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Abstract: We solve two-term fractional differential equations with left-sided Caputo derivatives. Existence-uniqueness theo-
rems are proved using newly-introduced equivalent norms/metric on the space of continuous functions. The metrics are mod-
ified in such a way that the space of continuous functions is complete and the Banach theorem on a fixed point can be ap-
plied. It appears that the general solution is generated by the stationary function of the highest order derivative and exists 
in an arbitrary interval [0,b]. 

 

1. INTRODUCTION 

Fractional differential equations (FDE) emerged in ap-
plied mathematics as an important tool to describe many 
processes and phenomena in physics, mechanics, econom-
ics, control theory, engineering and bioengineering (com-
pare monographs and review papers (Agrawal et al., 2004; 
Hilfer, 2000; Kilbas et al.,  2006; Magin, 2006; Metzler and 
Klafter, 2004; West et al.,  2003) and the references given 
therein). During the last decades, the theory of fractional 
differential equations has become an interesting and mea-
ningful field of mathematics (the results and references are 
summarized in monographs (Diethelm, 2010; Kilbas et al.,  
2006; Kilbas and Trujillo, 2001, 2002; Klimek, 2009; 
Lakshmikantham et al.,  2009; Miller and Ross, 1993; Pod-
lubny, 1999)). Since 2010 the FDE theory also was classi-
fied in the MSC system: under 34A08 for ordinary fraction-
al differential equations, 34K37 for functional fractional 
differential equations and under 35R11 for partial fractional 
differential equations. 

Still, in the theory of fractional differential equations, 
many problems remain open. Even in case of basic exis-
tence-uniqueness results, there is an area for investigations 
concerning the efficient proving methods, corresponding 
space of solutions choice and the extension of results from 
basic to more general equations containing many terms 
with derivatives, both left- and right-sided. 

The present paper is devoted to the study of two-term 
fractional differential equations with left-sided Caputo 
derivatives. Existence-uniqueness results are obtained 
for equations of arbitrary fractional order when the highest 
order derivative is given as a sequential operator i.e. 
it is a composition of two Caputo derivatives. Let us point 
out that the equations from this class of sequential FDE 
were applied in the theory of viscoelasticity (Wang. 2010) 
and in hydrodynamics (Khan et al., 2009; Shan et al., 2009; 
Tian et al., 2006). 

The proposed method of deriving the solution is an ex-
tension of the Bielecki method known from differential 
equations theory (Bielecki, 1956). He applied equivalent 
norms/metrics, modified using the exponential function, 
and the Banach theorem to solve differential equations 
of integer order. In the paper (El Raheem, 2003), a simple 
fractional differential equation of the order in the range 
(0,1) was solved using the same approach. Then, Lakshmi-
kantham and his collaborators (Lakshmikantham et al., 
2008, 2009) applied in the modification of norms/metrics 
the one-parameter Mittag-Leffler function. This allowed 
them to prove the existence and uniqueness result for equa-
tions with the Caputo derivative of order in the range (0,1). 
Further results for similar equations are given in the paper 
(Baleanu and Mustafa, 2010). In the papers by Klimek 
(Klimek, 2011a, b) they were extended to the multi-term 
FDE dependent on a basic Riemann-Liouville, Caputo 
or Hadamard derivative. 

Here, we study equations with sequential powers of Ca-
puto derivatives of an arbitrary fractional order. Assuming 
that the nonlinear term obeys the Lipschitz condition, 
we obtain continuous solutions in an arbitrarily long inter-
val. 

The paper is organized as follows. In Section 2 we re-
call the basic definitions from fractional calculus and intro-
duce a family of norms in the space of functions continuous 
in a finite interval. They are equivalent to the supremum 
norm, thus whenever we endow the space of continuous 
functions with the metric generated by the new norm, 
we obtain a complete, metric space. We also formulate the 
lemma on the properties of fractional integration and fur-
ther apply it to solve fractional differential equations. Sec-
tion 3 is devoted to the existence-uniqueness result 
for a two-term fractional differential equation with the 
composed Caputo derivatives. The analogous results for 
a general sequential equation with the composed Caputo 
derivatives are included in Section 4. The paper is closed 
by a short discussion of the presented method of solving 
and its possible further applications. 
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2. PRELIMINARIES 

In this section we recall the basic definition from frac-
tional calculus and introduce a class of norms equivalent 
to the supremum norm on the space of continuous func-
tions. The Riemann-Liouville integral and Caputo deriva-
tive are defined as follows (Samko et al., 1993, Kilbas et 
al., 2006). 
Definition 2.1. The left-sided Riemann-Liouville integral 
of order �, denoted as ���� , is given by the following formu-
la for Re��� > 0: 

∫ −+
−Γ

=
t

ut

duuf
tfI

0
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)(

)(

)(

1
:)( α

α
α

. (1) 

Definition 2.2. Let Re��� ∈ (� − 1,�). The left-sided Ca-
puto derivative of order �, denoted as D��

�� , is given by the 
formula: 
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The definition below describes a generalized exponential 
function - the Mittag-Leffler function. 
Definition 2.3. Let γ > 0, � > 0. The two-parameter Mit-
tag-Leffler function is given as the following series 

∑
∞

= +Γ
=
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δγδγ . (3) 

Definition 2.4. We denote as �[0, b] the space of functions 
continuous in interval [0, b]. This space with supremum 
norm )(sup

],0[
tgg

bt∈
=  and the respective generated metric d 

is a complete metric space. 
We shall apply the Mittag-Leffler functions in the con-

struction of a class of norms in space �[0, b], indexed 
by positive parameter κ.  
Definition 2.5. The following formula defines a one-
parameter class of norms and metrics on space �[0, b]  
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Property 2.6. Supremum norm ∥∙∥ and the norms given 
by formula (4) are equivalent. 
Proof: This property results from the set of inequalities 
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which are fulfilled for any � ∈ �[0, b]  and 	 ∈ 
�. 
Now, we quote an important result concerning the frac-

tional integrals of the Mittag-Leffler function and their 
supremum. 
Lemma 2.7. The following integration formula is valid 
for any �, 	 ∈ 
� 
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β
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Let � > � > 0. Then, constant A exists so that the fol-
lowing inequality is valid for parameter 	 ∈ 
� 
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The first part of the above lemma is a straightforward 
corollary of relation 

).()( 1,1,0
β

β
β

β
β κκκ tEtEDc =+  

The proof of the second part is rather long and technical 
so we omit these calculations in the present paper. 

3. SOLUTION OF TWO-TERM FRACTIONAL  
DIFFERENTIAL EQUATION – CASE I 

We shall consider a two-term fractional differential 
equation in an arbitrary finite interval [0, b] including left 
-sided Caputo derivatives in a sequential form: 

))(,()()( 12
1 tfttfDaD ψαα =−          (8) 

with 

11
0:)( αα

+= DtfD c           (9) 

)(:)( 1212
00 tfDDtfD cc αααα −

++= , 12 αα > .                   (10) 

The preliminary results for equations of this type are 
discussed in paper (Klimek, Błasik 2011). In the present 
paper, we shall give full proof of the existence-uniqueness 
results for the general solution to equation (8) and for the 
initial value problem in case α�, α� ∈ (0,1).  

In the transformation of the above equation, we shall 
apply the following composition rule for the Caputo deriva-
tive and Riemann-Liouville integral. This rule holds for any 
function continuous in interval [0,b] and we quote it after 
the monographs ( Samko et al 1993; Kilbas et al 2006). 
Property 3.1. Let � ∈ �(
0, b�, R) and � > �. The follow-
ing equalities hold for any point � ∈ [0, b] 

)()(00 tftfIDC =++
αα    (11) 

)()( 000 tfItfIDc αββα −
+++ = .  (12) 

Assuming the nonlinear term ψ to be a continuous func-
tion of two variables and using the above property, we can 
reformulate equation (8) as follows  

0))(,()()( 212121
00100 =





 −− +

−
+

−
++ tftItfIatfDD cc ψαααααα ,  (13) 

provided � ∈ �[0, b]. 
Now, we observe that the function in the brackets be-

longs to the kernel of sequential derivative ���. Let us 
denote this function as �� and write the corresponding 
equation for stationary function 
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 0))(())(( 0000
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which leads to the explicit formula  
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when the respective orders fulfill the conditions: 
 α� ∈ (n� − 1, n�) and α� − α� ∈ �n�,� − 1, n�,��.  

Equation (13), rewritten using stationary function (15), 
becomes the fractional integral equation: 

)())(,()()( 0001
212 ttftItfIatf ϕψααα =−− +

−
+      (16) 

which in turn coincides with fixed point condition 

)()(
0

tfTtf ϕ=          (17) 

for mapping ��� generated by stationary function �� 

)())(,()(:)( 0001
212

0
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ϕ ++= +
−

+ .     (18) 

Assuming function � ∈ �([0, b] × R, R) and observing that 
stationary function �� is continuous in interval ],0[ b we 
conclude that the above mapping transforms any continuous 
function into its  continuous image. 

The discussed transformation of the FDE given in (8) 
into fixed point condition (17) allows us to formulate the 
following result on the existence of a solution to equation 
(8). 
Proposition 3.2. Let α� > �� and function � ∈ �([0, b] ×
R, R) fulfill the Lipschitz condition: 

yxMytxt −⋅≤− ),(),( ψψ        (19) 

Ryxbt ∈∀∈∀ ,],0[ , . 

Then, each stationary function of derivative	��� given 
in (15) yields a unique solution of equation (8) in the space 
of functions continuous in interval 
0, b�.	Such a solution 
is a limit of the iterations of mapping ���: 

)()(lim)(
0

tTtf k

k
χϕ

∞→
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where �	is an arbitrary continuous function. 
Proof: We reformulate equation (8) as fixed point condition 
(17) with mapping ��� defined in (18). We shall consider 
the properties of this mapping on the space of functions 
continuous in interval 
0, b�	endowed with a metric gener-
ated by the norm constructed according to Definition 2.5 : 
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For any two continuous functions g and h, the distance 
of their images ���� and ���ℎ ( measured using the metric 
determined by the above norm) can be estimated as follows 
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In the above calculations, we have applied Lemma 2.7 
on the fractional integration of Mittag-Leffler functions. 
They can be summarized in the form of the following in-
equality 

κκκϕϕ ghLgThT −⋅≤−
00

       (22) 

with a constant given by formula 

( )
κ

α

κ

1
1 bAMa

L
⋅⋅+
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Relation (22) is fulfilled for any two continuous func-
tions h and g, stationary function �� and the value of para-
meter κ according to Lemma 2.7. Let us note that the nume-
rator of the fraction defining constant ��	does not depend 
on the value of κ. Thus, for a parameter κ large enough 
��	 ∈ (0,1) and mapping ��� is a contraction in the space 
of continuous functions C([0, b] endowed with the metric 
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generated by norm (21). As this space is complete, then 
using the Banach theorem on a fixed point, we conclude 
that fixed point f exists and fulfills condition (17). 
According to the mentioned theorem, the fixed point is a 
limit of iterations of mapping ��� as described in the thesis 
of Proposition 3.2 and thanks to the composition rule from 
Property 3.1 it also solves initial FDE (8). 

Let us point out that the presented construction works 
for any stationary function �� of derivative ���. Thus, 
the obtained solution, connected to ��, is an analogue 
of a general solution from the classical theory of differential 
equations and it contains ��,� + �� arbitrary coefficients. 
To fix the coefficients, we add a set of initial conditions. 
The next proposition gives the existence-uniqueness result 
for the case when orders of derivatives are in the range 
of (0,1). 
Proposition 3.3. Let the assumptions of Proposition 3.2 
be fulfilled and α�, α� ∈ (0,1). Then, the unique solution 
of equation (8) obeying the initial conditions: 

0)0( wf = ,  10 )0(12 wfDc =−
+

αα  

exists in the C([0, b] space. Such a solution is a limit of the 
iterations of mapping ��� generated by the following sta-
tionary function 

12)()( 01100
ααϕ −−+= twawwt . 

Proof: From Proposition 3.2 it follows that each stationary 
function �� generates a unique continuous solution 
to equation (8). We shall prove that solution f generated 
by function �� + ��� − ����	
�����, solves the initial 
value problem given in Proposition 3.3. First, from (16) 
we obtain the relation: 

 00 )0()0( cfw === ϕ . 

Equation (16) and composition rule (12) yield formula 

0010 ))(,()()( 1212 dtftItfatfDc +Ψ+= −
+

−
+

αααα . 

Taking 0=t , we obtain 

0010101 )0()0()0( 1212 dwaDfafDw cc +=+== −
+

−
+ ϕαααα . 

Solving the above equations, we arrive at the following 
values of coefficients �� and �� in general formula (15) 

00 wc = , 0110 wawd −=  

and this ends the proof. 

4. SOLUTION OF TWO-TERM SEQUENTIAL 
FRACTIONAL DIFFERENTIAL EQUATION  
– CASE II 

In this section, we shall solve the general two-term se-
quential FDE in a finite interval. This equation looks 
as follows: 

))(),(,()( 1112
000 tfDtfttfDD ccc αααα

++
−

+ Ψ= ,      (24) 

where the sequential derivative on the left-hand side 
is understood differently than that in equation (8). 
The considered FDE can be rewritten in the vector form 

)()( 210
1 tftfDc =+

α        (25) 

))(),(,()( 2120
12 tftfttfDc Ψ=−

+
αα ,      (26) 

where we denoted 
��
	 = 
(
). Such a transformation 
is typical for the above class of equations (compare mono-
graph by Diethelm (Diethelm, 2010), the references given 
therein and papers (Kilbas et al., 2001, 2002)). The novelty 
of our paper is a new method of proof which leads to the 
existence result for the solution in an arbitrarily long inter-
val �0, b�.  

Similar to the calculations in the previous section, 
we transform the above system of FDE into the system 
of fractional integral equations on the space of continuous 
functions: 

)()()( 1201
1 ttfItf ϕα += +        (27) 

)())(),(,()( 22102
12 ttftftItf ϕαα +Ψ= −

+ .      (28) 

Functions �� and �� are the corresponding stationary 
functions of derivatives D�	


��  and D�	


��
�� : 

0)(10
1 =+ tDc ϕα          (29) 

0)(20
12 =−

+ tDc ϕαα .        (30) 

The explicit form of the above stationary functions de-
pends on the order of the derivatives. Let α� ∈ (n� − 1, n�) 
and α� − α� ∈ �n�,� − 1, n�,��. Then functions ��	and 
��	look as follows 

∑
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tc
tϕ         (32) 

with coefficients c�
� and c


�  being arbitrary real numbers. 
We note that the system of fractional integral equations 

can be reformulated as a fixed point condition for the two-
component, real-valued function: 

[ ] [ ]21),(21 ,,
21

ffTff ϕϕ=         (33) 

where the components of the mapping are defined  
as follows for any two-component continuous function 
g = [g�, g�]  

[ ]( ) )()(:, 120121),(
1

21
ttgIggT ϕα

ϕϕ += +       (34) 

[ ]( ) )())(),(,(:, 2210221),(
12

21
ttgtgtIggT ϕαα

ϕϕ +Ψ= −
+ .   (35) 

Solving the systems of equations (25, 26) and (27, 28), 
we shall prove that the mapping given above is a contrac-
tion on the space of continuous functions �(�0, b�,��) 
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endowed with the respective norm and metric from the 
class indexed by positive parameter � ∈ �	 

κκκ 21: ggg +=        (36) 

)(

)(
sup:
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12 1,],0[

αα
αα

κ κ −
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=
tE

tg
g

j

bt
j  .                    (37) 

Let us observe that for each positive value of parameter 
κ, the norm and the respective metric defined by formulas 
(36, 37) yield a complete metric space as they are equiva-
lent to the standard norm in �(�0, b�,��): 

21: ggg +=         (38) 

)(sup:
],0[

tgg j
bt

j
∈

= .        (39) 

Proposition 4.1. Let α� > �� and function � ∈ �([0, b] ×
R�, R)  fulfill the Lipschitz condition: 

222111

2121 ),,(),,(
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yytxxt
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≤Ψ−Ψ
      (40) 

2,1,,,],0[ =∈∀∈∀ jRxxbt ji . 

Then, each pair of stationary functions ��, 	��  
of the derivatives given in (31, 32) yields a unique solution 
of equation (24) in the space of functions continuous 
in interval �0, b�. Such a solution is a limit of the iterations 
of mapping �(��,	��)

: 

)](),([)(lim)](),([ 21),(21 21
ttTtftf k

k
χχϕϕ∞→

=     (41) 

)()( 1 tftf = ,         (42) 

where ��, 	�� are arbitrary continuous functions determined 
in interval �0, b�. 
Proof: Let us assume α� − α� > α� and estimate the dis-
tance between the images of an arbitrary pair of two 
-component functions [��, 	��] and [ℎ�, 	ℎ�] . We obtain the 
following inequalities  

( ) =−
κ

ϕϕϕϕ
1

21),(21),( ],[],[
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≤−= + κ
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
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κ κ
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
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tE
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( )κκκ κκ 221122
11

hghghg −+−⋅≤−⋅≤  

valid for the first component of the image. 
The presented calculations can be summarized  

by the following relation  

( ) ≤−
κ

ϕϕϕϕ
1

21),(21),( ],[],[
2121

hhTggT       (43) 

κκ
],[],[

1
2121 hhgg −⋅≤ . 

Respectively, for the second components of the images 
we obtain  

( ) =−
κ

ϕϕϕϕ
2
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−
+ κ
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The above calculations yield the following inequality 
for the second components of images 

( ) ≤−
κϕϕϕϕ 221),(21),( ],[],[

2121
hhTggT      (44) 

{ } κ
αα

κ
],[],[,max

1
212121

2 12 hhggMMAb −⋅⋅⋅≤ − . 

Now using derived relations (43, 44) we are ready to es-
timate the distance between the images	�(��,	��)

[��, 	��]	 
and �(��,	��)

[ℎ�, 	ℎ�]: 

≤−
κϕϕϕϕ ],[],[ 21),(21),( 2121

hhTggT  

κκ ],[],[ 2121 hhggL −⋅≤ , 

where constant �� 		is inversely proportional to the value 
of parameter κ 

{ }( )1,max
1

21
2 12 +⋅⋅= − MMAbL αα

κ κ
 . 
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As parameters ��,��,�, �,��,��	do not depend on the 
value of κ, we conclude that for a large enough κ, mapping 
�(��,	��)

 is a contraction on space 	(
0, b�, R�). Thus, 
we can apply the Banach theorem on a fixed point and infer 
that function [��,��] ∈ 	(�0, b�, R2) exists so that the fixed 
point condition 

[ ] [ ]21),(21 ,,
21

ffTff ϕϕ=  

is fulfilled. Such a function can be constructed using the 
iteration limit as described in formulas (41, 42). The first 
component of the fixed point solves FDE (24) according 
to relation (42). 
The proof in case α� − α� ≤ α� is analogous. 

5. FINAL REMARKS 

We developed an efficient method of proving the exis-
tence-uniqueness results for two-term fractional diffe-
rential equations. For equations containing left-sided Ca-
puto derivatives and their composition, we showed that 
a general solution exists in an arbitrarily long interval 
and is generated by the stationary function of the highest 
order derivative. The applied method of equivalent 
norms/metrics extends the idea given by Bielecki (Bielecki, 
1956) for differential equations of integer order. As was 
shown in former papers (El-Raheem, 2003; Lakshmikan-
tham et al., 2008, 2009; Baleanu and Mustafa, 2010; Kli-
mek, 2011a, b), in FDE theory we should modify the me-
trics using one- or two-parameter Mittag-Leffler functions. 
In the present paper, the respective version of the method 
is given for two-term fractional differential equations con-
sidered on the C[0,b] space. However, careful analysis 
of the obtained results and their proof implies that by using 
Lemma 2.7, they can be extended to multi-term FDE. Let 
us also point out that this approach seems appropriate to 
study and solve fractional differential equations on other 
function spaces	− for instance on the space of differentiable 
functions.  
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Abstract: In this paper we consider two ordinary fractional differential equations with composition of the left and the right 
Caputo derivatives. Analytical solution of this type of equations is known for particular cases, having a complex form, 
and therefore is difficult in practical calculations. Here, we present two numerical schemes being dependent on a fractional 
order of equation. The results of numerical calculations are compared with analytical solutions and then we illustrate conver-
gence of our schemes. Finally, we  show an application of the considered equation. 

 

1. INTRODUCTION  

This study is devoted to the analysis of ordinary diffe-
rential equations containing a composed form of left- and 
right-sided fractional derivatives, which are defined in any 
sense, i.e. the Riemann-Liouville and the Caputo ones. 
Moreover, we consider the equations in a restricted domain. 
The equations are obtained by modification the minimum 
action principle and the application of fractional integration 
by parts. It should be noted that many authors (Agrawal, 
2002; Klimek, 2002; Riewe, 1996) elaborated fractional 
forms of the Euler-Lagrange equations. However, the equa-
tions contain only specific compositions of fractional deriv-
atives, i.e. the arbitrary form of Riemann-Liouville (left- or 
right-sided) composed with the arbitrary form of Caputo 
(also left- or right-sided). Therefore, in the Euler-Lagrange 
equations a disadvantage  in boundary conditions occurs. 
The disadvantage reveals an introduction of homogenous 
conditions for one boundary, where the Riemann-Liouville 
fractional derivative exists (Blaszczyk et al., 2011; 
Leszczynski and Blaszczyk, 2010). To omit such problems, 
we consider a composed form of fractional derivatives, 
where the left- and the right-sided Caputo operators are 
used. Moreover, we expect that a fractional differential 
equation containing the composition of two Caputo deriva-
tives has physical meaning and will be useful in modelling 
complex processes in nature. 

