiohsthe
subsequent differentials. Below are given the fdas
for the first and second differentials of some contirs
differentiable functionx(t).

dx _ x(i) - x(i 1)

dt h @
dx(i) _ dx(i-1
d’x _ dt dt
dt? h
X() = x(i-1) _x(i-1)-x( - 2)
- h h
~ - . (5)
_x(i)=2x( =1+ x( - 2)

h2



After using the above formulas (Egs. 4 and 5) for t
first and second differentials of functiongt) and u(t),
Eq. 3 can be written as follows:

B,y(i —2)+ By(i - 1)+ Byy ()
= AU -2)+ Au( -1+ Au()’

where:

(6)

A\):%+%+a0' A}.:—Z%—i' AZ:%’

h
SO 0 A S W
h h
In order to calculate the value of the output sign@)

for thei-th time step, Eq. 6 should be written in the fallo
ing recurrence form:

y(i)=cy(i-D+c,y(i -2)+cu()

. ) , (7)
+cu(i-1)+cu(—2)
where:
Cl:—E:—h-l-ZT,CZ:—E: il ,
B, h+T B, h+T
A _k,(TT+Th+Th+T,T)
78 T(+T)
A _ K (ZTT +Th+Th+2TT)
C =——= y
‘B T.(h+T)
:i:—kp(-r-'-Td)
B, h+T

For the above givek,, T;, T, T parameters, we obtain:
¢, =1,952; ¢, =-0,952; ¢; =15,780; ¢, = —31,489;
cs = 15,708.

Equation 7 allows us to calculate the output sigr@)
on the basis of the actual values of the input aig{i)
and the previous values of the outputi — 1), (i — 2),
and the inpute(i — 1), u(i — 2) signals.

In case of hetero-polar AMB system the output digna
y(i) should be summed with the so called steady-stzitde p
signal y,(i) (Gosiewski and Mystkowski, 2008). This
means that the PID controller should generate twipud
signalsy, (i) andy, (i) (see Fig. 11) calculated in the fol-
lowing way:

V() = Yo () +y(),  y,(1) = yo()=y(0), (8)

wherey, (i) is the steady-state point signal that is propor-
tional to the steady-state point currént

4.2. Fixed-point representation
of the signalsand parameters

As was mentioned above, the controller algorithms(E
7 and 8) should be calculated using the fixed-paintn-
bers. To do this we should choose the fixed-paptesen-
tation of input signad:(i), output signals (i), y, (i), y,(i)
and parameters, ..., cs. It is especially true for outpyt(i)
and parameters,, ..., cs as the bit-widths of signals(i)

acta mechanica et automatica, vol.5 no.2(2011)

andy, (i), y, (i) are determined by the bit resolution of the
A/D and D/A converters which ane, = 16 andw, = 16

in this case. By conducting many simulation experits
for the controller algorithms written in the floag- and
fixed-point representations it was established thadrder

to achieve the satisfactory accuracy the followimiglths
should be used:

w, =52, w,, =42 for parameters, ..., C;,

w, =16, w,, =0 for input signalu(i) ,
w, =52, w, =35 for output signaly(i),
Wy, =16 s Wy, =0 and Wy, =16, Wy, =0

for output signalg; (i) andy, (i).

In the above given formulas the notation. = 52,
wr, = 42 means for example that the width of the fraction-
al part of the parameter; is 42 bits, the width of its
integral part is 10 bits and the whole width (intdgand
fractional) is 52 bits.

a)

10000

8000

6000

4000

2000

10000

8000

6000

4000

2000

. ‘ ‘ . ‘
Q0 1 2 3 4 5 6
tel x10°
Fig. 3. Step response of the floating-point (continuons)li
and the fixed-point (dashed line) representatidrit@PID
AMB controller: a) simulation time¢ = 5 x 107* s,
b) simulation time = 5 x 1073 s;

sample perioll = 5,04 X 10~°s

As we can see the output signdl) is represented with
the use of 52 bits from which 35 are used to repregs
fractional part, but this is true only when calding its
value according to Eg. 7. When calculating outputs
and y, according to Eq. 8, only 16-bit integral part pf
is used. This signal is obtained by cutting off frectional
part of signaly.

Input u(i) and outputy(i), y; (i), y, (i) signals as well
as controller parameters, ..., cs can have negative values
and they are coded using the two's complement inatat
in which the most significant bit is the sign bit.the hex-
adecimal notation that is used during coding thetrodler
algorithm in VHDL the calculated values of the paeders
are as follows:
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c,;=x"007CEDDE131B8" , c,=x"FFC31221ECE48" ,
C3=X"03F1F140357E2" , c,=x"F820B9FEC6256" |,
C5=X"03ED54D03B45A" .

Step responses of the PID controller in floatingd a
fixed-point representations for the above givenviidths
and various simulation times, obtained in Matlalthvthe
use of the Fixed-Point Toolbox, are shown in Fig. 3

4.3. 52-bit fixed-point multiplier

As we can see from Eq. 7 the calculations of the- co
troller algorithm involve 4 summations of 104-bitide
and 5 multiplications of 52-bit wide fixed-point mbers.
The multiplication can be implemented in the FPGA
in various ways. The simplest is by using the basic
sources, these are the so called Control Logic iloc
(CLBs). This method is also the most resource-consg.
The basic resources of the XC3S200 chip do notvatm
realize even one such 52-bit operation. This is Wwhyas
decided to use the specialized 18-bit multiplicatldocks
embedded in the XC3S200 [8]. As we establishedirthe
plementation of the 52-bit multiplication requirege 18-
bit wide embedded multiplication blocks. The whofeera-
tion is coded in VHDL using the MULT18x18 comporent
and is placed in the multO3 entity.

To illustrate the problem the subsequent operations
of the exemplary 50-bit and 40-bit wide numbers tipli
cation taken by 18-bit multipliers are shown in .Hg(first
bit is omitted as it is responsible for the sigtydn

o a4

50| 16

sofe] 16 [ 17 | 17

S0 = psdepadepl 51 = psdepy
8y = ;l)—l-k\'il;! 83 = P2 + Pe
54 = 81+ 82 S¢ = Sy t+ S5

85 = (83 + s)&E000° &) p = (51 4 56)&(x70000" &'0')

Fig. 4. Subsequent operations of the 50-bit and 40-bit
wide numbers multiplication
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4.4. Controller architecture

Control system for two radial and one axial AMB bea
ings consists of two Spartan-3 LC development bmaftie
first board is connected with three A/D and D/A ceriers
boards and the second — with two A/D and D/A boarfte
VHDL project for each XC3S400 FPGA consists of #ére
PID controller cores divided into three separatanctels.
One of the channels is not used. That is why thelevh
control system for the AMBs consisits of five segtarPI1D
control channels. Although each controller runs saene
PID algorithm (as of Egs. 7, 8), the parameteysl;, Ty, T
can be quite different.

Schematic diagram of the designed AMB control sys-
tem is shown in Fig. 5.

Eddy current
sensors

o

w3 Dev

< evelopim
9, | Board

PID controller 1]

th ? ., {[PID controller 2 ]

PID controller ri |

XC353400

XC35400

Fig. 5. Schematic diagram of the AMB control system
5. TEST RESULTS

The designed hetero-polar AMB PID controller was
tested using Agilent 33220A 20MHz signals generaiua
Agilent 54624A oscilloscope. The resulting stepposes
of the controller itself (with no control loop) ahown
in Figs. 6 and 7. The parameters are, = 2; T; = 0,02;
T, = 0,001; andT = 1.

The Bode plots for the first channel of the des@joen-
troller are shown in Fig. 8. The experimental cheesstic
has been obtained with the use of Agilent 35670Aadkyic
signals analyzer and compared with the simulatiosrac-
teristic obtained in Matlab for the floating-poimtodel



(Eq. 1). As we can see the magnitude plots coinaitai-
rately. The experimental phase plot drops almost%6°
for higher frequencies what means that there isesdatay
in the controller. This delay is caused by the kampling
frequency of the A/D converter. Nevertheless, thieagnic
properties of the designed controller for the fremgy
range from 10 Hz to 1 kHz that is typical for AMBrarol,
are very good.

Uy, ¥, V]
o

0 02 04 08 08 1 12 14 16 18 2
ts]

Fig. 6. Step responseg andy, of the controller to the square
inputu of 1 Hz frequency and 50 mV amplitude

¥

Uy, ¥, V]
o

Pl e T e

B

B

¥
j

1.0005 1.001 1.0015 1.002 1.0025

701%975 0.9:98 0.9985 0.;99 0.9é95 1

ts]

Fig. 7. Step responseg andy, of the controller to the square
inputu OF 500 Hz frequency and 2 V amplitude

©
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Fig. 8. Bode plots of the designed PID controller: simolat
(continuous line) and experimental (dashed line)
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The next step of the experimental investigations tea
test the designed controller in the closed-loop Altiitrol
system. Fig. 9 presents displacemegtsy, and Fig. 10
displacements.,., y,. of the shaft in the left and the radial
bearing at the moment of switching the controllar ®he
reference values for the displacements were agwell
Xiref = —0,28V, Viref = —0,25V, Xrref = —0,78V, Vrref =
—0,39V. As we can see, after a very short transientesthg
controller levitates the shaft in bearings verylwel

% V]

-0.15

-0.21

-0.251

-0.31

%V

-0.35

041

-045[

05 L . i
0 1 2 3 4 5 6
t[s]

Fig. 9. Displacements;, y; of the shaft in the left radial bearing

-0.65 T

-0.7
-0.75
=
o
08
-0.851
-09 -
] 1 2 3 4 5 6
t[s]
-0.25
0.3
-0.35[
=
=
04 ' /
-045F
-0.5 : : -
0 1 2 3 4 5 6

t[s]
Fig. 10. Displacements;., y, of the shaft
in the right radial bearing
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Fig. 12 presents displacememptsandy, of the shaft af-
ter summing output signalg,, y, of the controller with
a pulse-like disturbance signgl as it is shown in Fig. 11.
We can see a good damping of the disturbances.

U
Yd
W )

) A J Left
" + -
Yirer “I'em ¥ AMB y axis .
Y2 P
,’,u

channel
L~

&y

Fig. 11. Control loop of the left bearing axis with disturbances

005
ol
Ya
-0.05
01
_ -0.45f
L oo0zf ; |
= N . h
-025 ——.———V_ ey 2
03f
-0.35} |
M -
-04f P -
-045
0 1 2 3 4 5 6

Fig. 12. Vertical displacements;, y, of the shaft
in both bearings with disturbancensiy,

6. CONCLUSION

The designed hetero-polar AMB PID controller com-
pletely fulfills the preliminary requirements. khplements
the PID control law in five separate control loapslized
in two XC3S400 FPGAs. The FPGA resources are atlliz
in less than 50 percents. The dynamic performaridheo
controller is very good. The controller is about @@es
quicker when compared with the dSPACE controlleat th
was used in the AMB system so far.

The main bottleneck of the controller is the love-fr
quency of the A/D and D/A converters. The FPGA ban
clocked with the very high frequency of 50 MHz atfe
output signal of the controllers can be calculatétth this
frequency too. Unfortunately this signal is updatéth the
frequency of 200 kHz only.

The controller can be improved by designing beAty
and D/A boards with quicker converters and by impat-
ing better control laws.
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APPROXIMATION OF FRACTIONAL DIFFUSION-WAVE EQUATION
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Abstract: In this paper we consider the solution of the foawl differential equations. In particular, we saer the numer-
ical solution of the fractional one dimensionalfuion-wave equation. Some improvements of comfutal algorithms
are suggested. The considerations have beenalledtby examples.

1. INTRODUCTION

Development of fractional calculations have beenedo
probably by Leibniz and Newton (in the years 16822).
Further mathematical fractional calculus and itpliap-
tions have been formulated in the nineteenth cgnfDue
to the development of IT tools in recent years, ynan-
thors come back to the problems of fractional dyisam
systems (e.g. Lubich, 1986; Weilbeer 2005; Kilbasag,
2006; Sabatier et. al., 2007; Ostalczyk, 2008; Kasik,
2009, 2011a,b,c; Bustowicz, 2010). For instanceerast-
ing results (important for applications) were obéal
in Bialystok University of Technology (Bustowicz0@8;
Nartowicz, 2011; Ruszewski, 2009; Sobolewski and Ru
szewski, 2011; also Kaczorek, 2011; Trzasko, 20MN1)-
merical methods for fractional systems were dewatop
(e.g. Lubich, 1986; Podlubny et a1995; Podlubny, 2000;
Agrawal, 2002; Diethelm and Walz, 1997; Diethedtral.,
2002; Weilbeer, 2005; Ciesielski and LeszczynskiQ&
Murillo and Yuste 2009, 2011).

The paper is organized as follows. In the sectidns
and 3 we considered Caputo fractional differerglation
and its approximation. Fractional diffusion-waveuation
and its approximation is considered in the sectibrsd 5
respectively.

2. FRACTIONAL DIFFERENTIAL EQUATION

Fractional order differential equations are asgedia
with the following operators (Weilbeer, 2005; Kauozq
2011): D* — Riemann-Liouville operator (~1837DF, —
Grunwald-Letnikov (~1867) operator and® — Caputo
operator (1967).

Dynamical systems are generated by differentiabequ
tions. For example consider the initial value pewbl(frac-
tional differential equation of Caputo type):

D¥u(t) = Au(t), u(0) = 1,u®(0) = 0, (1)

k=12,..,n—-1

where a>0, 2€R, n=[al]=min{é € N:¢ = a},
N is a set of natural numbers abfl is the Caputo fractio-
nal differential operator.

The solution of the initial value problem (1) isvgn
by (Weilbeer, 2005)

u(t) = E,(At%), t =0 2
where

_ z z? _ Vkk=oo zk
E(2)=1+ F(1+a) T(1+2a) " Yk=o I(1+ka) 3)

is the Mittag-Leffler function with one parameter In
eqaution (3)'(«) denote Euler's continuous gamma func-
tion

M(a) = [} tete~tdt = [} (In (3 ))* dt. @)

General Euler's gamma function is defined in theleh
complex plane except zero and negative integersliféés,
2005). Formula (4) is true foRea > 0 and the following
limit holds
n'n%

() = limy e a(a+1)(a+2)..(a+n)’

(5)

For natural arguments and for half-integer argusment
Euler's gamma function has the special form

rm) =m-1), r(3) =220 2 er (6)

2 2(n-1)/2

neN={1,23,..}
wheren!! is the double factorial

n-n—2)..5-3:1 n>0o0dd
nl=in-(n—2)..6-4-2 n>0even @)

1 n=0-1

Example 1. Consider differential equation (1). From (1),
(2) and (3), (6) for = 1 anda = 2 we have respectively

E,(At) = e, E,(At?) = cos (/| 2]t), 1 < 0. (8)

3. CAPUTO FRACTIONAL DIFFERENTIAL
EQUATION AND ITS APPROXIMATION

The Caputo fractional differential operator of arde
a > 1 is defined by (e.g. Kaczorek 2011a, Weilbeer, 2200

Diu(t) = —— [1(t — $)"*Tu™(s)ds, 9)

'n—-a)
wheren = [@] = min{{ € N: & = a}.
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Now we consider fractional differential equationavf
dera > 1 of Caputo type

Dfu(t) = f(u(t)), D*u(0) = by,

k=01,..,n—-1

whereb, € R are given. We are interested in a numerical
solution u(t) of equation (10) on a closed interv@, T]

for someT > 1. Therefore, we assume that

(10)

tp,=mr,7>0m=0,12,..,N

andty = 0,t, =T,N = . (11)

Furthermore we denote byu,, =u(t,) and f,, =
f(u,,). Preciselyu,, is the approximation ofi(t,,). From
equality (10) fort =t,, we obtain a discrete problem
(Weilbeer, 2005; Murillo and Yust@009, 2011)
1 -a
=) [um — Yke1 wru(ty, — kr) + (%) U —

-1 bktfn_a _

Xk=0 F(k+1—a)] = fm:
m=1,..,N

Note that t,, — kT = t,,_,- Consistently with (12)
we obtain

(12)

-a

= Tis Ot — (s = I @) o (13)
n-1_bithi® 5
* Xik=o F(k+1—oc)+T fm,
m=12,.,N
where
a
we = (=" (), (14)

ay DTk —a) al@—D(@—=2)..(a—k+1)
(k) TTA-a)(k+1) k!

a€R,aeN,={0,1,2,..}.

Example 2. We consider equation (1) witk(0) = u,.
In this casef,, = du,,. Therefore from (13) we obtain
the following discrete equation (numerical solutafrequa-
tion (1))

1
Uy = m{Z?zl W Um—k (15)
(Mm% m ) (mo)™“¢ }
(F(m—oc) Zjo w]) U + T(i-a) 40
m=12,..,N

In this case we can use the following formula foe t
I'(a), @ € €C{0,—1,-2, ..}, C is a set of complex numbers,

1

e = @€ T (L + e/ (16)
wherey is the Euler’'s constant (Weilbeer, 2005)
y = 1imnqw(z;;=1% —In(n)) ~ 0,5772156649.  (17)

4. FRACTIONAL DIFFUSION-WAVE EQUATION

Let u(x,t) be a functionx € [0,L] andt € [0,T]. De-
note by Df, the Caputo fractional differential operator
at the variablet (see (9)). Consider the continuous-time
fractional diffusion-wave system described by emumt
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Dfu(x,t) = %u(x, t) (18)
with initial and boundary conditions

u(x,0) = ¢(x), ur(x,0) = 0 (19)
u(0,t) =0,u(L, t) =0. (20)

The solution of the homogeneous boundary problem
(18), 19), (20) is given by (Weilbeer, 2005)

2 k2m? .k
u(x, t) = zZ,‘le ¢ Eqn(— t*)sin ),

L2

(21)

Cp = fOL @ (x)sin (anx)dx

Equation (18) forx = 1 is the classical diffusion equa-
tion and fora = 2 is the classical wave equation. Thus (18)
for a € (0,2] is the diffusion-wave eqution. The fractional
diffusion-wave equation plays an intermediate t@éveen
classical wave and diffusion equations (WeilbeddQ=
Jafari and Momani, 2007; Povstenko, 2011; Murillo
and Yuste2009, 2011).

Example 3.Fora =1 anda = 2 we obtain respectively
E(-EX ) =exp (-5 0) 22)

L? L?

21'1.’2 [
E, (—kL—zt) = cos (th)
Therefore using (22) from (21) fat =1 and a = 2

we obtain the solution of classical diffusion edomt
and the solution of classical wave equation respelgt

5. APPROXIMATION OF FRACTIONAL
DIFFUSION-WAVE EQUATION

Let h=L/M andt =T/N (see (19)) denote the step
size of the discretization in the space and tinie eespec-
tively. Next let

x; =ih,i=0,1,..M (23)
and using the discretization on the space axiss#wond
derivative can be approximated by the central difiee
of second order
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U, t) & o [ulxiog, 1) — 2u(x;, 6) + u(xiog, )] (24)

i=12..,M-1,
where from (20)x, = x), = 0. From (18) for x = x;
and (24) we have
DEU(x;, £) = = [u(xioy, £) = 2u(x;, £) + u(xi_y, )] (25)

i=12..,M-1
Let t=t,=mt, >0, m=0,1,2,..,N, where
N = t/T. Thus from (25) and (13) we obtain
2
Uy (%3) — :1_2 [Um (Xi—1, ) = 2Up (X4, ) + U (Xi—q, D)] =
Z(Um—1 XU (X)), -, U (X)),

Z(um—l(xi)um—z (Xi)! - Ug (xi)) = E;(nzl WiUm—k (Xi)

(T _ym ) 4 ynot el

(Fom = Tk ;) o (x0) + Rz o (26)
m=12,...N,i=12,..,.M—-1
where u,,(x;) = u(x;, t,). Let Z =][z(x;)] be vector

(M —-1) x1. Let Uy, = [u,,(x;)] be vector(M — 1) x 1,
i=12,..,M—1. Denote byd = [a;;] tridiagonal matrix



(M - 1) X (M - 1) W|th Ak = _2, ak’k_l = 1, ak'k+1 =
1. From (26) we have
2 -1
U, = [1 —;—ZA] z 27)
At the time-stept,,, m=1,2,..,N, the values
for u,,(x;) =u(x;,t,), for i=0,1,..,M and k=0,1,
...,m — 1 are known (in (27Y is known).

6. NUMERICAL EXAMPLES

Example 4. A very simple approximation of the system
(25) can be the equation (1) with suitably chossrameter
A. For fixedx = x; the nature of the function(x,, t) will
be similar to the solutioni(t) of the system (1). Thus,
in this paper we will present only the simulatiohsolu-
tions of equation (1). In the calculations form(8x and the
Matlab Gamma function were used.

Let us consider the system (1). Ldt = 20 (see (3)).
In Fig. 1 trajectoriesu(t) for A= —1 anda = 0,5 (solid
line), a = 1 (dotted line) are shown. In Fig. 2 trajectories
u(t) forA=-10 anda = 1,5 (solid line),a = 2 (dotted
line) are shown.
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Fig. 1. Trajectories of the system (1) fer= 0,5 (solid line),
a =1 (dotted line)
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Fig. 2. Trajectories of the system (1) fer= 1,5 (solid line),
a = 1,2 (dotted line)

Example 5.Consider the continuous-time fractional diffu-
sion-wave system (18) with initial and boundary ditions
(19), (20). The solution of the homogeneous boundar
problem (18), (19), (20) is given by (21). In treaulations
the Matlab Gamma function and the Matlab Mittagflesf
function (Podlubny and Kacenak 2001) were used.

Let L=mn and kk =40, 7=0,1; h=0,0314. Let
@(x) = sin (2x). Solutions of the boundary problem (18),
(19), (20) witha = 0,5;1,0; 1,5; 1,8; 2,0 are shown in Fig.
3, 4,5, 6 and 7 respectively.
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Fig. 4. Solution ‘of the boundary problem (18)-(20) éoe= 1,0
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Fig. 5. Solution of the boundary problem (18)-(20) foe= 1,5
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Fig. 6. Solution 01“ the boundary problem (18)-(20) éor= 1,8

The calculations were performed on a computer with
dual-core processor Intel Core 2 Duo (T7500) 2.2zGH
core, 3.5 GB memory. It took approximately 1 hourca-
luclate the data for each Figure.
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Fig. 7. Solution of the boundary problem (18)-(20) éoe 2,0 .

7.

CONCLUDING REMARKS

In this paper we consider the selection of thetivaal

differential equations. The considerations havenhies-
trated by a numerical examples. The effectivenésom-
putational algorithms is dependent on the posgibili

of

determining the Euler's continuous gamma fumctiad

depends on the possibility of calculating of thett®fj-
Leffler functionE, (z). The functionE,(z) was first intro-
duced in 1903 by Mittag-Leffler (Pillai, 1990).

Some recent interesting results in fractional syste

theory and its applications in automatic controh dae
found in (Liang et al., 2004; Buslowicz, 2008; Ostsk,
2008; Ruszewski, 2009; Nartowicz, 2011; Sobolevesid
Ruszewski, 2011).

10.
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Abstract: The formula for the solution to linear g-differerfcactional-order control systems with finite memds derived.
New definitions of observability and controllabjliare proposed by using the concept of extendeihlirdonditions.
The rank condition for observability is establistzedi the control law is stated.

1. INTRODUCTION

Recently the concept of fractional derivatives alifd
ferences is under strong consideration as a todescrip-
tions of behaviors of real systems. In modeling thel
phenomena authors emphatically use generalizations
of n-th order differences to their fractional forms aswh-
sider the state-space equations of control sysienis-
crete-time, (e.g. Guermah, Djennoune and Bettae08;
Sierociuk and Dziefiski, 2006). Some problems and spe-
cial attempt to the fractionaj-calculus was provided and
presented in Atici and Eloe (2007). The possiblgliaption
of fractional g-difference was proposed by Ortigueira
(2008).

In the generalization of classical discrete-cadéemi
ences to fractional-order differences it is coneahito take
finite summation (see: Kaczorek, 2007; KaczorekQ&0
Guermah, Djennoune and Bettayeb, 2008; Sierociuk an
Dzielinski, 2006). On the other hand there is no good rea-
son for that. The way we use the fractional diffiee does
not introduce any doubt on the initial conditiorolplems
for fractional linear systems in discrete-case. &bwer,
what seems to be one of the greatest phenomensirig u
fractional derivatives and differences in systemsdeting
real behaviors is the initialization of systems. fatt the
initial value problem is an important task in daélgplica-
tions. Recently we can find papers dealing withgheblem
how to impose initial conditions for fractional-ed dy-
namics, (e. g. Ortigueira and Coito, 2007; Lorersw
Hartley, 2009; Atici and Eloe, 2009).

In this paper we deal with-fractional difference con-
trol systems with the initialization by an additérfunction
¢ that vanishes on a time interval with infinitely mya
points. In that way we get only finite number oflues
of initializing function¢ that can be nonzero. We call such
set, stated as the extended vector, [isgemory. Hence
a control system is defined together with initiedg point
of time and length of the memory.

We present the construction of the solutioi-tnemory
initial value problem and discuss the observabiliyd
controllability in s-steps conditions for such system. Some

results concerning the autonomous lingatifference frac-
tional-order system witl-memory were presented in Mo-
zyrska and Pawluszewicz (2010). Although we take
as initial states the extended vectors for theainihemory,

we restrict definition of indistinguishability relan
and observability to those defined farsteps, similarly
asitis proposed in Mozyrska and Bartosiewicz (301
We state the problem in the classical way, usiegdéimk of
observability matrix. For controllability we fornate the
control law using recursively defined Gramian.

The paper is organized as follows. In Section 2 the
foundation of fractional-derivative is presented and it is
showed that forward trajectory of linegrdifference frac-
tional order control system withmemory is uniquely de-
fined. In Section 3 observability problem in finiteemory
domain is stated. Proposition 3.3 gives anotheenth
in Mozyrska and Pawluszewicz (2010), observabilapk
condition. Section 4 presents solution of conthnlity
problem in finite memory domain.

2. FRACTIONAL g-DERIVATIVE AND g-
DIFFERENCE SYSTEMS

Firstly we recall some basic facts connected with
g-difference systems. Lef € (0,1). By g-difference
of a functionf: R — R we mean (see e.g. Jackson, 1910)

bt 0= =10

wheret is any nonzero real number.
k
k_ 91 k-1 ; _
ThenA,t”* = pu t and, ifp(t) = §

k+1

Ap(®) = XR5 ak+1qq—_1_1tk. In the natural way this leads

to the problem of solving-difference equation i with
known functionf: A,x(t) = f(t). Detailing with this, last
equation givesx(t) = (1 — )t X2, q'f(qg‘t) under the
assumption of the convergency of the series onritjte
side.

n

k
oo Akt then
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Letg € (0,1) and leta be any nonzero rational number.
We need the following-analogue ofi!, introduced in Kac
and Cheung (2001):

if n=0,
if n=1,2,..

1,
[”]!:{[nltﬁn—llu-tﬁ]l

Hence [n + 1]! = [n]! [n + 1] for eachn € N. Also,
following the notations in Kac and Cheung (2001 w

_
write [a] = % and for generalization of thg-binomial

coefficients

[a} :11[7} Lalla-thla= )+l Gy
0 j [
Note that:
1. 1]=1butln+1]=1+q+--+q"
. 1
andlim,_,,[n] = P
2. Forn € N: limg_4[n]! = n!;

a|_ al  (1-¢"Ha-¢
3 [1}“”’[2} T (-¢)-9)

Example 2.1. Let g =a =0.5. Then the sequence

a
( { }] = 1..4) ~ (0.586,—0.324,0.676, —3.358),
J

according to computations in Maple package.
In Ortigueira (2008), thg-difference of fractional order
is defined by

i(j+1)
Eﬁ](—l)"q 2 qle
A x(t) =t~ 1
q
1-9“

x(qt).

id

a . +D .
Letus denoté; = | = |(—1)/q z q7’“. Then
J

(1-)789x) =t _§0b,- X(@'t). (1)
]:

It is easy to check thdt, = 1. The series on the right
side of (1) needs the infinite values of the fumictk(-).

But if x(-) is such that it vanishes besides finite number

of points, then summation is finite.

If sis a natural number ar= 0, andt € R, then let
Q. (to): = {q*ty:k € Z,k < s}.