To obtain the analytical solution is one of the funda-
mental problem that arises from Euler-Lagrange equations. 
The results, based on the fixed point theorem (Klimek, 
2007), are not capable in practice, because the solution 
is presented in the form of very complex series. Klimek 
(Klimek, 2008) proposed to use the Mellin transform 
in order to obtain the analytical solution. However, such 
solution has complex form, which includes series of special 
functions. For practical applications we cannot use the 

analytical solution due to its useless in calculations. There-
fore, we will construct some approximate solutions. Some 
numerical basics can be found in the studies (Blaszczyk, 
2009; Blaszczyk, 2010; Blaszczyk & Ciesielski, 2010). 

2. FORMULATION OF THE PROBLEM 

We consider two ordinary fractional differential equa-
tions with composition of the left- and the right-sided Capu-
to derivatives, which have the following forms 

( ) ( )0 0,C C
bD D T x T xα α λ− + − =  (1) 

( ) ( )0 0,C C
bD D T x T xα α λ+ − − =  (2) 

where � ∈ [0, �] and operators ���

�� , ���

��  are defined 
as (Kilbas et al., 2006) 

 

( ) ( )
( ) ( )

( )0 1
0

1
d , for 0

x n
C

n

T
D T x x

n x

α
α
τ

τ
α τ

+ − += >
Γ − −∫  (3) 

 

( ) ( )
( )

( ) ( )
( ) 1

1
d , for x

n b n
C

b n
x

T
D T x b

n x

α
α
τ

τ
α τ

− − +

−
= <

Γ − −∫  (4) 

 

where � = ��� + 1.  
Here, we mean ���

��  as the left-sided Caputo derivative 
and ���

��  denotes the right-sided Caputo derivative.  
For � ∈ (0, 1) Eqns. (1) and (2) are supplemented 

by the adequate boundary conditions 
 

( ) ( )00 , bT T T b T= =  (5) 
 

Analytical solutions are known only for some type 
of Euler-Lagrange equations (Klimek, 2007; Klimek, 
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2008), and they have very complex form. To omit this 
problem we propose a numerical approach. 

3. NUMERICAL SCHEMES 

In order to develop a discrete form of Eqns. (1) and (2), 
the homogenous grid of nodes is introduced as 

 

0 1 10 ,i i Nx x x x x b+= < < < < < < =… …  (6) 
 

where 
 

0 ,ix x i x= + ∆  (7) 
 

Function T determined at the point xi is denoted 
as Ti = T (xi). We also assume � ∈ (0, 1). 

3.1. Discrete scheme for Eqns. (1) and (2) 

We have introduced the discrete form of fractional de-
rivatives for Eqn. (1). The value of the left-sided Caputo 
derivative at point xi can be approximated as 

 

( ) ( )
( )

( )

( ) ( )

( ) ( )

0

1

0

1
1

0

0

'1

1

1 1

1
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x x
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j j
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j
j
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D T x d

x

T T
d

x x

x T v i j

α
α

α

α

τ
τ

α τ

τ
α τ

+

+ =

−
+

=

−

=

=
Γ − −

−
≅

Γ − ∆ −

= ∆

∫

∑ ∫

∑

 (8) 

 

where 
 

( ) ( )
( )
( ) ( )

( )

1 1

1 1

1

1
,

2

1 for 0

1 2

for 1, , 11

1 for 

v i j

i i j

i j i j

j ii j

j i

α α

α α

α

α
− −

− −

−

=
Γ −

 − − =

 − + − −× = −+ − −


=

…

 (9) 

 

Next, denoting �	�
 = ���

�� �(�) in Eqn. (1) we find 
the discrete form of the right-sided Caputo derivative 

 

( ) ( )
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where 
 

( ) ( )

( ) ( )
( )
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1 1

1

1 1

1
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1 2

1 for 1, , 1
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(11) 

 

Using formulas (8) and (10) we obtain a system contain-
ing the discrete form of Eqn. (1) and boundary conditions 
as 

 

( )

( ) ( ) ( )

( )

0 0

2

0

, , 0, for 1,..., 1
jN

k i
j i k

N N

T T x

x w i j v j k T T i N

T T x
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

  ∆ − = = − 
   


=

∑ ∑

 (12) 
 

Similarly to previous considerations, we write the dis-
crete form of Eqn. (2) as 

 

( )

( ) ( ) ( )

( )

0 0

2

0

, , 0, for 1,..., 1
i N

k i
j k j

N N

T T x

x v i j w j k T T i N

T T x

α λ−

= =

 =


 
 ∆ − = = −
   


=

∑ ∑

 (13) 
 

To obtain full numerical solutions of Eqns. (1) and 
(2), we need to solve a system of algebraic equations (12) 
and (13) respectively. 

3.2. Convergence and error analysis 

Including discrete forms of Eqns. (1) and (2) we analyse 
errors and convergence of the numerical schemes.  Let us 
assume � ∈ (0, 1), � ∈ [0, 1], � = 0	and boundary condi-
tions as 

 

( ) ( )0 0, 1 1T T= =  (14) 
 

Then, the solution of Eqn. (1) has the following form 
 

( )T x xα=  (15) 
 

Tab.1 shows errors generated by numerical scheme (12) 
being dependent on fractional order � and step ∆x which 
was assumed in calculations.  

We determine experimental estimation of the conver-
gence row (EOC) as 

 

[ ]
[ ]2log ,
2

error N
EOC

error N

 
=   

 
 (16) 

 

where 
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[ ]
( ) ( ) ( )

1

0 0
1

1 1
2 2

,

N

N N i i
i

T x T T x T T x T

error N
N

−

=

− + − + −
=

∑

                (17) 
 

In the error calculations we take into account boundary 
conditions (14). 

Tab. 1.  Errors and experimental estimation of the convergence  
 row (EOC) generated by the numerical scheme (12) 

 α = 0.3 α = 0.5 α = 0.7 

∆x error EOC error EOC error EOC 

1/16 1.51e-2  1.46e-2  1.05e-2  

1/32 8.47e-3 0.83 8.19e-3 0.83 6.05e-3 0.79 

1/64 4.60e-3 0.88 4.41e-3 0.89 3.34e-3 0.86 

1/128 2.44e-3 0.91 2.32e-3 0.93 1.80e-3 0.89 

 
Fig. 1. Numerical solutions of Eqn. (1) 

 
Fig. 2. Numerical solutions of Eqn. (2) 

When we solve Eqn. (2) numerically with boundary 
conditions 

( ) ( )0 1, 1 0T T= =  (18) 

then we obtain identical table of errors. This is resulted 
by the effect of relation between considered equations and 
the reflection operator (Blaszczyk and Ciesielski, 2010). 

Analyzing values of EOC in table 1 one can observe 
that the convergence of our numerical schemes is O(h) 
and does not depend of parameter �. 

Next, we calculated some examples for different values 
of α in order to show graphically how numerical solutions 
of Eqns. (1) and (2) behave. 

In Figure 1 and 2 the solutions of Eqns. (1) and (2) 
for different values of the parameter � are presented. One 
can see that both solutions are symmetrical. Analyzing the 
behavior of solutions we observe that T(x) tends to the 
solution of the classical second order ordinary differential 
equation for � → 1�. 

4. APPLICATION 

In order to show a practical application of Eqn. (1) 
we consider a steady state of heat transfer through the gra-
nular layer as presented by Fig. 3. 

Using the idea presented in (US Department of Trans-
portation, 2009) the experiment began with five thermo-
couples placed at depths 25 mm, 85 mm, 145 mm, 252 mm, 
327 mm in the granular material which is used for road 
construction. Grains have specific parameters such as ther-
mal conductivity, specific heat and density. It should be 
noted that the surface has been exposed to the weather 
conditions (irradiation, wind speed, relative humidity). Data 
from the thermocouples (US Department of Transportation, 
2009) helped us to create a temperature profile.  

 
Fig. 3. Experimental setup 

 
Fig. 4. Comparison of Eqn. (1) with experiment data  

  (US Department of Transportation, 2009) 
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In order to obtain the experimental results we approx-
imate a temperature profile using the solution of the frac-
tional Eqn. (1). Figure 4 presents comparison between ex-
perimental data and numerical results. 

Analyzing changes in the temperature profile we can 
say that the nonlinear profile is observed. Additionally, we 
can observe a good agreement between the experimental 
data and the solution of the fractional Eqn. (1). 

5. CONCLUSIONS 

In this work the fractional differential equations with 
composition of the left- and the right-sided Caputo deriva-
tives were considered. The analytical solutions of these 
equations are difficult to apply in practical calculations. 
Numerical solution is an alternative approach to the analyt-
ical one. In this study the numerical schemes were pre-
sented in order to obtain the solutions for considered equa-
tions. We show that the convergence row of our numerical 
schemes was O(h) and does not depend on parameter �.  

Our studies show that the model based on the fractional 
differential equation containing composition of the left- and 
the right-sided Caputo derivatives could reflect a steady 
state of the temperature profile in granular medium. 
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Abstract: The paper considers the stability problem of linear time-invariant continuous-time systems of fractional order, 
standard and positive, described by the state space model. Review of previous results is given and some new methods for sta-
bility checking are presented. Considerations are illustrated by numerical examples and results of computer simulations.  

 

1. INTRODUCTION 

In the last decades, the problem of analysis and synthe-
sis of dynamical systems described by fractional order 
differential (or difference) equations was considered in 
many papers and books. For review of the previous results 
see, for example, the monographs (Caponetto et al., 2010; 
Das, 2008; Diethelm (2010); Kaczorek, 2009, 2011a; Kil-
bas et al., 2006; Monje et al., 2010; Ostalczyk, 2008; Pod-
lubny, 1994, 1999; Sabatier et al., 2007). 

The problems of stability and robust stability of linear 
fractional order continuous-time systems were studied 
among others in Matignon (1996, 1998), Busłowicz (2008a, 
2008b, 2009), Petras (2008, 2009), Radwan et al. (2009), 
Sabatier et al. (2008, 2010), Tavazoei and Heri (2009) and 
in Ahn et al. (2006), Ahn and Chen (2008), Busłowicz 
(2008c), Lu and Chen (2009), Tan et al. (2009), Zhuang 
and Yisheng (2010), respectively. 

The new class of the linear fractional order systems, 
namely the positive systems of fractional order was consid-
ered by Kaczorek (2008a, 2008b, 2009, 2011a, 2011b).  

The aim of the paper is to give the review of the meth-
ods for stability analysis of fractional continuous-time lin-
ear systems described by the state-space model and presen-
tation of some new results. The standard and positive frac-
tional order systems will be considered. 

2. PROBLEM FORMULATION 

Consider a linear continuous-time system of fractional 
order described by the state equation 

),()()(0 tButAxtxDt +=α  (1) 

where ���� ∈ ��, ���� ∈ �� , � ∈ ��×�, � ∈ ��×� and  

,
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)(

)(

1
)(

0
1

)(

0 ∫
τ−

ττ
α−Γ

= −+α
α t

p

p

t
t

dx

p
txD   ,1 pp ≤α≤−  (2) 

is the Caputo definition for fractional 	-order derivative, 
where ������� = 	 ���(�)/���,  p is a positive integer and 

dtte t
∫=αΓ
∞ −α−

0

1)(  (3) 

is the Euler gamma function. 
Definition (3) can be written in the equivalent form  

.
)()1(
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∞→ ⋯

 (3a) 

From (2) for � = 1 and � = 2 we have, respectively 
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The Laplace transform of the Caputo fractional deriva-
tive has the form  

).0()()}({ )1(

1
0

+−

=

−ααα
∑−= k
p

k

k
t xssFstxDL  (6) 

For zero initial conditions, the Laplace transform (6) re-
duces to  

).()}({ 0 sFstxDL t
αα =  (6a) 

Definition 1. The fractional system (1) will be called posi-
tive (internally) if ���� ∈ ℜ�

�  for any initial condition 
��0� ∈ ℜ�

�  and for all inputs ���� ∈ ℜ�
� , �	 ≥ 0. 

Positivity condition of the system (1) is known only 
in the case of fractional order α ∈ (0,1]. In Kaczorek 
(2008a, 2008b), see also Kaczorek (2009, 2011a), the fol-
lowing theorem has been proved. 
Theorem 1. The fractional system (1) with 0 < α ≤ 1 
is positive if and only if  
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,nMA∈   ,mnB ×
+ℜ∈  (7) 

where 
� – the set of � × �  real Metzler matrices (matri-
ces with non-negative off-diagonal entries), ℜ�

�×� – the set 
of � × � real matrices with non-negative entries. 

Characteristic function of the fractional system (1) is the 
fractional degree polynomial of the form  

....)det()( 0
)1(

1 asasaAIssw n
n

n
n +++=−= α−

−
αα  (8) 

The associated natural degree polynomial has the form 

,...)(~
01

1
1 aaaaw n

n
n

n +λ++λ+λ=λ −
−  .α=λ s  (9) 

The polynomial (8) is a multivalued function whose 
domain is a Riemann surface. In general, this surface has 
an infinite number of sheets and the fractional polynomial 
(8) has an infinite number of zeros. Only a finite number 
of which will be in the main sheet of the Riemann surface. 
For stability reasons only the main sheet defined by 
−π < arg � < 	π  can be considered (Petras, 2008, 2009).  

From the theory of stability of linear fractional order 
systems given by Matignon (1996, 1998) and Petras (2008, 
2009), we have the following theorem. 
Theorem 2. The fractional order system (1) is stable if and 
only if the fractional degree characteristic polynomial (8) 
has no zeros in the closed right-half of the Riemann com-
plex surface, i.e. 

0)det()( ≠−= α AIssw  for ,0Re ≥s  (10) 

or equivalently, the following condition is satisfied  

,
2

|)(arg|
πα>λ Ai  ,,...,2,1 ni =  (11) 

where λ�(�) is the i-th eigenvalues of matrix A.  
From Radwan et al. (2009) it follows that the fractional 

system with the characteristic polynomial (8) is unstable 
for all α > 2. Therefore, in this paper we consider the frac-
tional system (1) of fractional order α ∈ (0,2).  

The stability regions of the system (1), described 
by (11) are shown in Fig. 1 and 2 for 0 < α ≤ 1  
and 1 ≤ α < 2, respectively. Parametric description of the 
boundary of the stability regions has the form  

,||)( 2/πααα ω=ω jej  ).,( ∞−∞∈ω  (12) 

The polynomial (8) with α = 1 is a natural degree poly-
nomial and from (12) for α = 1 we have that the imaginary 
axis of the complex plane is the boundary of the stability 
region.  

The aim of this paper is to give the review of the meth-
ods for stability analysis of the fractional system (1) 
and presentation of some new results. We consider the 
stability problem of standard and positive fractional order 
systems.  

3. STABILITY OF FRACTIONAL SYSTEMS 

The following lemma can be used to checking the con-
dition (11) of Theorem 2. 

Lemma 1. The fractional order system (1) is stable 
if and only if 

,
2

πα>γ  (13) 

where  

|)(arg|min Ai
i

λ=γ  (14) 

and λ�(�) is the i-th eigenvalue of A. 

0 
  Re λ 

Im λ 

stability region 

2 
απ 

instability region 

 
Fig. 1. Stability region for 0 < α ≤ 1 

0 
Re λ 

Im  λ 

stab ility region 2 
απ 

δ 

instability reg ion 

 
Fig. 2. Stability region for 1 ≤ α < 2 

From Theorem 2, Lemma 1 and Fig. 1 and 2 we have 
the following important lemmas and remark. 
Lemma 2. The fractional system (1) is unstable for all 
	 ∈ (0,2) if the matrix A has at least one non-negative real 
eigenvalue. In particular, this holds if det� = 0. 
Lemma 3. Assume that the state matrix A has no real non-
negative eigenvalues. Then the fractional system (1) 
is stable if and only if α ∈ �0, α	�,	where α	 = 2γ/π 
and γ	is computed from (14).  
Remark 1. If the fractional system (1) is stable for a fixed 
α ∈ [1,2) then it is also stable for all fractional orders 
α ∈ (0,1]. 
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3.1. Stability of system of fractional order � ∈ [�,�) 

The system (1) of fractional order α ∈ [1,2) is stable 
if and only if all eigenvalues of A lie in the stability region 
shown in Fig. 2. Hence, this system may be unstable in the 
case of negative real parts of all eigenvalues of matrix A  
if  αrgλ���� < 	απ/2, � = 1, 2, … ,�. 

The following lemma can be used to stability checking 
of the fractional system (1) of order α ∈ [1,2). 
Lemma 4 (Anderson et al., 1974; Davison and Ramesh, 
1970). The eigenvalues of an � × � matrix A lie in the sec-
tor shown in Fig. 2 if and only if the eigenvalues  
of 2� × 2� matrix  










δδ
δ−δ

=
cossin

sincos~

AA

AA
A  (15) 

have negative real parts, where δ = �α − 1�π/2. 
From the above and the result given in (Hostetter, 

1975), see also (Tavazoei and Haeri, 2009) it follows that 
if ���� = det(�� − �) then  

),()()
~

det( δ−δ=− jj sepsepAsI  .2/)1( π−α=δ  

Based on Lemma 4, the following theorem has been 
proved in Tavazoei and Haeri (2009). 
Theorem 3. The fractional system (1) with 1 ≤ α < 2 
is stable if and only if the eigenvalues of the matrix �� have 
negative real parts, where  

.
)2/sin()2/cos(

)2/cos()2/sin(~









απαπ−
απαπ

=
AA

AA
A  (16) 

Proof. Substitution δ = �α − 1�π/2 in (15) gives (16). 
The proof follows directly from Theorem 2 and Lemma 4.  

In Molinary (1975) it has been proved that if there exist 
positive definite Hermitian matrices � > 0 and � > 0 such 
that  

,T* QPAPA −=β+β  (17) 

where β = η + �ξ with tan�π − απ/2� = η/ξ (equivalently, 
tan�π/2 − δ� = η/ξ), then all eigenvalues of A are within 
the stable area shown in Fig. 2. From the above and Theo-
rem 2 one obtains the following theorem (see also Ahn et. 
al. (2006), Sabatier et al. (2008, 2010)). 
Theorem 4. The fractional system (1) with 1 ≤ α < 2 
is stable if and only if there exist positive definite Hermi-
tian matrices � > 0 and � > 0 such that (17) holds. 

The stability region shown in Fig. 2 is convex. There-
fore, to the stability analysis of the system (1) with 
1 ≤ α < 2 the LMI based conditions can be applied.  

In Chilali et al. (1999) it has been shown that the eigen-
values of matrix A lie in the sector shown in Fig. 2 
if and only if there exists a matrix � = �
 > 0 such that  

,0
)sin()()cos()(

)cos()()sin()(
TT

TT
<













θ+θ−
θ−θ+

PAAPAPPA

PAAPPAAP
 (18) 

where θ = 	π − απ/2. 
Substitution θ = 	π − απ/2 in (18) gives  

.0
)2/sin()()2/cos()(

)2/cos()()2/sin()(
TT

TT
<













απ+απ−
απ−απ+

PAAPAPPA

PAAPPAAP
 (19) 

Hence, we prove the following theorem. 
Theorem 5. The fractional system (1) with 1 ≤ α < 2 
is stable if and only if there exists a matrix � = �
 > 0 
such that the condition (19) holds.  

The same criterion has been obtained by Sabatier et al. 
(2008, 2010). In this criterion, the condition (19) is written 
in the equivalent form  

.0
)2/sin()()2/cos()(

)2/cos()()2/sin()(
TT

TT
<













απ+απ−
απ−απ+

PAPAPAPA

PAPAPAPA
(19a) 

To checking the condition (19) (or (19a)), a LMI solver 
can be used.  

3.2. Stability of system of fractional order � ∈ (�,�] 

The system (1) of fractional order α ∈ (0,1] is stable 
if and only if all eigenvalues of A lie in the stability region 
shown in Fig. 1. Hence, this system may be stable in the 
case when not all eigenvalues of A lie in open left half-
plane. Moreover, this system may be stable when all eigen-
values of the matrix A are complex with positive real parts.  

From the above we have the following simple sufficient 
condition for the stability. 
Lemma 5. The fractional system (1) with 0 < α ≤ 1 
is stable if all eigenvalues of A lie in open left half-plane 
of the complex plane. 

Using Lemma 4 and taking into account that the system 
(1) with 0 < α ≤ 1 is unstable if all eigenvalues of A lie 
in the instability region shown in Fig. 1, we obtain the fol-
lowing theorem. 
Theorem 6 (Tavazoei and Haeri, 2009). The fractional 
system (1) with 0 < α ≤ 1 is unstable and all eigenvalues 
of A lie in the instability region shown in Fig. 1 if and only 
if the eigenvalues of �̅	have negative real parts, where  

.
)2/sin()2/cos(

)2/cos()2/sin(









απ−απ−
απαπ−

=
AA

AA
A  (20) 

Proof. If all eigenvalues of A lie in the instability sector 
shown in Fig. 1, then all eigenvalues of –A satisfy the ine-
quality  

,
2

|)(arg|
πα−π>−λ Ai  ,,...,2,1 ni =  (21) 

i.e. lie in sector shown in Fig. 2 if we consider angle  
π − απ/2 with α ∈ (0,1] instead of angle απ/2. Then 
δ = �1 − α�π/2. The proof follows directly from Lemma 4 
for δ = �1 − α�π/2 and substitution A−  instead of A. 

Based on instability analysis, the following condition 
has been given in Sabatier et al. (2008, 2010). 
Theorem 7. The fractional system (1) with 0 < α < 1 
is stable if and only if there does not exist any non-negative 
rank one complex matrix Q such that  

,0≥+ rQArAQ T  (22) 
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where � = sin�απ/2� + �cos�απ/2� and �̅ denotes the 
complex conjugate of r. 

The stability region shown in Fig. 1 is not convex. 
Therefore, to the stability analysis of the fractional system 
(1) with 0 < α < 1 the LMI conditions can not be applied.  

In Sabatier et al. (2008, 2010) the following sufficient 
and necessary and sufficient conditions have been proved. 
Theorem 8. The fractional system (1) with 0 < α < 1 
is asymptotically stable if there exists a matrix � > 0 such 
that  

.0)()( /1T/1 <+ αα APPA  (23) 

Theorem 9. The fractional system (1) with 0 < α < 1 
is stable if and only if there exists a symmetric matrix 
� > 0 such that  

( ) ( ) .0)()( )2/(1T)2/(1 <−−+−− α−α− APPA  (24) 

Based on the Generalized LMI (GLMI), in Sabatier 
et al. (2008, 2010) the following criterion has been given.  
Theorem 10. The fractional system (1) with 0 < α < 1 
is stable if there exist positive definite complex matrices 
�� = 	 ��

∗ and �� = 	 ��
∗ such that 

,02
T

21
T

1 <+++ rAXArXrAXAXr  (25) 

where � = exp	(�(1 − α)π/2). 

3.3. Generalization of frequency domain methods  

The frequency domain methods for stability analysis 
of fractional systems described by the transfer function 
have been proposed in Busłowicz (2008a, 2009), see also 
Kaczorek (2011a, Chapter 9). These methods can be ap-
plied to the system (1) of any fractional order α ∈ (0,2). 

By generalization of the results of Busłowicz (2008a, 
2009) to the case of fractional system (1) we obtain the 
following methods for stability checking.  
Theorem 11. The fractional system (1) with characteristic 
polynomial (8) is stable if and only if  

,2/)(arg
0

π=ω∆
∞<ω≤

njw  (26) 

where ���ω� = ���� for � = �ω, i.e. plot of the function 
���ω� starts for ω = 0 in the point ��0� = det	(−�) 
and with ω increasing from 0 to ∞ turns strictly counter-
clockwise and goes through n quadrants of the complex 
plane.  

Plot of the function ���ω� is called the generalised 
(to the class of fractional degree polynomials) Mikhailov 
plot. 

Checking the condition (26) is difficult in general 
(for large values of n), because ���ω� quickly tends to 
infinity as ω grows to ∞.  

To remove this difficulty, we consider the rational func-
tion  

)(

)det(
)(

sw

AIs
s

r

−=ψ
α

 (27) 

instead of the polynomial (8), where �
(�) is stable 
the reference fractional polynomial of degree α�, i.e. 

0)( ≠swr  for .0Re ≥s  (28) 

The reference fractional polynomial can be chosen 
in the form  

,)()( n
r cssw α+=  .0>c  (29) 

Theorem 12. The fractional system (1) with 0 < α < 2 
is stable if and only if  

,0)(arg
),(

=ωψ∆
∞−∞∈ω

j  (30) 

where ψ��ω� = ψ(�) for � = �ω and ψ(�) is defined 
by (27), i.e. plot of the function ψ��ω� does not encircle 
or cross the origin of the complex plane as ω runs from −∞ 
to ∞. 

Plot of the function ψ��ω�, ω ∈ (−∞, ∞), is called 
the generalised modified Mikhailov plot. 

From (8), (27) and (29) we have  

1)(lim)( =ωψ=∞ψ
±∞→ω

j  (31) 

and  

.
)det(

)0(
nc

A
α
−=ψ  (32) 

From (32) it follows that ψ(0) ≤ 0 if det	(−�) ≤ 0. 
Hence, from Theorem 12 we have the following important 
lemma. 
Lemma 6. If det	(−�) ≤ 0 then the fractional system (1) 
is unstable for all α ∈ �0,2�.  

Lemma 6 also follows from the Hurwitz stability test 
because if det	(−�) ≤ 0 then not all coefficients of the 
characteristic polynomial of A are non-zero and positive. 

3.4. Stability of positive systems 

Now we consider the stability problem of the positive 
system (1) of fractional order α ∈ (0,1]. In this case, ac-
cording to Theorem 1, the condition (7) holds, i.e. the ma-
trix A has non-negative off-diagonal entries.  

Positive linear systems are sub-class of linear systems. 
Therefore, the stability conditions given in this paper can 
also be applied to the stability analysis of the positive sys-
tem (1). 

Stability conditions of positive natural number systems, 
continuous-time and discrete-time, are very simple in com-
parison with the stability conditions of standard systems 
(Farina and Rinaldi, 2000; Kaczorek, 2000, 2002). There-
fore, we consider the possibilities of simplification of the 
stability conditions of standard fractional system (1) with 
α ∈ (0,1]. 

From Theorems 1 and 2 it follows that the positive sys-
tem (1) with α ∈ (0,1) is stable if and only if all eigenval-
ues of the Metzler matrix A lie in the stability region shown 
in Fig. 1.  

From (Farina and Rinaldi, 2000; Kaczorek, 2011b) 
we have that the dominant eigenvalue (eigenvalue with the 
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largest real part) of the Metzler matrix is real. Therefore, 
the positive system (1) with α ∈ (0,1) is stable if and only 
if all eigenvalues of the Metzler matrix A have negative real 
parts. 

Hence, using the well-known stability conditions 
of positive systems given in Kaczorek (2000, 2002), 
we obtain the following simple necessary and sufficient 
condition for the asymptotic stability. 
Lemma 7. The positive system (1) is asymptotically stable 
for all 	 ∈ (0,1) if and only if one of the following equiva-
lent conditions holds: 
1. eigenvalues ��, 	��, … , λ� of the matrix A have negative 

real parts, 
2. all the leading principal minors Δ�, 	Δ�, … , Δ� of the ma-

trix −� are positive, 
3. all the coefficients of the characteristic polynomial 

of the matrix � are positive. 
It is easy to see that if � ∈ 
� then the matrix (20) 

is not a Metzler matrix. This means that is not possible 
simplification of the condition given in Theorem 6 for the 
positive system (1).  

4. ILLUSTRATIVE EXAMPLES 

Example 1. Check stability of the system (1) with 

,
10









−−
=

ab
A   ., ℜ∈ba  (33) 

Eigenvalues of A are as follows 

.
2

42

2,1
baa −±−=λ  (34) 

If  � = 4! then  λ�,� = − /2 Hence, from Lemmas 2 
and 3 we have the following: 
− if  < 0 then eigenvalues of A are positive and the sys-

tem is unstable for all fractional orders α 
− if  > 0 then eigenvalues of A are negative and the 

system is stable for all fractional orders α ∈ (0,2). 
If  

ba 42 >  and 042 ≥−+− baa  or ,042 ≥−−− baa (35) 

then from Lemma 2 it follows that the system is unstable 
for all values α ∈ (0,2). 

If  

ba 42 >  and ,042 <−±− baa  (36) 

then from Lemma 5 it follows that the system is stable 
for all α ∈ �0,1�. 

If  � < 4! then the matrix (33) has two complex eigen-
values  

.
2

4 2

2,1
abja −±−=λ  (37) 

If  < 0 then from (14) and (37) we have  

,14arctan −τ=γ  ,/ 2ab=τ  (38) 

and  

.14arctan
22

0 −τ
π

=γ
π

=α  (39) 

From Lemma 3 it follows that the system with  � < 4! 
and  < 0 is stable for any α ∈ �0, α	�	where α	 is com-
puted from (39). 

Similarly, we can show that if  > 0 and  � < 4! then 
the system is stable for any α ∈ �0, α	�� where  

),14arctan(
22

01 −τ−π
π

=γ
π

=α  ./ 2ab=τ  (40) 

Plots of α	(τ) and α	�(τ) for τ ∈ [1,10] are shown 
in Fig. 3. It is easy to check that α	 → 1 and α	� → 1 
if τ → ∞. 

 
Fig. 3. Plot of the functions (39) and (40) vs. τ ∈ [1,10] 

From Fig. 3 and (39), (40) it follows that α	 < 		� 
for all fixed τ. 

If  τ = 4 (i.e. ! = 4 �), for example, then the system  
− with  < 0 is stable if and only if α ∈ �0, α	�,	 

α	 = 0.8391 
− with  > 0 is stable if and only if α ∈ �0, α	��, where  

α	� = 1.1609.  
Assume that the output equation and the input matrix 

of the system (1), (33) are as follows 

),()( tCxty =  ],01[=C  .
1

0








=B

 

Then, the transfer function has the form  

.
1

)det(

1
)()(

2
1

bassAIs
BAIsCsG

++
=

−
=−= ααα

−α  

Step responses of the system for ! = 4,  = 1	and 
! = 4,  = −1 are shown in Figs 4 and 5, respectively, for 
few values of fractional order α. 

Numerical simulations are performed using Ninteger v. 
2.3 − Fractional Control Toolbox for MatLab, see Valério 
(2005). 

From Figs 4 and 5 it follows that simulations confirm 
the above theoretical results that the system with ! = 4 � 
and  < 0 is stable for all positive α < 0.8391, whereas 
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this system with  > 0 is stable for all positive  

α < 1.1609. 
Now we consider the stability problem of positive sys-

tem (1) with (33). 
From Theorem 1 it follows that the system (1) with A 

of the form (33) and α ∈ (0,1] is positive if and only 
if ! < 0. If  ! < 0 then from (34) it follows that A has two 
real eigenvalues, one negative and one positive. Hence, 
from the above and Lemma 2 we have that the positive 
system (1) with the matrix (33) with ! < 0 is unstable 
for all fractional orders α ∈ �0,1". In particular, this system 
is unstable for α = 1 (the natural number positive system). 

 
Fig. 4. Step responses of the system with � = −1	, � = 4 

 
Fig. 5. Step responses of the system with � = 1	, � = 4 

Example 2. Consider the fractional system (1) with  

.

6.12.13.0

9.028.0

1.18.01


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













−−−
−−

−
=A  (41) 

Check stability of the system for α = 1.4 and α = 1.9. 
Plot of the function  

,
)1(

))det((
)(

3α

α

+ω
−ω=ωψ

j

AIj
j  ),,( ∞−∞∈ω  (42) 

with α = 1.4 and α = 1.9 is shown in Figs 6 and 7, respec-
tively.  

According to (31) and (32) we have (independently 
of the value of α) 

,1)(lim)( =ωψ=∞ψ
±∞→ω

j   5.1240.)det()0( =−=ψ A  

From Figs 6, 7 and Theorem 12 it follows that the system 
with α = 1.4  is stable (plot of (42) does not encircle the 
origin of the complex plane) and with α = 1.9 is unstable 
(plot of (42) encircles the origin of the complex plane).  

 
Fig. 6. Plot of the function (42) with α = 1.4   

 
Fig. 7. Plot of the function (42) with α = 1.9   

Now we apply Theorem 5. Using the LMI toolbox 
of Matlab, we obtain the following feasible solution of (19): 
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− for α = 1.9   
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Computing the leading principal minors of the matrices 
(43) and (44) we obtain, respectively, 

7751.01 =∆ , 3277.02 =∆ , 1408.03 =∆ , 

4850.11 =∆ , 9
2 10676.1 −⋅−=∆ , 5

3 10025.3 −⋅−=∆ . 

From the above it follows that the matrix (43) is positive 
definite (all the leading principal minors are positive) and 
the matrix (44) is not positive definite. This means, accord-
ing to Theorem 5, that the system with α = 1.4 is stable and 
with α = 1.9 is unstable. 

Now we apply Lemma 3 to stability checking of the sys-
tem. 

The matrix (41) has the following eigenvalues: 

;9538.01 −=λ  .4313.18231.13,2 j±−=λ  

From (14) we have γ = 2.4760 and from Lemma 3 
it follows that the system is stable for all α ∈ �0, α�� where  
α� = 2γ/π = 1.4305.		Hence, the system is stable for 
α = 1.4 < α� and unstable for α = 1.9 > α�. 

Now we assume α = 0.5 and check stability using 
Theorems 8 and 9.  

Computing the feasible solutions of (23) and (24) with 
α = 0.5 we obtain respectively 

,

3173.00216.01038.0

0216.02308.00039.0
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−
=P  (45) 
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−
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It is easy to check that the matrices (45) and (46) are 
positive definite. From Theorems 8 and 9 it follows the 
system with α = 0.5 is stable. 
Example 3. Check stability of the system (1) with  

.

4.15.04.00

1.14.108.01.0

5.07.15.11.0

8.11.004.1









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−
−

−
−

=A  (47) 

The matrix (47) is a Metzler matrix. Therefore, the sys-
tem (1), (47) with α ∈ �0,1� is a positive system. To stabil-
ity checking of this system we apply simple necessary 
and sufficient condition given in Lemma 7. 

Computing the characteristic polynomial of the matrix 
(47) we obtain  

.8373.00684.8284.117.5)det( 234 +λ+λ+λ+λ=−λ AI  

All coefficients of the above polynomial are positive. 
From Lemma 7 it follows that the positive fractional system 
(1) with matrix A of the form (47) is stable for any  

α ∈ �0,1�. 
The matrix (47) has the following eigenvalues: 

;1239.01 −=λ  ;5683.12 −=λ  .5404.00039.24,3 j±−=λ  

From (14) we have γ = 2.8782 and α� = 1.8323. From 
Lemma 3 it follows that the system (1) with A of the form 
(47) is stable for any fractional order α ∈ �0, 1.8323�. 

5. CONCLUDING REMARKS 

Review of the existing methods for stability analysis 
of the system (1) of fractional order α ∈ (0,2) is given 
and the new results are presented.  

In particular, generalisation of the classical Mikhailov 
stability criterion to the class of fractional order systems (1) 
with α ∈ (0,2) is proposed. 

Moreover, it has been shown that: 
− the fractional system (1) is unstable for all α ∈ (0,2) 

if the matrix A has at least one non-negative real eigen-
value (Lemma 2); 

− if A has no real non-negative eigenvalues, then the frac-
tional system (1) is stable if and only if α ∈ �0, α�� 
where α� = 2γ/π and γ is computed from (14)  
(Lemma 3); 

− the positive system (1) is stable for all α ∈ (0,1] if and 
only if all coefficients of the characteristic polynomial 
of the matrix A are positive (Lemma 7). 
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Abstract: At the end of the 19th century Liouville and Riemann introduced the notion of a fractional-order derivative, 
and in the latter half of the 20th century the concept of the so-called Grünewald-Letnikov fractional-order discrete difference 
has been put forward.  In the paper a predictive controller for MIMO fractional-order discrete-time systems is proposed, 
and then the concept is extended to nonlinear processes that can be modelled by Takagi-Sugeno fuzzy models. At first nonli-
near and linear fractional-order discrete-time dynamical models are described. Then a generalized nonlinear fractional-order 
TS fuzzy model is defined, for which equations of a predictive controller are derived. 

 

1. INTRODUCTION 

The effectiveness of nonlinear process control systems 
depends to a large extent on the quality of the model used 
for controller synthesis or tuning. Unfortunately, the choice 
of an adequate model for a nonlinear process and its para-
meterization involves difficulties in industrial practice.  
Therefore, nonlinear process models of relatively simple 
structure but furnishing a means to synthesize the controller 
that would ensure satisfactory control performance are still 
looked for (Domek, 2006). 

One of the more effective methods employed to de-
scribe real properties exhibited by many industrial 
processes, inclusive of those with distributed parameters, 
seems to be the description based on fractional-order deriv-
atives. Many examples illustrating possible applications 
of such a description may be found in the literature (Domek 
and Jaroszewski, 2010; Kaczorek, 2009; Lorenz and Kastu-
riarachi, 2009; Muddu Madakyaru et al., 2009; Ostalczyk, 
2000l Podlubny et al., 1997; Riewe, 1997; Sierociuk, 2007; 
Sjöberg and Kari, 2002; Suarez et al., 2003; Vinagre 
and Feliu, 2002; Xue and Chen, 2002; Zamani et al., 2007). 

In the paper a way of modelling complex nonlinear 
MIMO processes in state space by means of fuzzy Takagi-
Sugeno models of fractional order (Domek, 2006; Takagi 
and Sugeno, 1985; Tatjewski, 2007) is presented 
and a generalized predictive algorithm that employs such 
models is introduced. 

2. DYNAMICAL MODELS  
OF FRACTIONAL ORDER 

Let us consider the traditional discrete-time nonlinear 
process model of integer order in state space, well-known 
in the form ��� + 1� = ������,����� (1) 	��� = 
������ (2) 

where ���� ∈ ℛ�, ���� ∈ ℛ�, 	��� ∈ ℛ� denote the state, 
input and output vectors respectively at time instant � ∈ �0,1,2, … � of dimensions 
 × 1, � × 1 and � × 1 re-
spectively. 

Equation (1) can be rewritten with the use of the so-
called first-order backward difference for the state �(�): 

∆����� = ���� − ��� − 1� (3) 

as ����� + 1� = �������,����� (4) 

where 

 �������,����� = ������,����� − ����  (5) 

Now, let us introduce the definition of the real fraction-
al-order α backward difference for the state vector x(t), 
based on the Grünewald-Letnikov definition (Sierociuk, 
2007): 

∆����� = ∑ �−1���
�	
 ��

�
���� − ��,  (6) 
 − 1 < � ≤ 
 ∈ �1,2,3, … � 

��
�
� = �1																													for     � = 0

�����
….������


�!
   	for     � = 1,2, …	� (7) 

The definition (6) may be written in a generalized form 
by adopting different orders of backward differences 
for individual state variables of the state vector ���� ∈ ℛ�: 

∆���� + 1� = �∆������ + 1� ⋯ ∆������ + 1��� (8) 

Then, similarly to eq. (4), the fractional-order genera-
lized model of a nonlinear process may be defined in state 
space as: ����� + 1� = �������,����� (9) 

which, in view of eqs. (6), (7) and (8), may be rewritten in 
the following form: 

 ��� + 1� = �������,����� − ∑ �−1������� + 1 − �����
�	�  (10) 

Υ� = diag ����� � ⋯ ���� �� (11) 

It should be noted that the model (10), (11) in particular 
may describe properties of a fractional-order linear process. 
By analogy to the integer-order model (1) – (5), for which 
the well-known linear version has the form: 
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��� + 1� = A���� + B����  (12) 	��� = C���� (13) 

with the state equation  (12) written another way as: 

∆���� + 1� = A����� + B���� (14) 

where 

A�=A − I� (15) 

(I� ∈ ℛ�×� – identity matrix), the fractional-order genera-
lized model of a linear process, in view of eqs. (8), (9) 
and (15), may be given in state space as: 

∆���� + 1� = A����� + B���� (16) 

or alternatively 

 ��� + 1� = A����� + B���� − ∑ �−1������� + 1 − �����
���  (17) 

3. FRACTIONAL-ORDER  
NONLINEAR FUZZY MODELS 

The usefulness of fractional-order models (9) in indus-
trial practice, where processes to be controlled are most 
often significantly nonlinear, is small. Making use of the 
nonlinear model (10) is not possible in general, since uni-
versal methods for nonlinear controller synthesis based 
on such models are lacking. 

On the other hand, the linear model (16) may be em-
ployed to synthesize a nonlinear process controller only 
if the assumption is made that the control system is operat-
ed in a small vicinity of the equilibrium point, for which 
the model has been defined. 

The approach to modelling integer-order nonlinear 
processes that has been employed for many years is the use 
of the so-called networks (batteries) of Takagi-Sugeno local 
models (also called Takagi-Sugeno-Kanga models), origi-
nally proposed in Takagi and Sugeno (1985). In these mod-
els an antecedent in the form of a fuzzy logical product 
for each i-th fuzzy rule out of p rules is adopted (Domek, 
2006; Tatjewski, 2007): 

IF			 ������ ⊂ ��,�			� !		����� ⊂ ��,�																																										� !	… 	� !			����� ⊂ ��,� " (18) 

where ����� ⊂ ��,� denotes membership of the state varia-
ble ����� to the fuzzy set ��,� with membership function #��,����(�)�: 
∀�� 				∃ $#��,�, #��,�, … , #��,�%  
             														∑ ������� = 1 ∩

�

�	� #��,����(�)� ≥ 0 (19) 

The consequents of rules in the Takagi-Sugeno models 
are given by algebraic expressions. For the considered 
in the paper case of a battery of fractional-order models 
the following consequents are suggested: 

THEN (20) 

	��� + 1� = A�,	���� + 
	���� − ��−1����,	��� + 1 − ��
��

���
��� = C	���� � 

where 

Υ�,� = diag ����,�� � ⋯ ���,�� �� (21) 

and subscript j denotes a set of parameters of the j-th local 
model described by a complemented state matrix A�,�, input 
matrix B� and output matrix C� and of fractional orders &��,� , 	��,� , … , ��,�'. 