Leta € R,. Byu,: R — {0,1} we denote the Heaviside
step function such that,(t) = 0for t < a and u,(t) =
1for t = a. Then we can easily deduce the following:
Proposition 2.2.Let « > 0, s € Z. Let ¢: R - R™ be any
function andx(t) = @(t)u,(t). Then,

0 for t<a,
a = N(t,a) b: .
B =10 ——x(@q't)
j=0 (1-9)

(2)

for t=a,

Ina-Int

where N(t,a) = E[T] and E[x] denotes the integer
value ofx.
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Let L€ NU{0}, t, =q’, a = q'ty, p:R > R". The
vector

#(to)

#(ato)

M (,tg,8) = of ordered values of functiop on

#(d'to)
0,(ty), is called afinitel-memory att,. Observe that
if le NU{0}ands € NU {0}, ¢p:R = R", then

- M(,ty, @) € RV
if I;,l, e NU{0},1, =, andt, > 0,
then2,, (to) < 2, (to) and if L, is a matrix of the form

10 ...00..0
01 ..00..0
00 ..10..0

with the first block of the dimensidp x [;,
then alsl o, Oy, 1 M (12,80, 8) = M (11,45, 9).

Definition 2.3. Let LI NU{0} and t, >0, a = q't, €
02,(ty), ¢:R - R™. A linear g-difference fractional-order
time-varying control system witlh-memory is a system
given by the following set of equations, denotedthy:

AGX(t) = Aghx(at) + Blahu(qt), t>to 3)
x®)=(pu,)0),  tst @
y(t) = CH)x(t), (5)

where A(-) € R™™", B(-) € R™™, C(-) € RP*™ are matri-
ces with elements depending on time, ang® ~ u(q*) €
R™, k € Z, is any measurable function.
Remark 2.4.If [ - +o thengqg't, —» 0 for anyt, >0
and the vectoM ([, t,, ¢) becomes infinite.

From equation (1) and (3) we have

t t | ; t
X{EOJ = G[EOJX(IO) - jzzlb.-ﬂx(q’to) + f[EOJ

where G(t) = (t(1-9))” Alat)-byl . T ) =(t(1- )" Badu(a) .
Then,

tg |_[to(1-0) ! to
G = —{=byl,
[qk+1] [ qk+1 ] A{qk]

and 4, = 0,, while for j > 0: A; = —b;,,I,, where I,
is then X n — identity matrix. Moreover,

to |_~ to to J k4l x( k-j ) to
——|=G — [+ ZAX o)+ f
'{qkﬂJ [qkﬂ}{qk = qk+1

The idea of the construction given in the nextdifel-
lows from Guermah, Djennoune and Bettayeb (2008yeH
we extend the construction pdifference with finitel-
memory. Let us define the following sequence ofrives
from Rnx(nl+n):

®(to)=[11.0p....0,), 6(%}:[(3[%’}&,...@




a[%}e[%]a(%]% ..... Al

and fork > 2:

=t to )=t )., = to
CD[ k+1j = G[ k+1 }D[qkj +ZAJ cb[qk—j j+[Ak ! Ak+l"“' A<+I ]
j=1

q q

we connect the sequence
keNU{0}

of their sub-matrices iR™ " that we sub-

With the sequenc%ﬁi(%)}

2l N

tract from{ﬁ“)(;—?( } by the following operation

keNU{0}

oo

Theorem 2.5.Let Le NU{0} and t, > 0; a=q'ty €
0,(ty), ¢: R - R™. The solution of the systed, stated
in Definition 2.3, corresponding to contreland a memory
functiong is given by values for > t,:

o :&S[t_o]g(t )+|:[t_0}
X{qk] qk 0 qk

where X(t) =M (,t5,¢) and fork >2

e =) ()
q° q° gt ~ I gkt q

while F(t—OJ: f[t_f’] and
q q

e ()

Proof. For the proof we use the mathematical induction
with respect tok € N U {0}, where t = t,/q*. First
we check steps fdr € {1,2}. Fork = 1:

#(ato)

()

(8)

#(@a'to)

and then:

x(t—oj - G(t—ojqﬁ(to) + 3 AB(@Ito) + f(t—"J
q q i=1 q

= d'n(t—oji(to) + f[t—o].
q q

Similarly for k = 1 holds

t t t | i t
X{Q_OZJ = G[q%}{EOJ +A(to) + jZ:lA,- n#@'to) + f[q_on

Using the formula fox(t,/q) we get
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{t_j _ G(t_gje(t—ojgb(to) + Agto)
q q°) \a

| ) | _
+G t_02 [ZA1¢(q]t0)+ f[t_OJJ"'ZAjﬂ(b(q]to)
a = q j=1
I .
e
+F| o =q~{t—°2ji(to)+ F(t—gJ
q q q

Now let us assume that the solution formula hddats
all te 2,(ty), k€ Z_. Let us take nowt = t,/q***.
Hence

)= ctodad {qg | ]+ ().

Using the inductive assumption we get

x(t)=G(t)<5[;—f;]‘x“(to)+ a{qtk°_1]+---+&_1{%]%@00)

to
Clk+1 i

We can also use again inductive assumption for each
of x(to/q”),j=1,..,k —1:

Aol

and
k-1 -
e onfs)-Sae{ o Eor)

In the consequence

+ Acudaty) + -+ Ak+.¢(q'to)+e(t>F[;—°kJ+ f[

x(t):emas[L;]ﬁz‘lAja{ ty ]+[Ak ..... Al 7o)
q j=t q<!

+G Fl = |+ ZAF| —/= |+ f
[qk+1] [qk = ] qk i qk+1

induction the formula

Hence from the mathematical

for solution holds for alk € N U {0}.

Example 2.6. Let t,=1, [=1,
0

and A = [1 _01] B = [(1)] Let us take also the control

u(t) = 1. Then using Maple and formula given in Theorem
2.5 we can do calculations recursively. In thisscas get:

gq=a=05

0414 -1

0.081 O
1 0414 O

D(to/) =[ 0.081
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-1.162 -1 0.062 -0.114

D(ty/g?) = :
(tofa”) 1 -1.162 0.114 0.063

Moreover, as we také= 1 we need to start memory in

0
four dimensional space fai(t,). Let us taket(t,) = (1) .

1
Hence the initial state is in the origin, while ftdhe mem-
ory we have (1,1). Then x(2)= [(1)821 ,

1,777 _ [~0,347 _ [=9.109
x(4) = [1,592' *(8) = [4,234 , x(16) = [0,0909 ’
-3,367 _ [205,288

x(32) = [—35,612]”‘(64) = [-33612/

3. OBSERVABILITY
IN FINITE MEMORY DOMAIN

In this section we recall some facts related & d¢bn-
cept of the observability of lineag-difference fractional
system withl-memory given by Definition 2.3. The stan-
dard definition of observability says that a systsnob-
servable on time-interval if from the knowledgetloé out-
put of a given system we can reconstruct uniquedyiti-
tial condition. As we consider here systems togethi¢h
the extended initial conditions, callettmemory, we want
to determine the extended initial conditi@(t,) from the
knowledge ofY := {y(t,/q*),k = 0, ..., s}. Hence we need
to distinguish in our definitions the starting potg, it is
the similar situation as for time-varying systemis¢rete or
continuous). For that we use the definition oflavent as
a pair(t, %) € {q*:k € Z} x R**™ as the idea comes from
Sontag (1990).

Let us consider the linegrdifference fractional-order
syste mZ(w) .

Definition 3.1. Let [, s be any natural numbet, = g’o €
{¢*:k € Z} and letp,, be maps from the sdy*:k €
Z} U {0} into R™. We say that twaé-events(t,, X,), (to, X,),
where %,=M(l, ty, 1), X,=M(l, t,, ¢,), are indistinguish-
able with respect t&,, in s-steps if and only if there
is a controlu such that for all € Q,(t,),s € Z_,

Ct)x () = C()x2 (1), ©)

where functionsx; (-), x,(-) are given by (8) and corre-
spond respectively top,,¢,. Otherwise, thel-events
(to, %), (to,%,) are distinguishable with respect I,
in s-steps.

Definition 3.2. Let [,s € NU {0}, ¢;,:R —» R". We say
that the systerli,, is observable &, in s-steps if any two
l'events(tﬁlfl)! (tOJ f2)1 f1=1\4(l' tOl (pl)’ f2:1‘/[(11 tO! (pZ)v
are distinguishable with respectig in s-steps.

Directly from Definition 3.2 follows that the syste
X, Iis observable at, in I-memory domain ins-steps
if and only if the initial extended staf&t,) = M(L, ty, @)
can be uniquely determined from the knowledge
of Y :={y(ty/q"),k =0,...,s}.
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Proposition 3.3. Let [,s € NU{0}. The systemZXZ,
is observable at, in s-steps if and only if one of the fol-
lowing conditions holds

1. then X n real matrix:

W(s,tg) = ol [t—ok]CTCq{t—?(] is nonsingular;
k=0 q q
2. the matrixd(t,/q*) has linearly independent columns
for allk € {0, ..., s};

[ Co(ty) |

¥

q

Proof. Proof goes in the same manner as in the classical
linear control theory, see for example Kaczorelkd{@0
Example 3.4. For the system in Example 2.6 we have
0 0,414
W) =|oa1a 1172
servable ins = 1 steps, because raik(1,t,) = 2.

3. rankO(s) =rank

]. Hence systenk,-; is ob-

4. CONTROLLABILITY LAW

In the literature one can find many various comgep
of controllability. In our case is that we startraystem
att, € R,, not exactly at a point from the Set: k € Z}.
Definition 4.1. The systent, is said to be completely
[-memory controllable front, € R, in s-steps, if for any
@ = @(t), te 2,(ty), and any final valug, € R™ there is a
controlu = u(t), t€ 2_¢(t,), such thatx(t,/q°) = x;.
Definition 4.2. Let t, € R, ands € N. The (I, ) — me-
mory controllability Gramian for the systenk,)
onN_.(t,) we define recursively in the sequel

to)_(to@-9)) " o7
w2 |=[22TD ) BT B(t),
(q] [ q J (0)8(t0)

(s 55 o

q q q
+[to(1‘Q)]_a BT[t_o JB[t_o]
q2 a) q
and fork = 3:
to |_~f to to k=2 to
W| —- |=G| — Y \W| ——
[qk] [qk}N[qk'l}iz—ﬂA’ [qk"‘lj
to1-q) ) [ t t
{ 0 o ] BT[q"O‘ljB[q"o‘l}

Theorem 4.3. Lett, € R, and s € N. If the matrix
W (t,/q®) is nonsingular, then the control function given
fork € {1,...,s}




1

transfersx(t,) = @(t,) to X; =

Proof.

to to(1-0q) - T to |, to = to | =
S0 o0t BT 0 w20y =0 | (o)
qk] [ g ] [qk}N [qS] f [qS] °

)

is nonsingular, then the proof

It W(to/q*)

is by direct substitution the form of contrai(t,/q"*)
for k € {1, ..., s} to the formula of solutiom(t,/q°).
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Abstract: The ODS ferritic steel powder with chemical comfiosi of Fe-14Cr-2W-0.3Ti-0.3Y203 was mechanically al
loyed (MA) either from elemental or pre-alloyed miaws in a planetary ball mill. Different milling pameters have been
used to investigate their influence on the morpgyland microstructure of the ODS ferritic steel dew The time of MA
was optimized by studying the structural evolutafrthe powder by means of X-ray diffractometry arieM. In the case
of elemental powder very small, about 10 um in @itam spherical particles with a large surface &ae been obtained.
Flakey-like particles with an average size of ab&kifum were obtained in the case of the pre-allp@ader. The lattice
strain calculated from XRD spectra of the elemeatal pre-alloyed powders exhibits a value of abdbit 06 and 0.67, re-
spectively. The pre-alloyed powder after consol@aprocess showed the highest density and micdoless value.

1. INTRODUCTION

30 years have passed since Benjamin (1970) usest a m

chanical alloying (MA) technique for the first timie syn-
thesize different kinds of materials. The strudtuaad
chemical changes during MA in a solid state povaterso
complex that it is difficult to predict particulaeaction or
time needed to obtain final product properties. THA
process is commonly used to obtain intermetallio/gers
starting from elemental powder particles and irg of the
most popular methods for the production of oxidgpdi-
sion strengthening (ODS) ferritic steel reinforosih yt-

trium oxide (Y,O3). ODS ferritic steel is candidate material

for structural applications in future fusion reastodue to
their excellent high temperature properties, théstability
and irradiation resistance. Such material can loelyed
using various initial powders, e.g., elemental andire-
alloyed powders as well as milling devices and M&a
meters (Suryanarayana, 2001).

The physical and chemical features of the mechlyica

alloyed powders depend on the MA parameters, ssch a

type of ball milling device, linear velocity, typsijze and
number of the balls, the balls-to-powder weightiorat
(BPR), the milling atmosphere, a process contranag
(PCA), process temperature and many others (Surggaa
na, 2001; Mukhopadhyay et al., 1998; Cayron et2804;
Chul-Jin, 2000; Ohtsuka et al., 2005; Patil et aDP5).
In spite of plenty of published articles there 8l & lack
of systematic studies comparing morphology, siztribu-
tion and other characteristics of ODS ferritic s{g@wvders
produced by ball milling method.

In this paper the microstructural evolution of eéartal
and pre-alloyed ODS ferritic steel powders durincgh M
in a planetary ball mill has been studied to obthia de-
sired solid solution properties. Different ball hmi¢y condi-
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tions were investigated to establish their inflleeron the
morphology and microstructural changes of the O&r#tf
ic steel powders.

2. EXPERIMENTAL PROCEDURE

Selection of MA methods and conditions was done

on the basis of a literature survey (Suryanaray2081;
Mukhopadhyay et al., 1998; Cayron et al., 2004 m@er-
cially pure elemental Fe, Cr, W, Ti and,(3 powders
(more than 99.8% of purity) for the ODS ferritiesk with
the composition of Fe-14Cr-2W-0.3Ti-0.8¥; (in wt.%)
were mechanically alloyed in a planetary ball rguipped
with stainless steel vials and balls, performedeurargon
or hydrogen atmosphere. Two different BPR’s of:11énd
20:1 (100 and 200 stainless steel balls with a dianof 10
mm) and two different rotation speeds (RS) of 25® and
350 rpm were used. At selected times a small amofusas-
milled powder was taken out from the milling jar farther
morphology and microstructure analyses. To minindze
contamination of the powder loading and unloadifghe
powder was performed in an argon glove box. Theetim
of MA was optimized by studying the structural exan

of the powder by means of X-ray diffractometry (XRD
ina Siemens D5000 device, using the Gu-Kadiation

(A=0.15406 nm). The crystallite mean size and latiicain

were determined by the Williamson-Hall method (®s6

= 2(€)sin 6 + kA/D) [8], where B is the full-width at half-
maximum of the diffraction peak (FWHMS9, is the Bragg
angle, € is the internal lattice straih is the wavelength
of the X-ray, D is the crystallite size and k isnstant

(k=0.9). B can be calculated from;’B= B?, - B%, where

Bs is the peak broadening due to instrumental effieehs-

ured using crystallized LaBstandard and Bis the eva-



luated width. MA process was conducted until theutsc
elements peaks in kay diffraction patterndisappeared.

The powders morphology and microstructure weu-
died using scanning electron microscopy (S) and trans-
mission electron microscopy (TEM). The etched o-
structure of the powder was observed by means ti¢ad
microscopy (OM). Chemical analis of the powders we
performed using wavelength dispersiv-ray fluorescence
spectroscopy (WD<RF) as well as LECO T-436
and LECO IR-412 analysers faneasurements of O,
and C contents, respectively.

After MA the ODS powders were submitted to isos-
tatic pressing (HIP) at the temperature of 1156th@ prs-
sure 200 MPa for 4 hours. Density of the specinsdter
compaction was measured by means of Archimede-
thod. Microhardness measurements were perfol
by usinga Vickers diamond pyramid arapplying a load
of 0.98N for 15s. Each result is the average of ast
10 measurements.

3. RESULTS AND DISCUSSION

3.1. Morphology and microstructure
of the ODS powders after MA

The particles of the agceived elemental ODS ferri
steel powders appear mostly round in shape, withar-
age size of about 10 um (see Flg). SEM micrograph
of the particles after MA for 50 h in a planetary bl
with a BPR of 10:1 and R8&f 250 rpm are stwn in Fig.
la. Fig 2 shows changes of the partigiee during M/ At
the early stage of ball milling fast increase ie article
size up to 150 pm were observed (see Fig. 2). eurtti-
ling, up to 8 h, leads to a significash¢creae in the particle
size anduniform size distribution. In jolonging the time
of MA up to 12 h agglomation process takes place a(
increasing the size of the particles frafto 80 pumHow-
ever, further prolongation dhe milling time resulted in the
hardening and fracturing of the particles due tbgte
failure mechanism.This trend, gradual refining of tt
powder, was observed up to 40 hMA. From 40 to 50 t
of MA a small variation of particle size can be eh®d
probably due to the equilibrium state between turing
and welding of the particles. Fitgl after 50 h of MA,
about 10 pm in diameter and homogenous particlag
obtained.

It was also observed that by increasing the rate
speed from 250 to5® rpm the milling time we reduced
from 50up to 42 h. When a BPR of 20:1 and 350 rpm
were plied the time of formation of a solid solutioe-
creases up to 22 h. SEM observations of the elexh&mS
powders (see Fig. 1) revealed that varying theimy pa-
rameters: BPR, R8r milling atmosphere (aon or hydro-
gen), no significant changes in thrphology of the OD!
powders were achieved and about 10 pm in diamer-
ticles were produced. However, a higher C contahb(t
20%) was detected in the powder using higher BPROaE
and about 20% of oxygen contemés reduced after usit
hydrogen atmosphere (see Table 1).
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AR BT AR Pk
Fig. 1. Morphology of the ODS powder particles: a-received
elemental powder, b) elemental powder MA for £
in argon, BPRLO:1, c) elemental powder MA for 22
in argon, BPR 20:1, and d) [-alloyed powder MA
for 20 h in hydrogen, BPR 1(
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’ —m— Elemental ODS powder

100

80 +

60 —

Particle sizeym

N
1 Y T

Time of MA, h

Fig. 2. Particle size distribution of the elemental ODS gder
during MA in the planetary ball mill for 5C in argon

Table 1.Chemical composition (in \.%) of the ODS Fe-14Cr-
2W-0.3Ti-0.3Y,0; elemental and p-alloyed powders
after MA in the planetary ball mi

Chemical ontent, wt.%
Conditions C Cr| W Ti Y (@)
AS.' 0.078| 14.1| 1.96 | 0.31| 0.23 0.33§
received
Elemental,
MAin Ar | 0.088| 13.7| 1.84 | 0.26| 0.21] 0.487
for 50 h
Elemental,
MAinH, | 0.067| 13.7| 1.80| 0.25| 0.28 0.377
for42 h
Pre-
alloyed, | 0.043| 13.5| 1.92| 0.33| 0.25 0.171
H,, 20 h

It is well known that the MA technique yields comi-
nation of the milledpowder, which substantially alte
thenature of the particles and therefore nges the final
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properties of a bulk materigMukhopadhyay et al., 199
Ohtsuka et al., 2005). The data in Tablshovn that the
un-milled ODS powder contains a high oxygeontent
(0.338 wt.%) and after MA in &igh purity argon atn's-
phere (99.9999 wt.%) an oxygen conten@a@f82 wt.%was
measured. The amounts efich elementas C, N, Mn
andSi also increased due to the contamination conrimg
the grinding media.

To reduce oxygen and carbon content , a process
with application of a pre-alloyed, gasemisel Fe-14Cr-
2W powder with 0.3%¥0; and 0.3%Tiwas performe.
The MA process wasaried out up to 20 h und pure
hydrogen atmosphere using BPR 10:1 and rotatieed
350 rpm. Fig. 1d showSEM image of the p-alloyed ODS
powder after ball milling. According to the SEM @sa-
tions the prealloyed powder, in comparison with thee-
mental one, exhibitmore than 4 times largparticles with
an average size of about 4Bphowever, C and O conte
is significantly lower.

Optical micrographs of thetched elemental powdef-
ter MA for different milling times revealed that rig
theinitial stage of milling (up to 10 hrs) a typicarhellar
microstructure was observeglliig 3a). Prolongation of tr
MA time caused refinement of the lamellaseatureless
contrasts as well as cracks that initiate breakrdofvthe
particles are observed.ftAr MA (Fig. 3b), the powde
consists of ahuge number ofan agglomerate(particles
which form featureless image what may suggest that
particles exhibit nano-sized grains.

Fig. 3. Microstructure of the elemental powder M/ argon for:
a)10hand b)50h

ail . g ).E:r"ah l-:; 3 .b" # & ; ¢ .}.:- ar s 4 2
Fig. 4. Bright-field TEM images of: a) elemental ODS pow:
MA in argon, and b) praelloyed ODS powder M/

in hydrogen

Figs. 4a and 4b show TEM images of eleme
and pre-alloyed ODS powds after mechanical alloyir
under argon and hydrogen atmosphere asidg the sam
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milling conditions(BPR=10:1, RS350 rpm). TEM obser-
vations indicate that botpowders have a stronglye-
formed and nangized microstructure and no yttriar-
ticles However, some differences of thecrostructure are
also observed. The ehental powder has equiaxed n-
sized grains whereas elongated (textureithe direction
parallel to the surface of the particle grains @veerved ir
the case of pralloyed powder. It can also be nod that it
was difficult to estimatéhe nan-grain size, due to the lack
of clearlyvisible grain boundaries. Th, results of the X-
ray diffraction tests athe powders will b presented in the
next section 3.2.

3.2. XRD analysis of the ODS powde

X-ray diffraction patterns of the ODS elemental .
prealloyed powders MA in the planetary ball mill ¢
shown in Figs. 5 and, Bespectivel. After very short time
of MA (2 h), in the case of elemental powder, theaks
of Y,0O; and the othersolute elements disappeared com-
pletely and XRDpattern exhibits maji a-Fe and W peaks
(see Fig. 5). With increasing the milling time tilensity
of Fe and W peaks decreases and its width increaseso
a reduction of the crystallite size and increasthendefa-
mation level of the particles. /er 50 h of ball milling
of the W peak disappears completely suggesting that
process is accomplished.

o Elemental powder

1000 ——MA2h

Legend:
# —Fe peak
= — W peak

e 14, 100 1y

800 o MAZD R

— WA 40 h

600 4 —— MASOh

Intensity, a.u.

26, deg

Fig. 5. XRD plots of the elemental powder M
in the planetary ball mill up to 50 h in ar¢

250 Pre-alloyed powder

Legend: *

#— Y,0; peak

* —Fe peak — hs-received

® — Ti peak ——MA1 h, hydragen

150 4 ~MA 10 b, hydrogen
——MA20 h, hydrogen

200

Intensity, a.u.

A E-L At .
_\

0 an ag 50 G0 i) 80 a0 100
20, deg
Fig. 6. XRD plots of the prealloyed powder MA
in planetary ball mill up to 20 h in hydroc



Also XRD examinations of the pre-alloyed powdere(se
Fig. 6) revealed that after 1 h of MA the peaksYgO,
and Ti disappeared what suggests tha@DsYparticles were
completely dissolved in the ODS steel matrix. lerss
highly probable, however, that yttria could stikrmain
as a small particles incorporated deeper into thel sna-
trix, and as a consequence, could give a weakexyXsig-
nal than from the yttria particles lying on thefaoe of the
ODS powder. This is due to the limited penetratit@pth
of the X-rays into the material described in litera (Culli-
ty, 1965). Hence, MA process of the pre-alloyed gemw
was continued up to 20 h to ensure homogenouspocar
tion of the Y,0; particles in the ODS steel powder.

Detailed analysis of the XRD spectra indicates that
ing MA the main [110]Jo-Fe peak is gradually broadened
and shifted towards lowe®Zngle values. This indicates an
increase in solid solubility of the solute elemeintshe a-
Fe matrix, an increase in the lattice strain asl aelthe
gradual reduction of the crystallite size as it waafirmed
in Figs. 7 and 8. In the early stage of MA a ragétrease
in the crystallite size to about 40 nm was obsel\ed. 7).
Further ball milling proceeds relatively slowly afidally
elemental and pre-alloyed powders reach an avergge
tallite size about 35 and 32 nm, respectively. €hesults
are not consistent with TEM observations preseitdelg.

4. However, it is well known (Suryanarayana, 20€H3t
TEM reveals grain size images, whereas the X-rap-te
nigue gives information about an average crystakiize
defined as coherently diffracted domain.

120 4
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== Pre-alloyed
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MA time, h
Fig. 7. Crystallite size plotted as a function of the militime

08 -
0,7 -
0,6 - Z/E
X
.S- 05 -4 —
© 04
F o
L ER
o —o&—Elemental powder
QS 02 A
=}
B 01 - === Pre-alloyed powder
—
0

0 5 10 15 20 25 30 35 40 45 50
MA time, h

Fig. 8. Lattice strain vs. MA time of elemental
and pre-alloyed powders

Fig. 8 shows the lattice strain value of the ODS/gho
ers, calculated from XRD data, and both milled gsiine
same milling conditions. These results indicate #haigher

acta mechanica et automatica, vol.5 no.2(2011)

about 30% lattice strain exhibits pre-alloyed pomde

This is probably due to an initial solid solutiomesg-
thening effect of the pre-alloyed powder. On thetary,
smaller and more reactive elemental powder pastioiay
undergo faster recovery process, and as a conssguen
a lower internal strain can be measured (Hwang,1200
Nevertheless, both powders demonstrate similardgen
the lattice strain increase and crystallite sizerei@se with
the milling time prolonging and after a certain ipdr
of milling a steady state is reached.

3.3. HIPping of the ODS powders

Following MA, the consolidation process was carried
out under a pressure of 200 MPa at a temperatutd 5%
C for 4 h. The results of microhardness and appatemsi-
ty of the specimens after HIPping are summarized
in Tab. 2.

The obtained in Table 2 results indicate that tighdst
density and microhardness value has the pre-allppadi-
er mechanically alloyed in hydrogen. On the comtrar
the lowest density has the material consolidatednfele-
mental powder MA in argon. This is a consequencehef
highest impurities content measured in the eleng@atad-
er after milling which can not be reduced duringtier
degassing and HIPping process.

Tab. 2. Microhardness and density results of the ODS fersieel
specimens after MA in different atmospheres andodtP
under a pressure of 200 MPa at 17180for 4 h

As-HIPped Elemental, MA| Elemental, MA| Pre-alloyed,
P 42h,argon | 42h,H | MA20h, H
UHVo, 410421 345+14 425+17
Apparentdeny  gg o 99,52+ 99.78*
sity, %

* Apparent density=specimen density/theoretical density of an ODSferrit-
ic steel (theoretical density=7.84 g/cnt)

These results also reveal that the parameters RpiHg
process were suitable to produce almost fully deDBS
ferritic steel material.

4. CONCLUSIONS

On the basis of the results the following conclasican

be drawn:

1. There are significant differences in the morphology
of the elemental and pre-alloyed powders after MA.
About four times smaller particle were obtainedeaft
ball milling of the elemental powder whereas, large
and flakey-like particles were observed in the case
of pre-alloyed powder.

2. An increase in the parameters of MA process yields
a decrease in the time of milling, however, no gign
cant changes in the morphology of particles havenbe
observed.

3. The average crystallite size of about 35 nm, esétha
from XRD spectra, was found comparable for both
powders. However, in the case of pre-alloyed powder
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TEM observations revealed elongated up to 100 nm 8. Patil U, et al. (2005), An unusual phase transformation dur-

nano-grains what is not in a good accordance WiRDX ing mechanical alloying of an Fe-based bulk metaliburnal
results. of Alloy and Compounds, Vol. 389, 121-126.

MA under argon atmosphere resulted in an increase 9. Suryanarayana C.(2001), Mechanical alloying and milling,
. . . Progressin Mat. Science, Vol. 46, 1-184.

of tr:ledO (.:ont?nr: Vt\)/h:ﬁh had. lde]}t”memal. influence 10. Williamson G .K., Hall W. H. (1953), X-ray line broadening

on the density of the u materia f"l er H'PP'“Q- from filed aluminum and wolframActa Metall., Vol.1, p. 22.