It may be shown  (Domek, 2006; Tatjewski, 2007) 
that the following resultant state equation for the entire 
network of local models is obtained after performing infe-
rence and defuzzification by means of the center of gravity 
technique (Babuška and Verbrungen, 1996; Domek, 2006): 

��� + 1� =
∑ ����
������

�
���

∑ ����

�

���

∑ ()����*A�,����� +��

�	�   

�B����� − ∑ �−1��+�,���� + 1 − �����
�	� , (22) 

	��� =
∑ ��(�)��(�)
�
���

∑ ��(�)
�

���

= ∑ ()�(�)�

�	� C����� (23) 

where weight coefficients determining the so-called degree 
of activation of individual rules are defined by means of the 
fuzzy product operator (Babuška and Verbrungen, 1996): (���� = ∏ #��,����(�)��

�	�  (24) 

With eqs. (22) – (24) in view, the fractional-order non-
linear process (9) may be described in state space by 
a fuzzy-tuned fractional-order quasi-linear model of the 
form (17) creating a fuzzy network of Takagi-Sugeno (TS) 
local models: ��� + 1� = A�

� ���� + B����� − ∑ �−1����
���� + 1 − ��
��

���  (25) 
��� = C����� (26) 

where 

A�
�

= A���(�)� = ∑ ()�(�)�

�	� A�,� (27) 

B� = B��(�)� = ∑ ()�(�)�

�	� B� (28) 

C� = C��(�)� = ∑ ()�(�)�

�	� C� (29) +�� = +����(�)� = ∑ ()�(�)�

�	� +�,� (30) 

To identify the parameters and the order of fractional-
order local dynamic models (20), (21), use can be made, 
for example, of Sierociuk (2007), Sierociuk and Dzieliński 
(2006). In Wnuk (2004) there are many remarks to be found 
concerning choosing the number of local models, dividing 
the operating area into local partitions, establishing 
the individual membership functions and validating 
the adopted assumptions for fuzzy modeling. 

4. A FRACTIONAL-ORDER PREDICTIVE 
CONTROLLER 

One of the more effective and frequently employed 
in industry control methods, especially for multivariable 
and nonlinear processes, based on the process model 
is the predictive control (Domek, 2006; Maciejowski, 2002; 
Tatjewski, 2007). First attempts to utilize fractional-order 
derivatives in predictive control have been described, 
among others, in Domek and Jaroszewski (2010), Muddu 
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Madakyaru et al. (2009) and Romero et al. (2008). There 
have been applied selected methods of discrete approxima-
tion for fractional-order processes (Xue et al., 2006). 

In order to determine the manipulated variable u(t) let us 
adopt the quadratic cost function over a finite horizon in its 
general the matrix form: .��� = �/���→ − /����→���/���→ − /����→�+																					0	��1
���→����1
���→�	,							0 ≥ 0 (31) 

where 

/����→ = 2 	�(� + �|�)	�(� +  � + 1|�)
⋮	�(� + �|�) 3 (32) 

denotes the reference trajectory vector, which starts always 
from the current value of the plant output and has the form 
of a smoothed reference signal, 

/���→ = 2 	(� +  �|�)	(� +  � + 1|�)
⋮	(� +  �|�) 3 (33) 

is the output prediction vector, whereas the vector Δ�����→
 can take the following forms depending on the used algo-

rithm version: �1
���→ =	��
�(�|�) �
�(� + 1|�) ⋯ �
�(� + � − 1|�)�� (34) 

with increments of the manipulated variable related to the 
component determined for the t–1 instant �
��� + 4|�� = ��� + 4|�� − ��� − 1�	, 
0 ≤ 4 ≤  � − 1 (35) 

with an additional assumption respectively ��
�� + 4|�� = 0	,				for				 � ≤ 4 ≤  � − 1 (36) 

4.1. Synthesis of a fractional-order linear predictive 
controller 

To determine the optimal manipulated variable we have 
to find the dependence of the process output prediction 
vector (33) on the vector of future manipulated variables 
(34). For the process defined by the model (17) the solution 
is given by Sierociuk (2007): 

���� = Φ
������0� +6 Φ

����B��� − � − 1����

�	


, 										� = 1,2, … (37) 

where the matrix Φ���� is defined by the recurrence relation 

Φ
��� + 1� = �A�+�
�Φ���� − � �−1����Φ

��� − � + 1����

���

, 												� = 2,3,…  (38) 

with 

Φ
��1� = �A +7!�,						Φ��0� = I�  (39) 

Hence, in view of eqs. (13) and (37), we get 


��� = C�Φ������0� + ∑ Φ
����B�(� − � − 1)���

��� � + D�(�) (40) 

and consequently, assuming for simplicity D = 0, the pre-
diction of the output for the t+j instant may be found at the t 
instant in the following form: 
�� + �|�� = C�Φ�������� + ∑ Φ

����B�(� + � − � − 1)
���

��� � (41) 

or equivalently 
�� + �|�� = C�Φ�������� + ∑ Φ
��� − � − 1�B�(� + �)���

��� � (42) 

Hence, the prediction of the natural process response be-
comes 
��� + �|�� = C�Φ�������� + ∑ Φ

����B�(� − �)���

��� � (43) 

and that of the forced response becomes 
��� + �|�� = C�∑ Φ
��� − � − 1�BΔ��(� + �)���

��� �  (44) 

Writing the future values of the natural response (43) within 
the prediction horizon in the vector form 

/
���→ = 899
: 	
(� + �|�)	
(� +  � + 1|�)

⋮	
(� +  �|�) ;<<
=
 (45) 

�����→ = C ∙ ��Φ�����
⋮

Φ
������ ���� + �∑ Φ

��������

���

⋮∑ Φ
��������

���

� B�(� − 1)� (46) 

the output prediction vector (33), in view of eqs. (43) and 
(44), assumes the following form: /���→ = E Δ1
���→ + /
���→ (47) 

where the so-called process dynamics matrix for the vector 
(34) is given by: 

E = C ∙ E ∙ B (48) 

with the matrix E ∈ ℛ�∙("��"���)×�∙"�: 

E =

���
���
���
∑ Φ

��������

��� ⋯ ⋯ ⋯ 0�

⋮ ⋮ ⋱ ⋮ ⋮

⋮ ⋯ A�+�
 I� ⋮∑ Φ
��������

��� ⋯ ⋯ A�+�
 I�∑ Φ
������

��� ⋯ ⋯ ⋯ A�+�


⋮ ⋮ ⋮ ⋮ ⋮∑ Φ
��������

��� ⋯ ⋯ ⋯ ∑ Φ
���������

���  !!
!!!
!!"
 (49) 

 

and the block matrices B ∈ ℛ�∙"�×�∙"�  

and C ∈ ℛ�∙("��"���)×�∙("��"���): 

B = >B ⋯ 0
⋮ ⋱ ⋮

0 ⋯ B
?,        C = >C ⋯ 0

⋮ ⋱ ⋮

0 ⋯ C
? (50) 

In view of eqs. (31) and (47), the optimal control becomes 
[3]: 

Δ1#�����→ = P�/����→ − /
���→� (51) 

where the controller gain matrix is: 

P = �E�E+0 ∙ I�∙"�
�
��

E� (52) 
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In view of the fact that, according to the principle of the 
moving horizon, only the first component of the computed 
control vector is utilized at the given instant t, we get final-
ly from eqs. (35), (51) and (52): ���|�� = ��� − 1� + p�/����→ − /
���→� (53) 

where p is the first row of the gain matrix P. 
In the proposed predictive controller, as with the classic 

predictive control, it is possible to determine the optimal 
control in the presence of constraints imposed on the con-
trol signal, its increments and/or process output. In such 
a situation, in view of eqs. (46) – (50), the quadratic pro-
gramming (QP) problem should be solved numerically 
at each step t (Domek, 2006; Maciejowski, 2002). 

4.2. A fuzzy, fractional-order, state model predictive 
controller 

The above presented synthesis of the fractional-order li-
near predictive controller can be extended in a relatively 
simple way to nonlinear processes by employing the pro-
posed fuzzy TS model. In such an event a fractional-order 
linear predictive controller is to be determined at each step 
for the current quasi-linear process (25), (26). Another 
natural approach is utilizing the above presented method to 
synthesize a controller for linear processes, design of local 
linear controllers for each j-th local submodel (20) 
and employing all found controllers in the consequents 
of the rules (18), (19). Therefore, a fuzzy network (battery) 
of local controllers is obtained in such a way. 

5. CONCLUDING REMARKS 

In the paper an approach to synthesis of a fractional-
order nonlinear predictive controller for fractional-order 
nonlinear MIMO processes is presented. The approach 
is based on utilizing the proposed fuzzy TS model of the 
fractional-order nonlinear process. The individual state 
variables in the generalized model are assumed to be 
of different orders. A more simple case is represented by 
the model of identical orders, the particular case of which 
is the integer-order model including the linear model. 
In such a case the proposed predictive controller reduces 
to the known SMPC controller (Maciejowski, 2002). 

REFERENCES 

1. Babuška R., Verbrungen H. B. (1996) An overview of fuzzy 
modelling for control, Control Eng. Practice, 4(11), 1593–
1606. 

2. Domek S. (2009), Robust predictive control of nonlinear 
processes (in Polish), Wydawnictwo Politechniki Szczeciń-
skiej, Szczecin. 

3. Domek S., Jaroszewski K. (2010), Model predictive control-
ler for fractional order systems, In: A. Grzech,P. Świątek, 
J. Drapała (Eds): Advances in System Science, Computer 
Science, EXIT, Warszawa, 9–18. 

4. Kaczorek T. (2009), Positive 2D fractional linear systems, 
COMPEL: Int. Journal for Computation and Mathematics 
in Electrical and Electronic Engineering, Vol. 28, No. 2,  
341–352. 

5. Lorenz A., Kasturiarachi A.  (2009), The theory and applica-
tion of fractional derivatives, The annual meeting of the The 
Mathematical Association of America – MathFest. 

6. Maciejowski J. M. (2002), Predictive control with con-
straints, Englewood Cliffs, Prentice Hall. 

7. Mäkilä P. M., Partington J. R. (2003), On linear models for 
nonlinear systems, Automatica, 39, 1–13. 

8. Muddu Madakyaru M., Narang A., Patwardhan S. C. 
(2009), Development of ARX models for predictive control 
using fractional order and orthonormal basis filter parametri-
zation, Ind. Eng. Chem. Res., Vol. 48, No. 19, 8966–8979. 

9. Ostalczyk P. (2000), The non-integer difference of the dis-
crete-time function and its application to the control system 
synthesis, Int. J. Syst. Sci., Vol. 31, No. 12, 1551–1561. 

10. Podlubny I., Dorcak L., Kostial I. (1997), On fractional 
derivatives, fractional-order systems and PIλDµ-controllers, 
Proc. 36th IEEE Conf. on Decision and Control, San Diego, 
4985–4990.  

11. Riewe F. (1997), Mechanics with fractional derivatives, Phys-
ical Review, E, Vol. 55, No. 3, 3581–3592. 

12. Romero M., Vinagre B. M., De Madrid Á. P. (2008), GPC 
Control of a Fractional–Order Plant: Improving Stability and 
Robustness, Proc. 17th IFAC World Congress, Seoul, 14266–
14271. 

13. Shantanu D. (2008), Functional fractional calculus for sys-
tem identification and controls, Springer Verlag, Berlin. 

14. Sierociuk D. (2007), Estimation and control of discrete frac-
tional –order dynamic systems described in the state space  
(In Polish), PhD Thesis. Warsaw University of Technology, 
Warszawa. 

15. Sierociuk D., Dzieliński A. (2006), Fractional Kalman filter 
algorithm for the states, parameters and order of fractional 
system estimation, Int. J. Appl. Math. Comp. Sci., Vol. 16, No. 
1, 129–140. 

16. Sjöberg M., Kari L.  (2002), Non-linear behavior of a rubber 
isolator system using fractional derivatives, Vehicle Syst. Dy-
nam., Vol. 37, No. 3, 217–236. 

17. Suarez J. I., Vinagre B. M., Chen Y. Q. (2003), Spatial path 
tracking of an autonomous industrial vehicle using fractional 
order controllers, Proc. 11th Int. Conf. Advanced Robotics, 
Coimbra, CD-ROM. 

18. Takagi T., Sugeno M. (1985), Fuzzy identification of systems 
and its application to modeling and control, IEEE Trans. Sys-
tems, Man, and Cybernetics, 15, 116–132. 

19. Tatjewski P. (2007), Advanced control of industrial 
processes, Structures and algorithms, Springer, London. 

20. Vinagre M., Feliu V. (2002), Modeling and control of dy-
namic systems using fractional calculus: Application to elec-
trochemical processes and flexible structures, Proc. 41st IEEE 
Conf. Decision and Control, Las Vegas, 214–239. 

21. Wnuk P. (2004), Identification algorithms for fuzzy models, 
PhD Thesis, Warsaw University of Technology, Warszawa. 

22. Xue D., Chen Y. (2002), A comparative introduction of four 
fractional order controllers, Proc. 4th IEEE World Congress 
on Intelligent Control and Automation, Shanghai, 3228–3235. 

23. Xue D., Zhao C., Chen Y. (2006), A modified approximation 
method of fractional order system, Proc. IEEE ICMA, 
Luoyang, 1043–1048. 

24. Zamani M., Karimi-Ghartemani M., Sadati N.  (2007), 
FOPID controller design for robust performance using particle 
swarm optimization, Fractional Calculus & Applied Analysis, 
Int. Journal for Theory and Applications, Vol. 10, No. 2, 169–
187. 



acta mechanica et automatica, vol.5 no.2(2011) 

 27

THE INFLUENCE OF GEOMETRY OF THE SPECIMEN AND MATER IAL PROPERTIES  
ON THE Q-STRESS VALUE NEAR THE CRACK TIP FOR SEN(T)  SPECIMEN 

Marcin GRABA *  

*Kielce University of Technology, Faculty of Mechatronics and Machine Design,  
Chair of Fundamentals of Machine Design, Al. 1000-lecia PP 7, 25-314 Kielce, Poland 

  

mgraba@tu.kielce.pl 

Abstract: In the paper the short theoretical backgrounds about elastic-plastic fracture mechanics were presented 
and the O’Dowd-Shih theory was discussed. Using ADINA System program, the values of the Q-stress determined for vari-
ous elastic-plastic materials for SEN(T) specimen – single edge notched plates in tension – were presented. The influence 
of kind of the specimen, crack length and material properties (work-hardening exponent and yield stress) on the Q-parameter 
were tested. The numerical results were approximated by the closed form formulas. Presented in the paper results are com-
plementary of the two papers published in 2007 (Graba, 2007) and in 2010 (Graba, 2010), which show and describe influence 
of the material properties and crack length for the Q-stress value for SEN(B) and CC(T) specimens respectively. Presented 
and mentioned papers show such catalogue of the Q-stress value, which may be used in engineering analysis for calculation 
of the real fracture toughness. 

 

1. INTRODUCTION TO ELASTIC-PLASTIC 
FRACTURE MECHANICS 

In 1968 J. W. Hutchinson (ADINA 8.4.1, 2006a) pub-
lished the fundamental paper, which characterized stress 
fields in front of a crack for non-linear Ramberg-Osgood 
(R-O) material in the form: 
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
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where � and �	are polar coordinates of the coordinate  
system located at the crack tip, ��� 	are the components 
of the stress tensor, � is the J-integral, � is R-O exponent,  
� is R-O constant, σ0 is yield stress, �� is strain related to 
�� through �� = ��/	. Functions �
��(�,�), ��(�) must be 
found by solving the fourth order non-linear homogenous 
differential equation independently for plane stress 
and plane strain (Hutchinson, 1968). Equation (1) is com-
monly called the “HRR solution” (Fig. 1).  

The HRR solution includes the first term of the infinite 
series only. The numerical analysis shown, that results 
obtained using the HRR solution are different from the 
results obtained using the finite element method (FEM) - 
see Fig. 2. To eliminate this difference, it’s necessary to use 
more terms in the HRR solution. 

In 1985 Li and et. (Li and Wang, 1985) proposed the 
another stress field description, which was used two terms 
in the Airy function. They obtained the second term 
of the asymptotic expansion for the two materials described 
by two different work-hardening exponent: n=3 and n=10. 
Next, they compared their results with the HRR fields and 
FEM results. Their analysis shown, that using the two term 
solution to describe the stress field near the crack tip, brings 
closer analytical results to FEM results. Two term solution 
much better describes the stress field near the crack tip, 
and the value of the second term, which may not to be neg-

ligible depends on the material properties and the geometry 
specimen. 

 
Fig. 1. The crack opening stress distribution for elastic-plastic 

   materials, obtained using the HRR solution 

In 1993 Yang and et. (Yang et al., 1993)  using the Airy 
function with the separate variables in the infinite series 
form, proposed, that stress field near the crack tip may be 
described by the Eq. (2) in the infinite series form: 
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where k is the number of the series terms, Ak is the ampli-
tude for the k series term, �̅ is the normalized distance from 
the crack tip, sk is power exponent for the k series term,  

and �
��
(�) is “stress” function. 

 Using only three terms of the infinite series, Eq. (2) 
may be written in the following form: 
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where the �
��
(�)functions must be found by solving the 

fourth order non-linear homogenous differential equation 
independently for plane stress and plane strain, s is the 
power exponent, which is identical to the one in the HRR 
solution (s may be calculated as s=-1/(n+1)), t is the power 
exponent for the second term of the asymptotic expansion, 
which must be found numerically by solving the fourth 
order non-linear homogenous differential equation inde-
pendently for plane stress and plane strain, �̅ is the normal-
ized distance from the crack tip calculated as �̅ = �/(�/��), 
A1 is the amplitude of the first term of the infinite series 
evaluated as 
� = (�����)

��/(���), and A2 is the amplitude 
of the second term, which is calculated by fitting the Eq. (3) 
to the numerical results of the stress fields close to crack 
tip. 

 
Fig. 2. Comparison the FEM results and HRR solution  

  for plane stress and plane strain for center cracked plate  
  in tension (CC(T)) 

In 1993 Shih et al. (1993) proposed simplified solution. 
They assumed, that the FEM results are exact and com-
puted the difference between the numerical and HRR re-
sults. They proposed, that the stress field near the crack tip, 
may be described using only two terms, by following equa-
tion: 
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where ����(�,�) are functions evaluated numerically,  
q is the power exponent, which value changes in the range 
(0; 0.071), and Q is the parameter, which is the amplitude 
of the second term asymptotic solution. The Q-parameter is 
commonly called the “Q-stress”. 

O’Dowd and Shih (1991, 1992), tested the Q-parameter 

in the range J/σ0<r<5J/σ0 near the crack tip. They showed, 
that the Q-parameter weakly depend on crack tip distance 
in the range of the ±π/2 angle. O’Dowd and Shih proposed 
only two terms to describe the stress field near the crack tip: 

 

( ) ( )θσσσσ ijHRRijij Q ˆ0+=  (5) 

 
Fig. 3. The comparison of the J-Q trajectories  

  for CC(T) and  SEN(B) 

To avoid the ambiguity during the calculation of the Q-
stress, O’Dowd and Shih (O’Dowd, Shih, 1991), (O’Dowd, 
Shih, 1992) have suggested, where the Q-stress may be 
evaluated. It was assumed, that the Q-stress should be com-
puted at distance from crack tip, which is equal to r=2J/σ0 
for θ=0 direction. O’Dowd and Shih postulated, that for 
θ=0 the function ��		(� = 0) is equal to 1. That’s why, the 
Q-stress may be calculated from following relationship: 
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where (σθθ)FEM is the stress value calculated using FEM 
and (σθθ)HRR is stress value evaluated form HRR solution. 
During analysis, O’Dowd and Shih shown, that in the range 
of θ=±π/4, the following relationships take place: ���		 ≈

���

, ��		/��

 ≈ 1 and ���
	 ≈ 0 (because ���
	 <<

���		). Thus, the Q-stress value determines the level of the 
hydrostatic stress. For plane stress, the Q-parameter is equal 
to zero, but for plane strain, the Q- parameter is in the most 
cases smaller than zero (Fig. 3). 

2. DISCUSSION ABOUT ENGINEERING 
APPLICATIONS OF THE J-Q THEORY 

To describe the stress field near the crack tip for elastic-
plastic materials, the HRR solution is most often used  
(Eq. 1). However the results obtained are usually overesti-
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mated and analysis is conservative. The HRR solution  
includes the first term of the infinite series only.  

The numerical analysis shown, that results obtained us-
ing the HRR solution are different from the results obtained 
using the finite element method (FEM) – see Fig. 2. 
To eliminate this difference, it’s necessary to use more 
terms in the HRR solution, for example the J-A2 theory 
suggested by Yang and et. (Yang et al., 1993), or the 
O’Dowd and Shih approach – the J-Q theory (O’Dowd, and 
Shih, 1991). 

For using the O’Dowd approach, engineer needs only 
the Q-stress distribution, which must be calculated numeri-
cally. That’s why O’Dowd approach is easier and pleasan-
ter in use in contrast to J-A2 theory. Using the J-A2 theory 
proposed by Yang and el., first engineer must solve fourth 

order nonlinear differential equation to determine the �
��
(�) 

function and the t power exponent. Next, the engineer using 
FEM results calculated the A2 amplitude by fitting the Eq. 3 
to numerical results.  

 The J-Q theory found application in European Engi-
neering Programs, like SINTAP (Sintap, 1999) or FITNET 
(Fitnet, 2006). The Q-stress are applied under construction 
the fracture criterion and to assessment the fracture tough-
ness of the structural component. Thus O’Dowd theory has 
practical application in engineering issues. 

Sometimes using the J-Q theory may be limited, be-
cause there is no value of the Q-stress for given material 
and specimen. Using any fracture criterion, for example 
proposed by O’Dowd (O’Dowd, 1995), or another criterion, 
the engineer can estimate fracture toughness quit a fast, 
if the Q-stress are known. Literature doesn’t announce the 
Q-stress catalogue and Q-stress value as function of exter-
nal load, material properties or geometry of the specimen. 
In some articles, the engineer may find the J-Q graphs for 
certain group of material.  

The best solution will be, origin the catalogue of the J-Q 
graphs for materials characterized by various yield strength, 
different work-hardening exponent. Such catalogue should 
take into consideration the influence of the external load, 
kind of the specimen (SEN(B) specimen – bending, SEN(T) 
specimen – tension) and geometry of the specimen, too. For 
SEN(B) and CC(T) specimens, such catalogues were pre-
sented by Graba in 2007 (Graba, 2007) and in and 2010 
(Graba, 2010) respectively. 

In the next parts of the paper, the values of the Q-stress 
will be determined for various elastic-plastic materials for 
single edge notched specimens in tension (SEN(T)). The 
SEN(T) specimen is the basic structural element, which is 
used in the FITNET procedures to modeling real construc-
tions. All results will be approximated by the closed form 
formulas. 

3. DETAILS OF NUMERICAL ANALYSIS 

In the numerical analysis, the single edge notched spe-
cimens in tension (SEN(T)) were used (Fig. 4). Dimensions 
of the specimens satisfy the standard requirement which 
is set up in FEM calculation - L≥2W, where W is the width 
of the specimen and L is the measuring length of the speci-
men. Computations were performed for plane strain using 
small strain option. The relative crack length was equal to 

a/W={0.20, 0.50, 0.70} where a is a crack length and the 
width of specimens W was equal to 40mm. For this case, 
the measuring length L satisfied the condition L≥80mm.  

 
  

Fig. 4. The single edge notched specimen in tension (SEN(T))  
   used in the numerical analysis 

The choice of the SEN(T) specimen was intentional, be-
cause the SEN(T) specimens are used in the FITNET pro-
cedures to modeling real structural elements. Also 
in FITNET procedures, the limit load and stress intensity 
factors solutions for SEN(T) specimens are presented. 
However in the EPRI procedures (Kumar et al., 1981), 
the hybrid method for calculation the J-integral is given. 
Also some  laboratory test in order to determine the critical 
values of the J-integral, may be done using the SEN(T) 
specimen.  

Computations were performed using ADINA SYSTEM 
8.4 (Adina, 2006a, b). Due to the symmetry, only a half 
of the specimen was modeled. The finite element mesh was 
filled with the 9-node plane strain elements with nine (3×3) 
Gauss integration points. The size of the finite elements in 
the radial direction was decreasing towards the crack tip, 
while in the angular direction the size of each element was 
kept constant. The crack tip region was modeled using 50 
semicircles. The first of them, was at least 20 times smaller 
then the last one. It also means, that the first finite element 
behind to crack tip is smaller 2000 times than the width 
of the specimen. The crack tip was modeled as quarter 
of the arc which radius was equal to rw=1⋅10-6m (it's 
(0.000025×W). The whole SEN(T) specimen was modeled 
using 323 finite elements and 1353 nodes. External load 
was applied to bottom edge of the specimen. The example 
finite element model for SEN(T) specimen used in the nu-
merical analysis is presented on Fig. 5. 

In the FEM simulation, the deformation theory of plas-
ticity and the von Misses yield criterion were adopted. In 
the model the stress–strain curve was approximated by the 
relation:   
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where α=1. The tensile properties for the materials which 
were used in the numerical analysis are presented below 
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in the Tab.1. In the FEM analysis, calculations were done 
for sixteen materials, which were differed by yield stress 
and the work hardening exponent. 

a) 

 
b) 

 
 Fig. 5. a) The finite element model for SEN(T) specimen  

   used in the numerical analysis; b) The finite elements 
   mesh near crack tip using in the numerical analysis 

Tab. 1. The mechanical properties of the materials used in  
numerical analysis and the HRR parameters for plane strain 

 σ0 
[MPa] 

E [MPa] ν ε0=σ0/E α n ( )0~ =θσθθ  In 

315 

206000 0.3 

0.00153 

1 

3 1.94 5.51 
500 0.00243 5 2.22 5.02 
1000 0.00485 10 2.50 4.54 
1500 0.00728 20 2.68 4.21 

The J-integral were calculated using two methods. 
The first method, called the “virtual shift method”, uses 
concept of the virtual crack growth to compute the virtual 
energy change. The second method is based on the  
J–integral definition:  

 

( )[ ]∫ ∂∂−=
C

dsxwdxJ 12 ut  (8) 

 

where w is the strain energy density, t is the stress vector 
acting on the contour C drawn around the crack tip, 
u denotes displacement vector and ds is the infinitesimal 
segment of contour C.  

In summary, in the numerical analysis 48 SEN(T) 
specimens were used, which were differed by crack length 
and material properties. 

4. ANALYSIS OF THE NUMERICAL RESULTS 

The analysis of the results obtained was made in the 
range J/σ0<r<6J/σ0 near the crack tip, and its shown, that 
the Q-stress decrease if the distance from the crack tip in-
crease (Fig. 6). If the external load increases, the Q-stress 
decreases and the difference between Q-stress calculated 
in the following measurement points increase (Fig. 6). If the 
crack length decrease then Q-stress reaches more negative 
value for the same J-integral level (Fig. 7).  

For the sake of the fact, that the Q-parameter, which 
is used in fracture criterion is calculated at distance equal 
to r=2J/σ0, it’s necessary to notice some comments about 
obtained results. If the yield stress increases, the Q-
parameter increase too, and it reflects for all SEN(T) 
specimen with different crack length a/W (Fig. 8). For 
smaller yield stress the J-Q trajectories shape up well 
lower and it’s observed faster changes of the Q-parameter 
if the external load is increase (Fig. 8).  

For SEN(T) specimens, the ambiguous behavior of the 
J-Q trajectories depending of the work-hardening expo-
nent is observed. For specimens with short cracks 
(a/W=0.20) and the same yield stress, for smaller values 
of the work-hardening exponent n (e.g. n≤5), the Q-stress 
become less negative (Fig. 9). For specimens with the 
normative crack length (a/W=0.50) or with the long cracks 
(a/W=0.70), the cutting of the J-Q trajectories was ob-
served (Fig. 10 and Fig. 11) - first the higher values of the 
Q-stress were observed for specimen characterized 
by strongly hardening material, but for increasing external 
load the reversal of the trend took place and the higher  
Q-stress were observed for specimens characterized 
by weakly hardening material. 

For short cracks the Q-stress value drops more rapidly 
then for long ones in the range of the small external load 
(Fig. 7). For specimen with long cracks (a/W=0.70), the 
another nature of the J-Q trajectories was observed than 
for specimen with relative cracks length a/W≤0.50 (Fig. 
7). It may be a consequence of the absence in the analysis 
of the stress field, the consideration of the bending stress 
near the crack tip, which was discussed by Chao et al., 
(2004). 
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Fig. 6. “The J-Q family curves” for SEN(T) specimen calculated 

at six distances r from crack tip 

 
Fig. 7. The influence of the crack length on J-Q trajectories  

for SEN(T) specimens 

 
Fig. 8. The influence of the yield stress on J-Q trajectories for 

SEN(T) 

 

 
Fig. 9. The influence of the work hardening exponent on J-Q  

trajectories for SEN(T) specimens (a/W=0.20, σ0=315MPa) 

 
Fig. 10. The influence of the work hardening exponent on J-Q  

 trajectories for SEN(T) specimens (a/W=0.50, σ0=500MPa) 

 
Fig. 11. The influence of the work hardening exponent on J-Q  

 trajectories for SEN(T) specimens (a/W=0.70, σ0=1000MPa) 
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5. APPROXIMATION OF THE NUMERICAL 
RESULTS  

In the literature the mathematic formulas, to calculate 
the Q-stress taking into consideration the level of external 
load, material properties and geometry of the specimen 
are not known for the most of the cases. Presented in the 
paper numerical computations provided with the J-Q cata-
logue and the universal formula (9), which allows to cal-
culate the Q-stress and take into consideration all the 
parameters influencing the value of the Q-stress. All re-
sults, were presented in the Q=f(log(J/(a⋅σ0))) graph 
forms. Next all graphs were approximated by the simple 
mathematical formulas, taking the material properties, 
external load and geometry specimen into consideration. 
All the approximations were made for results obtained at 
the distance r=2.0⋅J/σ0. Each of the obtained trajectories 
Q=f(log(J/(a⋅σ0))), was approximated by the third order 
polynomial in the form:  

( ) ( )

( ) ( )
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 (9) 

where the A, B, C, D coefficients depend on the work-
hardening exponent n, yield stress σ0 and crack length 
a/W. The rank of the fitting the formula (9) to numerical 
results for the worst case was equal R2=0.95. For different 
work hardening exponents n, yield stresses σ0 and ratios 
a/W, which were not include in the numerical analysis, the 
coefficients A, B, C and D may be evaluated using the 
linear or quadratic approximation. Results of the approxi-
mation (all coefficients of the approximation numerical 
results by Eq. (9)) are presented in Tables 2-4. 

Tab. 2. The coefficients of equation (9) for SEN(T) specimen  
             with the crack length a/W=0.20 

σ0 = 315MPa σ0/E = 0.00153 
n A B C D R2 
3 -2.476 -2.221 -1.165 -0.228 0.993 
5 -2.128 -1.722 -0.999 -0.223 0.997 
10 -1.752 -0.991 -0.604 -0.163 0.998 
20 -1.677 -0.683 -0.379 -0.121 0.997 

σ0 = 500MPa σ0/E = 0.00243 
n A B C D R2 
3 -1.618 -0.876 -0.397 -0.087 0.986 
5 -1.105 0.104 0.119 -0.008 0.996 
10 -1.365 -0.139 0.029 -0.026 0.996 
20 -1.465 -0.145 0.075 -0.017 0.996 

σ0 = 1000MPa σ0/E = 0.00485 
n A B C D R2 
3 -1.875 -1.438 -0.651 -0.119 0.958 
5 -1.198 0.007 0.217 0.037 0.990 
10 -1.065 0.552 0.622 0.116 0.995 
20 -1.163 0.533 0.654 0.122 0.996 

σ0 = 1500MPa σ0/E = 0.00728 
n A B C D R2 
3 -1.601 -1.099 -0.477 -0.089 0.982 
5 -1.469 -0.537 -0.056 -0.002 0.990 
10 -1.401 -0.078 0.328 0.080 0.996 
20 -1.486 -0.085 0.364 0.088 0.996 

Tab. 3. The coefficients of equation (9) for SEN(T) specimen  
with the crack length a/W=0.50 

σ0 = 315MPa σ0/E = 0.00153 
n A B C D R2 
3 -2.743 -1.606 -0.456 -0.059 0.990 
5 -2.909 -1.516 -0.334 -0.038 0.990 
10 -0.621 1.913 1.291 0.205 0.996 
20 0.238 3.364 2.03142 0.320 0.996 

σ0 = 500MPa σ0/E = 0.00243 
n A B C D R2 
3 -3.927 -3.615 -1.435 -0.209 0.982 
5 -3.383 -2.414 -0.728 -0.088 0.995 
10 -2.009 -0.132 0.435 0.094 0.997 
20 -1.810 0.450 0.811 0.160 0.997 

σ0 = 1000MPa σ0/E = 0.00485 
n A B C D R2 
3 -4.009 -4.031 -1.629 -0.229 0.977 
5 -2.662 -1.869 -0.545 -0.059 0.997 
10 -2.773 -1.760 -0.403 -0.032 0.996 
20 -2.971 -1.789 -0.312 -0.006 0.997 

σ0 = 1500MPa σ0/E = 0.00728 
n A B C D R2 
3 -2.612 -2.335 -0.943 -0.138 0.994 
5 -2.505 -1.895 -0.629 -0.078 0.999 
10 -2.559 -1.688 -0.420 -0.035 0.996 
20 -2.357 -1.041 0.048 0.059 0.997 

Fig. 12 presents the comparison of the numerical results 
and their approximation for J-Q trajectories for several 
cases of the SEN(T) specimens. Fig.s 13-15 presents in the 
graphical form some numerical results obtained for SEN(T) 
specimens in plain strain. All results are presented using the 
J-Q trajectories. 

Tab. 4. The coefficients of equation (9) for SEN(T) specimen  
with the crack length a/W=0.70 

σ0 = 315MPa σ0/E = 0.00153 
n A B C D R2 
3 -6.051 -4.762 -1.512 -0.179 0.989 
5 -3.287 -0.872 0.171 0.049 0.991 
10 0.290 3.710 2.045 0.294 0.993 
20 4.424 8.931 4.175 0.574 0.993 

σ0 = 500MPa σ0/E = 0.00243 
n A B C D R2 
3 -8.575 -8.072 -2.818 -0.341 0.989 
5 -10.470 -9.908 -3.417 -0.410 0.997 
10 -11.036 -9.958 -3.227 -0.365 0.998 
20 -0.753 2.846 1.979 0.325 0.993 

σ0 = 1000MPa σ0/E = 0.00485 
n A B C D R2 
3 -6.703 -6.471 -2.323 -0.286 0.985 
5 -7.237 -6.937 -2.456 -0.301 0.996 
10 -7.642 -7.198 -2.481 -0.297 0.998 
20 -8.527 -8.058 -2.747 -0.325 0.997 

σ0 = 1500MPa σ0/E = 0.00728 
n A B C D R2 
3 -5.580 -5.462 -2.021 -0.256 0.976 
5 -5.819 -5.576 -2.011 -0.250 0.995 
10 -5.990 -5.608 -1.961 -0.238 0.998 
20 -7.453 -7.315 -2.617 -0.322 0.999 
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Fig. 12. Comparison of the numerical results and their approximation 

for J-Q trajectories for SEN(T) specimens with relative crack 
length a/W=0.50: σ0={315, 500}MPa, n={5, 10} 

 
Fig. 13. Sample numerical results obtained for SEN(T) specimens: 

the influence of the yield stress on J-Q trajectories  
for specimens with crack length a/W=0.20  
and for power exponents n=20 

 
Fig. 14. Sample numerical results obtained for SEN(T) specimens: 

the influence of the yield stress on J-Q trajectories  
for specimens with crack length a/W=0.50  
and for power exponents n=5 

 
Fig. 15. Sample numerical results obtained for SEN(T) specimens: 

the influence of the yield stress on J-Q trajectories  
for specimens with crack length a/W=0.70  
and for power exponents n=10 

6. SUMMARY  

In the paper the values of the Q-stress were determined 
for various elastic-plastic materials for single edge notched 
specimens in tension (SEN(T)). The influence of the yield 
strength, the work-hardening exponent and the crack length 
on the Q-parameter was tested. The numerical results were 
approximated by the closed form formulas. The most im-
portant results are summarized as follows: 
− the Q-stress depends on geometry and external the load; 

different values of the Q-stress are obtained for center 
cracked plane in tension (CC(T)) and different for the 
SEN(T) specimen, which are characterized by the same 
material properties; 

− the Q-parameter is a function of the material properties; 
its value depends on the work-hardening exponent n and 
the yield stress σ0; 

− if the crack length decrease then Q-stress reaches more 
negative value for the external load. 
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Abstract: In this paper nine of formulas (theoretical and experimental) for the heat partition ratio were employed to study 
the temperature distributions of two different geometrical types of the solid disc brake during emergency brake application. 
A two-dimensional finite element analysis incorporating specific values of the heat partition ratios was carried out. 
The boundary heat flux uniformly distributed over the circumference of a rubbing path to simulate the heat generated 
at the pad/disc interface was applied to the model. A number of factors over the heat partition ratio that affects the tempera-
ture fields are included and their importance is discussed. 

 

1. INTRODUCTION 

Frictional heating problem is an important issue during 
operation of the brake system. When the sliding mutual 
process occurs the mechanical energy is converted into 
thermal energy, chemical bonding energy and phase transi-
tion energy at the interface of two mating bodies. Nonethe-
less thermal energy is prevalent. Thus it is essential to de-
velop critical temperature above which various undesirable 
effects such as softening or sintering of materials, premature 
wear, friction coefficient fluctuations or breakdown of the 
system may take place (Olesiak et al., 1997; Yi et al., 2002). 

Various techniques have been so far developed for the 
calculation of maximum temperatures in sliding systems. 
Analytical methods for solution of thermal problem of fric-
tion during braking are limited to the contact of two semi-
spaces or the plane-parallel strip and semi-space (Chichi-
nadze et al., 1979; Balakin 1999; Grylytskyy, 1996; Yevtu-
shenko and Kuciej, 2010). More accurate for the finite 
object, transform techniques have been used, but numerous 
mathematical difficulties implies simplifications in geome-
try. The finite element method among numerical techniques 
is held as one of the most suitable for thermal problem 
investigation. Review of FEM-solutions of thermal prob-
lems of friction during braking are given in article of Yevtu-
shenko and Grześ (2010). 

The calculation of temperature during braking requires 
appropriate model where sufficient number of variables are 
included to obtain reliable outcomes. One of the input pa-
rameters for FEM-calculations of temperature in pad/disc 
brake system is the heat partition ratio (Pereverzeva and 
Balakin, 1992; Evtushenko et al., 2000). The separation 
of heat between two sliding bodies depends primarily on the 
relative velocity, the thermophysical properties of materials, 
the interface contact length, the amount of wear debris 
(third body) whose magnitude varies during the process. 
The settlement of the heat partition at the interface of two 
sliding bodies within the years was somewhat complex and 
remains in fact unsolved.  

The problem of the heat partition in a three-dimensional 
FE model of a pad/disc brake system subjected to non-
axisymmetric thermal load was studied in article of Yevtu-
shenko and Grześ (2011). 

In this paper the finite element analysis of frictional 
heating problem in an axisymmetric arrangement of the disc 
brake model to assess the impact of separation of total heat 
generated between members of sliding system was carried 
out. Irresistible advantages of this numerical technique 
approach were reported within the past years. Nevertheless 
several disadvantages, namely partition of heat during fric-
tional heating process became apparent. This study aims 
to compare the temperatures obtained with the use of nine 
various formulas, both experimental and theoretical for the 
heat partition ratio. The comparison of outcomes of the 
thermal finite element analysis with experimental data 
of two different circumstances of braking action (Nosko 
et al, 2009; Zhu et al., 2009) dimensions and properties 
of materials was accomplished as well. 

2. FRICTION HEAT DISTRIBUTION  
BETWEEN A PAD AND A DISC 

The thermal energy is generated at the interface as the 
heat fluxes with the specified intensity, and at the same time 
is divided into contact surfaces of two bodies. In order to 
analyze thermal processes, the heat partition ratio denoted γ 
is employed, e.g. if the heat flux with the intensity of q1 = γq 
enters into body “1”, the intensity of heat flux entered into 
body “2” equals q2 = (1 – γ)q. Noticeably q = q1 + q2, where 
the power of friction equals q = fVp, and f denotes the coef-
ficient of friction, V is the relative velocity of sliding bodies, 
p is the contact pressure. The heat partition ratio term was 
introduced in 1937 by Blok (1937), who considered sliding 
of single roughness with square (a x a) or circular (with 
radius a) shape and the lateral surface of cylinder (narrow 
layer of contact zone) along surface of semi-space. The 
dimensions of contact area in comparison to whole dimen-
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sions of contacting bodies were insignificant, because the 
semi-space was considered. It was assumed that the heat 
generation takes place directly on contact surface, and heat 
expansion process is unidirectional perpendicular to contact 
surface. The intensity of heat flux was constant with time 
and independent of spatial distribution, according to the 
same law as the contact pressure. Dividing virtually contact-
ing bodies, two problems of frictional heating are obtained, 
namely: with the surface of semi-space heating with the 
intensity of q1 (for roughness), and with the local surface 
of semi-space heating where the intensity of heat flux q2 
is moving. The magnitude of heat partition ratio for low 
sliding velocities ( akV 25/8 2≤  or 32.0≤Pe ) Blok speci-

fies as follows 
 

21

1

KK

K

+
=γ ,                  (1) 

 

where: K – thermal conductivity, subscripts 1 and 2 indicate 
the first and the second body, respectively. 

It was concluded, that for high sliding velocities  
(V > 8k2/a or Pe > 8) of the roughness, the maximum tem-
perature on the friction surface, according to the rod model, 
is obtained near the edge of the roughness, opposite to slid-
ing direction. In the case of  lateral surface of cylinder slid-
ing over the plane surface of semi-space Blok defines high 
velocity as V > 40k2/a  (Pe ≥ 40). In order to find the coeffi-
cient γ, Blok equates the maximum temperatures on the 
contact area of roughness and semi-space. As a result, the 
following formula for the heat partition ratio is obtained: 
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where: Pe – Peclet number. 
The cases of sliding with constant velocity of semi-

infinite rod of rectangular or quadrate profile over the sur-
face of semi-space were considered by Jaeger (1942). 
Unlike to Blok, Jaeger, defining γ, compared the mean tem-
peratures on the contact surface. In case of the rod of quad-
rate cross-section (a x a) with a thermally insulated lateral 
surface, and one tip sliding with constant high speed  
(Pe > 20) over the surface of semi-space, Jaeger obtained 
the following formula to calculate heat partition ratio 
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From formula (3) it results that an increase in sliding ve-
locity (the Peclet number Pe) evokes decrease of γ and, 
consequently, the amount of heat which heats the rod. Jae-
ger explains this fact by two sources of heating the semi-
space: heat generated as a result of friction, and heat previ-
ously heating layers of the rod. At the same time, the tip 
of the rod is heated only by frictional heating, and cooled 
by forthcoming “cooler” areas of semi-spaces. The higher 
speed of sliding there is, the more amount of heat absorbed 
by the semi-space.  

Jaeger also improves formula (3) for the case of convec-
tional heat transfer with constant heat transfer coefficient h 

between lateral surface of rod and ambient environment: 
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where: Bi – Biot number. 
From the formula (4) it may be concluded that the in-

crease of heat transfer coefficient h leads to an increase 
of the amount of heat directed into the rod. 