It was found that the highest density and microhess

value I_\(’jvas dachleved when pre-alloyed powder was i o was supported by Bialystok Technical Ursity,
consolidated. a grant no. W/WM/21/10.
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Abstract: This paper presents methods of calculating fraatidiffer-integrals numerically. We discuss exteryj the pros

and cons of applying the Riemann-Liouville formwuda, well as direct approach in form of The Griinwadthikov method.

We take closer look at the singularity, which appeahen using classical form of Riemann-Liouvillenfmla. To calculate
Riemann-Liouville differ-integral we use very weliwn techniques like The Newton-Cotes Midpoint RMi& also use
two Gauss formulas. By implementing transformatiéhe core integrand of Riemann-Liouville formulae( called it “the

inverse transformation”), we would like to poinethossible way of reducing errors when calculaitinghe core of this pa-
per is the subject of reducing the absolute errberwcalculating Riemann-Liouville differ-integralé fome elementary
functions; we use our own C++ programs to calculaten and compare obtained results of all methotts wihere possible,
exact values, where not — with values obtainedgusitcellent method of integration incorporated iathematica. We will

not discuss complexity of numerical calculationse Will focus solely on minimization of the absol@eors.

1. INTRODUCTION

Fractional calculus is playing recently a majorerol
in many scientific areas. The fractional-order dative
(FOD) or integral (FOI) are natural extensions s tvell-
known derivatives and integrals. This generalisatima-
bles better physical phenomena identification (@losip
et al., 2005; Sabatier et al., 2007), analysis [jD#eri and
Mainardi, 1997; Chen et al., 2004; Kilbas et al00&,
Michalski, 1993; Miller and Ross, 1993; Nishimof®84,
1989, 1991, 1996; Oldham and Spanier, 1974; Ougtalo
1995; Samko et al.,, 1993) and control (Machado,1200
Ostalczyk, 2000, 2003a, b; Oustaloup, 1984). Betetare
still problems in numerical evaluation of the fiaoal-
order derivatives or integrals (Deng, 2007; Diatihel997;
Gorenflo, 2001; Lubich, 1986; Mayoral, 2006; Podiyb
1999; Schmidt and Amsler, 1999; Tuan and Gorenflo,
1995). In this paper several numerical methods iegpl
to FOD/FOI calculation are compared, due to itsusacy.
Appropriate conclusions and remarks are derived.

The paper is organised as follows. Firstly basifinde
tions of FOD and FOI are given. In Section 3 sheview
of numerical methods used in calculation of the rioper
integrals is given. Section 4 presents functionisjestied
to the fractional differentiation and integratidn.Section 5
main results are presented. Finally, the conclission
are given.

2. MATHEMATICAL PRELIMINARIES

There are several formulas, which can be usedltoi-ca
late differ-integrals numerically. One of them isi@wald-
Letnikov and second one Riemann-Liouville, form(@s-
talczyk, 2000; Podlubny, 1999; Samko et al., 1993y
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distinct from each other in one main way: Grinwald-
Letnikov formula derives from differential quotient
and Riemann-Liouville from multiple integrals.

This paper shows the pros and cons of applying the
Riemann-Liouville formula. Also, the ideas how &duce
absolute errors when calculating it numericallyeTarin-
wald-Letnikov formula is used for comparing purpose
only. The accuracy reached by this method as medere

2.1. The Grunwald-Letnikov formula
of a fractional-order differ-integral (GrLet)

The derivative of a real order> 0 (for the integral we
use orderw» < 0 ) of a continuous bounded functigigt)
is defined as follows

to
3 alV)f (t - hi)
=0

2

WD ()= im 0
t—ty=kh

where

o) 1 for i=0

V) = 1+v) for i=123... (2)

")

2.2. The Riemann-Liouville formula
of a fractional-order differ-integral (RL)

The definite Riemann-Liouville integral of the real
functionf(t) of thev > 0 order is defined as follows:



toIt"f(t):ﬂl;jj.(t—r)"_lf(T)dr. A

where:t,, t — integration range, which comply with the
condition —co < t, < t < oo, I'(v) — Euler's Gamma fun-
ction.

Before we define the Riemann-Liouville derivatives
have to describe natural numbgrwhich comply with the
condition:

n= [v] +1 (4)
n also denotes an order of classical derivative.

The Riemann-Liouville derivative of the real furmti
f () of thev > 0 order is defined as follows:

(5)

3. SHORT REVIEW OF FUNDAMENTAL
METHODS OF NUMERICAL INTEGRATION
AND TESTED FUNCTIONS

In the process of calculating differ-integralsstrieces-
sary to calculate a value of the definite integraér the
range[t,, t]. Usually it is interpolated with the following

formula
t

J.f(t)dt:ZL:Akf(tk)+R.

to

(6)

The right side of the equation is called quadrature
in which t, — denotes quadrature nodes, — quadrature
coefficients (weights)l. — number of intervals in interpola-
tion andR — the remainder.

The above formula is shared by all quadratures.ditae
ference lies in the algorithms of calculating theades and
coefficients.

We used following formulas to calculate differ-
integrals:

- Riemann-Liouville differ-integral (RL);

- Modified Riemann-Liouville differ-integral via men-
tioned at the beginning — inverse transformatioRIn
Additionally we use Griinwald-Letnikov differ-integjr

formula (GrLET).

Our C++ programs which were developed especially

for the purpose of this experiment used followingtiods
of numerical integration while applying formulas L(R
mRL):
- Newton-Cotes quadrature, Midpoint Rule (NCM);
— Gauss-Legendre quadrature (GaLEG);
— Gauss-Laguerre quadrature (GaLAG).

We have chosen three basic functions

f(t)=tPat),t0(02) for p= 012

where

(7)
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t<0

t=0 (®)

1) :{0 for

1 for

is the Heaviside function. For functions (7) weccddte
two types of expressiong Dy f(t) and . I/ f(t). In Tab. 1
different methods specifications are collected.

Tab. 1.Important parameters used in integration rules

Method
Iweight h/ A t R<
function
h™ 1 (i
NeM  |h=1"fo t, = to+(k+y2)h ﬂ‘f( )(Z)('
) ¢ Olto.t]
Abscissas of the Leg- t—ty
_ endre polynomial | S~ ~qn;
GalEG Ac= P, (x) of desired grac 2((3/1;?000
_ 2 tV(z),
B (5T
—t¢ |Palty) t—tg t—to ZD[tOvt]
W= R
= Abscissas of the | (ni)?
GaLA_G A 2 Laguerre polynomia ﬁ f (zn)(Z
plx) = () L, (x) of desired grad .
o R ¢ 0(0;+ )
X [Ln (Xk) X -

Our goal was to figure out how the methods will-per
form when using the smallest, arbitral chosen, remb
of sample points:

For the method GrLET and NCM we
L=4,8,16,24,32,100,300 and 600 intervals.

For both Gauss methods — L=4,8,16,24 and 32 irlerva
only.

It is widely known, that number of L greater thad+4&0
for the Gauss methods often causes the error ajsiely.
Sometimes 100% and more! That's why you will endetn
empty fields in all tables with results for thesethods.

used

4. THE INVERSE TRANSFORMATION (mRL)
EXPLAINED

As we remember the Riemann-Liouville differ-intelgra
formula includes improper integral which has siagity
atend of the integration range. For example fot: t=

fol(l — x)""1f(x)dx. The variable changes— x = 1/t¢,
a=1,2,3,.. andt — 1 = u convert the improper integral
into one, that, after extracting weight functipfx) = e™
can then be calculated by the Gauss-Laguerre dua€era
formula f0°° e *f(t)dx, which were developed to deal with
such problems.

Yet more: with the parameterwe can control the con-
vergence of the integrand, which plays major roleemv
obtaining best results while the order of diffeteigral
changes. As you will notice further, there existsyclose
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relation between order of differ-integral and thelue
of parameterr. We will use it to our advantage.

5. THE TEST RESULTS

First I7f(t) of function f(t)=t1(t) = 1(¢),
for t € (1,1), v =0.2,0.5,0.8 using modified Riemann-
Liouville differ-integral formula via mRL

tolt"f(t):

t a

FE-V)J:e

[ 1
(1+t)7

v-1
J (1+t)a+1

dt

9)

was evaluated. The results are presented in Tab. 2a
Related absolute errors are plotted in Figs. 1la — 1

Tab. 2a.0Obtained values of absolute error for= 0.2

L RL NCM RL GaLEG GrLET | mRL GalLAG
4 5.427e-01 4,587e-01 2.206e-(2 4.822e-p2
8 4.725e-01 3.557e-01 1.097e-02 4.529e-p3
16 4.114e-01 2.729e-01 5.465e-03 1.297e04
24 3.794e-01 2.330e-01 3.639%¢e-03 1.417e{05
32 3.582e-01 | 2.081le-01 | 2.728e-03| 1.076e-10
100| 2.852e-01 - 8.718e-04 -
300| 2.289e-01 - 2.905e-04 -
600| 1.993e-01 - 1.452e-04 -
Tab. 2b. Obtained values of absolute error foe= 0.5
L RL NCM RL GaLEG GrLET | mRL GalLAG
1.699e-01 1.039e-01 3.463e-(2 6.951e-p2
8 1.205e-01 5.781e-02 1.748e-(2 7.111e-p3
16 8.527e-02 2.977e-02 8.780e-03 1.909e04
24 6.964e-02 2.005e-02 5.861e-03 1.096e{05
32 6.032e-02 | 1.511e-02 | 4.399e-03| 9.725e-10
100| 3.413e-02 - 1.410e-04 -
300| 1.970e-02 - 4.701e-04 -
600| 1.393e02 - 2.351e-04 -
Tab. 2c.Obtained values of absolute error {610.8
L RL NCM RL GaLEG GrLET | mRL GalLAG
4 3.048e-02 1.439e-02 2.070e-02 6.501e-p2
8 1.765e-02 5.183e-03 1.055e-(2 6.162e-p3
16 1.017e-02 1.792e-03 5.321e-03 1.771e04
24 7.362e-03 9.516e-04 3.558e-03 1.033e{05
32 5.852e-03 | 6.054e-04 | 2.672e-03| 2.545e-10
100| 2.354e-03 - 8.577e-03 -
300| 9.777e-04 - 2.862e-04 -
600| 5.615e-04 - 1.431e-04 -
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Tab. 3. Lowest values of absolute error obtained for optima
values ofe depending o (MRL GaLAG)

In Tab. 3 optimal values o& as functions of orders
are presented. Convergence of modified integrarfélg.—2.

88

a v=202 v=20.5 =0.8
12.95 1.076e-08 4.591e-05 6.842e-04
5.97 3.171e-03 9.725e-10 7.705e-06
3.71 2.975e-02 1.020e-04| 2.545e-09
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Fig. 2. Convergence of integrand (9) for optimal values
of @ depending ow (MRL GaLAG)

Next similar integrals are obtained for function
f(@) =t'1(t) for t € (0,1), v =0.2,0.5,0.8. This time
a modified Riemann-Liouville differ-integral formalvia

acta mechanica et automatica, vol.5 no.2(2011)

Tab. 4c.Obtained values of absolute error fo= 0.8

L RL NCM RL GaLEG GrLET | mRL GalLAG
4 3.237e-02 1.459e-02 1.055e-01 9.402e-p2
8 1.826e-02 5.203e-03 5.320e-02 4.341e-p2
16 1.036e-02 1.793e-03 1.036e-02 5.540e-03
24 7.459e-03 9.521e-04 1.784e-02 5.880e-04
32 5.911e-03 | 6.056e-04 | 1.339e-02| 1.202e-06
100| 2.362e-03 - 4.292e-03 -
300| 9.789e-04 - 1.431e-03 -
600| 5.619e-04 - 7.157e-04 -

Log Abzolute smor

0.001

mRL assumes the form

g

00

1 .t

tolt"f(t): Ie

rv)q
[(1+t)”

The results are presented in Tabs. 4a — 4c antkdela

v-1
J ety +1

plots are included in Figs. 3a — 3c.

(10)

Tab. 4a.0Obtained values of absolute error fo& 0.2

L RL NCM RL GaLEG GrLET | mRL GalLAG
4 5.442e-01 4.592e-01 2.608e-(2 6.521e-p2
8 7.339e-01 3.558e-01 1.332e-(2 1.380e-p2
16 4.118e-01 2.729e-01 6.734e-02 6.505e-04
24 3.796e-01 2.330e-01 4.505e-02 2.389e105
32 3.583e-01 | 2.081e-01 | 3.385e-03| 9.019e-07
100| 2.852e-01 - 1.087e-04 -
300| 2.289e-01 - 3.628e-04 -
600| 1.993e-01 - 1.815e-04 -
Tab. 4b. Obtained values of absolute error foe= 0.5
L RL NCM RL GaLEG GrLET | mRL GalLAG
4 1.735e-01 6.806e-02 6.806e-()2 8.860e-p2
8 1.218e-01 5.790e-02 3.463e-(2 2.299e-p3
16 8.576e-01 2.972e-02 1.747e-02 1.406e{03
24 6.991e-01 2.005e-02 1.168e-02 7.497e404
32 6.050e-01 | 1.512e-02 | 8.775e-03| 8.816e-07
100| 3.416e-01 - 2.816e-03 -
300| 1.971e-01 - 9.399e-04 -
600| 1.393e-01 - 4.700e-04 -

Fig. 3a.Values of absolute error for= 0.2
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a[l-

In Tab. 5 optimal values af as functions of orders are

presented. Convergence of modified integrands —4ig 1

),

W HR)=—7yTe - -
Tab. 5.Lowest values of absolute error obtained for optima F(v) 0 1 v-1
values ofa depending ow (MRL GaLAG) [ P ] (1+t)a +1
a V=02 V=05 V=08 L+t)
9.090 1.202e-06 1.112e-03 3.591e-03 The results are presented in Tab. 6a — 6¢ andecklat
4.341 1.604e-02 8.816e-07 5.725e-05 plots are included in Figs. 5a — 5c¢. In Tab. 7optivalues
2.900 6.567e-02 8.919e-04| 9.019e-07 of aas functions of orders are presented. Convergence
of modified integrands — Fig. 10.
£(t)
2=0.08 Tab. 6¢.Obtained values of absolute error fo= 0.8
e L | RLNCM | RLGalEG | GrLET | mRL GaLAG
o1 4 | 3.819e-02 1.480e-02] 1.255e-01  2.393e-p2
8 1.986e-02 5.222e-03 6.121e-02 8.463e-P3
16 1.081e-02 1.795e-03 3.021e-02 1.875e03
24 7.667e-03 9.529e-04 2.006e-02 2.769e04
32 6.033e-03 | 6.057e-04 | 1.501e-02| 4.059e-05
100| 2.377e-03 - 4.782e-09 -
300( 9.808e-04 - 1.592e-04 -
600| 5.624e-04 - 7.956e-04 -
we el
: : P == 1clcct Leg Avssluts smor

200

400

800

Fig. 4. Convergence of integrand (10) for optimal values
of a depending ow (MRL GaLAG)

Tab. 6a.Obtained values of absolute error o 0.2

L RL NCM RL GaLEG GrLET mRL GaLAG
4 5.463e-01 4.579e-01 4.493e-()2 8.935e-p2
8 4.742e-01 5.222e-01 2.258e-(2 5.645e-p3
16 4.121e-01 1.795e-01 1.132e-02 9.926e03
24 3.798e-01 9.529e-01] 7.551e-03 3.905e03
32 3.585e-01 | 6.057e-01 | 1.088e-03| 1.330e-03
100 2.853e-01 - 1.814e-043 -
300| 2.290e-01 - 6.050e-04 -
600| 1.993e-01 - 3.025e-04 -
Tab. 6b. Obtained values of absolute error foe= 0.5
L RL NCM RL GaLEG GrLET mRL GaLAG
4 1.789e-01 1.106e-01 9.550e-(2 9.566e-p2
8 1.236e-01 5.800e-02 4.740e-(2 3.233e03
16 8.638e-01 2.980e-02 2.360e-02 6.917e403
24 7.024e-01 2.006e-02 1.571e-02 1.623e103
32 6.071e-01 | 1.512e-02 | 1.178e-02| 3.450e-04
100| 3.420e-01 - 3.764e-03 -
300| 1.972e-01 - 1.254e-073 -
600| 1.394e-01 - 6.269e-04 -

Finally we calculatg I f(t) of functionf (t) = t*1(t)
t € (0,1), v=0.2,0.5,0.8. The modified Riemann-
Liouville differ-integral formula via mRL assumdsetform

for

90
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Tab. 7.Lowest values of absolute error obtained for optima
values ofa depending om(mRL GaLAG)

alv 0.2 0.5 0.8
7.91 1.330e-03 3.238e-03 6.127e-03
5.05 8.027e-03 3.640e-04 8.272e-04
2.90 6.564e-02 9.081e-04| 4.059e-05
£(t)
0.1
1079
10

10-13

10717 |

F

200 400 600 800

Fig. 6. Convergence of integrand (11) for optimal values
of a depending ow (MRL GaLAG)

Now a problem of the fractional derivativgD; f (t)
of function f(t) = t°1(¢) for t € (0,1), v =0.2,0.5,0.8
is considered. We assurnfi€0) = 1 and calculate

[n]:v+1

(12)

Then the modified Riemann-Liouville differ-integral
formula via mRL takes the form

t DY f(t) =

(13)

to) ,

“Ta-v)  Th-v),

acta mechanica et automatica, vol.5 no.2(2011)

One can realize that the above value depends,isn th
case solely on accuracy of the inverse gamma fumciihe
obtained results are presented in Tabs. 8a — 8cedatkd
plots are included in Figs. 7a — 7c.

Tab. 8a.0Obtained values of absolute error fo& 0.2

L RL NCM RL GaLEG GrLET | mRL GalLAG
4 0.0 0.0 2.777e-02 0.0
8 0.0 0.0 1.377e-02 0.0

16 0.0 0.0 6.562e-03 0.0

24 0.0 0.0 4.348e-03 0.0

32 0.0 0.0 3.251e-03 0.0

100 0.0 - 1.034e-03 -

300 0.0 - 3.439%e-04 -

600 0.0 - 1.718e-04 -

Tab. 8b.Obtained values of absolute error foe= 0.5

L | RLNCM | RLGaLEG | GrLET | mRL GaLAG
0.0 0.0 6.081e-02 0.0
8 0.0 0.0 2.829e-02 0.0
16 0.0 0.0 1.376e-02 0.0
24 0.0 0.0 9.011e-03 0.0
32 0.0 0.0 6.721e-03 0.0
100 0.0 - 2.127e-03 -
300 0.0 - 7.065e-04 -
600 0.0 - 3.529e-04 -

Tab. 8c.Obtained values of absolute error fo= 0.8

L RL NCM RL GaLEG GrLET | mRL GaLAG
4 0.0 0.0 4.894e-02 0.0
8 0.0 0.0 2.177e-02 0.0
16 0.0 0.0 1.031e-02 0.0
24 0.0 0.0 6.758e-03 0.0
32 0.0 0.0 5.026e-03 0.0
100 0.0 - 1.581e-03 -
300 0.0 - 5.242e-04 -
600 0.0 - 2.617e-04 -
Absolute error
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Tab. 9a.0Obtained values of absolute error fo& 0.2

L RL NCM RL GaLEG GrLET | mRL GalLAG
4 3.048e-02 1.439e-02 2.070e-02 6.501e-p2
8 1.765e-02 5.183e-03 1.055e-(2 6.616e-P3
16 1.017e-02 1.792e-03 5.321e-03 1.771e04
24 7.362e-03 9.516e-04 3.558e-03 1.033e{05
32 5.852e-03 | 6.054e-04 | 2.672e-03| 2.545e-09
100| 2.354e-03 - 8.577e-04 -
300| 9.776e-04 - 2.862e-04 -
600| 5.615e-04 - 1.431e-04 -
Tab. 9b. Obtained values of absolute error foe= 0.5
L RL NCM RL GaLEG GrLET | mRL GalLAG
4 1.699e-01 1.093e-02 3.463e-(2 7.006e-p2
8 1.205e-01 5.781e-02 1.748e-02 7.148e-p3
16 8.527e-02 2.977e-02 8.780e-03 1.932e04
24 6.964e-02 2.005e-02 5.861e-03 1.103e{05
32 6.032e-02 | 1.511e-02 | 4.399e-03| 3.353e-08
100| 3.413e-02 - 1.410e-04 -
300| 1.970e-02 - 4.700e-04 -
600| 1.393e-02 - 2.350e-04 -
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Tab. 9c.Obtained values of absolute error foe= 0.8

L RL NCM RL GaLEG GrLET mRL GaLAG

4 5.424e-01 4.587e-01 2.206e-02 4.781e-p2

8 4.725e-01 3.557e-01 1.097e-02 4.483e-P3
16 4.114e-01 2.729e-01] 5.465e-03 1.293e{04
24 3.794e-01 2.330e-01 3.639e-03 1.452e{05
32 3.582e-01 | 2.081e-01 | 2.728e-03| 4.105e-08
100| 2.852e-01 - 8.718e-04 -
300 2.289e-01 - 2.905e-04 -
600| 1.993e-01 - 1.452e-04 -

Next similar derivative is obtained for function

f@) =t1(t) for te(0,1), v=0.2,05,0.8 Under
a condition (12) modified Riemann-Liouville diffentegral
formula via mRL assumes the form

,, DV ()= (14)
_ 1 Gy
= F(n—V)'(l;e ) 1 dt

{(1+t)aj (L+)a*1

The obtained results are presented in Tabs. 9aan@c
related plots are included in Figs. 8a — 8c. Ingdl® opti-
mal values ofx as functions of orders are presented. Con-
vergence of modified integrands — Fig. 9.
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Tab. 10.Lowest values of absolute error obtained for optima
values ofx depending o (mRL GaLAG)

acta mechanica et automatica, vol.5 no.2(2011)

Convergence of modified integrands — Fig. 11.

Tab. 11a.Obtained values of absolute error fo& 0.2

a v=02 v=05 v=08
12.90 6.691e-04 4.489e-05 4.101e-08
6.000 7.922e-06 3.353e-08 3.077e-03
3.710 2.545e-09 1.020e-04 2.975e-02

1073

10~

0%

1011 L

t
1000

2[;[: 4-[I:C EEI:C 00
Fig. 9. Convergence of integrand (14) for optimal
values ofx depending ow (mMRL GaLAG)

Finally we calculatg D¢ f (t) of functionf(t) = t*1(t)
for t€(0,1), v =0.2,0.50.8. Then under the condition
(12) modified Riemann-Liouville differ-integral foua
via mRL assumes the form

, DU f(t)= (15)
1
2a|1-
1 ]3 t ( (1+t)aj dt
I'(n—v)0 n-v-1
(1+t)a'+1
(L+1)?

The obtained results are presented in Tabs. 11hc- 1 Fig.

and related plots are included in Figs. 10a — iod.ab. 12

optimal values ofa as functions of orders are presented.

L RL NCM RL GaLEG GrLET mRL GaLAG
4 6.473e-02 2.918e-02 5.225e-()2 1.804e-P1
8 3.651e-02 1.041e-02 2.648e-(2 2.759e-p2
16 2.073e-02 3.587e-03 1.133e-02 1.031e{03
24 1.492e-02 1.094e-03] 8.907e-03 4.778e405
32 1.182e-02 | 1.211e-03 | 6.688e-03| 1.844e-06
100| 4.724e-03 - 2.145e-03 -
300| 1.958e-03 - 7.155e-04 -
600| 1.124e-03 - 3.578e-04 -
Tab. 11b.Obtained values of absolute error foe 0.5
L RL NCM RL GaLEG GrLET mRL GaLAG
4 3.469e-01 2.198e-01 1.373e-01 1.772e-p1
8 2.436e-01 1.158e-02 6.960e-(02 4.600e-p2
16 1.715e-01 5.957e-02 3.503e-02 2.813e03
24 1.398e-01 4.011e-02 2.341e-02 1.502e{04
32 1.210e-01 | 3.023e-02 | 1.757e-02| 1.736e-06
100| 6.832e-02 - 5.363e-03 -
300| 3.942e-02 - 1.880e-04 -
600| 2.787e-02 - 9.402e-04 -

Tab. 11c.Obtained values of absolute error fo= 0.8

w2l

10a.Values of absolute error for= 0.2

L RL NCM RL GaLEG GrLET | mRL GalLAG
4 1.880e-00 9.183e-01 2.146e-01 1.833e-p1
8 9.466e-01 7.117e-01 1.081e-01 8.234e-p2
16 8.235e-01 5.458e-01] 5.426e-02 1.002e02
24 7.592e-01 4.659e-01] 3.622e-(2 9.573e04
32 7.166e-01 | 4.161e-01 | 2.718e-02| 1.573e-06
100| 5.704e-01 - 8.708e-03 -
300| 4.579e-01 - 2.904e-03 -
600| 3.968e-01 - 1.453e-03 -
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Tab. 12.Lowest values of absolute error obtained for optima

values ofx depending ow (mRL GaLAG)

a v=02 v=05 v=08
8.905 6.643e-03 2.044e-03| 1.573e-06
4.341 1.145e-04 1.763e-06 3.201e-02
2.900 1.804e-06 1.784e-03 1.313e-01

Log Absolute error
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Fig. 11.Convergence of integrand (15) for optimal values
of a depending ow (MRL GaLAG)

94

6.

FINAL CONCLUSIONS

The results presented in Section 5 enable us touiate

the following conclusions:

1.

10.

11.

. Applying

The shape of the integrand does not influence acgur
of the calculations when using Grunwald-Letnikov
method. The number of coefficients used — doesadJsi
maximum number of 600 of coefficients we were able
to obtain values with maximur0e — 04 accuracy.

. The shape of integrand does influence accurachef t

calculations when applying advanced methods of inte
gration to calculate differ-integrals using Riemann
Liouville formula.

The values of the integrand obtained using “pureg-Ri
mann-Liouville formula are charged with great absel
error. This makes the formula often unsuitablericp-
cal, technical applications.

This level of errors appeared because off the tlaat
the “core” integrand of the formula has “fast-chegg
character and singularity at the end point of titegra-
tion range.

inverse transformation of the integrand
to “smash” the singularity allowed not only obtaimuch
better results than by using Grinwald-Letnikov roeth
but often using radical reduced number of sampling
points. This lowers the level of calculation conxtig.

. Applied transformation of variables and specialssiab

tute expression mentioned earlier to the “core’edint
grand allowed to lower the values of absolute arror
about 2-6 times.

. The values of absolute errors increased propoitiona

to the order of “complexity” (paramete) of the func-
tion tested: for increasing values pf absolute errors
also increased proportionally.

Heaviside function — due to its character is the-“d
main” of Grinwald-Letnikov formula, but as the “cem
plexity” of the function (other two functions ted)e
rises, if the integrand is modified, Newton-Cotesl an
Gauss-Laguerre rules seems to be appropriate tg.app
The Newton-Cotes Midpoint Rule is universal tool. Not
only it does not depend so strongly as the Gauss-
Legendre rule, on shape and changeability of tie- in
grand, but also can be applied to integrands whale
singularities at the both and/or end of the intégma
range.

Gauss-Laguerre rule, when applied to transformést in
grand, seems to be the better way, not only because
of the low values of absolute error, but also beeau
of the fact, that these low values are obtaineth witly

5% sample points used by Grinwald-Letnikov method
and Newton-Cotes Rule. This can dramatically reduce
the complexity of the calculations.

Manipulation of thea variable in the inverse transfor-
mation allows to speed up the convergence of the in
grand and lower the absolute error (notice figutamn-
vergence of integrand for optimal valuesasodlepending

on v (MRL GaLAG)). We noticed close relation be-
tween the values af andv, when minimising the abso-
lute error in calculations: for integralse—should be re-
duced wherv increases; for the derivatives — the other
way round.



12.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

The logic of our programs needed only the degrabef
desired polynomial as a input data. All other datae
calculated “on the fly” (the polynomial itself, itkeriva-
tive, abscissas and weights). In practical appboat

we can and should use tabulated values of abscissas

and weights which were the subject of standardinati
all over the world. This can reduce more the comiple
of calculations which then can make the method imeco
yet more suitable in practical applications.
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Abstract: In this paper we explore the linear difference ¢igna with fractional orders, which are functiorfdime. A de-
scription of closed-loop dynamical systems descritpe such equations is proposed. In a numericahpl@a simple control

strategy based on time-varying fractional ordeggésented.