One of typically used formulas to calculate the heat par-
tition ratio in braking systems is the Charron's formula 
(1943) 
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where: ρ – density, c – specific heat capacity,  
The Charron's formula (5), which is recommended to use 

for calculating the temperature of clutches and brakes, when 
the coefficient of mutual overlap η equals approximately 
to one. 
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where: θ0 – cover angle of pad. If η << 1, then correction 
of Charron's formula has the form (Newcomb, 1958-59) 

εη
η

η
η

γ
+

=
+

=
1221

21

kKkK

kK .              (7) 

 

In order to comply real thickness of the friction pair di, 
which cumulate the heat generated during friction, the fol-
lowing formula for determination of the heat partition ratio 
was proposed by Hasselgruber (1963): 
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where the efficient depth of heating δ (the distance at which 
the temperature is equal 5% of the maximum temperature 
on the contact surface) equals (Chichinadze et al., 1964): 
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If the thicknesses di of the braking elements are greater 
then thicknesses of thermal layers δi (9), then it is necessary 
to replace di on δi, i = 1, 2 in the formula (8). Consequently, 
substituting the thicknesses δi (9) into the formula (8), 
we obtain 
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Transformation of formula (8) to comply effective satu-
rated heat of bodies volume Vi, was made by Chichinadze 
et al. (1979): 
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where Vi = Sidi, Si – nominal contact area of body i = 1, 2. 
If δi > di, then replacing in the formula (11) di on δi (8), 
we find 
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where the coefficient of mutual overlap η was defined 
by the formula (6). 

The frictional heat generation in the pad/disc tribosys-
tem, using the solution of thermal problem of friction for 
two layers with thickness di, i = 1, 2 on the assumption that 
qi = const., i = 1, 2 and the external surfaces are insulated 
was studied in article (Ginzburg, 1973). From the condition 
of equality of temperatures on a surface of contact the time-
dependent formula for calculation of the heat partition ratio 
is obtained: 
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If τi > 0.3, then the function θ(τi) (14) may be written 
in the following form 
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As above, in case when di > δi, it is necessary in the for-
mula (13) to replace the thicknesses of friction pair di with 
appropriate effective thicknesses δi, i = 1, 2  (9). 

Tab. 1.  Heat partition ratios 

Curve 
number 

Number of the formula 
and type of a brake 

Author 

1 (1) A, B  Blok, 1937 
2 (2) A, B  Blok, 1937 
3 (3) A, B Jaeger, 1942 
4 (4) A, B Jaeger, 1942 
5 (5) A, B Charron, 1943 
6 (7) A, B Newcomb, 1958-59 
7 (10) A, (8) B Hasselgruber, 1963 
8 (12) A, (11) B Chichinadze et al., 1979 
9 (13) A, B  Ginzburg, 1973 

 
The thermal conductivity of the pad material is consid-

erably less than the thermal conductivity of the disc mate-
rial, i.e. K1 << K2. For that reason, the temperature increases 
on the external surface of the pad near the moment of stand-
still ts, and it differs slightly from the initial period. 
As a result, pad may be considered as the semi-infinite body 
(the semi-space), and disc – as the strip. Then from the 
formula (13) it follows 
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The formulas shown in this section are found by various 
ways and differ significantly from each other. Therefore, 
comparison of the results of the numerical analysis obtained 
with their help with appropriate experimental data is the 
actual problem. 

3. STATEMENT OF THE PROBLEM 

When the friction force acts on the members of brake 
system being in sliding contact, the energy conversion 
should be considered as an essential. The work done 
is converted into heat and the vehicle decelerates with the 
certain rate. The disc brake system consists primarily of two 
major parts, namely: rotating axisymmetric disc and im-
movable non-axisymmetric pads (Fig. 1). The generated 
thermal energy dissipated by the conduction from disc/pad 
interface to adjacent components of brake system, and by 
convection to atmosphere due to Newton’s law. Obviously 
the third of mode of heat transfer takes place as well, none-
theless by virtue of relatively low temperatures attained 
during slipping and short time of the operation is neglected. 

 
Fig. 1. A schematic diagram of a disc brake system 

In actual thermal load of a disc is non-axisymmetric, 
which stems from the geometry of a pad covering rubbing 
path partly. Thereby, for the selected spot on the circumfer-
ence of the friction surface the temperature will differ peri-
odically with time. Such a distribution both in depth 
and circumferential direction can be obtained by means 
of the three-dimensional model. 

Despite the fact of comprehensive outcomes possible 
to obtain by means of the spatial model of a disc, hitherto 
have been made calculations of transient temperatures using 
two-dimensional configurations of the same phenomenon 
make a case for theirs application (Talati and Jalalifar, 
2009). The accuracy of such an approximation increases, 
when the Peclet number is higher for considered tribosys-
tem. In an automotive disc brakes the Peclet numbers almost 
always are in order of 103 (Chichinadze et al., 1979). There-
fore, the transient heat conduction problem for the disc 
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and the pad has been analysed in the axisymmetric state-
ment (uniformly distributed heat source over the rubbing 
path of the disc), assuming boundary thermal flux acting 
on the lateral surfaces of a disc. 

An analytical solution of one-dimensional boundary-
value problem of heat conductivity for tribosystem, consist-
ing of a plane-parallel strip and semi-space, was obtained by 
Nosko et al. (2009). The temperature evolution at mean 
radius of pad contact surface was illustrated. The frictional 
heating phenomenon of a brake shoe including spread 
of heat on its depth during hoist’s emergency braking was 
studied by Zhu et al. (2009). The integral transform method 
was adopted in the three-dimensional analysis.  

In the proposed article two types of a real disc brake sys-
tem including disc and pad volume during single braking 
action with a special respect to different heat partition ratios 
were studied. In order to validate further transient numerical 
analysis, dimensions, material properties and operating 
parameters were adopted from the experimental data Nosko 
et al. (2009) and Zhu et al. (2009). 

For the purpose of thermal analysis, it is assumed that 
the contact pressure p is constant during entire process 
of braking and the angular velocity decreases linearly with 
time 
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where: ω – angular velocity, ω – initial angular velocity,  
t – time, ts – braking time. 

In order to calculate transient temperature distributions 
in the pad and the disc, the following heat conduction equa-
tion for an axisymmetric problem given in the cylindrical 
coordinate system was employed: 
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where: T – temperature, r, z – radial, axial coordinate re-
spectively, k – thermal diffusivity, r, R – internal and exter-
nal radius, respectively. The bottom indexes p and d, denote 
the pad and the disc, respectively. 

Taking account of the symmetry of a given problem, 
the insulation on mid-plane of the disc as well as the inner 
surface represented by the edge of two-dimensional model 
was established. On the remained surfaces of the brake 
models the forced convection takes place with the constant 
value of heat transfer coefficient. It is also assumed that the 
material properties of the pad and the disc are isotropic 
and independent of temperature. 
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where: q – intensity of the heat flux, γ – heat partition ratio, 
f – friction coefficient, p – contact pressure. 

From the formulas (19) and (20) it follows that the in-
tensities of thermal fluxes, which enter the pad and the disc 
respectively, depends directly on value of the heat partition 
ratio γ. Consequently, it is essential to specify its influence 
on the temperature at the pad/disc interface. 

4. FE FORMULATION 

The understanding of overall formulation (18)–(20) 
is crucial for the solution of a considered thermal problem 
of friction by means of the approximate time-stepping pro-
cedures for axisymmetric transient governing equations 
of heat conductivity. The main idea of two-dimensional 
discretization of the boundary-value heat conductivity prob-
lem consists in the following reference (Lewis et al., 2004). 
Using the Galerkin’s method we write Eq. (18) in the matrix 
form: 
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where: [C] – heat capacity matrix, [K] – heat conductivity 
matrix, {Q} – thermal force matrix. 

The solution of the first order ordinary differential equa-
tion (21) was obtained using the Crank-Nicolson method 
with approximation relations (Crank and Nicolson, 1947) 
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where: {T} t – temperature vector at time t. The weight 
parameter 0.5 < β ≤ 1 was chosen from the conditions 
of achievement of necessary accuracy of integration and 
stable scheme. Taking the relation (22) into account, from 
Eq. (21) we obtain the system of linear algebraic equations 
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for determination of the temperature {T} t+∆t in the time 
moment t + ∆t. 

The temperature distributions in the pad and disc were 
analyzed using the finite element method based programme. 
In the thermal analysis of disc brake an appropriate finite 
element division is indispensable. In this study four-node 
quadratic elements were used for the finite element analysis. 
In order to avoid inaccurate or unstable results, a proper 
initial time step ∆t associated with spatial mesh size ∆x 
(smallest element dimension) is essential 
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where: ∆x – mesh size (smallest element dimension). 
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5. NUMERICAL ANALYSIS 

The temperature distributions of two types of a real disc 
brake system including disc and pad volume during single 
braking action regarding different heat partition ratios were 
studied (Tab. 1).  

 
Fig. 2. FE models with the boundary conditions,  
            a) A type, b) B Type 

The FE element models with the boundary conditions 
are shown in Fig. 2. In order to validate further transient 
numerical analysis, the thermophysical material properties, 
dimensions and operating parameters have been adopted 
from the experimental data of Nosko et al. (2009) (the A 
type) and Zhu et al. (2009) (the B type), and are presented 
in Tab. 2.  In the A type the brake pad is made of polymeric 
material of the type 145-40, and the brake disc is made 
of cast iron of the type 15-32. The materials of brake pad 
and brake disc in the B type are asbestos-free and 16Mn, 
respectively. 

The heat transfer coefficient of 100 W/(m2K) was as-
sumed. The FE model of A type of a disc brake consists 
of 3680 elements and 3864 nodes for the disc and 12800 
elements and 13065 nodes for the pad, and the B type 
model consists of 660 elements and 732 nodes for the disc 
and 2000 elements and 2121 nodes for the pad. The tem-
perature evolutions on the contact surface for two types 
of disc brake employing nine of formulas for the heat parti-
tion ratio were determined and compared with the experi-
mental outcomes for the A type (Nosko et al., 2009) and B 
type (Zhu et al., 2009). Conformity of numbers of the 
curves presented on the following figures to formulas 
for calculation of heat partition ratio, is shown in Tab. 1. 

The evolution of temperature on the contact surface 
of the pad and the disc are shown in Figs. 3 and 4, respec-
tively. The character of evolution of temperature is the 
following: with the beginning of braking the temperature 
sharply raises, reaches the maximum value and, after this, 
it decreases to the minimum level in the stop time moment. 

The change of temperature in time on the friction sur-
face of the pad in A type of brake is shown in Fig. 3a. 
We see, that the evolution of contact temperature calculated 
with use of Charron’s formula (5) (the curve 5) and of 
Ginzburg formula (13) (the curve 9) significantly differs, 
both qualitatively and quantitatively, from experimental 
curve (Nosko et al. 2009). The curve denoted as 7 (Hassel-
gruber H., 1963) coincides with the experimental curve 
from the initial instant of time until 08.0=t s, then sur-
passes the experimental values of temperatures. The maxi-
mum temperature reached of curve 7 equals 3.304=T °C, 
whereas the maximum value of temperature of the experi-
ment equals approximately 250=T °C, and appears earlier. 
Then, it decreases considerably to standstill. Most of the 
solutions illustrated in Fig. 3a range beneath experimental 
curve of temperature. The cooling conditions have no im-
pact on the temperature values on the average radius, due to 
comparatively large distance from the outer surface of the 
disc. A slightly different plot of temperature evolution 
on friction surface of pad in the B type of brake is observed 
in Fig. 3b. 

 
Fig. 3. Evolution of temperature at the mean radius  

of contact surface of  a pad: a) A type, b) B type 
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Tab. 2. Operation and geometrical parameters 

Parameters 
A type (Nosko et al., 2009) B type (Zhu et al., 2009) 

Disc Pad Disc Pad 
thermal conductivity, K  (W/mK) 59 0.64 53.2 0.295 

specific heat, c (J/kgK) 500 1100 473 2530 
density, ρ (kg/m3) 7100 2500 7866 2206 
inner radius, r (m) 0.03 0.05 0.1325 0.1375 
outer radius, R (m) 0.11 0.1 0.1625 0.1625 

mean radius of pad, rm (m)  0.075  0.15 
cover angle of pad, θ0 (rad)  0.384  0.167 

thickness, δ (m) 0.01 0.015 0.004 0.006 
pressure, p (Pa) 6104×  61038.1 ×  

braking time, ts (s) 1.1 7.23 
initial angular velocity, ω0 (s

-1) 200  66.667  
coefficient of friction, f 0.38 0.4 

initial temperature, T0 (°C) 20 20 
ambient temperature, Ta (°C) 20 20 

time step, ∆t (s) 0.0002 0.001 0.0002 0.005 
Peclet number, Pe 4136.7 3014.6 
Biot number, Bi 0.00777 0.00810 

 

 
Fig. 4. Evolution of temperature at the mean radius  

of contact surface of a disc: a) A type, b) B type 

However, curve denoted 5 is similar to the same one 
as in Fig. 3a. Previously correct temperature curve 7, cur-
rently provides overlapped values relating to the experimen-
tal data. The character of the temperature changes is the 
same as in A type (Fig. 3a), except the curve denoted 9 
(Ginzburg, 1973), which results from the variable in time 
heat partition ratio. In this case the sharp rise of the tem-
perature at the initial period of braking is noticeable. 
At time 05.0=t s temperatures of the curve 9 and the ex-
perimental one coincide, to separate after this moment till 
standstill. 

In Fig. 4a the temperature evolutions of the disc friction 
surface of A type obtained from the numerical analysis 
including different representations of heat partition ratios 
are plotted against time. For A type of a brake it is impor-
tant to know the location of the curve 7, because it is the 
curve, as seen from Fig. 3a, which gives the best coinci-
dence of experimental data. We see in Fig. 4a, that the tem-
perature curve denoted 7 lays between the curves 5, 9 
and 1-4, 6, 8. The closeness of the last six curves can be 
explained by the fact that the value of the heat partition ratio 
calculated with their help, equals nearly zero. It means, that 
almost all heat energy, generated on the surface of friction, 
is absorbed by the disc, whereas influence of a portion 
of heat entering the pad is negligibly small. The curves 5 
and 9 give the worst approximation of the experimental 
data. Thus, the analysis of evolution of temperature on 
surfaces of the pad and the disc, allows to come to the con-
clusion that the most authentic results for A type brake can 
be obtained with use of the Hasselgruber's formula (10). 

The evolutions of temperature on the contact surface 
of the disc in B type of brake at the mean radius of rubbing 
path are shown in Fig. 4b. The curve 9, which better coin-
cides with experimental data in Fig. 3b, is located between 
curves 5 and 7 (the worst coincidence to experimental data) 
and curves 1-4,6,8. The temperature reaches the maximum 
value after time ranged between 6.34=t s for curve 9 and 

6.35=t s for curve 3 and decreases slightly after that mo-
ment. This may indicate that the disc is heated in the entire 
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volume, and cooling by the absorption to adjacent area 
is difficult. 

The highest value of temperature on the contact surface 
of the disc of type B equals 8.52=T °C (the curve 4) and 
is reached at time 34.6=t s (the curve 4). The lowest tem-
perature 50.07=T °C is reached after 6.34=t s (the curve 
5). The discrepancy between the peak values of tempera-
tures of the curves 4,8,3,2,6,1 equals 0.34 %. The analysis 
of evolution of temperature on friction surfaces of the pad 
and the disc in B type of brake show, that the most authentic 
distribution of temperature can be find, using the time-
dependent ratio of heat partition given by Ginzburg's for-
mula (13). 

6. CONCLUSIONS 

In this paper two-dimensional finite element analysis 
was carried out to study the effect of use of different heat 
partition ratios on the contact temperatures of the disc brake 
components during single braking process. The calculated 
temperatures on the friction surfaces of the brake system 
were compared with experimental results (Nosko et al, 
2009; Zhu et al., 2009), which allow us make the following 
conclusions: 
− the heat partition ratio is a key factor when analyze 

the pad friction surface temperature, which is condi-
tioned by the substantial variation of its value in each 
case of applied formulas; 

− the investigation of the pad/disc contact surface tem-
peratures provides an important information about its 
maximum value reached during frictional heating, never-
theless the obtained results reveal that the material with 
lower thermal conductivity is more susceptible to the se-
lection of the heat partition ratio included in the expres-
sion of the intensity of a heat flux calculation; 

− the thickness of the pad plays a significant role as well. 
Its slender growth may firmly change the actual value 
of heat partition ratio entering the pad and the disc re-
spectively, whereas in actual, temperatures of the pad al-
ter only in the immediate vicinity of the contact surface; 

− relatively small thickness (B type) demonstrates that the 
entire volume may be nearly uniformly heated from the 
initial moment of operation without causing significant 
temperature gradients. 

REFERENCES 

1. Adamowicz A., Grześ P. (2011), Analysis of disc brake 
temperature distribution during single braking under non-
axisymmetric load, Applied Thermal Engineering, (in press). 

2. Balakin V. A., Sergienko V. P. (1999), Heat calculations  
of brakes and friction units, MPRI of NASB, Gomel, (in Rus-
sian). 

3. Blok H. (1937), Theoretical field study of temperature rise at 
surfaces of actual contact under oiliness lubricating condi-
tions, Proc. Inst. Mech. Eng. London, Vol. 45, 222-235. 

4. Charron F. (1943), Partage de la chaleur entre deux corps 
frottants, Publ. scient. et techn. Ministere air., No. 182. 

5. Chichinadze A. V. (1964), Determination of average tem-
perature of a surface of friction at short-term braking, Fric-
tion of hard bodies, Nauka, Moscow. 

6. Chichinadze A. V., Braun E. D., Ginsburg A. G. et al. 

(1979), Calculation, test and selection of frictional couples, 
Nauka, Moscow (in Russian). 

7. Crank J., Nicolson P. (1947), A practical method for numeri-
cal evaluation of solutions of partial differential equations  
of the heat conduction type, Proc. Camb. Phil. Soc., Vol. 43, 
50-67. 

8. Evtushenko O. O., Ivanyk E. H., Horbachova N. V. (2000), 
Analytic methods for thermal calculation of brakes (review), 
Materials Science, Vol. 36, No. 6, 857-862. 

9. Farlow S. J. (1982), Partial differential equations for Scien-
tists and Engineers, John Wiley & Sons, New York. 

10. Ginzburg A. H. (1973), Theoretical and experimental bases 
for calculation of unitary process of braking by means of sys-
tem of the equations of thermal dynamics of friction, In: Op-
timum use of frictional material in units of friction of ma-
chines, Nauka, Moscow (in Russian). 

11. Grylytskyy D. V. (1996), Thermoelastic contact problems  
in tribology, Institute of the Maintenance and Methods of 
Training of the Ministry of Education of Ukraine, Kiev, (in 
Ukrainian). 

12. Hasselgruber H. (1963), Der Schaltvorgang einer Trocken-
reibung Kupplung bei kleinster Erwärmung, Konstruction, 
Vol. 15, No. 2, 41-45. 

13. Hwang P., Wu X. (2010), Investigation of temperature and 
thermal stress in ventilated disc brake based on 3D thermo-
mechanical coupling model, J. Mech. Sci. Technol., Vol. 24, 
81-84. 

14. Jaeger J. C. (1942), Moving surfaces of heat and the tempera-
ture at sliding surfaces, Proc. Roy. Soc. N.S.W., Vol. 76, 203-
224. 

15. Lewis R. W., Nithiarasu P., Seetharamu K. N. (2004), 
Fundamentals of the finite element method for Heat and Fluid 
Flow, John Wiley & Sons, New York. 

16. Newcomb T. P. (1958-59), Transient Temperatures in Brakes 
Drums and Linings, Proc. Auto. Div. Instn mech. Engrs, , 227. 

17. Nosko A. L., Belyakov N. S., Nosko A. P. (2009), Applica-
tion of the generalized boundary condition to solving thermal 
friction problems, J. Friction and Wear, Vol. 30, No. 6, 455–
462. 

18. Olesiak Z., Pyryev Yu., Yevtushenko A. (1997), Determina-
tion of temperature and wear during braking, Wear, Vol. 210, 
163-169. 

19. Pereverzeva O. V., Balakin V. A. (1992), Distribution 
of heat between rubbing bodies, J. Friction and Wear, Vol. 
13, No. 3, 507-516. 

20. Talati F., Jalalifar S. (2009), Analysis of heat conduction in 
a disk brake system, Heat Mass Transfer, Vol. 45, 1047-1059. 

21. Yevtushenko A., Grześ P. (2010), FEM-modeling of the 
frictional heating phenomenon in the pad/disc tribosystem  
(a review), Numerical Heat Transfer Part A, Vol. 58, No. 3, 
207-226. 

22. Yevtushenko A., Grześ P. (2011), Finite element analysis of 
heat partition in a pad/disc brake system, Numerical Heat 
Transfer Part A, Vol. 59, No. 7, 521-542. 

23. Yevtushenko A. A, Kuciej M. (2010), Influence of the con-
vective cooling and the thermal resistance on the temperature 
of the pad/disc tribosystem, Int. Comm. Heat Mass Trans., 
Vol. 37, No. 4, 337-342. 

24. Yi Y.-B., Barber J. R., Hartsock D. L. (2002), Thermoelas-
tic instabilities in automotive disc brakes – Finite element 
analysis and experimental verification. In: J.A.C.Martins and 
Manuel D. P. Monteiro Marques eds., Contact Mechanics, 
Kluwer, Dordrecht, pp. 187–202. 

25. Zhu Z.-C., Peng Y.-Z., Chen G.-A. (2009), Three-
dimensional transient temperature field of brake shoe during 
hoist’s emergency braking, Appl. Therm. Eng., Vol. 29, 932-
937. 