1. INTRODUCTION

Over the last few decades a growing interest iraa-f
tional calculus (Carpinteri and Mainardi, 1997; lalh
1986; Miller and Ross, 1993; Oustaloup, 1995; Ploaij
1999) has been observed. lIts technical applicaftected
in new fractional-order models of physical procesaed
materials behaviour (Oustaloup, 1995; Podlubny, 9199
Extensive possibilities of modern digital processtr ana-
lyse, modify or extract information from measurégnals
require describing signals by discrete-time funwdidOs-
talczyk, 2001). In practical applications the a$ea back-
ward difference is necessary.

A variable- (V), fractional order (FO) backward fdif
ence (BD) of a discrete-time bounded functfpns defined
as follows (Ostalczyk, 2000, 2003, Ostalczyk andkBez,
2003).

OA(or;j)fk = ibi(nj)fk—i =

fy

fra
0 b)) ) ) 1l
[bonl by b bk b, } f1 |,

fo

fa

wherea difference orden; € R and discrete time instants
k € NU {0} (R andN denote sets of real and natural hum-
bers, respectively). Coefficients™” are defined below

( ) 1 for i=0
b’ = : )
n; (nj —1)~--(nj —i+1)
il

for 1=123--

For discrete-time functionf, satisfyingf,, = 0 for k<0
we can write

fy
fra
ot <[l o) o) o] )
f1
L o

Realize that in the formula given above the coristan
dern; is independent of the time-variatheNext we define
a discrete variable function

NO{o}Cj - njOR. (4)

The VFOBD defined by formula (3) is a function ofct
discrete variablek andj

N O{o} Ok — gk,j:OA(Ej)kaR. (5)

For a special assignment of andk we define a new
one discrete variable function

N O{0} Ok - he=oal™), OR, ©)

defined as

he=ot)fy = iﬁ(nk)fk—i =

i=0
]
fr-1
[bc()nk) bl(”k) b|£nk) blgr}l) bér}z) (. )
fo
fa
with
1 for i=0
Q(nk): . (8)
nk(nk _1)(nk i +1) for i= 123
il ’
For f, =0 for k<0 we obtain
(g — g
o fi =D 9)
i=0

It should be noted that the VFOBD is related toas-v
able-order fractional operator defined as (Coimi2@03;
Lorenzo and Hartley, 2002)
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t _ _\-n(t)1
o0ty =[5 o (0

0

It can be proved (Oustaloup, 1995) that for eweky 0
the formula given above is equivalent to the follagviimit

t
@h(”(t»y(t ~ih)
od (1) = Aiinoizo—hn(fh : (11)

where [.] denotes a function rounding towards tkaraest
integer,h > 0 is an integration step. Substituting= kh

with h =1 we immediately obtain a VFOBD defined

by formula (9)

In this paper we focus our attention on linear esyst
described by VFOBD equations with time-invarianeffis
cients. Next we explore an adequate descriptianabsed-
loop system with a controller and plant modelledabiFO

difference equation. In the second numerical exampl

we show that even though the physical processasided

by VFOBD equations are yet unknown, they are useful

in a control strategies design.

2. LINEAR VFO DISCRETE-TIME SYSTEMS

Now we consider a linear VFO difference equatioi)D

r S

ZAOA(ch'k)YK = B oA(g]"k)Uk, (12)
i=0 =0
where

A #0, A,BjOR, =012, = 0125, (13)
Mrics Ny -1k Mk Nok UR (14)

Mgk, M1k My, Mo UR

Here we admit a case when somg, = n;,, m;; =
m;, or evenn;, = n;, = 0 for i # j (a subscripk denotes
an appropriate discrete time instant).

From this point on we will make use of a permarasit

sumption thawu, = 0 for k < 0. Hence difference Equation

(12) can be expressed in the following form

OA((or;r,k )i/k
ol "y
A AL - A A : = (15)
A(nlk)yk

° o)

L 0B Yk |

= [Bs Bs-1 B BO]

k Yk |
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Substituting the column vectors in difference etpmat
(15) by formulae (1) and (3) yields

(A Aa A A
(16)
) o) ) T
bonrjl,k) blnr'—l,k) bIEnrjl,k) yk_—l
o) ) ) ]y |
_bgfb,k) blno’k) bK”o,k) __'
:[Bs Bs1 B BO] X
[ b(ms,k) (ms,k) bIETI‘i,k) blgms,k) s Uy
LT G R B
d) )l |
I bg”b,k) bl”b,k) bg’l\;,k) bE”b,k) L Ug

Multiplications of the row-vectors by appropriatetmi-
ces in Equation (16) yield

Yk
Yk-1 Uk
[aO,k A Ak ] : :[bo,k bk,k] Pl
Yo Ug
(17)
where
i (nr,k)_
t:enr—l,k)
ax=[A A - A Al i | i=012-,18)
q(nlk)
q(no,k)
and
_bj(msk)_
bj(ms_]'k)
bix=[Bs Bsq -~ B Bo]| i | i=0L-k.
b(mLk)
b?m()k)

Further we assume that;, = 0 for all k. It should be
noted that practical realisations of the discreteetsystems
impose an additional conditionmax {n, , ..., gk} =
max {mgy, ..., My} ON all non-negativk. Equation (17)
is valid for every positive integer. Thus for— 1 we have



Aok Ak
while
[aO,k—l Q-1

A-1k-1

Yk
Yk-1

ak,k .. ]
3{0

Yi-1
Yk-2

Yo

[bO,k

A7 b -

Uk
bl ¢ |-
Ug

(19)

U1
bk—lk—l] :
Uo

(20)

This can be further transformed into an equivaler

[0 agk-1

= [0 box-1

Repeating this notation fdr— 1,k — 2, ..., 1,0 and put-

Yk

Yo

B2 k-1 bk—l,k—l]

Uk

Uk —1

Ly
Upg

Yk-1 [
: ak—Lk—l] | TBkk-1 Ak

Y-
] y._3

(21)

ting them together in the matrix-vector form we get

Qk Ak -1k Ay k Yk
0 agk1 A-ok-1 A-1k-1 || Yk
0 0 aOl al’l Y1
0 0 0 aO’O Yo
_ak+:Lk +2k  +3k || Y=
+ A k-1 +1k-1 Sk+2k-1 Y-2|_
: : y-3
| a0 Az agp :
bk big Bx-1k by k Uy
0 bgyx-1 Be-2k-1 De—1k-1 || Uk-1
0 0 bO,l bl.l U
0 0 0 b0,0 UO

or

Diyk +1kyr =Nguy,

where

+

(22)

(23)
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QPk Ak -1k a k
0 agka A-2k-1 -1k-1
Dy=| i : Fo (24)
0 0 aOJ_ a.ll
0 0 0 aoyo
is (k+1)x (k+1) output matrix,
A1k Ak+2k A+3k
a _ _ _ .
I\ = kk 1 ak+?,k 1 ak+:2,k 1 , (25)
A0 azo azo
iS(k+1)x () initial conditions matrix,
[box  bio By -1,k by«
0 bgk- B-ok-1 B-1x-1
N =| : : : , (26)
0 0 bmL b:Ll
0 0 - 0 boo
iSs(k+1)x (k+1) input matrix,
B oy ]
Y4
Yk-1 Vo Ug—1
Y= |V = y U= (27)
-3
Y1 . U
| Yo | | Uo |
are (k+ 1) x 1output, co x1 initial conditions, and

(k + 1) x 1 input vectors, respectively. Square matrix (24)
is always non-singular. Hence Equation (23) caalbays
rearranged into the form
—n-l _p-l
Yk = DiNug =Dy iy (28)
where the first right-hand side term denotes aefdrpart
of the response, the second a homogenous one.bdve a
investigations are illustrated by following numadi@xam-
ple.

2.1. Numerical example

Consider the VFODE of the form

1 1
oA(or:lk)yk 5 Yk =S Uk

) (29)

For a given external function;, = 1,_, (discrete unit
step function) and the assumed zero initial conditions
0=y_1, Yy_2,y_3 = one should find an order function
ny , for which the solution has the form

ak for
Yk =

) 30
1 for (30)

wherea andk; mean undetermined yet: the response slope
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parameter and the switch time instant, respectiv@&l§osti-
tuting (3) into (29) we get (15) and further (1Hor
k—1,k—2,..,1,0 we obtain (23) with

Yk 0 1
Yk-1 0 1
Yk =| ,y|=oyuk-5 : (31)
Y1 . 1
| Yo | ' 1]
_1_5 bl(nlk) ?En_lf) ?Enlk)_
0 15 o) )
D= : : Fol (32)
0 o0 15 bl(”ll)
0 0 - 0 15 |
= bkff_l bkfﬁ_l bk+l_:«§_1 o (33)
bl(”l,o) bgnlo) bgnlo)
[0 05 0 - 0]
0O 0O 05 --- 0
Ny=/0 0 0 - of, (34)
0 0 0 0]

Now we evaluate the consecutive values of an order
functionn, .. For k = 0 and anyn,, the unique solution
of equation (29) isy, = 0. For k =1 and anyn,; one
possible solution iy; = 1/3. Hence we must put = 1/3.
This implies thaty, = 2/3 and y; =1 for i = 3,4,---. Fur-
ther, for k = 2, from formulae (28) and (31) — (36) we
obtain

15y2 - nlzyl + 05n lz(nlz _1)y0 =05, (35)

2
1ol M K
1.6
1.4+
1.2}

Al
0.8
0.6

0.4

0.2

0
0 5 10

Fig. 1. Plot of an order function, ;

15 20 25
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Substituting appropriate values, after elementaryape
tions, we geh, , = 1,5. Fork = 3 we get equation

n1anz-1) y+ n1anz -1z -2)

) (36)
2 6

15y3 =3y, + Yo =05

From two possible solutions; ; = 2 andn,;; = 3 we
take the first one. Continuing this procedure asoeder
function we take

1(any) for k=01
- 15 for k=2 (37)
Lk 2 for k=3’
1 for k=4

Its plot is presented in Fig. 1 .

1.4

12l Yk (nl,k :var)

| s

0.8

“— i (mx =1=consy

0.6
0.4

0.2
0 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Fig. 2. Plot of the VFODE and classical first-order DEuimns

The solution to difference equation (29) with orélerc-
tion (37) is plotted in Fig. 2. Here, for the sake
of comparison, the solution to a classical fistesrdiffer-
ence equation , = 1 = const) is also plotted.

The numerical example considered above shows that
it is possible to reshape the solution to a VFODEhould
be noted that althoughy,,y; do not depend om,4,n,
for k = 2 we have

Y2(”J,2 )
VS(”lz - ”13)

: (38)
Ya\Ny2,Ny 3, ”14)

3. DESCRIPTION OF A CLOSED - LOOP
DYNAMICAL SYSTEM

Next we consider a unity-feedback system with admn
discrete-time plant and a discrete-time controllargen-
eral, we assume that a time-invariant coefficieptant
is described by the (time-invariant or time-varjafac-
tional order difference equation. A block diagram
of a closed-loop system is presented in Fig. 3.

A plant is described by an equation similar
to Equation (28)



Pk =DEkN pUk ~ DBl pxP (39)

whereu,, p,, are the plant input and output signals, respec-
tively. The vectorp; andv, denote the plant and regulator
initial conditions, respectively. The plant is caiied by
the controller output signai, and subjected to a plant dis-
turbance signall;;, vector. A controller algorithm is de-
scribed by VFODE (12) or equivalently by the matrix
vector Eq. (28)

(40)

_ -1 -1
Vi =DRiNRKek DRl RKVI

wheree, denotes the controller input (a closed-loop system
error). Column vectorsy, d,, n, denote: a system com-
mand, a plant output disturbance and the sensee rsig-
nals, respectively. The vectgy is a system output signal.
Additional four equations describe the closed-leggtem

ek =|'k
Yk =Pk +di , Uy =V +dj .

[v di’kluk lpi

Controller Plant

Wy, Wi =Yg +ny,
(41)

dg
+<L
[ pk+
Wi

Fig. 3.Block diagram of the closed-loop system

Combining Equations (39)-(41) we get an input/outpu
description of the closed-loop system

Yk = (1k +GO,k)_1(G oklk =G okNk +dk)+
+(1k +GO,k)_lDI_31,kN pkdik —

11 -1 Vi
—(1|<+Go,|<) DP,k[NP,kDRklR,k |P,k][pl}

(42)

where Gy, = D7 Np DNz, is an open loop system
description, the matrid;, is (k +1) x (k+ 1) unit ma-
trix.

4. VFOs PI™Miopm2i) CONTROLLER
DESCRIPTION

Linear control strategies in the form of PID algioms
are still basic in digital control since they gisatisfactory
solutions to different control problems. In suchtollers
control strategies are implemented by software &husali-
sation may be restricted mainly by a micro-conéothem-
ory and speed.

The constant fractional-order discrete-time PIDtoan
lers have been the subject of investigations fonymgears
(Machado, 2001; Podlubny, 1999). Here we defind~@¥%
discrete-timePI1 ™10 D™2k) controller. Its algorithm is de-
scribed by a special case of Equation (12) wherpute

r=0,ny =0, s=2,mp,m, My IR (43)

In general, to preserve the PID strategy, in gdnera
assume thatn,, = 0 andm,; > 0,m,, > 0. According

acta mechanica et automatica, vol.5 n0.2(2011)

to Fig.3, the controller input is denoted dgyand the output
by v,. Hence thePI™uoDM2k controller is described
by the following difference equation

20 o) ()
Vi = Y Bjobdl e =[Kp Ki Kp] okte (44)
i=0 OAQZ,k &
where B, = K,,, B; =K;, B, =K, denote proportional,
integral and derivative gain, respectively. lagsumed that
K, + K; + K, # 0. Equation (44) implies thaDg, =1y,
hence from (40) we get

Vi =Ngye —lIrkV

where the matriNy , is defined by equation (26) with

(49)

b(mo,k)

bjx =[Kp K Kp] btm”) , =012 k-1k. (46)
)

bjgmz,k

The possible use of such a controller will be pnéesa
in the following numerical example.

4.1. Closed-loop system with VFO PID controller
transient response numerical evaluation

Consider a closed-loop system with a plant desdribe
by difference Equation (12) with the following ctieients
(Glnther, 1986)

A, =1, A =1.9397 Ay =0.3804 B, =0.0191
B; =—-0.0666 By =0.0475n, =m, = 2,
m=m=1n=my=0

The controller is described by a VFODE of the form

(47)

=Kpg +K; oA (ml.k)eK_,_K A(mZK)q( (48)

We assume that the following constraint

—-20<|v|< 20, (49)

is imposed on the controlling signal.

To preserve the maximum value of the controlling
signal fork = 0, the coefficients(,, K;, K, must satisfy the
equality K, + K; + K, = 20 The controller gains chosen
arek, = 16,375, K; = 3,125 andK,, = 0,5 and the orders
m, o =—1 andm,, = 1 can be chosen freely. The VFOs
are selected and plotted in Fig.4

—1(arbitrar)a for k=0
-1.2505 for k=1
Mk = -1+ O.8e_(k_l) for 2<k<9 (50)
-1 for k=10
1(arbitrar3a for k=0
M = 0.9596 for k=1 (51)
2k 711+ 603467905k for 2<k<9’
1 for k=10
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It should observed that the exponential order fonst
in formulae (50) and (51) are non-unique. Thera iside
choice of other functions. It seems important tesgrve the
conditionm, ;, = —1 andm,,; = 1 for all k = k; (when the
system achieves its steady-state). Over mentioniedval
the closed-loop system can be described by cldgsnte-
ger order) DE. This requirement eliminates realeticalcu-
lation problems.

Sy =2
S k=9t /

| /

3+ /

“

L k210
k=1 k=0

0 I I I I I
-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
Fig. 4.VFOsm,;,— my, trajectory

V k

20 25 30

Fig. 5. The closed-loop system-controlling sigmal

1.4

L2] Pl

PID
Pl (mk)D(mz,k)

0.8
0.6+
0.4}
0.2 4
K

0 é 1‘0 1‘5 2‘0 25
Fig. 6. The closed-loop system outputs with different colters

0

In Fig. 3 the VFO satisfying Equations (50) afid)
are presented in orders plana,;m,. It should be noted
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that after a finite number of time instants, the OIFE
based control algorithm becomes a simple integeeror
one, and as a result, a linear increase of sarsplesidered
in a calculation process (growing “calculation tak “fi-
nite memory problem”) can be avoided. Thus, itas mec-
essary to simplify an algorithm by cutting the ‘mahtion
tail”.

The control algorithm has PID controller properties
(Gunther, 1986; Ifeachor and Jervis, 1993; IsermaARs;
Ogata, 1987). To avoid a growing number of samfdes
called “calculation tail” (Podlubny, 1999)), after finite
number of a control algorithm steps the ordens,
and m,, become integers. Thus, the “calculation tail”
has automatically been cut off. This should be el
in a quasi-steady-state of the closed-loop sys&spanse.
We assume zero initial conditions of the plant #&rel con-
troller. In Fig. 5 we show the controlling signal

Fig. 6 presents the plant outpyf(.) for the case when

d, =d; =n, =0 and the reference signal is the unit dis-
crete-time step functiom, =1, =[1 1 1 - 1]{4q-
In the same Figure we also show the system respanitie
classical Pl and PID controllers (Gunther, 198@athor
and Jervis, 1993; Isermann, 1988) described byliderete
transfer functions

-1
o+ hz

Rpy (2) :0—1—1' (52)
1+ pz

where:rg =20, p=-17, p;=-1 and

-1 -2
+0gz + oz
Reip(2)= 2 igf? , (53)

where:gg =20, o =-16572, ¢, =-0.4337, p, =-1.

0 ;: 16 1‘5 26 25
Fig. 7. The closed-loop system outputs with different coligrs
restricted tk € [3 25]

The Pl and PID controller parameters were obtatoed
preserve the minimum value of the performance rioie
on the assumption of a bounded controlling sigag).(

kmax

— mi 2

Wi i = 0 D7 6 Knin =0, Kiax =50, (54)
I ‘uk‘SZOi:kmin

Assumption (49), required by practical applicatioizs so

strong that for PI, PID and proposBH™t0 D2k control



strategy,v, = v; = 20. This causes that the closed-loop
system responses fdt=0,1,2 to be the same for all

strategies. Owing to this, the Pl and PID contrslipro-
duce very similar responses.

In Fig. 7 the same responses are presented ovéntae
intervalk € [3, 25].

Pl

Pl (ml,k )D (m2,k)

1 2 3

Fig. 8.1p,amik) pm2k)s Ipip 3,500 pj(mik) pmzio Ipy 3 50 Values
performance criteria

The differences betweeyy, i, ypipx andyp muipmzio ),
become significant when the following performandéecia
are evaluated

50

- 2
| 5 (mik) (mzk = MiN €5, (mLk) ~(m2k)
pi (mik)p (m2. pi (mek)p(m2k)
lu<20i =3
50
Ipip 350, MiN > €fipk , (55)
‘uk‘szoiz:g
50
I oy (muw)p ek I pp 350 = MIN > epy i
PII™ID 35 \uk\szoé :

Its values are presented in Fig. 8.
5. FINAL CONCLUSIONS

The notion of the linear, time-invariant (with resp to
coefficients), VFOs difference equations is appliedthe
discrete-time closed-loop system synthesis. A nescdp-
tion of linear time-invariant fractional-order ckxloop
dynamical systems is investigated. As a practigglliea-
tion, a simple control strategy has been applied tmear
plant. It is non-unique. It appears that a largeieta
of advanced control strategies may effectively peliad
in a real-time control. An open problem is how @sign

the VFOs depending on the closed-loop system error
my,(ex) and m,,(e,). An appropriate choice of order

functions seems to be a fruitful task in furtherestigations
in the case of plant parameters variations or dacgies.

It is important to point out that applying fractedrorder
control strategies a linearly growing number of phawn
should be taken into calculations (linearly growiteglcu-
lation tail”). This can be avoided by introducing assump-
tion that for a quasi steady-state, the controatsty
is described by an integer-orders difference eqnati
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Abstract: This paper deals with the control of the fractieaader nonlinear systems. A list of the controbastgies as well
as synchronization of the chaotic systems is ptedern illustrative example of sliding mode cohn8MC) of the frac-
tional-order (commensurate and incommensuratehiahsystem is described and commented togethértih simulation

results.

1. INTRODUCTION

Control of nonlinear systems, especiatijaotic sys-
tems was the subject of intensive studies in the fast
decades. As noted (Andrievskii and Fradkov, 20@®42,
several thousand publications have appeared ogaettent
decade. It is due to the fact that chaotic behawias dis-
covered in numerous systems in mechanics, laseraatid
physics, hydrodynamics, chemistry, biology and ried,
electronic circuits, economical systems, etc. (deetras,
2011)). For this reason a natural question ariddew can
we control chaotic systers

The first important thing is that we need the mathg-
cal formulation of chaotic processes by the bastdels
of the chaotic systems that are used. The mostl@oma-
thematical models used in the literature on corgfathaos
are represented by the systems of ordinary diffedesqua-
tions. In some works we can also find discrete rfode-
fined by difference state equations. The seconditapt
thing is the formulation of the problems of contodlchao-
tic processes. An important type of problems oftin
of chaotic processes is represented by the motiifica
of the attractors, for example, transformation ofatic
oscillations into periodic and so on.

2. FRACTIONAL-ORDER NONLINEAR SYSTEMS

In this paper, we will consider the general incomse
rate fractional-order nonlinear system represerasdol-
lows:

oDIX (1) = £ (%D, %(9..... % (D9 )
x(0)=¢g, i=1,2,.. n,
wherec; are initial conditions. The vector form of (1) is:
D% = f(x), 2

whereq = [ay, G, ..., G]' for 0<q <2, (i =1, 2, ...,n)
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and x(OR", and wherg D/ is the Caputo's derivative.

The Caputo's definition of fractional derivativeancbe
written as (Podlubny, 1999):

1 ¢ 7@ _ 3
Fm=q gy 47 Mo<a<m @

In Eqg. (3) we assume bounday 0. Other definitions
of the fractional derivative can be found in (Pdutly,
1999).

D () =

3. SYNCHRONIZATION OF CHAQOTIC SYSTEMS

The important class of the control objectives cerre
ponds to the problems of synchronization or, more- p
cisely, controllable synchronization as opposedthe
autosynchronization. Numerous publications on adntr
of synchronization of chaotic processes and itdiegion
in the data transmission systems appeared in t88'4.9
Inthe general case, by the synchronization is mean
the coordinated variation of the states of two ooren
systems or, possibly, coordinated variation of some
of their characteristics such as oscillation fretpies.

Let us take a look at the synchronization moreeadios
Several methods can be used for synchronizatiarha6-
tic systems. In this paragraph we will mention éhweell-
known methods. If chaos synchronization is achielgd
drive-response systems, the instability measuraeiga-
tive. That means the system is not chaotic.

The first method is the Master-Slave (or drive-
response) configuration scheme of two autonomous-
dimensional fractional-order chaotic systems (LOD2,
Peng, 2007):

d7x

Mo T T @)
dox_ - .
CX= 19+ e,



where g =(a,,q,,...,a,)0R", a, >0, is the fractional

order and the systems are chao@icis a coupling matrix.
For simplicity, letC have the form:C =diag(d, d,,..., q).

where d >0. The error ise= x— % and the aim of the

synchroniziation is to design the coupling matniicls that
[le(®) || Cast - +oo.

The second method is the method for constructing
the drive-response configuration, which was intigetl
by Pecora and Carroll in 1990, known as a (PC). ust
build a PC drive-response configuration in whicldrave
system is given by the fractional-order system KHwitiree
state variables, y, 2 and a response system is given by the
subspace containing tha, (y) variables. Then we can use
the chaotic signat to drive the response subsystem.

The third method is the synchronization via active-
passive decomposition method (APD). Let us buildA\RD
drive-response configuration with a drive systemegi by
the chaotic system and with a response system giyets
replica. Then we can tal#t) as a drive signal (Li et al.,
2006).

Chaos synchronization and its potential application
to secure communications have attracted much mitent
from various disciplines in science and engineesimge
the pioneering work of (Pecora and Carroll, 1990)this
section, we briefly discuss the chaos synchrorirathe-
thods between the chaotic fractional-order systants we
can also mention method via master-slave configurat
with linear coupling (Zhu et al., 2009).

4. CONTROL OF CHAOTIC SYSTEMS

In (Andrievskii and Fradkov, 2003, 2004) were col-
lected and presented several methods used forathieot
of chaotic processes. The authors considered #msichl
integer-order chaotic systems but in general we usa
those methods for the fractional-order chaotic esyst
as well. In addition some other methods have beepgsed

acta mechanica et automatica, vol.5 n0.2(2011)

. Adaptive control assumes the possibility of apalyihe

methods of adaptation to the control of chaotic
processes, where the parameters of the controlead p
are unknown and the information about the modetkstr
ture more often than not is incomplete. A numbethef
existing methods of adaptation such as the methods
of gradient and speed gradient, least squares,nmaxi
likelihood, and so on can be used to develop alyod

of adaptive control and parametric identificatiéncon-
troller is usually designed using the reference ehod
or the methods of linearization by feedback.

. Linearization of the Poincaré map method can beader

lated by the following two key ideas: (i) designiogn-
troller by the discrete system model based on tinaa
tion of the Poincaré map and (ii) using the propert
of recurrence of the chaotic trajectories and dpply
the control action only at the instants when thgttory
returns to some neighborhood of the desired state
or given orbit.

. Time-delayed feedback method considers the problem

of stabilizing an unstable periodic orbit of a rinakr
system by a simple feedback law with time delayste
tivity to the parameter, especially to the delayetj
is a disadvantage of the control law.

. Neural network-based control deals with the ability

of neural networks to control and predict behavior
of nonlinear systems. The various structures ofraleu

networks for control and prediction of the procssse
in nonlinear chaotic systems can be found in lites

. Fuzzy control uses a description of system indetexm

cy in terms of fuzzy models, provides specific i@ns
of the control algorithms, which consists of folodks:
knowledge base, fuzzification, inference and defiizz
cation.

. NEW CHAOS CONTROL STRATEGY

The fractional calculus techniques as for examgtaa

for control of such systems and they can be sunzewri tional differentiator based controller of a fracti integra-

as follows (Petras, 2011): tor based controller can also be used (Tavazoedl.et

1. Open |00p (feed_forward) control is based on ngin 2009) Both of them are particular cases of thetifvaal-
behavior of the nonlinear system under the action order controllers described as (Podlubny, 1999):
of predetermined external input. This approaclingpke _ 1
because it does without any measurements or Sensors u) =K, e+ T, Q')+ T, 0 €t (4,0>0), (5
This is especially important for the control of sdiast
processes.

2. Linear and nonlinear (feed-back) control deals whih
possibilities of using the traditional approachtes] me-
thods of automatic control to the problems of chems
trol are discussed in numerous papers. The deaired
can be reached sometimes even by means of theesimpl 6. EXAMPLE: SLIDING MODE CONTROL OF THE
proportional law of control and feedback. The ptitdn FRACTIONAL-ORDER ECONOMICAL SYSTEM
ities of the dynamic feedbacks can be better redllzy
using the observers. Other methods of the modearyh
of nonlinear control such as the theory of centanim
fold, sliding mode control, the backstepping prageg
the reset control, thesktoptimal design and so on can
be used to solve the problems of stabilization alttoel
given state.

whereK, is the proportional constari; is the integration
constant andy is the differentiation constant. Controller (5)
is more flexible than classical one and gives bea#sults
of the control performances (Monje et al., 2010).

A sliding model control (SMC) strategy is also apg
ble for the fractional-order chaotic systems. Itaiform
of variable structure control method that altees dignamics
of a nonlinear system by application of a high-frecy
switching control. The state feedback control lawvniot
a continuous function of time. It switches from orenti-
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nuous structure to another based on the curreritiqgros

inthe state space. Trajectories always move toward

a switching condition. The motion of the systenitadides
along these boundaries is called a sliding mode. sliding
mode control scheme involves: (i) selection of #iding
surface that represents a desirable system dyraghevior,
(i) finding a switching control law that a slidingode ex-
ists on every point of the sliding surface.

Consider the following general structure of thecfian-
al-order nonlinear system under control

oDIx(1) = f(X(1) + BU(Y, (6)

whereu(t) = [uy()ux(t)...un(t)]" is anm-dimensional input
vector that will be used and the following contstiucture
will be considered for state feedback:
U(t) = U () + U (D, ()
where Ug(t) is the equivalent control ands(t) is the
switching control of the system (6). A common tasko
design a state feedback control law to stabilizedynami-
cal system (6) around the origitt) = [0, O, ..., O]. In the
sliding mode, the sliding surface and its derivatiwmust
satisfy o(t) = 0 andg(t) = 0.

Let us use the controlled fractional-order finahsigs-
tem in the form (Dadras and Momeni, 2010):

oD, (1) = %,(1) + (%0 - 8 (1,
oD2X,(1) =1=bx, () = X () + WY,
0 DBx,(1) = =, (1) — (D,
wherea is the saving amounhk is the cost per investment,

and c is the elasticity of demand of commercial market,
(a,b,00R and (a,b,c)>0. The state variables(t),

Xo(t), andxs(t) are the interest rate, the investment demand,
and the price index, respectively.
The proposed fractional sliding surface is defiasd

©)

(8)

o (1) = [{0¢ (1) + K (D) o+, (1,

whereK is a positive constant, in additidf = K¢, The
equivalent controlie(t) is obtained by setting the derivative
of sliding surface to zero and then solving theosdcequa-
tion of (8) foru(t). We obtain

0 thzxz(t) = _(Xf(t) + sz(t))

and then we get the relation

Ugq (1) =0 D2 %,(1) =1+ b, (9 + X (9
= =04 (1) + K% (1) =1+ bx, (9 + X (9
= (b= Ke)% (D -1,

whereKq is the constant of the controller.
The switching controli,(t) law is chosen in order to sa-
tisfy the sliding condition

u,(t) = K,,signo),

(10)

(11)
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where
+1 :0>0,
sign(o)=<0 :0=0,
-1 :0<0,

andKg, is the gain of the controlleK(,< 0). Finally, the
total control law is defined as follows:

U(t) = Uy () + Uy, (9 = (b= K % (9 -1+ K, sigrio).(12)

We assume the following parameters of the chagte s
tem (8):a=1,b=0.1,c =1, and the controller (12) para-
meters, experimentally foundeq = 1.5 andK, = -3.5.
The controller will be applied at= 30s. In the first case we
use a commensurate order of derivatiges g, = gz = 0.9
and in the second case we use an incommensurage ord
of the derivatives); = 1.0,0, = 0.95, andg; = 0.99 of the
fractional-order chaotic system (8). The initialndd@ions
for both cases arey(0), xx(0), x3(0)) = (2, -1, 1).

~— %,
H"“m__ — 0
~
= SMC b
Ey
£
o
=]
il
a 10 20 a0 40 &0 &Q FO a0 90
Time [sac)

Fig. 1. Controlled state variableg(t), x»(t), andx(t)
of commensurate fractional-order financial system,
where the SMC was activated at80
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Fig. 2. Time response of control lawt)
for commensurate fractional-order system
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Fig. 3. Controlled state variableg(t), x»(t), andx(t)

of incommensurate fractional-order financial system

where the SMC was activated ats80
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Fig. 4. Time response of control lawt)
for incommensurate fractional-order system
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Fig. 5.Time responses of sliding surfac#s)

In Fig. 1 are depicted the controlled state vadabl
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of the commensurate fractional-order financial eyst (8)
with the parametersa = 1, b = 0.1, ¢ = 1, orders
01 = g2 = gz = 0.9, controller (12) parametery, = 1.5
and K, = -3.5, initial conditions: > (0), xx(0),

x3(0)) = (2, -1, 1) for simulation tim&g;,, = 90 s and time
steph = 0.005

In Fig. 2 is shown the control law of commensufede-
tional-order financial system which drives the epststates
to the sliding surface. We can observe chatteringhie
sliding mode.

In Fig. 3 are depicted the controlled state vadabl
of the incommensurate fractional-order financiabtsys
(8) with the parametera = 1, b = 0.1, c = 1, orders
0: = 1.0,g, = 0.95, andgz = 0.99, controller (12) parame-
ters: Keg = 1.5 andK, = -3.5, initial conditions: X;(0),
x2(0), x3(0)) = (2, -1, 1) for simulation timdg, = 90 s
and time stefn = 0.005.

In Fig. 4 is shown the control law of incommenserat
fractional-order financial system which drives thgstem
states to the sliding surface. We can again obserager-
ing in the sliding mode.

In Fig. 5 are depicted the time responses of tikngl
surface. We can observe that the controller keptststem
states on the sliding surface for all subsequerd.ti

Performed simulations show that system responses af
applying the control law (12) are satisfactory ffoth cases.
The results confirm that obtained control stratégeffi-
cient for controlling the fractional-order finantgystem (8)
for various parameters (Petra$ and Bednarova, 2010)

7. CONCLUSIONS

In this article is presented a review of the cdrgtoate-
gies for the fractional-order nonlinear systems. ilistra-
tive example is shown the SMC control method. Tdue-
trol method is simple and control law achieved gstyti-
cally stabilized system if the controller is apglito the
investment demand in order to control the wholeneou-
cal system. This approach is applicable for diff¢rypes
of the fractional-order chaotic systems as welthesother
control strategies (Monje et al., 2010).
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Abstract: In this paper the problem of the influence of fiyemint computation on numerical solutions of lindéferential
equations of fractional order is considered. laipractically important problem, because of potdnibssibilities of using
dynamical systems of fractional order in the tasksontrol and filtering. Discussion includes nuinal method is based
on the Griinwald-Letnikov fractional derivative anow the application of fixed-point architecturelirgnces its operation.
Conclusions are illustrated with results of floatjpgjnt arithmetic with double precision and fixediqt arithmetic with dif-

ferent word lengths.

1. INTRODUCTION

Dynamical system described by fractional differanti
equations take an increasing role in technical nees.
The initial concept dating to private corresponaenc
of Leibnitz and L’Hospital from 1695, was systernatly
developed however outside the main stream. Cuyrentl
we can say, that mathematical side of the probkemwall
rounded, what can be observed by presence of deultip
monographs such as Miller and Ross (1993); Oldham
and Spanier (1974); Podlubny (1999); Samko etl893).

In recent years especially interesting is the aspkap-
plications. They are found in modelling of supekafors,
distributed parameter systems, problems of vanatio
calculus or modelling of very complicated phenomena
such as flame spreading Lederman et al. (2002); bésil
(2005). Besides modelling also fractional systemesused
to influence reality as controllers Ortigueira (2008
Ruszewski (2008) or filters Magin et al. (2011)tHe con-
text of fractional order systems also problems sagistate
estimation (Dzieliski and Sierociuk (2008)), controllability
(Klamka (2009)) or stability (Kaczorek (2008a); Bugicz
(2008); Kalinowski and Bustowicz (2011)) are comsid.

A comprehensive survey of theory and applicatidnfsa-
tional calculus in control engineering can be foumdDs-
talczyk (2008).

In this paper authors focus on the problem of ddéma
plementation of fractional order systems. Many vgoake
devoted to the concept of approximation of fractioorder

systems with integer order systems (see for example

Djouambi et al. (2007); Sobolewski an&uszewski
(2011)). This paper analyses the application of enical
methods for solving fractional order differentiajuations.
Because the focus of this research is the impleatient
of fractional controllers and filters on commergiadlvail-
able hardware platforms special emphasis
on influence of fixed point computation. In the fallag
parts of the paper considered class of systemessesrithed,

is placed

solution of differential equations on dedicated dveare
platforms with individual section on problems qusation.
Then discretisation of fractional differential etjoas
is analysed. Finally numerical experiments are cotet
in both floating and fixed point arithmetic.

2. CONSIDERED SYSTEMS

In this paper linear fractional order dynamicalteys
described by a following system of fractional or@gua-
tions

d? -
OITax(t)_Ax(t)+Bu(t), O<as<1 1)
x(0)=xo

where:x(t) € R™, u(t) € R” andA, B are constant matric-
es of appropriate dimensions. Fractional diffeidh ope-
ration of ordera is given by Caputo definition (see for
example Kaczorek (2008b)).

X(n)(T)
r(n-a)Jo-r)a*in

d? 1 t
—X() =
at?

dr, n=[al 2)

where:T" function is given by
r2)= [tz tdt
@=

Important fact is that in analogue to integer order
equations one can express solution of (1) by variabf
constants, that is

x(t) = @ ()Xg + -[;(D(t —7)Bu(r)dr 3)
@y (t) = E4 (AtY) (4)
®(t) = 17 7E 4 4 (AL) )
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where: E is the Mittag-Leffler function (see for example
Weilbeer (2006)) given by:

Eqp(2)= Zr(ak o5 97080 (6)

Eq(2)=E41(2), (7)

It should be noted that Mittag-Leffler function ike
generalisation ok? and fora = 1 the following equality
occurs

a>0

E1(2) =€ (8)

In this paper only initial conditions equal to zevil be
considered. It is justified by the fact that theimgoal is
to devise methods of effective filter and contmolimple-
mentation. Moreover one can transform a fracti@yatem
into one with zero initial conditions through adloiit
of additional inhomogeneity (see for example Podjub
(2000)).

3. SOLVING DIFFERENTIAL EQUATIONS
WITH DEDICATED CONTROL SYSTEMS

In classical control systems that is those, whicidet
of controller or system is described by integereordiffe-
rential equations the following hardware platforms
are used:

— universal platforms:

— classical computer systems,

— industrial PLC controllers,

— universal microprocessor controllers,

— dedicated platforms:

— using general purpose processors,

— using digital signal processors (DSP),

- using FPGA circuits.

In case of fractional order differential equatidhss
division stays correct. Because of possibility btaining
very short computation times - dedicated systerasvary
promising. Among those especially systems using APG
circuits raise interest.

Using a dedicated control system for computation
of both ordinary and fractional differential equats car-
ries many consequences. Substantial benefits ateotie
can achieve substantial increase in computatioedpad
keep the regimes of real time processing. On therot
hand use of dedicated systems introduces multiple c
straints associated with their construction andetyp
of operation. The most serious limit introduced dndi-
cated control systems is lack of support for flogtpoint
arithmetic. Most microcontrollers designed for coht
systems do not have an integrated floating-poiptcoces-
sor. Similar situation occurs for DSPs. One carairse
show solutions supporting floating-point formats ibat
is not the norm. Different case is for implemerdati
of such formats in FPGA circuits. These circuits eather
freely configurable. One can also implement thepsup
for writing of the floating-point data format. Hower
because of needed amount of circuit's hardwareurese
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it is not always possible or economically feasible.

In this paper control systems with fixed-point data
formats are considered. In case of the FPGA cisdhi¢se
formats are supported by hardware description laggs
(e.g. VHDL) or are relatively easy to implement.
The most substantial merit of using the fixed-pairith-
metic is the possibility of construction of paralidata
processing structures, which can significantly aareeé
computation (see Wiatr (2003)). Other important itmer
is the possibility of using computation words ofsited
length (see Riek (2007)). When programming microcon-
trollers or DSP the programmer can use the datastyp
available in the microprocessor architecture. Ugsihgon
standard data types is associated with need foitiadall
operations, which can increase the computation.time

When solving systems of differential equations
in computer systems, so also in the control systems
we have to deal with quantisation of signals anchpee-
ters in time (discretisation) and in values (qusatibn)
caused by digital character of computation. Bothsth
operations have their properties and can disrupteélkults
of computation - that is the solution of the systafndiffe-
rential equations.

4. QUANTISATION

Application of digital systems, especially thoseiath
use a fixed-point data format causes introductibmuw
merical errors to the computation. Sources of thasers
are (see Gevers and Li (1998)yider (2003, 2002)):

— quantisation of analogue signals — for example iy A
converters in control systems;

— computation result overflow errors caused by toorsh
data word length;

— round-off errors of arithmetic operations — mulicp-
tion, addition;

— quantisation errors of model coefficients resulting
from writing them on words with finite length.
Converter quantisation errors are determined bg-res

lution of used A/D converter system. In the casenoflel-

ling the converter model by stochastic methodss ibs-
sumed that the converter model consists of a sagpli
system and a quantiser. Quantiser is modelled sisnma
mation node introducing a random error to the digna

It is assumed that this error is a discrete whitese not

correlated with the sampled signal and its variaiscde-

pendent on the number of converter bits (Seeder

(2003)). Quantisation noise created in the proocésma-

logue-digital conversion can be filtered in the woh

system by the usage of appropriate digital filters.

Overflow errors are practically present only in gyes-
tems performing computations using fixed point harie-
tic. They occur in the situations, when the resdlarith-
metic operation requires writing in the registry lafger
number of bits than it is available in the compigtatsys-
tem. In some situations (e.g. using notation in tie's
complement code) it causes large relative erroee (s
Gevers and Li (1993)). Elimination of overflow erso
relies on appropriate scaling of signals and coffits
of the model. Such operations unfortunately intiu



additional round-off errors associated with chaggin
the signals and model coefficients ranges. In cdatmn
systems using floating-point arithmetic overflowraes
are not present or occur rarely, because of tlgeleanges
of such data storage.

Other two kinds of errors - round off errors oftanne-
tic operations and parameter quantisation erroes ar
ways present during digital realisation of contedo-
rithms and it is not possible to completely elimaaheir
influence on the result of computation (see Gewagrs Li
(1993)). Arithmetic operation round off errors drgro-
duced during the computations connected to detextnoim
of system response and their level is dependenthen
structure of algorithm and the data word length.dkglo
coefficient quantisation errors are introduced lhy finite
data word length. Ideal values of parameters avaded
to the values that can be stored. Similar to théhmetic
operation errors, coefficient quantisation errore de-
pendent on the structure of algorithm and the daied
length. Effects connected with these two kinds obrs
are called FWL (Finite Word Length) effects (seev&s
and Li (1993)). They can be limited by increasing
the length of data words and by changing modektire.
Length modification is not always possible. Usually
in computer systems only two or three word lengths
are available, and in simple microprocessor syséeen
only one. Relatively simple increase of precisisrpossi-
ble only in the range of data types supported leyatchi-
tecture and additional improvements (above the imnach
command precision) has a cost of a substantiakass
in the number of commands required for determimatio
of system response. In case of realisation of ocbrdys-
tem with dedicated architecture for example withGAP
circuits, word length can be adjusted at will. Tlomg
word lengths however cause substantial increasthen
hardware resources usage, which can be interpestede
increase in the computation cost.

5. DISCRETISATION OF FRACTIONAL ORDER
DIFFERENTIAL EQUATIONS

There are different classes of numerical methods fo
solving fractional differential equations (see Vie#r
(2005)). One of them are linear multistep metholdseir
construction relies on transformation of fractiowmlffer-
ential equation to the equivalent Volterra integrquation
and solving it through quadratures. It is similarAdams
methods for ODE (see Hairer et al. (2000)). Another
group considers equivalent Abel-Volterra equatiard a
solves it via power series - these are generalismdor
expansion and Adomian decomposition method. One
more group are collocation methods also populaiirfta-
gral equations. For applications in the contextiltér and
controller implementations the most practical sdenbe
backward difference methods. This class includest-Di
helm method and quadrature based Lubich method.

In this paper third backward difference methodads-c

sidered — that is the method based on the Griinwald-

Letnikov fractional derivative. By this definitiotine frac-
tional derivative takes form of a limit of fractiahdiffer-
ence quotients

acta mechanica et automatica, vol.5 n0.2(2011)

d? (AFX)()
S X(t) = lim — )
dt? h-0
where:
m K a
25 = (1) [ka(t-kh) (10)
k=0 h=tm
Generalised Newton symbol is given by
a —_
_ k-a) _ (11)
k) T(-a)r(k+1)
a(a-1)0..Ha-j+1) :
_ i for jON (12)
1 for j=0
Fractional derivative takes form
d 1 - k[ @
—X(@t)= lim — -1 X(t —kh 13
X h"i‘"ohaé( )@( ) (13)

h=tm

It should be noted that definitions of Griinwald-
Letnikov and Caputo are not fully equivalent. Itdspe-
cially important in the context of fractional diffntial
equations, where initial conditions influence thlw@usion
in different way (see Weilbeer (2005)). If initigbndi-
tions are zero, as in the considered case the icofut
are however equal.

As it can be seen in the fractional difference wien
decreasesn increases, so in the limit sum is infinite.
The idea of numerical solution on the intereat [0, T]
relies on determining finiten and omitting the limit.
In that way differential equation (1) becomes

Z( 1) ( Jx(t—kh) AX(t) +Bu(t),

(14)
tD[O,T], h="Tm
or equivalently
x(t) Z( 1) ( Jx(t—kh) Ax(t) + Bu(t) (15)

h:T/m,t: ph, p=01,...,m

It should be noted thai(t) is present on both sides
of equality. In case of nonlinear systems it worgduire
iterational procedures, however because the comside
system is linear so

p
X(t) = (1 - h”A)‘l[h”Bu(t) - ex(t- kh)] (16)
k=1
h=Tmt=ph p=01,..,m )
o, = (—1)k(ij, k=12 ..m (18)
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Different approach can be seen in the work of Pod- @=15 m=100
lubny (2000). Method presented there formulates [ S S B S
the problem of numerical solution as a system oédr ol |
algebraic equations solving the fractional diffdiain ' Moo : L
equations in all points of the interval simultansigu i, ST . v
That approach has many benefits, but is not adequat S B
for series signal processing. T Y | T naltea salon
As it can be seen, when changimgalsoh is changed ) L ; —
which can cause FWL effects. In the next sectianlib- 0Ef .
haviour of numerical solution of fractional differigal oo P
equat|on Obtalned W|th (16) behaves Whel’l Changm‘g p Qdfdi e ...... L .............. ..... .........
rameters. S Lo
02
6. FLOATING-POINT ARCHITECTURE 3 3 s+ & 7 & 3 1
SIMULATIONS t

Fig. 2. Comparison of analytical and numerical solution

. . . of fractional differential equation (19) witi+3/2
In order to perform simulational analysis of thduso

form=100
tion of fractional differential equation the folling ex-
ample needs to be considered.
Example 1. (Kaczorek (2008b)) The unit step response y @ =15 m=500
of the following system is considered ' S
da 12 ....................................................................
— X(t) = =x(t) +u(t)
dta Tho L
X(O) = OD R (19) 08 : Anal\tica\.sululiu.n
0t =10) B e e  Namonca st |
From (3) the Solutlon IS DB .......................................................................
t
X(t) = J‘o(t _ Z.)O’—l Ea’g (_(t _ T)O’ )dT - D b gD
t I8 25 T A S O S S —
rw (1)K skaL N B e N RN
= - = t
Ok=0 Mak+1)) (20) Fig. 3. Comparison of analytical and numerical solution
© _1\K f fractional differential equation (19) with=3/2
1 t _ 0 q
_ D 1) J Sak+a-lye for m=500
=0 MNak+1))Jo
s k a(k+l
= Z 1) e =t9E, g4y (-t7) The step response was expressed by Mittag-Leffler
i Mak+1) a(k+1) ’ function (6) It should be noted that fer> 1 initial condi-
tions for alln < @ need to be specified.
» @=15m=10 Obtained analytical solution can be used for veaifi
' o tion of correctness of (16). System with= 3/2 is con-
12l | sidered. Comparisons are made for differ@ntComputa-
5 tions were performed in Matlab in double precisidna-
1 e lytical solution consisted of 100 first expressioinpower
T series form of Mittag-Leffler function (6). The dpsis
tg_a .............................. + Numerical salution | was performed on |nterva|€ [0‘ 10]
) : P It should be noted that far > 1 solutions have oscil-
o 1 latory character. Solution consisting of 10 poi(fsy. 1)
o ! . represents the oscillations but it happens in difie mo-
L LU O OO SEUUOOE SN SO S ment and with much smaller amplitude. Increasinecpr
0 1 R N W WO VO O WS W sion to 100 points the solution improves (Fig. &)d for
500 points (Fig. 3) numerical solution becomesytibse
0 S S T R R S to an analytical one. It should be noted that iasheg

; number of points in the interval the requirememiward
solutions increase, as in every step of computadibthe

Fig. 1. Comparison of analytical and numerical solution .
earlier ones are necessary.

of fractional differential equation (19) with=3/2
for m=10
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7. FIXED POINT ARCHITECTURE SIMULATIONS

For numerical experiments Matlab environment was
used with the Fixed-Point Toolbox. With this softea
one can create and use variables with desired {eogths
in bits. These simulations were performed for step
sponse of system (19). Numerical method (16) wasl us
and number of steps per interval was setnte= 100.
Compared are:

— analytical solution;

— numerical solution using method (16) operating with
floating-point arithmetic;

— numerical solution using method (16) operating with
fixed-point arithmetic.

In the last case a fixed point notation allowingeap
tion on numbers with nonzero fractional part. Thaeen-
bers are coded with use of two's complement code (s
Biernat(2001); Pochopi€2004)). Thanks to using it scal-
ing could be avoided. Figure 4 presents the forofdhis
fixed-point notation.

Decimal Point

| 2IL-CI.| L2 |
L,

| o | 7 2-1| 92 | |2-I:FL-CI.12-FL|

s
Integer Part

'
Fractional Part

Fig. 4. Fixed point notation during the experiments

=15, m=100,WL=10 FL=3
14 . . : T T ‘ T

Analitical solution
+  Floating-point solution
: : : +  Fixedpoint solution
i} i | I i 1 T T T T
0 1 2 3 4 5 5} 7 8 9 10
t

Fig. 5. System unit step response (FL=8)

02

Corresponding to the Fig. 4 following quantitiesreve
introduced:

- FL denotes number of bits devoted to the fractional
part,

- IL denotes number of bits devoted to the integet, pa

- total number of bits in the data word was

WL=IL+FL.

It was decided to use a single word length foredd:
ments of the algorithm. That means that both systeei-
ficients, constants associated withand number of steps
and system state were denoted in variables witrséimee
word length and the same lengths of fractional iateger

parts.

Nine numerical

acta mechanica et automatica, vol.5 n0.2(2011)

experiments were performed,
in which step response of system (19) was computed.

In every experiment the word length for the frantibpart
was increased by one from 8 to 16 bits. The maqgstere
sentative were the results obtained for fractiopatts
of 8, 9, 10, 12 and 16 bits. For all the experimelht=2

was set.

o=1.5 m=100, WL=11 FL=9

Analitical solution
+  Floating-point solution

+  Fixed-point solution
T T T

1 2 3 4 5 B 7 ] 9 10

Fig. 6. System unit step response (FL=9)

=15, m=100,WL=12, FL=10

02

Analitical solution
+  Floating-point solution

+  Fixed-point solution
T T T

1 2 3 4 5 B 7 g 9 10

Fig. 7. System unit step response (FL=10)

=15 m=100, WL=16, FL=14

Analitical solution
+  Floating-point solution

+  Fixed-point solution
T T T

1 2 3 4 5 B 7 g 9 10

Fig. 8. System unit step response (FL=14)
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=15 m=100, WL=18,FL=16

Analitical solution
+  Floating-point solution
+  Fixed-point solution

T T T

S T T S B B =
o 1+ 2 3 4 5 6 7T B 9

10

Fig. 9. System unit step response (FL=16)

Results of simulations are presented in Figs. &, @
and 9. In the figures three responses are presented
analytical, computed numerically with floating-pbin
and computed numerically with fixed point.

Coefficients, m=100,WL="14, FL=12

+ +  Analitical solution
+  Fixed-point solution
0k 2
+
+
2
1w + 4
= +
R
N
5 10°F Hhy 4
T R
=1 e
[T e,
107k N""‘» 4
”‘N-«
10* \\;
1075 1 1 L 1 1 L 1 1 1
] 10 20 30 40 50 60 70 a0 20 100

Fig. 10. Coefficient values for WL=14

Coefficients, m=100,WL=18, FL="16

+ +  Analitical solution
+  Fixed-point solution

+
+
+
e
+
"
%

Coefficient - g,

a0

Fig. 11. Coefficient values for WL=18

Analysis of the figures, allows to observe, thatue
tion of fractional part word length increases thenerical
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error of such computed fractional part. For FL=8& ()
the response differs so much that it loses itsimaigchar-
acter.

Further study allowed to find one of the reasons
for substantial differences between analytical,afilog-
point and fixed-point solutions. It appears thathas
a strong connection to the coefficients (18). In Fig. 10
and 11 values of coefficients computed analytically and
numerically with application of fixed point arithitie
with different word lengths. Vertical axes in thdggures
are in the logarithmic scale for easier observatibrihe
effects.

For word length WL=14 the effect of quantisation
is evidently visible for coefficients with indexeater than
13. Moreover coefficients with index greater thahtBey
become equivalent to zero, regardless that analigic
they are different from zero. For word length WL=18
the similar effect is visible, however quantisatisnvisi-
ble for indices greater than 34 and they become #ar
indices greater than 80. Coefficients equal to z®not
visible in the plot, as 0 does not belong to thendm
of algorithm.

It should be noted, that this effect causes qualga
change in the system character. From the system
with potentially infinite memory it becomes a syste
with finite memory. It should be compared with piac
cally stable discrete fractional systems (see fangple
Kaczorek(2011)).

8. CONCLUSIONS

After analysis of results of numerical experiments
it can be concluded, that main reasons for errocsiwing
when using fixed-point arithmetic are the quant@atnd
rounding of coefficients (18). In figures it can lod-
served, that for analysed systems these coeffiiang
reduced along with index. For small values thiseetff
is especially visible. Below certain value (certamuex)
guantisation reduces them to zero. Simulationstithted,
that the errors caused by using fixed-point arittiecnean
significantly change the response of analysed gyste
Word length should be then chosen very carefully.
In further works the possibility of using differemtord
lengths for coefficients and state. Additional nfadition
of numerical method should be considered in oraer t
increase robustness to these errors.

It should be also noted, that zeroing of coeffitsetue
to fixed-point computation leads to system withitén
memory. It is very similar to practically stablesdiete
fractional systems. It is interesting how other pedies
of these systems transfer to analysed systems.
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Abstract: Solutions to time-fractional diffusion-wave equatiwith a source term in spherical coordinates &tained for
an infinite medium. The solutions are found usihg Laplace transform with respect to time t, tinétdi Fourier transform
with respect to the angular coordingse the Legendre transform with respect to the spatardinateu, and the Hankel
transform of the order n+1/2 with respect to thaiabcoordinate-. In the central symmetric case with one spatiardimate

r the obtained results coincide with those studaties.

1. INTRODUCTION

The time-fractional diffusion-wave equation
a
97C _ anc 1)
ot?

is a mathematical model of important physical plmeaona
ranging from amorphous, colloid, glassy and ponmage-
rials through fractals, percolation clusters, randand dis-
ordered media to comb structures, dielectrics @amlicon-
ductors, polymers and biological systems (see Methd
Klafter, 2000, 2004; Povstenko, 2005; Magin, 2006hai-
kin, 2008, among many others, and references thjerei

The fundamental solution for the time-fractiondfudiion-
wave equation in one Cartesian space-dimensiorokbtaged
by Mainardi (1996). Wyss (1986) obtained the sohdito the
Cauchy problem in terms dfl-functions using the Mellin
transform. Schneider and Wyss (1989) converteddifie-
sion-wave equation with appropriate initial corai into the
integrodifferential equation and found the corresiog
Green functions in terms of Fox functions. Fujitt9q90)
treated integrodifferential equation which integiet the heat
conduction equation and the wave equation.

Previously, in studies concerning this equatiosgherical
coordinates only central symmetric case has besstigated
(Povstenko, 2008a, 2008b, 2008c; Lenci et al., 2Qi%nd
Liu, 2010). In this paper we investigate solutidostime-
fractional diffusion-wave equation in an infiniteecium in
spherical coordinate system in the case of thratasgoordi-
nates, 8, ande.

Consider the time-fractional diffusion-wave equatieith
a source term

% | 8°%c  2ac 1 9 (.  dc
— a5t +—— sind—
ot ars ror r<singdod
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1 0%c

+ ——
r2sin’6 0¢?