Tadeusz Kaczorek 
Positivity and Reachability of Fractional Electrical Circuits 

42 
 

POSITIVITY AND REACHABILITY OF FRACTIONAL ELECTRICA L CIRCUITS 

Tadeusz KACZOREK* 

*Faculty of Electrical Engineering, Białystok University of Technology, ul. Wiejska 45D, 15-351 Białystok  

kaczorek@isep.pw.edu.pl 

Abstract: Conditions for the positivity of fractional linear electrical circuits composed of resistors, coils, condensators 
and voltage (current) sources are established. It is shown that: 1) the fractional electrical circuit composed of resistors, coils 
and voltage source is positive for any values of their resistances, inductances and source voltages if and only if the number 
of coils is less or equal to the number of its linearly independent meshes, 2) the fractional electrical circuit is not positive 
for any values of its resistances, capacitances and source voltages if each its branch contains resistor, capacitor and voltage 
source, It is also shown that the fractional positive electrical circuits of R, C, e type are reachable if and only if the conduc-
tances between their nodes are zero and the fractional positive electrical circuits of R, L, e type are reachable if and only  
if the resistances belonging to two meshes are zero. 

 

1. INTRODUCTION 

A dynamical system is called positive if its trajectory 
starting from any nonnegative initial state remains forever 
in the positive orthant for all nonnegative inputs. An over-
view of state of the art in positive systems theory is given 
in the monographs (Farina and Rinaldi 2000; Kaczorek 
2002). Variety of models having positive behavior can be 
found in engineering, economics, social sciences, biology 
and medicine, etc.. 

The notion of controllability and observability and the 
decomposition of linear systems have been introduced 
by Kalman (1960, 1963). These notions are the basic con-
cepts of the modern control theory (Antsaklis, Michel 2006; 
Kaczorek 1999, 2002; Kailath 1980; Rosenbrock 1970; 
Wolovich 1970). They have been also extended to positive 
linear systems (Farina and Rinaldi 2000; Kaczorek 2002). 
The decomposition of the pair (A,B) and (A,C) of the posi-
tive discrete-time linear system has been addressed  
in Kaczorek (2010b).  

The reachability of linear systems is closely related 
to the controllability of the systems. Specially for positive 
linear systems the conditions for the controllability 
are much stronger than for the reachability (Kaczorek 
2002). Tests for the reachability and controllability of stan-
dard and positive linear systems are given in Kaczorek 
(2008b, 2002; Klamka 1991). The stability, robust stability 
and stabilization of positive linear systems have been inves-
tigated in (Busłowicz 2008a, 2008b, 2008c, 2009, 2010; 
Kaczorek 2002, 2011c). Analysis of fractional electrical 
circuits has been addressed in Kaczorek (2010a, 2011a, 
2011b). 

In this paper the necessary and sufficient conditions 
for the positivity  and reachability of fractional linear elec-
trical circuits composed of resistors, coils, condensators 
(supercondensators) and voltage (current) sources will be 
established.  

The paper is organized as follows. In section 2 the state 
equations of the fractional linear electrical circuits and their 
solutions are presented. The positive fractional linear elec-
trical circuits composed of resistors, condensators, coils and 
voltage sources are analyzed in section 3. The reachability 
of the fractional positive electrical circuits is investigated 
in section 4. Concluding remarks are given in section 5. 

The following notation will be used: ℜ – the set of real 
numbers, ℜ�×� – the set of � × � real matrices, ℜ�

�×� – 
the set of � × � matrices with nonnegative entries and 
ℜ�

� = ℜ�

�×�, ��  – the set of � × �  Metzler matrices (real 
matrices with nonnegative off-diagonal entries), �� – the 
� × �  identity matrix. 

2. FRACTIONAL STATE EQUATIONS  
AND THEIR SOLUTIONS 

In this paper the following Caputo definition of the de-
rivative-integral of fractional order will be used (Kaczorek 
2008a, 2011c) 
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is the classical n order derivative. 
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Let the current iC(t) in a supercondensator (shortly con-
densator) with the capacity C be the α order derivative of its 
charge q(t) (Kaczorek 2010a, 2011c) 

α

α

dt

tqd
tiC

)(
)( = , 10 << α                           (2.4) 

Using )()( tCutq C=  we obtain 

α

α

dt

tud
Cti C

C
)(

)( =                                  (2.5) 

where uC(t) is the voltage on the condensator. 
Similarly, let the voltage uL(t) on coil (inductor) with 

the inductance L be the β order derivative of its magnetic 
flux Ψ(�) (Kaczorek 2010a, 2011c) 

β

β

dt
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tuL
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Ψ= , 10 << β                           (2.6) 

Taking into account that )()( tLit L=Ψ  we obtain 

β

β

dt
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Ltu L

L
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)( =                                                   (2.7) 

where iL(t) is the current in the coil. 
Consider an electrical circuit composed of resistors, n 

capacitors and m voltage sources. Using the equation (2.5) 
and the Kirchhoff’s laws we may describe the transient 
states in the electrical circuit by the fractional differential 
equation 

)()(
)(

tButAx
dt

txd +=α

α
, 10 << α                    (2.8) 

where �(�) ∈ ℜ�, �(�) ∈ ℜ�, � ∈ ℜ�×�, 	
 ∈ ℜ�×�.		The 
components of the state vector �(�) and input vector ���� 
are the voltages on the condensators and source voltages 
respectively. 

Consider an electrical circuit composed of resistors, 
n coils and m sources. Similarly, using the equation (2.6) 
and the Kirchhoff’s laws we may describe the transient 
states in the electrical circuit by the fractional differential 
equation 

)()(
)(

tButAx
dt

txd +=β

β
, 10 << β                   (2.9) 

where		�(�) ∈ ℜ�, �(�) ∈ ℜ�, � ∈ ℜ�×�, 		
 ∈ ℜ�×�. In 
this case the components of the state vector �(�) are the 
currents in the coils. 
Theorem 2.1. Solution of the equation (2.8) satisfying 
the initial condition ��0� = �� has the form 
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Proof is given in Kaczorek (2008a, 2011c) . 
Now let us consider electrical circuit composed of resis-

tors, capacitors, coils and voltage (current) source. As the 
state variables (the components of the state vector �(�) we 
choose the voltages on the capacitors and the currents in the 
coils. Using the equations (2.5), (2.7) and Kirchhoff’s laws 
we may write for the fractional linear circuits in the tran-
sient states the state equation 
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where the components �� ∈ ℜ�� are voltages on the con-
densators, the components �� ∈ ℜ�� are currents in the 
coils and the components of � ∈ ℜ� are the source voltag-
es 

ji nn
ijA

×ℜ∈ , mn
i

iB ×ℜ∈ , 2,1, =ji .            (2.12b) 

Some examples of electrical circuits described by the 
equation (2.12) are given in (Kaczorek 2010c, 2011c). 
Theorem 2.2. The solution of the equation (2.12)  
for 0 < 
 < 1, 0 < � < 1 with initial conditions  

10)0( xxC =  and 20)0( xxL =                     (2.13) 

 has the form 
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Proof is given in Kaczorek (2010c, 2011c). 
The extension of Theorem 2.2 to systems consisting  

of n subsystems with different fractional order is given 
in Kaczorek (2011b). 
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3. POSITIVE FRACTIONAL ELECTRICAL 
CIRCUITS 

Definition 3.1. The fractional electrical circuit (2.8) 
(or (2.9), (2.12)) is called the (internally) positive fractional 
system if the state vector ���� ∈ 	ℜ�

� , � ≥ 0 for any initial 
conditions �� ∈ 	ℜ�

�  and all ���� ∈ 	ℜ�
�, � ≥ 0. 

Definition 3.2. A square real matrix � = [���] is called 
the Metzler matrix if its off-diagonal entries are nonnega-
tive, i.e. ��� ≥ 0 for � ≠ � (Kaczorek, 2002, 2011c). 
Theorem 3.1. The fractional electrical circuit (2.8) is (in-
ternally) positive if and only if  

mn
n BMA ×

+ℜ∈∈ ,                                   (3.1)                                                       

where �� is the set of � × �   Metzler matrices. 
Proof is given in Kaczorek (2002, 2011c). 
From Theorem 3.1 applied to the fractional circuit 

(2.12) it follows that the electrical circuit is positive if and 
only if 

knkk MA ∈ , 2,1=k ; 1221
2112 , nnnn AA ×

+
×

+ ℜ∈ℜ∈ , 

mnmn BB ×
+

×
+ ℜ∈ℜ∈ 21

21 ,                     (3.2) 

3.1. Fractional R, C, e type electrical circuits 

Theorem 3.2. The fractional electrical circuit is not posi-
tive if each its branch contains resistors, condensator 
and voltage source. 

The proof is similar to the proof of Theorem 3.1 in Ka-
czorek (2011a). 

Consider the fractional electrical circuit shown on Fig-
ure 3.1 with given conductances ��, � = 0, 1, … ,�;  capa-
citances �� , � = 1, … ,� and source voltages e.  

 
Fig. 3.1. Fractional electrical circuit 

Using (2.5) and the Kirchhoff’s laws we may write the 
equations 
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Substitution of (3.5) into (3.3) yields 
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From (3.7) it follows that � ∈ 	�� and 
 ∈ 	ℜ�
� . There-

fore, the following theorem has been proved. 
Theorem 3.3. The fractional electrical circuit shown 
on Fig. 3.1 is positive for any values of the conductances 
�� ,� = 0, 1, … ,�;  capacitances �� , � = 1, … ,� and source 
voltage e. 

In general case let us consider the fractional electrical 
circuit composed of q conductances ��, � = 1, … , �;   
r capacitances �� , � = 1, … , � and m source voltages 
�� , � = 1, … ,�. Let n be the number of linearly indepen-
dent nodes of the electrical circuit and � > �. 

Using the Kirchhoff’s laws we may write the equation 

















+
















+
















=
















m

m

n

n

r

r

r e

e

B

v

v

A

u

u

A

u

u

dt

d
⋮⋮⋮⋮

1111

α

α
             (3.8) 

where ui is the voltage on the i-th (i = 1, …, r) capacitor, vj 
is the voltage of the j-th node (j = 1,…,n), �� ∈ ℜ�×�  
is the diagonal Metzler matrix, �� ∈ ℜ�×� and 
� ∈ ℜ�×�. 

Using the node method we obtain 
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where � ∈ ℜ�×� is a Metzler matrix, � ∈ ℜ�×�  
and � ∈ ℜ�×�. 

Taking into account that −�	
 ∈ ℜ�
�×� from (3.9) 
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Substitution of (3.10) into (3.8) yields 
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where 

 FGAAA nr
1−−= , HGABB nm

1−−= .             (3.12) 

The electrical circuit described by the equation (3.11) 
is positive if and only if the matrix A is a Metzler matrix 
and the matrix B has nonnegative entries. Therefore, 
the following theorem has been proved. 
Theorem 3.4. The linear electrical circuit composed of q 
resistors, r capacitors and m source voltages is positive 
if and only if � < � and 

rnr MFGAA ∈− −1 , mr
nm HGAB ×

+
− ℜ∈− 1 .         (3.13) 

3.2. Fractional R, L, e type electrical circuits 

Consider the electrical circuit shown on Figure 3.2 
with given resistances �
,��,��		inductances �
, ��, �� 
and source voltages �
, ��.  

 
Fig. 3.2. Fractional electrical circuit 

Using (2.7) and the mesh method for the electrical cir-
cuit we obtain the following equations 
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Note that the inverse matrix 
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has positive entries. From (3.14) we have 
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From (3.17) it follows that  � ∈ �� if and only if 

2332 RLRL ≥  and 1331 RLRL ≥ .                  (3.18) 

Therefore, the fractional electrical circuit is positive 
if and only if � ∈ ��  i.e. the condition (3.18) is met. 

In general case let us consider the fractional n-mesh 
electrical circuit with given resistances ��, � = 1, … , �, 
inductances �
, … , �� for � ≥ � and � ≤ � mesh source 
voltages ��� , � = 1, … ,�. Denote by �
, … , �� the mesh cur-
rents. In a similar way as for the electrical circuit shown 
on Fig 3.2 using the mesh method we obtain the equation 
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Note that −� ∈ �� , �′ ∈ �� and  �	
 ∈ ℜ�
�×�. 

Premultiplying (3.19a) by �	
 we obtain 
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where 

 '1ALA −= , nnLB ×
+

− ℜ∈= 1 .                 (3.20b) 

The fractional electrical circuit is positive if and only 
if the matrix �	
�′ is a Metzler matrix, i.e. 

nMAL ∈− '1 .                                   (3.21) 

Therefore, the following theorem has been proved. 
Theorem 3.4. The fractional linear electrical circuit com-
posed of resistors, coils and voltage sources is positive  
for � > � if its resistances and inductances satisfy the con-
dition (3.21). 
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Remark 3.1. In the case � = � if it is possible to choose the 
n linearly independent meshes so that to each mesh belongs 
only one coil. Then the matrix � = ����[�
, … , ��] and the 
condition (3.21) is met for any values of the resistances and 
inductances of the electrical circuit. 
Remark 3.2. Note that it is impossible to choose the n 
linearly independent meshes so that to each mesh belongs 
only one coil if all branches belonging to the same node 
contain the coils. In this case we can eliminate one of the 
branch currents using the fact that the sum of the currents 
in the coils is equal to zero. 

From Theorem 3.4 and Remark 3.1 we have the follow-
ing important theorem. 
Theorem 3.5. The fractional linear electrical circuit com-
posed of resistors, coils and voltage sources is positive for 
almost all values of the resistances, inductances and source 
voltages if and only if the number of coils is less or equal to 
the number of its linearly independent meshes and the di-
rections of the mesh currents are consistent with the direc-
tions of the mesh source voltages. 

3.3. Fractional R, L, C type electrical circuits 

Consider the fractional electrical circuit shown on Fig-
ure 3.3 with given resistance R, inductance L, capacitance C 
and source voltage e.  

 
Fig. 3.3. Fractional electrical circuit 

Using the Kirchhoff’s laws we can write the equations 

u
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                                 (3.22) 

which can be written in the form 
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where 
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The matrix A has negative off-diagonal entry (-1/L) 
and it is not a Metzler matrix for any values of R, L, C. 
Therefore, the fractional electrical circuit is not positive one 
for any values of the resistances R, inductance L, capaci-
tance C. 

In general case we have the following theorem. 
Theorem 3.6. The fractional electrical circuits of R, L, C 
type is not positive for almost all values of its resistances, 
inductances, capacitances and source voltages if at least one 
its branch contains inductance and capacitance. 
Proof. It is well-known that the linear independent meshes 
of the electrical circuits can be chosen so that the branch 
containing the inductance L and capacitance C belongs to 
the first one. The equation for the first mesh contains the 
following term 

...1
1

11 ++= u
dt

id
Le β

β
                           (3.24) 

where e11 and i1 are the source voltage and current of the 
first mesh and u1 is the voltage on the capacitance C. From 
(3.24) and �
 = �((�
�
)/��
)	it follows that the matrix A 
of the electrical circuit has at least one negative off-
diagonal entry. Therefore the matrix A is not a Metzler 
matrix and the electrical circuit is not positive one.  

Consider the electrical circuit shown on Fig. 3.4  
with given resistances ��, � = 1, … ,�, inductances 
��, �� … , ��� , capacitances �
, �� … ,��� and source vol-
tages �
, �� … , ��.  

 
Fig. 3.4. Fractional electrical circuit 
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Using the Kirchhoff’s laws we can write the equations 
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which can be written in the form 
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(3.26c) 

The electrical circuit described by the equation (3.26) 
is positive for all value of the resistances ��, � = 1, … ,�, 
inductances �� , � = 2, 4, … ,��, capacitances ��, � =
1, 3, … ,�
. Therefore, the following theorem has been 
proved. 
Theorem 3.7. The fractional linear electrical circuit 
of the structure shown on Fig. 3.4 is positive for any values 
of its resistances, inductances and capacitances. 

4. REACHABILITY OF FRACTIONAL  
POSITIVE LINEAR ELECTRICAL  CIRCUITS 

Consider the fractional positive linear electrical circuit 
described by the equations (2.8), (2.9) and (2.12). 
Definition 4.1. The fractional positive electrical circuit 
(2.8) is called reachable in time tf if for any given final state 

�� ∈ ℜ�
�  there exists an input �(�) ∈ ℜ�

�, for � ∈ [0, ��] 
that steers the state of the circuit from zero initial state 
��0� = 0 to the final state xf , i.e. ����� = ��. If every state 
�� ∈ ℜ�

�  is reachable in time tf , then the circuit is called 
reachable in time tf. The fractional positive electrical circuit 
is called reachable if for every �� ∈ ℜ�

�  there exist time tf 
and input �(�) ∈ ℜ�

�, for � ∈ [0, ��]  which steers the state 
of the circuit from ��0� = 0 to xf . 

A real square matrix is called monomial if each its row 
and each its column contains only one positive entry 
and the remaining entries are zero. 
Theorem 4.1. The fractional positive electrical circuit (2.8) 
is reachable in time tf if the matrix 

∫ ΦΦ=
ft

TT
f dBBtR

0

)()()( τττ , 0>ft                    (4.1) 

is monomial. The input that steers the state of the electrical 
circuit in time tf from ��0� = 0 to the state xf is given 
by the formula 

fff
TT xtRttBtu )()()( 1−−Φ=  for ],0[ ftt ∈ .          (4.2) 

The proof is given in Kaczorek (2010a). 
Theorem 4.2. If the matrix � = ����[�
, ��, … ��] ∈ ℜ�×� 
and 
 ∈ ℜ�

�×� for � = � are monomial matrices then 
the fractional positive electrical circuit (2.8) is reachable. 
Proof. From (2.11) it follows that if A is diagonal then the 
matrix Φ��� and Φ���
 are also monomial for monomial 
matrix B. From (4.1) written in the form 

∫ ΦΦ=
ft

T
f dBBtR

0

])([)()( τττ                         (4.3) 

it follows that the matrix (4.3) is monomial. Therefore, by 
Theorem 4.1 the fractional system is reachable. 
Example 4.1. Consider the fractional electrical circuit 
shown on Figure 4.1 with given conductances �
,��,�′
,
�′�,�
�,		capacitance �
,�� and source voltages �
, ��.  

 
Fig. 4.1. Fractional electrical circuit 

Using the Kirchhoff’s laws we can write the equations 
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where 
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Substitution of (4.7) into 
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From (4.10) it follows that A is a Metzler matrix and the 
matrix B has nonnegative entries. Therefore, the fractional 
electrical circuit is positive for all values of the conduc-
tances and  capacitances. 

We shall show that the fractional positive electrical cir-
cuit shown on Fig 4.1 is reachable if and only if �
� = 0. 

Note that the matrix (4.6) is diagonal if and only  
if �
� = 0. In this case from (4.10) it follows that A  
is a diagonal Metzler matrix and B is a diagonal matrix  
with positive diagonal entries. Therefore, by Theorem 4.2 
the fractional positive electrical circuit is reachable. 

In general case let  us consider the fractional electrical 
circuit shown on Fig 4.2 with conductances 
�� ,�′� ,��� ,			�, � = 1, … ,�; capacitances �� , � = 1, … ,�  
and source voltages ��, � = 1, … ,�.  

 

 
Fig. 4.2. Fractional electrical circuit

Theorem 4.3. The fractional electrical circuit shown 
on Fig. 4.2 is positive for all values of the conductances, 
capacitances and source voltages. 
Proof. Using the Kirchhoff’s laws and the node method 
for the electrical circuit we may write the equations 
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(4.11c) 

��� is the sum of conductances of all branches belonging 
to the i-th node, i = 1,…,n. 

The matrix �̅ ∈ �� and −�̅	
 has nonnegative entries. 
Substituting (4.11b) into (4.11a) we obtain 
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where 

nn MGGIGCA ∈+−= −− ]'[' 11                  (4.12b) 

and 

nnGGGCB ×
+

−− ℜ∈−= 11 '                        (4.12c) 

since the matrices �	
,��,� and −�̅	
 have nonnegative 
entries. Therefore, the electrical circuit is positive. 
Theorem 4.4. The fractional positive electrical circuit 
shown on Fig. 4.2 is reachable if and only if 

.,...1,andfor0, njkjkG jk =≠= .               (4.13) 

Proof. The matrix �̅ defined by (4.11c) is diagonal if and 
only if the condition (4.13) is met. In this case the matrices 
�̅	
�′, A and B are also diagonal and from (4.12) we obtain 
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where 
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Note that the subsystem (4.14a) is reachable. Therefore, 
the positive electrical circuit is reachable if and only if the 
condition (4.13) is satisfied. 

Example 4.2. Consider the fractional electrical circuit 
shown on Figure 4.3 with given resistances �
,��,��, in-
ductances �
, �� and source voltages �
, ��.  

 
Fig. 4.3. Fractional electrical circuit 

Using the Kirchhoff’s laws we can write the equations 
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which can be written in the form 
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The fractional electrical circuit is positive since the ma-
trix A is Metzler matrix and the matrix B has nonnegative 
entries. 

We shall show that the fractional positive circuit 
is reachable if �� = 0. In this case 
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and from (4.1) we obtain 
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The matrix (4.19) is monomial and by Theorem 4.1 the 
fractional positive electrical circuit is reachable if �� = 0. 