1+Q(r 8.4.1), @)

0<r<w,0<f<n,0<¢<2n,0<t<w0,0<ac<?2.

Here we use the Caputo fractional derivative (see=i@lo
and Mainardi, 1997; Kilbas et al., 2006; Klimek02)

;J‘t(t—r)n_a_l&(r)dr

daC(t)_ r(n—a) 0 dt"

P n-l<a<n, ©)
d"cft) _
-7 a=n,
dt"

wherer («) is the gamma function.

For its Laplace transform rule the Caputo fractiaiesiva-
tive requires the knowledge of the initial valuéshe function
c(t) and its integer derivatives of the order 12...,n-1:

L{Lc(t)} = "L c(t)} - nZ_“lc(k)(OJ')s"_l_k : 4
dt? k=0
n-1<a<n,

wheres is the transform variable.
Change of variablg = cosf in (2) leads to the follow-

ing equation
% _ | 9% 2dc 1 0 ac
SR

at_” B or? Tor r_za
1 a%c
+ - 5 +Q rr/uv¢vt ’ (5)
r2(1—,u2)6¢21 ( )

0<r<ow,-1<u<l1,0<¢<2n,0<t<w,0<ac<?2.
For simplicity, we have not introduced differenttées

for Q(r,0,¢,t) and Q(r,,u,¢,t). For equation (5) the initial

conditions are prescribed:



t=0: c=f(r,u¢), 0<as<2, (6)
t=0: %=F(r,y,¢),1<a52. @)

The solution to the initial value problem (5)-(@rcbe
written in the following form

c= jozn'[_ll j: t(p.¢.0)G¢ (r 1.0 .0t) p?d0d( do

+Ioznj_11 I:F(P,CCD)GF (r.u.0.0.¢,0t) p*dpd? dp

+I; .[02”.[—11 J.:Q(,O,Z,QT)

xGql(r p4.8.0.0 @t~ 1) p°dpd{ dedr . (8)

In the subsequent text, we investigate the fund&ahen
solutions for the first Cauchy proble (v, u, ¢, p, &, ¢, 1),
to the second Cauchy problefp(r, 1, ¢, p, ¢, ¢, t), and for
the source problerdi, (r, 1, ¢, p, ¢, d, t).

2. FUNDAMENTAL SOLUTION
TO THE FIRST CAUCHY PROBLEM

Let us examine the time-fractional diffusion-wavpia-
tion

aaGf asz szf 1 0 z)aGf
= + — 4+ 1_
a{ roor ( H 0

otv or? r2 0u U

1 6sz
r2(1- 2] g2 |

+

©)

0<r<ow,-1<spy<1,0<¢9<2n,0<t<w0,0<ac<?2,

with the prescribed initial value of a function

1
t=0: Gj =r—25(r—p)5(u—i)5(¢—¢), (10)
O<ac<?2,
0G;
t=0: —=0,1<a<2. (11)
ot
The  three-dimensional Dirac  delta  function

6(x)8(y)6(2) after passing to the spherical coordinates

takes the formni—zar(r), but for the sake of simplicity we

have omitted the factotr in the solution (8) as well as the
factor (4m) "t in the initial condition (10).

Now we introduce the new looked-for function= vrc
and use the Laplace transform with respect to tintiee finite
Fourier transform with respect to the angular civarte ¢,
the Legendre transform with respect to the cooteipaand
the Hankel transform of the order+ 1/2 with respect to
the radial coordinate. The details of application the integral
transform technique to the Laplace operator in rpdlecoor-
dinates can be found in the book of {k{1980). In the trans-
forms domain we obtain

acta mechanica et automatica, vol.5 no.2(2011)

v*(g.m,n,¢,p.z,¢.s)=ﬁanﬂ,z(psmm(z)

Sa—l

x cogm(g - ¢ & rar?

where the asterisk indicates the transforfps, ,(r) is the
Bessel function of the first kind of order+ 1/2, B ($)
are the associated Legendre polynomials of degeeel order
m, s is the Laplace transform variablejs the Hankel trans-
form variable, the integen is the Fourier transform variable,
and the integers andm are the Legendre transform variables.

To invert the Laplace transform we use the follayin
result (Gorenflo and Mainardi, 1997; Kilbas et, @006)

(12)

R B
Ly——;=El-a , 13
s7 +aé? Fald (13)
where Ea(z) is the Mittag-Leffler function
E,\z)= ,a>0, zOC. 14
@)=2. Fansy (14)

For large values of argument the Mittag-Leffler dtian
is represented as

_ 2.0 ~ 1 1

Ea( act ) F(l—a)—agzt‘" (15)

Inversion of all the integral transforms gives:

1 & & 2n+l

Gt (rug.04.01)=

f mrp nz=:o mz=:o 2

— |
) Eg ¥ :;1 A (k)R (¢ oodmle - o) (16)

X _[0 E, (‘ afzta) Jn+1,2(r{)Jn+1,2(p€)€d{,
where the prime near the summation symbol dendigs t
the term corresponding toe = 0 in the sum should be
multiplied by the factod /2 .

In the central symmetric caser(= 0, n = 0), taking
into account that the Bessel functions of the #istl of the
order one half can be represented as

Iu2lr)= \/g¥ an
from (16) we get

Gi(r.ot)= ?1“0 j: Ea(— a{zt”)

x sin(ré) sin(p{)df . (18)

Solution (18) was obtained earlier by Povstenkd® &)
using sin-Fourier transform with respect to thelabdoor-
dinater. The limiting case of (18) under— 0,
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2 .
Gi(r,pot) = n2 Io ( a& t”)sm(rf)i dé , (19)
was also investigated earlier (Povstenko, 2008b).
Asymptotic  behavior of Mettag-Leffler function

E,(—a&?t%) (15) is responsible for appearance of singularity

of the solution (16) at the point of applying thelta pulse:
r=p, u=§&, @ = ¢ also fort > 0. The sign of the singu-
larity depends omx: plus for 0 <@ <1 and minus for
1 < a < 2. Only the solution to the classical diffusion equa
tion (@ = 1 and E; (—aé?t?%) = exp(—aé?t%)) has no sin-
gularity.

3. FUNDAMENTAL SOLUTION
TO THE SECOND CAUCHY PROBLEM

In the case of the second Cauchy problem, which

is considered for the order of time derivatite< a < 2,

the initial value of the time derivative of the gi-for

function is prescribed, and for the correspondingdmen-
tal solution we have

a 2
07Ge _ | 9°Gp ,20Gg , 1 0 (1_ﬂ2)aGF
ot? o2 r o r20u ou
1 0%Ge
2 2 2 (20)
1-u“| 0¢

0<r<ow,-1sp<1,0<9<2n,0<t<w,l<agc<?2,

with the following initial conditions:

t=0: Gg =0,1<ax<2, (21)
0G 1

t=0: a—thr—25(f‘P)5(ﬂ‘5)5(¢‘¢):

1<a<2. (22)

The integral transform technique allows us to resnthe
partial derivatives and to get the expression Her duxiliary
functionv in the transforms domain

1
v*(Emng.0.0.08) = ﬁ‘]ml/z(p{) P(¢)

a-2
x codmlp - gl ——— (23)
s’ +af
After inversion of integral transforms we gain
ad 2 1
Ge(rud.pl.0t)= Z y 2t
P n=0 m=0
- |
1= o )epn(¢)codmle - o] 4

(n+m)r

x I:t Ea,z(‘ afztn) Ini1s2(1€) Ines2(0€) €0,
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where E, (z) is the generalized Mittag-Leffler function

intwo parametersr and § (Gorenflo and Mainardi, 1997;
Kilbas et al., 2006)
n

)= i (an+/3)

, >0, zOC.

(25)

a>0

We have used the following formula for the inverse
Laplace transform

a-p

In the central symmetric case we have (Povstenko,
2008c)

(26)

GF (r,p,t) = Flrpv[g)t anz(_ a{zta)

x sin(r &) sin(pé)dé . @7)
It should be noted that due to the behavior ofMtie
tag-Leffler functionE, ,(—aé?t*) for large values of ar-

gument

1 1
ol %

the fundamental solution (24) has the singularitthvthe

positive sign at the point of applying the deltésport > 0
and all values of < a < 2.

(28)

l<a <2,

4. FUNDAMENTAL SOLUTION
TO THE SOURCE PROBLEM

Consider the time-fractional diffusion equation hwit
a source term being the time and space delta pylsked
at point with the spatial coordinatest and¢.

7Gq _ | 9°Gq 209Gy . 1 9 2)aGQ

= + — + 1-
ate a2 roar rza/!( ary

2

st 9%
12(1- 12) 0¢?
1
t 3 3(r - p) ol -¢) 3lg - @) o (t), (29)
0<r<ow, -1su<l, 0<¢<2n,0<t<w,0<ac< 2,

under zero initial conditions

t=0: Gop=0,0<a<2, (30)
0Gq
t=0: —=0,1<a<?2. (31)
ot
Using integral transform, we arrive at
1 1
Pr(¢)eodmlg -0l 5. (2

v* :ﬁ‘]nﬂlz(pf) +as? '



and after inversion of integral transforms

1

$ 2
Golr u.6.0.4.01) = - n+1

0 2

[Ms
NgE

n=0

3
Tl

« (n-m) R(1)RM(¢)codm(g - @)

(n + m)!

(33)

X J-:t a_lEa,a (_ afztn) ‘]n+1/2(r{)‘]n+1/2(p{) {df

In the central symmetric case we have (Povstenko,

2008c)
_ 1 ® a1 _ r2.a
GQ(r,p,t)—FmJ-O t Ea’a( af t )
x sin(r &) sin(o&)dé . (34)

Due to the behavior of the Mittag-Leffler function

E, o (—a&?t®) for large values of argument

Eaa (‘ afzta) = —ﬁa%ﬁ

the solution (33) has no singularity at the poingjaplying
the delta pulse for > 0.

(35)

5. CONCLUSIONS

The new solutions to the Cauchy and source problems

for time-fractional diffusive-wave equation haveeheob-
tained for an infinite medium referred to sphericabrdi-

nate systenr,6,¢. For the first time, the non-central-
symmetric case has been considered. The foundiguut

satisfy the appropriate initial conditions and reglu
to the solutions of classical diffusion equationthie limit

a =1land of the standard wave equation in the case
of ballistic diffusion @ = 2). Our results provide a new

analytical tool for studying anomalous diffusion.

13.

14.

15.

16.

17.

18.
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Abstract: A new class of fractional two-dimensional (2D) doobus-time linear systems is introduced. The ganes-
sponse formula for the system is derived using d_-2place transform. It is shown that the classCayley-Hamilton theo-
rem is valid for such class of systems. Usefulrdgbe general response formula to obtain a salutibthe system is dis-

cussed and illustrated by a numerical example.

1. INTRODUCTION

The most popular models of two-dimensional (2D) lin
ear system are the ones introduced by Roesser )} 1035
nasini and Marchesini (1976, 1978) and Kurek (1985)
An overview of 2D linear systems theory is giver(Bose,
1982, 1985; Kaczorek, 1985, 2001; Gatkowski, 2004
rina and Rinaldi, 2000).

Mathematical fundamentals of fractional calculugl an
its applications are given in the monographs (Ohalleand
Spanier, 1974; Nashimoto, 1984; Miller and Ros9319
Podlubny, 1999, Ostalczyk, 2008).

The notion of fractional 2D discrete-time lineastgms

was introduced by Kaczorek (2008a) and extended F(x):J.e_

in (Kaczorek, 2008b, 2009, Kaczorek and Rogowsbd,@
Rogowski, 2011). An overview in state of the artlb

Definition 1. The a; order partial derivative of a 2D conti-
nuous functiorf (t,, t,) is given by the formula

a 0
D, f (tw.t2) o f(tto)
1

and 2D fractional systems is given in the monograph for x > 0is the gamma function and

(Kaczorek, 2011).

In this paper a new 2D continuous-time fractional
Roesser type model will be introduced. The geneeal
sponse formula for the system will be derived ushey2D
Laplace transform method (Section 2). Moreoverdhassi-
cal Cayley-Hamilton theorem will be extended tacfianal
2D continuous-time systems in Section 3. 3ection 4
usefulness of the general response formula tormbtai
the solution of the system will be discussed aludtilated
by a numerical example. Concluding remarks are rgive
in Section 5.

To the best knowledge of the author 2D continudms-t
fractional linear systems have not been considgeéd

2. FRACTIONAL 2D STATE EQUATIONS
AND THEIR SOLUTION

Let R™™ be the set ofn xm real matrices and
R™: = R™1. The set of nonnegative integers will be de-
noted byZ, and then x n identity matrix will be denoted
by I,.

We introduce the following definition of fractionphr-
tial derivative of a 2D continuous functid¢ift,, t,) of two
independent variables, t, = 0.

112

1)
A
- ( )
N 0’| O a =-N;+1
where i = 1,2, Ni -1< a; < N,: EN = {1,2, }, a; ER
is the order of fractional partial derivative,
RO )
M f (7t
M for i=1
N ar
CRICORS BV ©
I t 1 .
# for i=2.
d7,°

Consider the fractional 2D continuous-time systeea d

scribed by the state equations
h
th,t
Xv ( 1 2)] +[:1}u(t1,tz),
X' (tg,to) 2

|

DX (t.tp) | {Aﬂ

DX (ttp) | LA
(4a)
h
y(tl,tz):C[XV(tl't )]+Du(t1, ). (4b)
(t1.t2)

where x"(t;,t,) € R™, x"(t,t;) ER™ (n=n, + n,)

are the horizontal and vertical state vectors, ectsgely,
u(ty, t,) € R™ is the input vectory(t,, t,) € RP is the out-
put vector andA4,; € R™*!, B, € R™"*™ for k,I=1,2;

C € RP*™; D € RP*™,
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The boundary conditions for (4) are given in therfo where
h(k)(Ot): w (5a) In for i=0,j=0
% "2 ot o Tij =<Twoli-1j *Tofli j-1 for i+j>0,(i,jOz,) (9)
0 (zero matrix) for i< Oand/gr< O
for k=0,1,..,N; — 1 andt, = 0,
( ) and
o' %Y (ty,t,
() (1,0 =| 12 (o) A11 Pp| o [0 0O 10
ath _ 10~ v To1= : (10)
t,=0 0 A21 A22
for [=0,1,..,N; —1andt; 20. o Proof. Let F(p,t,) (F(ty,s)) be the Laplace transform
In the following theorem the Riemman-Liouville fouta of a 2D continuous functiofi(t,, t,) with respect ta; (t,)
of fractional integration of a functiofi(t) will be used (Pod- defined by
lubny, 1999)
t _ F p,tz :[’t f t11t2 f t11t2 pldtl
=1 [t (r)(t-1)"ar, 6) (p2) =4, [ f(tut2)}= ({

(@)g w (11)
wherea > 0 is the fractional (real) order of the integration. [ (t,5) =14, [f(tuto)]= I f(tyt)e S2at 2]-
Similarly, we may define the 2D fractional integoéffunction 0
ft1t7) The 2D Laplace transform of(t;,t,) will be denoted

a.p _al\ B 180 a by F (p, s) and defined by
i | (ti,tp) = Iy [Itzf (tl,tz)] = |t2[|tlf (tl,tz)]
1 F(p.s)= £, {6, [ (tto) ]} = 4, {4,[f ()]
r(a)r(B) =L, [ (tto) ] (12)

O = 5"
o

(b =12)" " (to=12)7 7 f (17 )T gy =[] 1 (ttp) e P S2atydt

% Applying (12) to (1) fori =1 and taking into account that
wherea, 8 > 0. . . _ (Kaczorek, 2011)
Theorem 1.The solution to the equation (4a) with the boun-
d diti 5)is givenb Ma+1
ary conditions (5) is given by y [tf]= E;,ﬂ) 13)
L) g [§ 47 e (o)
|
R == Sl (k+iag) 0 "
N —k ¢ (k-1
REARCECN LtlH )(tl)}=pNF(p,t2)—Z N (oty) 4
0 |tz u(ty.tz) k=1
for N=0,1,..; we obtain
N, k+|0/1 h(k—l) ot 1
+ZTIO Z ( '2) "
S Cl@r (i) o Lyt DT (o) | = £, { £, DT (tato)
Bl (i+1)a t (Ny)
+[O 1u (to,t } _ 1 . j o () .
F(N =) 2| 7 g (- )N
+§:§:T N2 t|+102_l |a'l (I l 1 (15)
| \Y — .=
= i |+ jas) X, (t,,0) :mﬁtz{ﬁtl[t{\h @ 1}41[ft1(N1)(r1)]}
ia; ]+1
+|: i| tl 3-2 (tl’tZ)} = palF p S z pal 0 S)
o N, t|2+102‘1 0 H
+3 1o _ |1 where
jZ:;J J Er(|+1”2) Xtvz( ) (1,0) ()
k) 0" f tl,tz
07 (o1 R (08)= 1, 1| T2 (16
+[BJ |t(21+ )azu(tl,tz)}, t, 2 otk o

(8) for k=0,1,...
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Similarly, for i =2 in (1) we have

ﬁttz[ " (tltz)} s“2F(p,s) zs"z g' l)(p,O),

=1

7
where
o' f (ty,
) (p.0)=1, {—(tll IZ)] (18)
oty =0
for1=0,1,..

Taking into account (15) and (17) we obtain the L2p-
lace transform of the state equation (4a)

N
p X" (p,s) —ki p”ka:(k‘” (0.5)
=1

s72X"(p,s) - Z '™ (p,0) (19)

s 22}[§v§§;§;]+[:ju<p,s>.

Premultiplying (19) by the matrix

blockdiag{ p iy 5 nJ

we obtain
xh p,s _
[XVEp s)]:G R
Ny
3 p_kXtT(k_l) (0.9) g, (20)
X k&l +{ a, ]U(p,S),
ot g | 575
=1
where
. —p @ ]
G(p.s)= n P A1 P A ' 1)
—sT Ay 1y, —8T2 A
Let
G'l(p,s)=z(;zo ip Hagias (22)
i=0j=
From

6 (ps)G(p8) =G(ps) G ()=

using (21) and (22), it follows that

> Z{Tij ~Tioli-1j —Todi ,j—}p_ials_ja2 =1y (23)
=0 j=0

whereT;y and Ty, are defined by (10).

Comparing the coefficients at the same powens afds
we obtain (9).
Substituting the expansion (22) into (20) we obtain

Xh(p,s) w o p_(iﬂ)als_jazB_L
= Tij L U(p,
[XV(p,s)] i=0 jZ::0 : {[ p"als_(l+1)”282 (p S)

Z p —k- 'als‘lazx h(k-1) (O S) (24)
+ k =1 ’

zp 'alsl Jazx (l 1)(p o)

1=1

Taking into account (Kaczorek, 2011)
MR (p) =181 (1), (25)

wherea > 0 and£~! denotes the inverse Laplace transform,
it is easy to show that

ol [P s R (ps) | =171 (1), (26)
wherea,, a, > 0.

Applying the inverse 2D Laplace transform to (24)
and taking into account (26) we obtain the forng8)a

3. EXTENSION OF CAYLEY-HAMILTON
THEOREM

Theorem 2.Let

I, =P A —p MA,

detG(p.s) = . .
- 2A21 |n2 —-S 2A2 (27)
& & -kay —la
= z zanl—k,nz—l p 1S 2
k=01=0

be the characteristic polynomial of the system [®en
the transition matriceg; satisfy the equality

n Ny
> > a Teem i +m, =0, (28)
k=01=0

wherem;,m, = 0,1, ....
Proof. From the definition of the inverse matrix, as wasl
(22) and (27), we have

; LA —kay —las
AdiG(p,s)= (ZZ% k-1 P 1S ]X

) i
=2

k=01=0i

M
Ms

TPl J”z} 29)

1
o

0

z Ay Tk, j+ P (I+nl)a15_(j+n2)az.

]
Ny

Ms



where AdjG( p,s) denotes the adjoint matrix @ (p, s).

Comparing the coefficients at the same powerns afds
for i = 0 andj = Owe obtain (28) sincddjG(p, s) is a poly-
nomial matrix of the form

h n . .
AdiG(p.s)=> ZZ: Dy p sz,
i=0=0
i,j#£n.n,

(30)

where D;; € R™™ are some real matrices.

Theorem 2 is an extension of the well-known clasic
Cayley-Hamilton theorem to fractional 2D continudinse
systems.

4. NUMERICAL EXAMPLE

Example 1.Consider fractional 2D system (4) with = 0,7,

a, = 0,9 and matrices

A1 Ap| |09 07 By|_

Por Ag _{ 0 ‘0-3} B2 _[ﬂ
D=[0].

s 3}

(31)

h
LN

Fig. 1. State variable" (¢, t,) of the system

Find a step response of the system (4) with theiceat
(31), i.e.y(ty, t,) for t,, t, = 0and

Ut t) = H(ty ) = 0 for <0 and/or t2<0(32)
L2721 for 1,20

and zero boundary conditions

x"(0t,)=0, x'(t,,0=0 (33)

Note that in this case from (31) and (4) it follothat

acta mechanica et automatica, vol.5 no.2(2011)

y(t.t2) :[Xh (tl,tZ)]-

X' (ty,t2)
It is well-known that (Podlubny, 1999)

ta
ITH (t) = . 34
t ( ) F(1+a) ( )
From (34) and (7) it is easy to show that
rf’l a
1092yt t,) = 1L 7292H (ty,t ) = 2 . (35
o, Ulttz) =1 172H (1) F (v ay)r (T ay) (35)

Using (8) forN,, N, = 1 and taking into account (31),
(32) (33) and (35) we obtain

(i+))ay, ja.
tj_ lt2 2

e
Snlilpirn

i=0 Fa+(i+Da ]

i j+l)a
© % I tf’lt(zJ+ 2
22T M

i=1j=0 Mi+iog]r[1+(j+Das]

(36)

00 O t(j+1)a2
eI
j=0

ra+(i+yaz ]

where transition matrice¥; are given by (9).

Fig. 2. State variable”(t,,t,) of the system

Formula (36) describes the step response of thermys
(4) with the matrices (31). It is easy to show that
the coefficients1/I'(.) strongly decrease wheh and j
increase. Therefore, in numerical analysis we nmegume
that i and j are bounded by some natural numbéys
andL,.

The plots of the step response (36) where= 50 and
L, = 50 are shown on Fig. 1 and 2.
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5. CONCLUDING REMARKS

A new class of fractional 2D continuous-time linsgs-
tems described by the Roesser model has been tuctdd
The general response formula for such systems kas b

derived (Theorem 1) using the 2D Laplace transform.

The classical Cayley-Hamilton theorem has beennebee

to fractional 2D continuous-time systems (Theorejn 2

It has been shown that using the general respanseufa
we are able to obtain the step response of théidred 2D
continuous-time system. The considerations have ke
strated by a numerical example.

The above considerations can be extended for genera

2D model (Kurek, 1985). An open problems are thsitpo
ity and stability of fractional 2D continuous-tirsgstems.
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Abstract: The paper presents the problem of designing odetibnal order controller satisfying the condisaof gain and
phase margins of the closed-loop system with tieleydinertial plant. The transfer function of thentroller follows directly
from the use of Bode's ideal transfer function asference transfer function for the open loop systdsing the classical D-
partition method and the gain-phase margin testaimple computational method for determining $itghiegions in the
controller parameters plane is given. An efficianalytical procedure to obtain controller paramesdues for specified gain
and phase margin requirements is also given. Thesiderations are illustrated by numerical exampiesnputed

in MATLAB/Simulink.

1. INTRODUCTION

In recent years considerable attention has beed pai
to fractional calculus and its application in maayeas
in science and engineering (see, e.g. (Das, 2088zdtek,
2011; Kilbas et al., 2006; Ostalczyk, 2008)).

In control system fractional order controllers ased to
improve the performance of the feedback contropld@ne
of the most developed approaches to design robust
and fractional order controllers is CRONE contraétho-
dology, French acronym of "Commande Robuste d’'Ordre
Non Entier” (non-integer order robust control) (@sup
1991, 1995, 1999).

The fractional PID controllers, namely’BF control-
lers, including an integrator of order and a differentiator
of u order were proposed in (Podlubny, 1994, 1999)- Sev
eral design methods of tuning the™ controllers were
presented in (Monje et al., 2004; Valerio, 2005tevia and
Costa, 2006). These methods are based on the nattbaim
description of the process. The first order-plaithwime
delay is the most frequently used model for turfiagtion-
al and integral controllers (O’'Dwyer, 2003).

The asymptotic stability is the basic requirement
of a closed-loop system. Some methods for detenmitiie
asymptotic stability regions in the controller pasder
space were proposed in (Hamamci, 2007; Ruszewski,
2008). Gain and phase margins are measures ofveelat
stability for a feedback system, therefore the Ilsgsis
of control systems is very often based on themtypical
control systems the phase margin is from 30° to \GBé-
reas the gain margin is from 5dB to 10dB. In pafars-
zewski, 2010) a simple method of determining tlabitity
region (satisfying the conditions of gain and phas&gins)
in the parameter space of a fractional-order iakegiant
with time delay and a fractional-order Pl controlle
was given.

In this paper the methods for tuning a fractionaleo
controller satisfying the conditions of gain ancagé mar-
gins are given. The transfer function of the cadigrofol-
lows from the use of Bode's ideal transfer function
as a reference transfer function for the open leggtem
(Barbosa et al., 2004; Boudjehem et al., 2008; d@uisz
and Nartowicz, 2009; Skogestad, 2001; Nartowic,020
Using the D-partition method a simple and efficieainpu-
tational method for determining stability regions the
controller parameters space is given. Moreover ydioal
forms directly expressing the controller parameters
for specified gain and phase margin requiremengs dar
termined.

2. PROBLEM FORMULATION

Consider the feedback control system shown in Fig.
The main path of the control system includes thie-gaase
margin testeAexp(j @, whereA andgare gain margin and
phase margin respectively. This tester does nat @xithe
real control system, it is only used for tuning toatroller.

A\
\/

Ag'* C(s) G(s)

Fig. 1. Feedback control system structure

The process to be controlled is described by aniahe
plant with time delay

k
1+sT

G(s) = e, @)
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wherek, T, h are positive real numbers.
The transfer function of controlleZ(s) directly follows
from the use of Bode's ideal transfer function

B
K(s) =(“;°j , 2

as a reference transfer function of the open loggiem,
wherew, is the gain crossover frequentyK (jw,)| = 1)
andpis the fractional order. Transfer function (2) chéses
the fractional derivative plant fgf <0 and the fractional
integral plant for3> 0. The open loop system with transfer
function (2) has a constant phase margin of theieval
@=(1-0.59m Hence, such a system is insensitive
to gain variation in the open loop system. Detadedlysis
(including time domain) of the system consideredilis-
sented, for instance, in (Barbosa et al., 2004).

In order to obtain the transfer function of the paop
system in the form of transfer function (2), wihkpected
time delay, we simplify the plant transfer function

K_gshe K gmsn 3)
1+sT sT

Xs) =

Then the transfer function of the controller muavé
the form

C(s) = ks, (4)

whereq is a positive real number. We will assume 1.

The characteristic function of the closed-loop egst
with simplified transfer function (3), transfer fttion
of controller (4) and gain-phase tester is given by

W(s) = Akk.s' e 1% + ST, (5)

The closed-loop system in Fig. 1 is said to be bledn
input bounded-output stable if and only if all theros
o characteristic function (5) have negative reaktpa
Itis noted that (5) is the fractional order quaslynomial
which has an infinite number of zeros. This makesprob-
lem of analysing the stability of the closed-loogstem
difficult. There is no general algebraic methodsikable
in the literature for the stability test of fraat@ order qua-
si-polynomials. The next problem of closed-loop teys
synthesis is how to choose such a fractional omlef the
controller that the closed-loop system will be tdgab
and characterized by specified gain and phase nsrgi

The aim of the paper is to propose tuning methedet
on gain and phase margin specifications. The dingt is to
give the method for determining the stability regia the
parameter planea(k;). The second is to give a simple
analytical formula to obtain the controller paraenetalues
for specified gain and phase margin requirements.

3. MAIN RESULT

By using the D-partition method (Gryazina, 2004)
the stability region in the parameter plarng i) can be
determined and the parameters can be specifiedplaine
(a, k) is decomposed by the boundaries of the D-pantitio
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into finite number region®(k). Any point inD(K) corres-
ponds to such values &f and a that quasi-polynomial (5)
has exactlyk zeros with positive real parts. The region
D(0), if it exists, is the stability region of qugsblynomial
(5). The D-partition boundaries are curves on wheelch
point corresponds to quasi-polynomial (5) havingoge
on the imaginary axis. It may be the real zero lolauy
or the complex zero boundary. It is easy to seedhasi-
polynomial (5) has zere= 0 if k. = 0 (the real zero boun-
dary). The complex zero boundary corresponds t@tire
imaginary zeros of (5). We obtain this boundarysbiving
the equation

W(jw) = Akk (jo)t e 1% 140 + ot = 0, (6)

which we obtain by substituting= j win quasi-polynomial
(5) and equating to 0. The term gt which is required
for equation (6) can be expressed by

o Ty, T
i —co{azjﬂsm(azj. @)

Using (7) equation (6) takes the form

Akkat ™ CO{Z (o - 1)) — oT sin(ah + @) + o
— jAkke sin(;[(a - )) + jaT codah+¢)=0.

Complex equation (8) can be rewritten as a seeaf r
equations in the form

Akk.a ™Y CO{Z (@ —1)) - awTsinah+@)=0, 9)

- Akk.at™9 sin(g(a —1)) +aT codah + @) = 0. (10)

Finally, by solving equations (9) and (10) we get

a= 2n-ah-gq) ’
m
2(mr-ah-¢)

ke=—w 7
¢ Ak

(11)

(12)

Equations (11) and (12) determine the complex zero
boundary as a function ofu The real zero boundary
and the complex zero boundary f@= 0 decompose plane
(@, ko) into regiondD(k). The stability regiom(0) is chosen
by testing an arbitrary point from each region ahdcking
the stability of quasi-polynomial (5) using the imads
proposed in (Bustowicz, 2008). In this paper ohly stabil-
ity regionD(0) in the parameter plane of quasi-polynomial
(5) is presented.

ForA=1 andp=0 in (11) and (12) the stability boun-
daries are calculated. To determine the complex heun-
dary for a given value of gain margiof the control sys-
tem we should sgp= 0 in (11) and (12). On the other hand
by settingA=1 in (12), we can obtain the boundary
for a given phase margip

The complex zero boundary (11) and (12) is detezthin



for parameter w=0. The complex zero boundary
for a given value of gain marglkbegins at the poird = 2,
k:=0 which we obtain by substitutingp=0 in (11)
and (12). However, the complex zero boundary for
the given phase margipstarts at the pointr = 2(rt— @)/,

ke =0. If w- o plot of the complex zero boundary tends
towardsk, -axis.

Example 1. Consider the feedback control system shown
in Fig. 1. in which the process to be controllediéscribed

by transfer function

055
&) 1+62s

On computing by the proposed method complex zero
boundaries (11) and (12) we obtain the stabilityiors
in controller parameter plane,(k.).

Fig. 2 shows boundaries in controller parametengla
(a,k;) for gain marginA=1 and a few values of phase
margin @ The stability regions lie between likg= 0 (the
real zero boundary) and the curve assigned to fapeci
phase margip(the complex zero boundary).

e 10s,

(13)

20 T T T T T
I I I I I

Fig. 2. Stability regions of quasi-polynomial (5)
for A =1 and different values @f

.
1.7 18 19 2

1.4

a
Fig. 3. Stability regions of quasi-polynomial (5)
for ¢= 0 and different values &f

On choosing any point from the stability region oz
tain the controller parameter values provided thaspe
margin of this system not less than specified fiawing
the complex boundary. For example, any point frdma t
region limited by the lind. = 0 and the curve correspond-

acta mechanica et automatica, vol.5 n0.2(2011)

ing to ¢= 60 provides a phase margin of this system not
less than 60 From Fig.2 we see that the increasing value
of gresults in the disappearance of the stability negio

The stability regions of quasi-polynomial (5) fongse
margin ¢= 0 and a few values of gain margirare shown
in Fig.3. We see that increasing valuefofesults in the
disappearance of the stability region. On chooaimgpoint
from the stability region we obtain the controlf@arameter
values provided that the gain margin of this systemot
less than specified for drawing the complex boupdior
example a choosing point betweley= 0 and the complex
boundary forA=4 we obtain the controller parameters
satisfying a gain margin of not less than 4.

The controller parameters and stability marginghef
control system for all points marked in Fig. 2 dfid. 3
are listed in Tab. 1. It is shown that the stapilibargin
values are larger than specified for drawing thenglex
boundaries of the stability regions. Gain and phaaegins
of the control system are calculated for transfercfion

(1).

Tab. 1. Gain and phase margins

Point | Controller parameters Gain margin Phase margi
a a=11k=2 7.13 17.06 dB|  107.36
b a=11k=4 3.56 11.64 dB| 74.38
c a=11,k=6 2.38 7.52dB 55.5T°
d a=11,k=10 143 3.08dB 26.64

Tab. 1 confirms the results received on the bakthe
D-partition method showing that the points from stabili-
ty regions satisfy the gain and phase margin requéints.
The step responses of the control system are piessen
in Fig. 4. It can be seen that the increasing vafugresults
in smaller oscillations.

18

point a

1
y()
ogb Sl LY 0
0.6
0.4

0.2+ §

[ —
=]
w
. —
=]
N
o
s]

Fig. 4. Step responses of control system

By using the stability regions we can obtain thatoal-

ler parameter values for specified gain and phasegims
requirements simultaneously. For this purpose wawdr
in one plot the complex zero boundary for specifidshse
margin ¢ with A=1 and the complex zero boundary
for specified gain margi® with ¢= 0. Intersection point
of the complex zero boundaries determines the cbetr
parameter values.
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Example 2. Consider the feedback control system
as in Example 1. Calculate the controller paramesdues
so that the control system has the gain mafgind (about
12 dB) and the phase margir 55°.

On computing the complex zero boundaries (11)
and (12) for specified gain marghk= 4 with ¢= 0 and for
specified phase margip=55 with A=1 we obtain
the stability regions which are shown in Fig. 5eTihter-
section point of the complex zero boundaries iske
onFig. 5 and has coordinates=1.1339, k. =2.9358.
On calculating the stability margins of control t&ys
for simplified transfer function (3) we obtairA=4
and ¢= 55". Whereas stability margins for model plant (1)
areA = 4.4 andp= 80 because of simplification (3). Fig. 6
shows the Bode plot with the gain and phase margins
marked for controller parametess= 1.1339 k. = 2.9358.

Fig. 5. Stability regions of quasi-polynomial (5)
for A=1,p=55°andA=4,9=0

A =12.85dB (at 0.147 rad/s), = 80.22 ° (at0.037 rad/s)

Magnitude (dB)

90+

-180F

-2701

Phase (deg)

-360
10”

10°

Frequency (rad/s)
Fig. 6. Bode plot with gain and phase margins

By using expressions of the stability boundaries) (1
and (12) we can determine analytical descriptiandicect
calculations of the controller parameter valuessfoecified
gain and phase margins requirements without drawing
the stability region.
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To determine the complex zero boundary for a given
value of gain margim of the control system we set= 0
in (11) and (12). On solving system of equationg) (1
and (12) for the unknown quantities @fandk; with ¢=0
we obtain

w= n2-a) '
2h
T ( n2-a) )a
Ak 2h '
Expression(15) gives the relationship betweknand o
for specified gain margiA.

Similarly to determine the complex zero boundary
for a given phase margip of the control system we set
A=1in (12). On solving system of equations (119 §12)
for the unknown quantities @dandk, with A = 1 we obtain

(14)

(15)

C

w:n(Z—a)—Zqz’ (16)
2h

_T(n@-a)-2¢\"

= T(me=a-20) an)

Expression (17) gives the relationship betwkeand a
for specified phase margin

Note from Fig.5 that for fixed value @ which guaran-
tees gain and phase margins requirements simuliaheo
the values ok; in the two complex boundaries are the same
(the intersection point). Therefore the value afwhich
ensures gain and phase margins requirements cealhe
lated by solving following nonlinear equation

J=id

After simplifications equation (18) can be rewrnitte
in the form
nm2-a)

m2-a)-2¢

If we get the value ofr from (19) we can calculate con-
troller gaink. from expression (15) or (17).

From the above it can be seen that the procedueafo
culating parameters of controller (4) for specifigdin
and phase margins requirements is as follows:

1. Solve the nonlinear equation (19) and deternaine
2. Calculate controller gaik. from expression (15) or (17).

Note that in the procedure proposed the calculation
of the gain crossover frequency or the phase cvessoe-
guency is not necessary in contrast to methodsepted
in (Boudjehem et al., 2008; Bustowicz and Nartowicz
2009; Nartowicz, 2010). The advantage of the proced
proposed is that the controller settings are easilyulated.
Example 3. Consider the feedback control system
as in Example 2. Using the procedure presenteduleséc
the controller parameters values so that the cbeyrstem
has gain margim =4 (about 12 dB) and phase margin
@=55.

T
Ak

T

” (18)

( m2-a)

mR-a)- 2(0)”
2h '

2h

(19)



On solving nonlinear equation (19) we have 1.1339.
From (15) or (17) we calculate controller g&in= 2.9358.
Note that we obtain the same values of the coetrglara-
meter as in Example 2.

Gain and phase margins are measures of relatibé-sta
ity for a feedback system. Although the phase nmargi
is used more frequently than both margins. The gmaar-
gin is closely related to transient response wershoot.

From the above it can be seen that the proceduafo
culating parameters of controller (4) for specifipdase
margin requirement is as follows:

1. Calculate the start point of the complex zero baupd
a=2(r- gl

2. Choose any positive value smaller than determimed

3. Calculate controller gaik. from expression (17).

In the above procedure solving nonlinear equatomoit
necessary.

4. CONCLUSION

In this paper the stability problem of control gyet
composed of the fractional-order controller and itrertial
plant with time delay is examined. On the basistlof
D-partition method analytical forms expressing bleeinda-
ries of stability regions in the parameter spacesfecified

gain and phase margin requirements were determined.

When the the stability regions are known thergrof the
fractional controller can be carried out. Simplealgtical
formulas for obtaining the controller parameter uesl
for specified gain and phase margins requiremerdse w
also given. In the method proposed the controlédtirgys
are easily calculated.

The calculations and simulations were made using
the Matlab/Simulink programme.
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Abstract: The realization problem for single-input singleqmut 2D positive fractional systems with differemtlers is for-
mulated and a method based on the state variadgeastn for finding a positive realization of a givemoper transfer function
is proposed. Sufficient conditions for the exisef a positive realization of this class of 2Deln systems are established.
A procedure for computation of a positive realiaatis proposed and illustrated by a numerical examp

1. INTRODUCTION

In positive systems inputs, state variables anguist
take only non-negative values. Examples of positys-
tems are industrial processes involving chemicattas,
heat exchangers and distillation columns, storagéems,
compartmental systems, water and atmospheric pilut
models. A variety of models having positive linegstems
behavior can be found in engineering, managemésee,
economics, social sciences, biology and medicitee, e

Positive linear systems are defined on cones and no
on linear spaces. Therefore, the theory of possiystems
is more complicated and less advanced. An ovenaéw
state of art in positive systems theory is givethi& mono-
graphs (Farina and Rinaldi, 2000; Kaczorek, 2002)e
realization problem for positive discrete-time aodnti-
nuous-time systems without and with delays was ieons
dered in Benvenuti and Farina (2004), Farina anthl|i
(2000) and Kaczorek (2006a, 2006b, 2004, 2005).ed n
class of positive 2D hybrid linear system has bagro-
duced in Kaczorek (2007), and the realization pFobfor
this class of systems has been considered in Kekzor
(2008c).

The first definition of the fractional derivativeas in-
troduced by Liouville and Riemann at the end of 1188
century (Nishimoto, 1984; Oldham and Spanier, 1974)
This idea has been used by engineers for modeiffeyeht

process (Engheta, 1997; Ferreira and Machado, 2003;

Klamka, 2005; Ostalczyk, 2000; Oustaloup, 1993)thda
matical fundamentals of fractional calculus aresgivn the
monographs (Miller and Ross, 1993; Nishimoto, 1984;
Oldham and Spanier, 1974; Ortigueira, 1997; Podiubn
1999). The fractional order controllers have beevetbped

in (Ostalczyk, 2000; Podlubny et al., 1997). A gatiea-
tion of the Kalman filter for fractional order sgsts has
been proposed in Zaborowsky and Meylaov (2001)e# n
class of positive fractional 2D hybrid linear systénas
been introduced in Kaczorek (2008e) and positigetional

2D linear systems described by the Roesser modRloin
gowski and Kaczorek (2010). The realization problem
for positive fractional systems was considered at#orek
(2008b, 2008d, 2011) and Sajewski (2010).
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The main purpose of this paper is to present a adeth
for computation of a positive realization of SISO @iffer-
ent orders fractional systems with given propendfer
function using the state variable diagram methadfiGent
conditions for the existence of a positive realmawf this
class of systems will be established and a proeeétur
computation of a positive realization will be prepd.

The paper is organized as follows. In section 2chde-
finition and theorem concerning positive 2D diffetreor-
ders fractional systems are recalled. Also in gestion
using the zet transform the transfer matrix (fuma}iof the
different orders fractional systems is derived &mal posi-
tive realization problem is formulated. Main ressltgiven
in section 3 where solution to the realization peab for
given transfer function of the 2D different ordéactional
discrete-time linear systems is given. In the sa@etion
the sufficient conditions for the positive realipat are
derived and the procedure for computation of thsitjve
realization is proposed. Concluding remarks areemiv
in section 4.

The following notation will be used? — the set of real
numbers R™*™ — the set ofr x m real matricesR*™ —
the set ofn X m matrices with nonnegative entries and
R = R*L, [, — then x n identity matrix, z[f (k)] — zet
transform of the discrete-time functigf(k).

2. PRELIMINARIES AND PROBLEM
FORMULATION

Consider a 2D system with different fractional osde
described by the equations

A xq (k+1) = A2 (K) + Apoxp (K) + Bru(k) (2.1a)
DPxo (k+1) = Agyxg (K) + AgpXa (K) + Byu(k) (2.1b)
Y(k) =C1% (k) +Cox5 (k) + Du(k) , kDZ, (2.1c)
where x,;(k) € R™, x,(k) € R"2zare state vectors

andu(k) € ®™ is input vectory(k) € RF is output vector
and Al.] € mnixnj, Bi € mnixm, Ci € mpxni, l,] = 1,2,
D € RjPxm,



The fractional difference af € R order is defined by

Ko
ATxR) =Y (—1)J(TJx(k— i) (2.2a)
j=0
and
1 _
(?’j: a(@-Y.a-j+y © 1=0 (2.20)
] it for j=12..

Using (2.2a) we can write the equation (2.1a) &hiik)
in the following form
x(k+1) = Ay xq (K) + Apoxa (K)
k+1

-3 ! (‘j’jxl(k ~j+1)+ Bu(k)
=2

Xo(k+1) = Ay (K) + Ag s (K) (23)
k+1 ) IB
- Z(—l)'(j]xxk— j +1) + Byu(k)
j=2
where
Ay =Ag+aly
A =Port Ay, 24

Definition 2.1. The fractional system (2.1) is called positive
if and only if x; (k) € R™, x,(k) € R" andy(k) € RE,

k €z, for any initial conditions x;(0) = x;o € R.?,
x,(0) = x50 € R}2, and all input sequencas(k) € R™,
kez, ={0,1,..}.

Theorem 2.1. (Kaczorek, 2011) The fractional discrete-
time linear system (2.1) with0<a <1, 0<f<1

is positive if and only if

Ar Ao nn B <m

A= oofy", B= oo,
{Aﬂ Az/?} {BJ

[C, C,JooP", pooP™.

Proof is given in Kaczorek (2011).
Substituting (2.2a) into (2.1a) and (2.1b) we abtai

(2.5)

kel
%(k+D+3 (1) @x(k—j +)= A+ A0+ BukK)
j=1
k+1 ) :8
Xz(k+1)+2(-1)‘(jj><(k-1 +1) = Appx(K) + Apxo(K) + Bulk)
j=1
YK) =Cpq (K) + Cxo(K) + Duk)
(2.6a)
Performing the zet transform with zero initial cdimhs
we have
kil .
2%(2)+ ) (-’ (TJZ“ X1(29) = A% (2 +AX2(9 + BU(D)
j=1
k1l B) 1
2%+ (9’ ( j jzl TX2(2) = Ao (2) + ApoXo (D + BU(D)
j=1
Y(2) =Cp%1(9 +CX(2) +DU(D)
(2.7)
whereX(z) = Z[x(k)], U(z) = z[u(k)], Y(2) = z[y(k)].
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The equations (2.7) can be written in the matrixfo

{Xl(z)}: In (Z=Ca)~ A -Ap _I[BL}U(z)
X2(2) —Poy In,(z=Cg)=An2| | By

X
Y2 =[c, cz][xi((f)} DU

(2.8)

where

g
Ca =Cq(k2) =Z(—1)"1(jjzl‘J

= (2.9)

K i1 B 1-]
cp=cp(k2) =3 (-1 [sz |
=1
The transfer matrix of the system (2.1) is given by

I, (z-C2) — A1 ~A> 1[51}'3
A In, (z=C)=Po2| | B,
(2.10)
In this case the transfer matrix is the functionhaf op-
erators w, =z —c,, wg =z —cz and for single-input
single-output (shortly SISO) systems it has thdofeing
form

T2 =[c, ca]{

n Ny i j
2B we

e
T(Wg, Wp) = =) ~ (2.11)
wytwp" = Nl wy' wg!
i=0 j=0
i+ j£n+n,

for knowna, 8.
Definition 2.2. The matrices (2.5) are called the positive
realization of the transfer matrik(z) if they satisfy the
equality (2.10).
The realization problem can be stated as follows.
Given a proper rational matrix T(w, wg) €
RP*™(w,, wg) and fractional orders, 3, find its positive
realization (2.5), wher&P*™(w, wg) is the set op x m
rational matrices im, andwg.

3. PROBLEM SOLUTION FOR SISO SYSTEMS

The essence of proposed method for solving of ¢hae r
lization problem for positive linear systems witlfelent
fractional orders will be presented on single-inpirtgle-
output system. It will be shown that state variatiegram
method previously used for standard discrete-tigstesns
and 2D hybrid systems (Kaczorek, 2002, 2008c) $» al
valid for fractional order discrete-time systems.

In standard (nonfractional) discrete-time systems
it is well-known that

z[X(k+1)] = zlz[ XKk)] = zX(2) (3.1a)
and
z[ X(K)] :lﬁ[x(k +1)] (3.1b)

z
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Fig. 3.2.State variable diagram for 2D fractional differenders transfer function (3.14)

Therefore, to draw the state variable diagram fan-s
dard discrete-time linear systems (Kaczorek, 20@2)use
the of delay elemerit/z.

By similarity, for the fractional discrete-time &ar sys-
tems we have

k+1 .
2[ A% (k+D)] = 2| % (k+D + (-’ (T}&(k— j+1)
j=1
k+1

= Z-Z(—Di'l[‘j’jzl‘j X1(2) =(2-C) %1(2) =Wy X4(2),
j=1

268 %(K+D)] = (2-C4) X2 (2) =W X4 (D)
(3.2)
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and to draw the state variable diagram we haves&the

. 1 — 1 -
fractional of delay elemen‘tms— =w;tand —= wg 1
a

wg
Consider a 2D different orders fractional discriitee
linear system described by the transfer functiorliR
Multiplying the numerator and denominator of tramsf

function (2.11) by, "*w; " we obtain

Y
T(Wy,Wg) =U
B, * by, aWg T by g, We T+ bogW W2
- -1 -1 - -
1-8pnaWg  —8y-1n,Wo -~ 8goWy tWg 2

(3.3)
Following Kaczorek (2002, 2008c) we define



E= v (3.4)
Z 1 T o gy
1=8n n,-Wp ~ = 8n-1n, Wy -~ 800Wa Wg

and from (3.3) we have
E=U+ (anl’nz_lwlg_l + aﬂl_lnzwo,'1 +..+ a9V, W ?)E

Y = (B, +bry g W g Wy By Mg )E
(3.5)

Using (3.5) we may draw the state variable diagram
shown in Fig. 3.1.

As a state variable we choose the outputs of raati
(order @) of delay elementsx( ;(k),x;,(k), ..., X1 5, (k))
and fractional (order ) of delay elements
(x2,1(k), x5, (), ..., Xz 20, (K)). Using state variable dia-
gram (Fig. 3.1) we can write the following discrétae
different orders fractional equations

D7xq1 (k+1) = xq5(K)

ATxq 5 (k+1) = x13(K)

: (3.6)

D4 g, 1 (K+2) = g, (K)

A”xlnl(k +1) = gk)

DPxo1(k+1) =agy, —1X11(K) +agp, —1x12(K)
to.tangn,-1Xn (K) +X22(K) + anlynz_le(k)

DPxpp(k+1) = ag,n,-2X11(K) +ag n, - 2X12 (k)
+..*ap-qn,-2X1n (K) + x23(K) + anlynz_ze(k)

DX, 1 (k +1) =agsxq1(K) +agx o (K)

to.tan 11X (k) + X2n, (k) + anlle(k)
A'gxz,n2 (k +1) = aggx11 (k) +asoxy2 (k)

+...+ arh_Loxlnl(k) + anlyodk)
8% (K +1) =bp, X1 (K) +byp, 1 5(K)

oot bq—l,ng—lxlnl(k) + X2,n2+2(k) + bnl,nz—le(k)
D% 2K+ =g, %43 (K) +by - %5(K)

oot bq—lrlg—lenl (k) + X2,r12+3(k) + bnl,ng—zdk)

DX 20,1 (K+1) =b ¥4 (K) +b11x2(K)
+..+ bq—llxlnl (k) + X22n, (k) + brhle(k)
D%, (K +1) =bogii3 (K) +b1612(K)
+ ..+ by 10X, (K) + by o€(K)
Y(K) =bg, %11 (K) + by X12(K) +..4 by 1y X1, (K)
+Xg41(K) + by, €(K)

(3.6)
where

&K) = agn, X11(K) + @90, %12(K)

3.7
+...+ anl_l'nz Xl.nl (k) + XZ,].(k) + U(k) ( )
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Defining
X11(K) X21(K)
x1 (k) = » Xo(K) = (3.8)
X1, (K) X2.2n, (K)

and substituting (3.7) into (3.6) we can write druations

(3.6) in the form
A% % (k +1) _|:A:I.1 ﬁz}{xl(k)}_{%}u(k)
Agr | Xo(K) | | B

Mxy(k+1) | Ao 5.9
X (K) '
k)=|C; C + Du(k
vk =[c; zl[w) (k)
where
) 1 0 0
0 0 1 0
Aa= OR™M,
0 0 0 1
[3on, @1, A2n, A1, |
(00 ... 00O
00 ..00
A=t i D | DR
00 ..00
1 0..00
[@on,1 Bnya 82na an 10,1 |
§O,n2—2 g1J,n2—2 i?12,r12—2 énl—lnz—z
Aoy = 30 &0  3p _@n-10 O R2WN,
! l_JO,nQ—l lzl,nz—l l32,n2—1 Enl—lnz—l ’
bon,-2 bin,—2 Pon—2 - Pp-in,-2
i boo bio bso br,-10
faypa 10 0 000000..00 0
anl’nz_2010...0000000...000
&y 2 000..010000O0..000
81 000..001000O0..000O0
_| &0 000..00000O0OO0..000O0
27l 0 000.0000100..000
b%,b_ZOOO...OOOOOlO...OOO
brh2 00 000O0OO0O0O 010
h’h,l 00 000O0O0O0O 001
b%o 00O 000O0O0O0O 00O
ORI
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apy,n,-1
0] Any.n, =2
0 a
B =|:|OR™?, B, =| ™ |[ORZ2
0 bnlan_l
1 n,n,—2
| Do |
= . "
C _[bo,nz by, bnl_lnz]DR ", (3.10)
- 2 _ 2
C,=[Co1 Cpp)OR™™%, D ‘[bnl,nz]DR "
and
021=[bnl,n2 0 .. O]DRlx”Z, Cpo=[l 0 .. OJOR™™
(3.11)
where
&, =8, tainaj B, =h;j+anby; for
i=01.m-1; j=01..n,- (3.12)

Taking under consideration thatl;,=A; + al,,
A,p=Ay, + PI,, the following theorem has been proved.
Theorem 3.1.There exists a positive realization (2.5) of the
2D different orders fractional system (2.1) with< a < 1,

0 < B < 1if all coefficients of the numerator and denomi-
nator of the transfer functich(w,, w;) are nonnegative.

If the assumptions of Theorem 3.1 are satisfiedh the
a positive realization (2.5) of (2.11) can be folnydthe use
of the following procedure.

Procedure 3.1.

Step 1.  Write the transfer functiofi(w,, wg) in the
form (3.3) and the equations (3.5).

Step 2. Using (3.5) draw the state variable diagram
shown in Fig. 3.1.

Step 3. Choose the state variables and write emsati
(3.4).

Step 4. Using (3.10) to (3.12) find the realizat{BriL0).

Step 5. Knowing fractional ordets B and using (2.4)

to matrices (3.10) compute the desired positive
realization of the transfer function (2.11).
Example 3.1.Find a positive realization (2.5) of the proper
transfer function where = g = 0,5.
B, W + B, 2 + AW + 3y, +2wg +1
W, 2wz — 05w, % — 04w, Wz — 03w, — 02w — 01
(3.13)

T(Wy, Wy) =

Inthis caser; =2 andn, =1 .
Using Procedure 3.1 we obtain the following.
Step 1. Multiplying the nominator and denominator
of Transfer function (3.13) by 2w;* we obtain
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Y

Z)=—

Ts2 U
6+ 5W,,3_l + 4wa_l + 3Na_1W,3_l +2w,

-1 1 4, - -2 -2, -1
1- 05wz - 04w, ™ - 03w, "W — 02w, > — 015 2wy
(3.14)

-2 + Wa'_ZW,B_l

and
E=U+ (05w -+ 0dw, +03n, wy ™ +02w, 2 +01s 2w E

Y = (6+55 "+ A 3wy 2w, 2wy, A E
(3.15)

Step 2. State variable diagram has the form shown
in Fig. 3.2

Step 3. Using state variable diagram we can whgefol-
lowing different orders fractional equations

Aaxll(k +1) =X12 (k)

AaX:LZ (k +1) = 02Xl,1(k) + 0.4X1'2 (k) + X2,l(k) + U(k)

A’BXZ;L(k +1) = 02Xl,1(k) + 0.5X1'2 (k) + 05X21(k) + 05U(k)

A’BXZZ (k+1 = 2X1;|_(k) + 5X1'2 (k) + 5X2;|_(k) +5u(k)

(k) = 32x11 (k) + 8.4x1 5 (K) + 6x21 (k) + X35 (k) + 6u(k)
(3.16)

Step 4. Defining state vectors

x11(K) X21(K)
X (k) = Llli (k)} Xp(K) = Li(k)}
we can write the equations (3.16) in the form
0 1 0 ofxu®] [0
{A"xl(km} 02 04 1 0|x| |1
MPxo(k+1)| |02 05 05 0f Xp1(k) | |05
2 5 5 0fx2(Kk 5
%K) | | B
xZ(k)HBJ“(k’
x11(K)
12( K)

21(K)
X22 (k)

(3.17)

u(k)

=|:A11 Ao
A1 Poo|

(3.18)

yk)=[32 64 6 1] +[6]u(k)

% (K)

x2(k)} +Dul9

e g~
w2 s ]

Bﬁm, Bz{é} C, =[32 64]

c,=[6 1, p=[g]

o

P

1

(3.19)



Step 5. Knowing thatr = S =05 and using (2.4) we have

A= Agtal [0 17,41 0]_[05 1
"%m T o2 04| lo 17|02 o9

A4 _[os 0], J1 0] [1 0
Ap=ro2*An, = o 1*930 11 05 o5/

The conditions of Theorem 2.1 are satisfied and ob-
tained realization (3.19) with (3.20) is positive.

(3.20)

4. CONCLUDING REMARKS

A method for computation of a positive realization
of a given proper transfer matrix of 2D differentders
fractional discrete-time linear systems has beapgsed.
Sufficient conditions for the existence of a pastrealiza-
tion of this class of systems have been establishguio-
cedure for computation of a positive realizatiors leeen
proposed. The effectiveness of the procedure has iia-
strated by a numerical example. In general dase pro-
posed procedure does not provide a minimalizegan
of a given transfer matrix. An open problem imfalation
of the necessary and sufficient conditions for elestence
of positive minimal realizations for 2D fractiongystems
in the general case as well as connection betwerimal
realization and controllability (observability) ofiis class
of systems.
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Abstract: In this paper the discrete time fractional orddifiaial neural network is presented. This struetis proposed
for simulating the dynamics of non-linear fractibnader systems. In the second part of this papeeral numerical exam-
ples are shown. The final part of the paper prestm discussion on the use of fractional or inteljgcrete time neural net-
work for modelling and simulating fractional ordeon-linear systems. The simulation results showaitivantages of the
proposed solution over the classical (integer) aleugtwork approach to modelling of non-linear fiagal order systems.

1. INTRODUCTION

Extending a highly desirable genericity of lineay- d
namic systems models to non-linear systems hasgtfite
some time occupied control theorist. The main readdhe
problems with obtaining generic models for non<ine
systems is the complex behaviour associated witlimo
earity and its intrinsic locality. Thus the seafeha univer-
sal non-linear model is highly non-trivial, as etunderly-
ing problem of classification of non-linear systems
An important feature of a candidate for such a rhixithat
it be parameterised to make finite-dimensional fifiea-
tion techniques applicable. Moreover, the modelukhbe
tractable from the control point of view as it islp
an auxiliary step in the overall closed-loop systasign.
In this context we attempt to analyse and exterdaipli-
cation of neural networks for control. The neuratworks
can be treated as candidates for a generic, paiamain-
linear model of a broad class of non-linear plaste e.qg.
Hunt et al. (1995)Zbikowski and Hunt (1996); Kalkkuhl
et al. (1997); Ngrgaard et al. (2000)). Neural meks have
modelling capabilities to a desired accuracy, hawet/is
not entirely clear how they represent the planysteam
properties. A remarkable progress in the invedbgat
on the representational capabilities of neural petes
in recent years not only validate them as the nwdel
but also give interesting and practical suggestinsfur-
ther research. Boroomand and Menhaj (2009); anaiBen
Marand et al. (2006) present continuous time dpson of
neural networks for modelling nonlinear fractioraider
systems. In this paper the discrete approach isidered.

In many cases the use of feedforward neural nesvork
for non-linear control is based on the input-outgistrete-
time description of the systems

=f ks - (1)

However, this model has rather limited capabilities
for modelling the fractional order systems. Thus,this
paper we suggest the use of the fractional ordiEulce
to built a model of a non-linear system in the form

A" yyym = f(A(n_l)ayk+n—1' e

Vk+n s Vie—na15 Uker -+ Uk—m41)-

A"V 1, Vi Uie)- 2
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The model proposed may turn out to be of lower orde
and may better reflect the dynamic properties ef filac-
tional order system modelled.

2. DISCRETE FRACTIONAL ORDER
NON-LINEAR SYSTEM

To present fractional order discrete time neuravoek
we have to introduce discrete fractional order hiosar
system. In this paper the following definition dfet frac-
tional order difference is used (see e.g. Oldhach $panier
(1974), Podlubny (1999)):

Definition 1. Fractional order difference is given as follows:

A% = Too (-1 (§) s @)

whereg € R is a fractional order an# € N is a number
of sample for which the difference is obtained.

In our case the artificial neural network is usedrnodel
the fractional order non-linear systems. Using tfoaal
order difference the following non-linear discrétactional
order system in the state-space description ineefi
Definition 2. The non-linear discrete fractional order system
in a state-space representation is given by thewolg set
of equations:

A"Xpq = f O, ug) 4)
X1 = D%Xpeqq — ZkH( 1)’ ( )xk+1 —j ®)
Y = h(x) (6)

The system which we take into consideration ismgive
as the following relation:

Ay = g D%y A%, Vi W) (7)
which can be rewritten as:

A%y ki1 = Xk

A%Yy ki1 = X3k (8)

a —
A1 =9 ks X2.k» s Xn ks Uy)

This system can be modelled using the artificialrak
network presented in the next section.



3. DISCRETE TIME FRACTIONAL ORDER
NEURAL NETWORKS

Neural networks have good properties to model the d
namics of the non-linear systems. In fact they teeated
as a candidate for a generic, parametric, non4limeadel
of a broad class of non-linear systems, because hhee
modelling capabilities to a desired accuracy. pessive
of system order so far the system scientists hawpgsed
the integer order neural network for modelling gee
or non-integer order system. In case of using stahdin-
teger order) neural network for fractional systemmadel-
ling the network structure is complicated and theuaacy
can be insufficient. Better solution can be achieusing
fractional order neural network of the form.

This structure is a combination of a standard Heura

network and a linear discrete fractional orderestytace
system (DFOSS) defined below.

Definition 3. Linear discrete fractional order system in
the state-space representation is given as foli®es e.g.
Sierociuk and Dziefiski (2006)):

Aaxk+1 = Axk + Buk (9)
X1 = A%%pqq — Zﬁr%(_l)] (7) Xk—j+1

Yk = ka + Duk

(10)
(11)

where,a € R is a system order.

Lo Uk
E—
YE AT Ao,
Nenural A" Ykn I AYk41
~__ ~ DFOSS
Network . )
D AT DAy g

[ I

Fig. 1. Discrete time fractional neural network

Fig. 1 presents the architecture useful to simulate

the fractional order neural network. It can be cedi
that the neural network is a traditional structwwaich
choice is dependent on the modelled system. Theaheu
network input signals are the system input and wutiata
for the k sample (uk, yx) and the vector differences be-
tween previous outputs from™=Dey, . to A%y,,,.

In the output of the neural network we obtain thedjction
of the next step differencd™®y,,,. Using this value
DFOSS calculates the value of the system outputamev
vector of differences. DFOSS blocks’ sizes dependhe
modelled system structure and the system matrieesan
be obtained in the following way:

[0100-"

0 o
) | B:H,C:[l],p:[o]. (12)
0
.1 1
0

The structure discussed in this section can be used

for offline simulation of the modelled non-integerder
dynamics. In order to apply it to an on-line apation in
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control one needs to ug€*y, ., (output of the network)
to calculate the system output using only previsigmals
samples which are available.

In the next section we present the numerical exampl
which illustrates the operation of the proposedditire.

4. NUMERICAL EXAMPLE

For all the simulations two groups of input signaksre
prepared. The first group of four signals was mefant
learning process and the second group of two sigwals
used for testing process. The learning and testiggals
are presented in Fig. 2 and Fig. 3 respectivelyalFiesults
of neural modelling were obtained by on-line sintiokas in
Simulink using Neural Network Toolbox and Fractibna
State-Space Toolkit (FSST) (see e.g. Sierociuk3p00

input lII
—— input lI2

—— input ll3

0 0 i ET] EE G
time [s]

Fig. 2. Input learning signalt{, U,, U3, Uy

1.5 ' ‘ ‘ —input U, 7]
1t —input Ut2 |
05
0
0.5
“ 20 40 60 80 100
time [s]

Fig. 3. Input testing signaldJ,, Uy,

Example 1. Modelling of the fractional system by a dis-
crete fractional order neural network
The system is given by the following equation:

(13)

For modelling the non-linear function in this syste
a two-layer neural network with two inputs and angput
was used. The network consists of three neurons
with nonlinear (tansign) activation function in theput
layer and one linear neuron in the output layer.

The input vector for the fractional neural network
for this case has the following form:

A%®Yppy = —0.1y5% +

uo ul .

— ’ uk
P= [3’0 Yo J’k] (14)
The output vector has the form:
T = [A%Sy; A%y, - A%Sy 4] (15)
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The DFOSS block has the following matrices: neural network with 5 inputs and one output. Therak
network used has the following structure: inputelakias 6

A=1[0],B=[1],¢=[1]D = [0]. (16) tansign neurons, output layer has one linear neurothis
The order of this block is equal to= 0.5 and is the case the modelled equation has the form:
same as the order of the given system equation. Vit 4 = F(yk+3,yk+2,yk+1,yku) (17)
% 10° : :
2 —fractional neural network 2.5
g —integer order network 2r
o .0
510 1 1.5}
K 1
S
5_10-5 - 0.5
n 0
& 05l —Input signal
g .
= 101 ) ) . L ——output of system
0 100 200 300 400 : —output of NN
Epochs 15 . , , . , . ; ; n
. i . i 0 10 20 30 40 50 60 70 80 90 100
Fig. 4.Learning error for fractional and integer order time [s]
neural network Fig. 6. Output of the fractional neural network

for testing signdl;q

—Input signal
2r ——output of system
—output of NN

o5 |~ Input signal J
4L |output of system |
—output of NN
%40 20 30 40 50 60 70 80 80 100 i _
time [s] 2 L L L L L L L L L
. . 0 10 20 30 40 50 60 70 80 90 100
Fig. 5. Output of the fractional neural network time [s]

for learning signdl{ Fig. 7. Output of the fractional neural network

for testing signdl;,

For training the neural network the Levenberg-
Marquardt and backpropagation algorithms (implement
in function TRAINLM in Neural Network Toolbox)
were used for 400 epochs. The results of the paeoce
of the network during learning process is presemdsdg. 4
(together with results of integer order neural rek). As it
could be seen the final error is very small, abbort?.
Fig. 5 presents a comparison between the resparfises
fractional neural network with original output fanput
signalU1 from the group of learning signals. As it could be
seen the accuracy of modelling is very high. Moegpthe
Fig. 6 and Fig 7 present analogical results for test signals —
Ut1 and Uz respectively. This results prove very high accu-
racy of modelling and confirm that the neural netwbas
been properly taught. This also shows that the oitws
able to properly generalize data, which is the nfaature
of neural networks. Fig. 8 and Fi@ present results of
neural modelling of the non-linear function. Figp&sents
the original non-linear function of the system dipra
whereas Fig. 9 presents the modelling error, tfferdince
between original function and the one modelled byral
network.

Example 2. Modelling of the same fractional system
as in Example 1 by a discrete integer order newgbhork.
In this example the traditional approach will begented
in which we try to model non-linear fractional ordgystem
by a non-linear integer order system with some gligu
big) number of delays. Let us take into consideratie Fig. 9. Error of neural modelling
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value of fractional difference A°x, ,

Fig. 8. Original non-linear function

0.4—

error of neural modeling

input signal u,

state variable x,



The results of the neural network performance durin
learning process are presented in Fig. 4. Fig. rE@qmts
results of simulation for one signé] from learning group.
As it may be seen the accuracy is acceptable. ixddity,
the Fig. 11 and Figl2 present analogical results for the
test signald/,; andU,, respectively. As it may be noticed,
obtained results show unacceptable accuracy. b dhse
the integer order neural network is not able topprty
generalize the data of the system, despite of the mom-
plicated structure of a neural network. This jussfthe
main advantage of the proposed algorithm.

— Input signal
2r —output of system
——output of NN
1 L
0
1+ J
0 20 40 60 80 100

time [s]
Fig. 10.Output of the integer order neural network
for learning signal/4

0
—Input signal
b ——output of system||
—output of NN
0 20 40 60 80 100

time [s]
Fig. 11.Output of the integer order neural network
for testing signal/;y

0 -
—Input signal
1l ——output of system |
B —output of NN
% 20 40 60 80 100

time [s]
Fig. 12.Output of the integer order neural network
for testing signal/,,

Example 3. Modelling of the fractional system with two
state variables (one hidden) by the discrete faati order
neural network

Let us assume the system is given by the following

equation:

A%y iy = —0.1x3, +uy (18)
where

Xop = A%Y1 k42 (19)
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In this case for modelling the non-linear function
the two layer neural network with 3 inputs and aogput
was used. This network consisted of 3 neurons with-
linear (tansign) activation function in input layand one
linear neuron in output layer.

1oL |—Input signal
| |——output of system
—output of NN

. . . . \ . \
10 20 30 40 50 60 70 80 90 100
time [s]

Fig. 13.Output of the fractional order neural network
for learning signal,

[=)

12l —Input signal

——output of system
1or —output of NN

B . . . . . . \ . \
20 10 20 30 40 50 60 70 80 90 100
time [s]

Fig. 14.Output of the fractional order neural network
for testing signal/;y

14 ; ‘ ; ‘ ' — Input signal
——output of system
—output of NN

. . \ . \
0 10 20 30 40 50 60 70 80 90 100
time [s]

Fig. 15.Output of the fractional order neural network
for testing signal/,,

2 I 1 I 1

The input vector for the fractional neural network
has the following form:

uo ul “ee uk
P = AO.Sy1 AO.Sy2 AO'Syk+1 (20)
Yo Y1 Vi
The output vector has the form:
T =[A'y, Alys -+ Aly,,] (21)
The DFOSS block has the following matrices:
_J0 1 _ 0 _n o _J0
a=ly ol-2=lil-c=lo 1-2=1o] @2)

For training the neural network the same conditions
asin previous examples were used. The results nof a
on-line simulation for one of the learning inpugrsils
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is presented in Fig. 13, while Fig. 14 and.Fid present
results for the testing input signals. As it maydeen the

accuracy of neural modelling is very high.

5. CONCLUSIONS

In the paper we proposed a discrete time fractiordér
neural network. The structures given can be usedddel
the nonlinear fractional order dynamic systems. Ndge
shown the appropriateness of the approach by tirerical
examples. Also the advantages in modelling thetifvaal

order discrete-time dynamic systems with the stmect

proposed over the traditional neural network codipiéth
the tapped-delay line have been shown in sevemhple

cases. Further research is needed to show theetlozbr
properties and advantages (and limitations) ofafhygroach

suggested.

132

10.

REFERENCES

Benoit-Marand F., Signac L., Poinot T., Trigeassou J.C
(2006), Identification of non linear fractional $gs1s using
continuous time neural networkBroceedings of 2nd IFAC
Workshop on Fractional Differentiation and its Applications,
IFAC FDA'06.

Boroomand A., Menhaj M. B. (2009), Fractional order
hopfield neural networks, Lecture Notes in Computer Science:
Advances in Neuro-Information Processing, 5506,-8882.
Hunt K., Irwin G. Warwick K. (1995), Neural Network
Engineering in Dynamic Control Systems, Springer.

Kalkkuhl J., Hunt K., Zbikowski R., Dzieli nski A. (1997),
Applications of neural adaptive control technology, World
Scientific.

Ngrgaard M., Ravn O., Poulsen N., Hansen L(2000),
Neural Networks for Modelling and Control of Dynamic Sys-
tems, Springer.

Oldham K., Spanier J. (1974), The Fractional Calculus.
Academic Press, New York.

Podlubny 1. (1999), Fractional Differential Equations, Aca-
demic Press, San Diego.

Sierociuk D. (2005). Fractional Order Discrete State-Space
System Simulink Toolkit User Guide
http://www.ee.pw.edu.pl/"dsieroci/fsst/fsst.htm

Sierociuk D., Dzieliiski A. (2006), Fractional Kalman filter
algorithm for states, parameters and order ofifraat system
estimation,International Journal of Applied Mathematics and
Computer Science, 16(1), 129-140.

Zbikowski R,. Hunt K. (1996), Neural adaptive control
technology, World Scientific.

This work was partially supported by the Polish Miry of Sci-
ence and Higher Education grant number 4125/B/TQR/3®
and the European Union in the framework of Europ8agial
Fund through the Warsaw University of Technologw&epment
Programme (by Centre for Advanced Studies WUT).



acta mechanica et automatica, vol.5 no.2 (2011)

ABSTRACTS

Marek Btasik, Malgorzata Klimek
On Application of the Contraction Principle to Solve the Two-Term Fractional Differential Equations

We solve two-term fractional differential equationih left-sided Caputo derivatives. Existence-wgigess theorems are proved using newly-
introduced equivalent norms/metric on the spaceoatinuous functions. The metrics are modified uctsa way that the space of continuous
functions is complete and the Banach theorem ared foint can be applied. It appears that the igés®lution is generated by the stationary
function of the highest order derivative and existan arbitrary interval [0,b]

Tomasz Btaszczyk, Ewa Kotela, Matthew R. Hall, Ja¢eLeszczynski
Analysis and Applications of Composed Forms of Caputo Fractional Derivatives

In this paper we consider two ordinary fractionffiedential equations with composition of the laftd the right Caputo derivatives. Analytical so-
lution of this type of equations is known for peufiar cases, having a complex form, and thereferéifficult in practical calculations. Here,
we present two numerical schemes being dependerg fyactional order of equation. The results of ptioal calculations are compared
with analytical solutions and then we illustrat&eergence of our schemes. Finally, we show aniegifan of the considered equation.

Mikotaj Bustowicz
Sability of Sate-Space Models of Linear Continuous-Time Fractional Order Systems

The paper considers the stability problem of lingae-invariant continuous-time systems of fraciborder, standard and positive, described
by the state space model. Review of previous iessltgiven and some new methods for stability cimeclare presented. Considerations
are illustrated by numerical examples and restiltomputer simulations.

Stefan Domek
Fuzzy Predictive Control of Fractional-Order Nonlinear Discrete-Time Systems

At the end of the 19th century Liouville and Riemantroduced the notion of a fractional-order dative, and in the latter half of the 20th cen-

tury the concept of the so-called Griinewald-Letaikactional-order discrete difference has beenfputard. In the paper a predictive control-

ler for MIMO fractional-order discrete-time systefissproposed, and then the concept is extendednbnear processes that can be modelled
by Takagi-Sugeno fuzzy models. At first nonlinead dinear fractional-order discrete-time dynamicaidels are described. Then a generalized
nonlinear fractional-order TS fuzzy model is defin®or which equations of a predictive controllee derived.

Marcin Graba
The Influence of Geometry of the Specimen and Material Properties on the Q-Sress Value Near the Crack Tip for SEN(T)
Specimen

In the paper the short theoretical backgrounds tatlastic-plastic fracture mechanics were preseatetithe O'Dowd-Shih theory was discussed.
Using ADINA System program, the values of the @sirdetermined for various elastic-plastic materfiat SEN(T) specimen — single edge
notched plates in tension — were presented. Theeimfe of kind of the specimen, crack length anteria properties (work-hardening exponent
and yield stress) on the Q-parameter were testeglnimerical results were approximated by the diésen formulas. Presented in the paper re-
sults are complementary of the two papers publishe2007 (Graba, 2007) and in 2010 (Graba, 201®)chvshow and describe influence
of the material properties and crack length for@hstress value for SEN(B) and CC(T) specimenseasely. Presented and mentioned papers
show such catalogue of the Q-stress value, whichbreaised in engineering analysis for calculatibthe real fracture toughness.

Piotr Grzes
Partition of Heat in 2D Finite Element Model of a Disc Brake

In this paper nine of formulas (theoretical and eskpental) for the heat partition ratio were empgldyto study the temperature distributions
of two different geometrical types of the solidaizrake during emergency brake application. A tiwnethsional finite element analysis incorpo-
rating specific values of the heat partition ratias carried out. The boundary heat flux uniforditributed over the circumference of a rubbing
path to simulate the heat generated at the padfdesdace was applied to the model. A number ofdes over the heat partition ratio that affects
the temperature fields are included and their ingue is discussed.

Tadeusz Kaczorek
Positivity and Reachability of Fractional Electrical Circuits

Conditions for the positivity of fractional lineatectrical circuits composed of resistors, cailsndensators and voltage (current) sources are es-
tablished. It is shown that: 1) the fractional &feal circuit composed of resistors, coils andt@gé source is positive for any values of theiisres
tances, inductances and source voltages if and ibthe number of coils is less or equal to the bemof its linearly independent meshes,
2) the fractional electrical circuit is not poséifor any values of its resistances, capacitancgsaurce voltages if each its branch contains-+esi
tor, capacitor and voltage source, It is also shtva the fractional positive electrical circuitsig C, e type are reachable if and only if the con-
ductances between their nodes are zero and thefrakpositive electrical circuits d®, L, e type are reachable if and only if the resistaries
longing to two meshes are zero.
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Tadeusz Kaczorek
Necessary and Sufficient Stability Conditions of Fractional Positive Continuous-Time Linear Systems

Necessary and sufficient conditions for the asympttability of fractional positive continuous-tainear systems are established. It is shown
that the matrix A of the stable fractional positsyestem has not eigenvalues in the part of staéigion located in the right half of the complex
plane.

Jerzy Klamka
Local Controllability of Fractional Discrete-Time Semilinear Systems

In the paper unconstrained local controllabilitpldem of finite-dimensional fractional discrete-tirsemilinear systems with constant coefficients
is addressed. Using general formula of solutiodifiérence state equation sufficient condition ffazal unconstrained controllability in a given
number of steps is formulated and proved. Simplistifative example is also presented.

Zbigniew Kulesza
FPGA Based Active Magnetic Bearings Controller

The article discusses main problems of implementireg PID control law in the FPGA integrated circuonsecutive steps of discretizing
and choosing the fixed-point representation ofcirgtinuous, floating-point PID algorithm are desed. The FPGA controller is going to be used
in the active hetero-polar magnetic bearings systemsisting of two radial and one axial bearingbe Tesults of the experimental tests
of the controller are presented. The dynamic peréorce of the controller is better when compareth Wie dSPACE controller, that was used
so far. The designed hardware and software, theloeed implementation procedure and the experiangaired during this stage of the whole
project are going to be used during the implementaif more sophisticated control laws (e.g. ropirsthe FPGA for AMB controllers.

Wojciech Mitkowski
Approximation of Fractional Diffusion-Wave Equation

In this paper we consider the solution of the foal differential equations. In particular, we saer the numerical solution of the fractional one
dimensional diffusion-wave equation. Some improvetsi®f computational algorithms are suggested. ddresiderations have been illustrated
by examples.

Dorota Mozyrska, Ewa Pawluszewicz
Linear g-Difference Fractional-Order Control Systems with Finite Memory

The formula for the solution to linear g-differerfcactional-order control systems with finite memé derived. New definitions of observability
and controllability are proposed by using the cpbcef extended initial conditions. The rank confitifor observability is established
and the control law is stated.

Zbigniew Oksiuta
Microstructural Changes of Ods Ferritic Steel Powders During Mechanical Alloying

The ODS ferritic steel powder with chemical comgiosi of Fe-14Cr-2W-0.3Ti-0.3Y203 was mechanicallpyed (MA) either from elemental
or pre-alloyed powders in a planetary ball millffBient milling parameters have been used to inyat their influence on the morphology
and microstructure of the ODS ferritic steel powddre time of MA was optimized by studying the stural evolution of the powder by means
of X-ray diffractometry and TEM. In the case ofralental powder very small, about 10 pm in diametpherical particles with a large surface
area have been obtained. Flakey-like particles aitlaverage size of about 45 um were obtainecticdbke of the pre-alloyed powder. The lattice
strain calculated from XRD spectra of the elemeatal pre-alloyed powders exhibits a value of alfiobl % and 0.67, respectively. The pre-
alloyed powder after consolidation process showechighest density and microhardness value.

Piotr Ostalczyk
Variable-, Fractional-Orders Closed-Loop Systems Description

In this paper we explore the linear difference ¢éguna with fractional orders, which are functiorfgime. A description of closed-loop dynamical
systems described by such equations is proposednimerical example a simple control strategy dasetime-varying fractional orders is pre-
sented.

Piotr Ostalczyk, Dariusz Brzeziiski
Numerical Evaluation of Fractional Differ-Integral of Some Elementary Functions via Inverse Transformation

This paper presents methods of calculating fraatidiffer-integrals numerically. We discuss extephi the pros and cons of applying the Rie-
mann-Liouville formula, as well as direct approachform of The Grinwald-Letnikov method. We takesdr look at the singularity, which

appears when using classical form of Riemann-Lieeiformula. To calculate Riemann-Liouville differtegral we use very well-known tech-

niques like The Newton-Cotes Midpoint Rule. We alse two Gauss formulas. By implementing transfdionaof the core integrand of Rie-

mann-Liouville formula (we called it “the inversahsformation”), we would like to point the possilwvay of reducing errors when calculating it.
The core of this paper is the subject of reduchregabsolute error when calculating Riemann-Lioawdiffer-integrals of some elementary func-
tions; we use our own C++ programs to calculatenttend compare obtained results of all methods withere possible, exact values,
where not — with values obtained using excellerthoe of integration incorporated in Mathematica. Wik not discuss complexity of numerical

calculations. We will focus solely on minimizatiofthe absolute errors.
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Ivo Petras, Dagmar Bednarova
Control of Fractional-Order Nonlinear Systems: A Review

This paper deals with the control of the fractieoaler nonlinear systems. A list of the controhtgies as well as synchronization of the chaotic
systems is presented. An illustrative exampleidfrg) mode control (SMC) of the fractional-ordeoifgmensurate and incommensurate) financial
system is described and commented together withithelation results.

Pawel Piatek, Jerzy Baranowski
Investigation of Fixed-Point Computation Influence on Numerical Solutions of Fractional Differential Equations

In this paper the problem of the influence of fixgaint computation on numerical solutions of linélifferential equations of fractional order

is considered. It is a practically important prabjebecause of potential possibilities of using dyital systems of fractional order in the tasks
of control and filtering. Discussion includes nuinal method is based on the Grinwald-Letnikov faael derivative and how the application

of fixed-point architecture influences its operaticConclusions are illustrated with results of fing-point arithmetic with double precision

and fixed point arithmetic with different word lethg.

Yuriy Povstenko
Solutions to Time-Fractional Diffusion-Wave Equation in Soherical Coordinates

Solutions to time-fractional diffusion-wave equatiwith a source term in spherical coordinates atained for an infinite medium. The solutions
are found using the Laplace transform with respedime t, the finite Fourier transform with respée the angular coordinate the Legendre
transform with respect to the spatial coordingtand the Hankel transform of the order n+1/2 wétbpect to the radial coordinatdn the central
symmetric case with one spatial coordinmatiee obtained results coincide with those studaeties.

Krzysztof Rogowski
General Response Formula for Fractional 2D Continuous-Time Linear Systems Described by the Roesser Model

A new class of fractional two-dimensional (2D) doobus-time linear systems is introduced. The gdnersponse formula for the system
is derived using a 2D Laplace transform. It is shdhat the classical Cayley-Hamilton theorem isdvédr such class of systems. Usefulness
of the general response formula to obtain a salutfdhe system is discussed and illustrated byraarical example.

Andrzej Ruszewski, Tomasz Nartowicz
Sabilization of Inertial Plant with Time Delay Using Fractional Order Controller

The paper presents the problem of designing aictifmal order controller satisfying the condisaf gain and phase margins of the closed-loop
system with time-delay inertial plant. The trandterction of the controller follows directly fronhé use of Bode's ideal transfer function as a re-
ference transfer function for the open loop systesing the classical D-partition method and theagsiase margin tester, a simple computation-
al method for determining stability regions in ttentroller parameters plane is given. An efficianalytical procedure to obtain controller para-
meter values for specified gain and phase margjnimrements is also given. The considerations arstibted by numerical examples computed
in MATLAB/Simulink.

tukasz Sajewski
Positive Realization of S0 2D Different Orders Fractional Discrete-Time Linear Systems

The realization problem for single-input singleqmutt 2D positive fractional systems with differenters is formulated and a method based
on the state variable diagram for finding a positigalization of a given proper transfer functisrpioposed. Sufficient conditions for the exis-
tence of a positive realization of this class of l#ig@ar systems are established. A procedure fmpedation of a positive realization is proposed
and illustrated by a numerical example.

Dominik Sierociuk, Grzegorz Sarwas, Andrzej Dziekski
Discrete Fractional Order Artificial Neural Network

In this paper the discrete time fractional ordéifiaial neural network is presented. This struetig proposed for simulating the dynamics of non-
linear fractional order systems. In the second gfthis paper several numerical examples are shdtva final part of the paper presents the dis-
cussion on the use of fractional or integer digctishe neural network for modelling and simulatfrectional order non-linear systems. The simu-
lation results show the advantages of the propsedion over the classical (integer) neural nelwepproach to modelling of non-linear frac-
tional order systems.
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