Now let us consider the fractional n-mesh electrical cir-
cuit with given resistances ��, � = 1, … , �, inductances 
�� , � = 1, … ,� and m-mesh source voltages ��� , 

	� = 1, … ,�. It is assumed that to each linearly independent 
mesh belongs only one inductance. In this case the matrix L 
defined by (3.19b) is diagonal one and the condition (3.21) 
is met. 
Theorem 4.5. The fractional positive n-meshes electrical 
circuit with only one inductance in each linearly indepen-
dent mesh is reachable if 

0=ijR  for ji ≠ , nji ,...,1, =                          (4.20) 

where ��� are entries of the matrix A’ defined by (3.19b). 
Proof. If the condition (4.20) is met then the Metzler matrix 
A’ is diagonal. The matrix L defined by (3.19b) is also di-
agonal since by assumption only one inductance belongs to 
each linearly independent mesh. In this case the matrix 
� = �	
�′ is diagonal Metzler matrix and 
 = �	
 ∈ ℜ�

�×� 
is also diagonal. For diagonal Metzler matrix A and diagon-
al B the matrix ���
 is also diagonal and the matrix Rf 
defined by (4.1) is monomial. By Theorem 4.1 the positive 
electrical circuit is reachable. 
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Remark 4.1. The condition (4.20) is met if the resistance 
of the branch belonging to two linearly independent meshes 
is zero. This result is consistent with the one obtained 
in Example 4.2. 

Consider the fractional electrical circuit shown on Fig. 
4.4 with given resistances ��, � = 1, … ,5, inductances 
�
, ��, capacitance C and source voltage e.  

Using the Kirchhoff’s laws we can write the equations 

2

12332
2

2

35325
1

1111

0)(

)(

i
dt

ud
C

iRiRRu
dt

id
L

iRRiR
dt

id
LiRe

=

=−+++

++−+=

α

α

β

β

β

β

         (4.21a) 

and 

0)()()( 35432254142 =+++−+++ iRRRRiRRiRR .(4.21b) 

From (4.21b) we have 
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Substituting (4.22) into (4.21a) we obtain 
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Fig. 4.4. Fractional electrical circuit 

From (4.23b) it follows that the matrix A is not a Metz-
ler matrix if 

4352 RRRR =                                (4.24) 

If the condition (4.24) is met then the voltage between 

the points a, b is equal to zero and �� = 0,��
���

��
= 0,

		�� = 0. In this case the equation (4.23a) takes the form 
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+++
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 (4.25) 

The fractional electrical circuit described by the equa-
tion (4.25) is positive. Therefore, we have the following 
corollary. 

Corollary 4.1. If the resistances of the electrical circuit 
satisfy the condition (4.24) then the fractional electrical 
circuit is positive. 

In general case we have. 
Corollary 4.2. Fractional nonpositive electrical circuit 
for some special choice of the parameters (resistances) can 
be positive one. 

Using (4.23b) it is easy to check that 

3][rank 2 =BAABB                            (4.26) 

if and only if the condition (4.24) is not satisfied. Therefore, 
we have the following corollary. 
Corollary 4.3. The fractional standard (nonpositive) elec-
trical circuit shown on Fig. 4.4 is reachable if and only 
if the condition (4.24) is not satisfied. 

From (4.25) it follows that the reduced fractional posi-
tive electrical circuit is reachable.  

These considerations can be extended for general case 
of R, L, C, e type electrical circuits. 

5. CONCLUDING REMARKS 

The conditions for the positivity of fractional linear 
electrical circuits composed of resistors, coils, condensators  
and voltage (current) sources have been established. It has 
been shown that:  
1. The fractional electrical circuits composed of resistors 

coils and voltage sources (shortly called R, L, e type) 
are positive for any values of their resistances, induc-
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tances and source voltages if and only if the number 
of coils is less or equal to the number of its linearly in-
dependent meshes (Theorem 3.5). 

2. The fractional electrical circuits composed of resistors, 
condensators and voltage sources (shortly called R, C, e 
type) are not positive for any values of its resistances, 
capacitances and voltage sources if each their branch 
contains resistor capacitor and voltage source (Theorem 
3.2). 

3. The fractional nonpositive electrical circuits of the R, L, 
C, e type can be positive for some special choice of their 
parameters (Corollary 4.2). 
The conditions for the reachability of the fractional 

positive electrical circuits have been established. It has been 
shown that the fractional positive electrical circuit of R, C, 
e type are reachable if and only if the conductances be-
tween their nodes are zero (Theorem 4.4) and the fractional 
positive electrical circuits of R, L, e type are reachable 
if and only if the resistances belonging to two meshes are 
zero (Theorem 4.5). The fractional standard (nonpositive) 
electrical circuits of R, C, L, e type are usually reachable 
and are unreachable only for some special choice of the 
parameters. 

The considerations have been illustrated by examples 
of linear electrical circuits. 

Some of these results can be also extended for the con-
trollability and observability of the fractional linear elec-
trical circuit. Open problem are extension of these consid-
erations for the following classes of the fractional systems: 
1. disturbed parameters linear systems; 
2. nonlinear electrical circuits. 
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Abstract: Necessary and sufficient conditions for the asymptotic stability of fractional positive continuous-time linear sys-
tems are established. It is shown that the matrix A of the stable fractional positive system has not eigenvalues in the part 
of stability region located in the right half of the complex plane. 

 

1. INTRODUCTION 

A dynamical system is called positive if its trajectory 
starting from any nonnegative initial state remains forever 
in the positive orthant for all nonnegative inputs. An over-
view of state of the art in positive theory is given in the 
monographs (Farina and Rinaldi, 2000; Kaczorek, 2002). 
Variety of models having positive behavior can be found 
in engineering, economics, social sciences, biology and me-
dicine, etc. 

Simple conditions for practical stability of discrete-time 
linear systems have been proposed by Busłowicz and Ka-
czorek (2009) and next have been extended to robust sta-
bility of fractional discrete-time linear systems in Busło-
wicz (2010). The stability and stabilization of positive frac-
tional linear systems by state-feedbacks have been analyzed 
in Kaczorek (2010, 2011b). The Hurwitz stability of Metz-
ler matrices has been investigated in Narendra and Shorten 
(2010) and some new tests for checking the asymptotic 
stability of positive standard and fractional linear systems 
have been proposed in Kaczorek (2011a). 

In this paper necessary and sufficient conditions for the 
asymptotic stability of fractional positive  continuous-time 
linear systems will be established. It will be shown that the 
matrix A of the stable fractional positive system has not 
eigenvalues in the part of stability region located in the 
right half of the complex plane. 

The paper is organized as follows. In section 2 basic de-
finitions and theorems concerning the fractional positive 
continuous-time linear systems and their stability are re-
called. The main result of the paper is given in section 3 
where it is shown that the matrix A of the stable fractional 
positive system has not eigenvalues in the part of stability 
region located in the right half complex plane and the ne-
cessary and sufficient stability conditions are established. 
Concluding remarks are given in section 4. 

The following notation will be used: ℜ – the set of real 
numbers, ℜ�×� – the set of � ×� real matrices, ℜ�

�×� – 
the set of � ×� matrices with nonnegative entries and 
ℜ�

� = ℜ�
�×�, ��  – the set of � × �  Metzler matrices (real 

matrices with nonnegative off-diagonal entries), �� – the 
� × �  identity matrix. 

2. PRELIMINARIES 

Consider the continuous-time linear system 

 )()(0 tAxtxDt =α , 10 << α                           (2.1) 

where �(�) ∈ ℜ� is the state vector and � ∈ ℜ�×�,  
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is the Caputo definition of � ∈ ℜ order derivative and  

∫
∞

−−=Γ
0

1)( dtte t αα                                 (2.3) 

is the Euler gamma function. 
The fractional system (2.1) will be called (internally) 

positive if �(�) ∈ ℜ�
� , � ≥ 0 for any initial conditions 

�	0
 = �� ∈ ℜ�
� . 

Theorem 2.1. (Kaczorek, 2011b) The fractional system 
(2.1) is positive if and only if  

nMA∈                                          (2.4) 

where �� is the set of � × �  Metzler matrices. 
Theorem 2.2. (Kaczorek, 2011b) The solution of equation 
(2.1) with initial conditions �� ∈ ℜ� is given by 

00 )()( xttx Φ=                                   (2.5) 
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α                     (2.6) 

and ��(��
�) is the Mittage-Leffler matrix function. 

The fractional positive system (2.1) will be called 
asymptotically stable (shortly stable) if 

0)(lim 00 =Φ
∞→

xt
t

 for all nx +ℜ∈0                       (2.7) 

The characteristic polynomial of the matrix A of the frac-
tional system (2.1) has the form 
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Theorem 2.3. (Kaczorek, 2011b) The fractional system 
(2.1) is stable if and only if  

2
argmin

παλ >i
i

                                  (2.9) 

where �� is the i-th eigenvalue of the matrix A. 

 
Fig. 2.1. Stability region 

Theorem 2.4. (Kaczorek, 2011b) The fractional system 
(2.1) is unstable if at least one diagonal entry of the matrix 
A is positive. 

3. MAIN RESULT 

In this section necessary and sufficient stability condi-
tions of the fractional positive system (2.1) will be estab-
lished. 
Theorem 3.1. The fractional positive system (2.1)  
for  0 < � < 1 is (asymptotically) stable if and only if  

0Re <iλ  for ni ,...,1=                              (3.1) 

Proof. By Theorem 2.1 the fractional system (2.1) is posi-
tive if and only if A is a Metzler matrix. It is well-known 
(Farina and Rinaldi, 2000; Mitkowski, 2008) that the domi-
nant eigenvalue �� = ��  i.e. 

id λλ Re>  for ni ,...,2=                                (3.2) 

of the Metzler matrix A is real. Therefore, the fractional 
positive system (2.1) is stable if and only if the condition 
(3.1) is satisfied.  

From Theorem 3.1 we have the following important co-
rollary. 
Corollary 3.1. The matrix A of stable fractional positive 
system (2.1) has not eigenvalues in the part of stability 
region located in the right half complex plane (dark region 
on Fig. 2.1). 

Let  � = [
�	] ∈ ℜ�×�  be a Metzler matrix with nega-
tive diagonal entries (
�� < 0, � = 1,… ,�). 
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(3.3b) 

for k = 1,…,n – 1. 
Let us denote by �[� + � × �] the following elementary 

column operation on the matrix A: addition to the i-th col-
umn the j-th column multiplied by a scalar c. It is well-
known that using these elementary operations we may re-
duce the matrix 
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to the lower triangular form 





















=

nnnn aaa

aa

a

A

,2,1,

2221

11

~...~~

0...~~
0...0~

~
⋮⋱⋮⋮

.                         (3.5) 

To check the stability of the fractional positive system 
(2.1) the following theorem is recommended. 
Theorem 3.2. The fractional positive linear system (2.1)  
for 0 < � < 1 is (asymptotically) stable if and only if one 
of the equivalent conditions is satisfied: 
1. All principal minors ∆� , � = � = 1,… ,� of the matrix 

−� = [−
�	] are positive, i.e. 
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2. The diagonal entries of the matrices (3.3) 

)(k
knA −  for k = 1,…,n – 1                             (3.7) 

 are negative, 
3. The diagonal entries of the lower triangular matrix (3.5) 

are negative, i.e. 

0~ <kka  for k = 1,…,n                              (3.8) 

Proof is given in Kaczorek (2011a). 
Example 3.1. Consider the fractional system (2.1) with the 
matrix 
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Find the values of a for which the fractional positive 
system is stable. The fractional system is positive for all 
values of the entry a. 

Using the conditions (3.6) for (3.9) we obtain 
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Therefore, the fractional positive system is stable  
for  
 > 7/6. 

Using the conditions (3.7) for (3.9) we obtain 
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The condition 2) of Theorem 3.2 is satisfied  
and the fractional positive system is stable for 
 > 7/6. 

Similarly, using the elementary column operations  
to the matrix (3.9) we obtain 
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The condition 3) of Theorem 3.2 is also satisfied  
and the fractional positive system is asymptotically stable 

for 
 > 7/6. 
The characteristic polynomial of the matrix (3.9) 
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            (3.13) 

has all positive coefficients if and only if 
 > 7/6. 
This also confirm Kaczorek (2011a) that the fractional 
positive system is stable if 
 > 7/6. 

4. CONCLUDING REMARKS 

Necessary and sufficient conditions for the asymptotic 
stability of fractional positive continuous-time linear sys-
tems have been established (Theorem 3.1). It has been 
shown (Corollary 3.1) that the matrix A of the stable frac-
tional positive system has not eigenvalues in the part 
of stability region (Fig. 2.1) located in the right half of the 
complex plane. These considerations can be extended 
to positive fractional continuous-time linear systems with 
delays. 
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Abstract: In the paper unconstrained local controllability problem of finite-dimensional fractional discrete-time semilinear 
systems with constant coefficients is addressed. Using general formula of solution of difference state equation sufficient con-
dition for local unconstrained controllability in a given number of steps is formulated and proved. Simple illustrative example 
is also presented.  

 

1. INTRODUCTION 

Controllability is one of the fundamental concepts 
in modern mathematical control theory. This is qualitative 
property of control systems and is of particular importance 
in control theory. The basic concepts of controllability, 
reachability and the weaker notion of stabilizability play 
an essential, fundamental role in dynamical systems analy-
sis and in the solutions of many different important optimal 
control problems. 

Many dynamical systems are such that the control does 
not affect the complete state of the dynamical system 
but only a part of it. Therefore, it is very important to de-
termine whether or not control of the complete state of the 
dynamical system is possible. Roughly speaking, controlla-
bility generally means, that it is possible to steer dynamical 
system from an arbitrary initial state to an arbitrary final 
state using the set of admissible controls. 

During last few years many results concerning theory 
of fractional control systems both discrete-time and con-
tinuous-time have been published in the literature (see e.g. 
(Kaczorek, 2007a, 2007b, 2009; Klamka, 2002, 2008)). 
However, it should be pointed out, that the most controlla-
bility results are known only for linear fractional control 
systems both without delays or with delays in control 
or state variables. 

Controllability problems studied in this paper concern 
semilinear fractional discrete-time control systems. More 
precisely, in the present paper unconstrained local control-
lability problem of finite-dimensional fractional discrete-
time semilinear systems is addressed. Using general for-
mula of solution of difference state equation, sufficient 
condition for local controllability in a given number 
of steps is formulated and proved. The present paper ex-
tends for semilinear discrete-time fractional control systems 
with constant coefficients controllability results given 
in Kaczorek (2007a, 2007b, 2009) and Klamka (2002, 
2008) for linear fractional systems. 

The paper is organized as follows. In section 2 using re-
sults presented in (Kaczorek, 2007b), general solution 

of the difference state equation for finite-dimensional frac-
tional linear systems is recalled. Sufficient condition 
for local unconstrained controllability of the semilinear 
fractional discrete-time control system with constant pa-
rameters is established in section 3. Section 4 contains 
simple numerical example, which illustrates theoretical 
considerations. Finally, concluding remarks and proposi-
tions for future works are given in section 5. 

2. FRACTIONAL SYSTEMS 

The set of nonnegative integers will be denoted by Z+. 
Let xk∈Rn, uk∈Rm, k∈Z+. In this paper well known extended 
definition of the fractional difference of the form (Ka-
czorek, 2007a, 2007b, 2009; Klamka, 2002, 2008) 
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where ��� � is so called generalized Newton symbol. Let us 

observe, that in the case when � = � we have well known 
standard Newton symbol  
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Let us consider the fractional discrete-time linear sys-
tem, described by the semilinear difference state-space 
equation 

),(1 kkkkk uxfBuAxx ++=∆ +
α  (3) 
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where xk∈Rn, uk∈Rm are the state and input and A and B are 
n×n and n×m constant matrices, f: Rn×Rm → Rn is nonlinear 
function differentiable near zero in the space Rn×Rm 
and such that f (0,0) =0. 

Let us observe, that semilinear discrete-time control sys-
tem is described by the difference state equation, which 
contains both pure linear and pure nonlinear parts in the 
right hand side of the state equation. 

Using definition of fractional difference (1) we may 
write semilinear difference equation (3) in the equivalent 
form 

),()1(
1

1
11 kkkk

kj

j
jk

j
k uxfBuAxx

j
x ++=








−+ ∑

+=

=
+−+

α
 

Next, using standard linearization method (Klamka, 
1995) it is possible to find the associated linear difference 
state equation 
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Moreover, for simplicity of notation let us denote 
A + F = C and D = B + G. 

Thus we have 
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Lemma 1. (Kaczorek, 2007b) The solution of linear differ-
ence equation (4) with initial condition x0∈Rn is given by 
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where n×n dimensional state transition matrices Φk, 
k = 0,1,2,… are determined by the recurrent formula 

∑
+=

=
+−

+
+ Φ








−+Φ+=Φ

1

2
1

1
1 )1()(

ki

i
ik

j
knk i

IC
α

α  (6) 

with Φ0 = In , where In is n×n dimensional identity matrix 
and by assumption matrices Φk = 0 for k < 0. 

Moreover, it should be pointed out, that the matrices Φk, 
k = 0,1,2,… defined above are extensions for fractional 
linear discrete-time control systems, the well known state 
transition matrices (see e.g. (Klamka, 1991)) for standard 
linear discrete-time control systems. 

3. CONTROLLABILITY 

First of all, in order to define global and local controlla-
bility concepts for semilinear and linear finite-dimensional 
discrete-time control systems let us introduce the notion 
of reachable set or in other words attainable set in q steps 
(Kaczorek, 2007a, 2007b, 2009; Klamka, 1991, 1995, 2002, 
2008). 
Definition 1. For fractional semilinear system (3) or linear 
system (4) reachable set in q steps from initial condition 
x0 = 0 is defined as follows: 

Kq = {x(q)∈Rn: x(q) is a solution of semilinear system (3) 
or linear system (4) in step q for sequence of admissible 
controls  u0,u1,…uk,…,uq-1} (7) 

Definition 2. The fractional semilinear discrete-time con-
trol system (3) is locally controllable in q-steps if there 
exists a neighborhood of zero N⊂Rn, such that 

NKq =  (8) 

Definition 3. The fractional linear discrete-time linear con-
trol system (4) is globally controllable in q-steps if 

NKq =  (9) 

For linear control system (4) let us introduce the n×qm 
dimensional controllability matrix 

)](),...,(),...,(),(,[ 121 DDDDDH qiq −ΦΦΦΦ=  (10) 

In order to prove sufficient condition for local control-
lability of semilinear discrete-time fractional control sys-
tems (3), we shall use certain result taken directly from 
nonlinear functional analysis. This result concerns so called 
nonlinear covering operators. 
Lemma 2. (Robinson, 1986) Let W: Z→Y be a nonlinear 
operator from a Banach space Z into a Banach space Y 
and W(0) = 0. Moreover, it is assumed, that operator W has 
the Frechet derivative dW(0): Z→Y, whose image coin-
cides with the whole space Y. Then the image of the opera-
tor W will contain a neighborhood of the point W(0)∈Y. 

Now, we are in the position to formulate and prove 
the main result on the local unconstrained controllability 
in the interval [0, q] for the nonlinear discrete-time system 
(1). This result is known for semilinear or nonlinear conti-
nuous-time control system and is given in Klamka (1995), 
as a sufficient condition for local controllability. 
Theorem 1. Semilinear discrete-time control system (3) 
is locally controllable in q steps if the associated linear 
discrete-time control system (4) is globally controllable 
in q-steps. 
Proof. Proof of the Theorem 1 is based on Lemmas 1 
and 2. Let the nonlinear operator W transform the space 
of admissible control sequence {u(i): 0 ≤ i ≤ q} into the 
space of solutions at the step q for the semilinear discrete-
time fractional control system (3). 

More precisely, the nonlinear operator 

W: Rm×Rm×…×Rm →Rn  
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asssociated with semilinear control system (3) is defined 
as follows (Klamka, 1995): 

W{ u(0), u(1), u(2),..., u(i),..., u(q − 1)} = xsem(q) 

where xsem(q) is the solution at the step q of the semilinear 
discrete-time fractional control system (3) corresponding 
to an admissible controls sequence uq = {u(i): 0 ≤ i < q}. 

Therefore, for zero initial condition Frechet derivative 
at point zero of the nonlinear operator W denoted as dW(0) 
is a linear bounded operator defined by the following for-
mula 

dW(0){u(0), u(1), u(2),..., u(i),..., u(q − 1)}  = xlin(q) 

where xlin(q) is the solution at the step q of the linear system 
(4) corresponding to an admissible controls sequence 
uq = {u(i): 0 ≤ i < q } for zero initial condition. 

Since from the assumption nonlinear function f(0,0) = 0, 
then for zero initial condition the nonlinear operator W 
transforms zero in the space of admissible controls into zero 
in the state space i.e., W(0) = 0. 

Moreover, let us observe, that if the associated linear 
discrete-time fractional control system (4) is globally con-
trollable in the interval [0, q], then by Definition 1 the im-
age of the Frechet derivative dW(0) covers whole state 
space Rn. 

Therefore, by the result stated at the beginning of the 
proof, the nonlinear operator W covers some neighborhood 
of zero in the state space Rn. Hence, by Definition 2 semili-
near discrete-time fractional control system (3) is locally 
controllable in the interval [0, q]. This completes the proof.  

Now, for the convenience, let us recall some well 
known (see e.g. (Kaczorek, 2007a, 2007b, 2009; Klamka, 
1991, 2002, 2008)) facts from the controllability theory 
of linear finite-dimensional discrete-time fractional control 
systems. 
Theorem 2. (Klamka, 2008) The fractional discrete-time 
linear system (4) is globally controllable in q steps if and 
only if 

nHrank q =  (11) 

Taking into account the form of controllability matrix, 
from Theorem 2 immediately follows the simple Corollary. 
Corollary 1. (Klamka, 2008) The fractional linear control 
system (4) is controllable in q steps if and only if � × �	di-
mensional constant matrix ����

� is invertible, i.e. there 
exists the inverse matrix (����

�) –1. 
Corollary 2. The fractional semilinear control system (3) is 
controllable in q steps if equality (11) holds or equivalently 
if � × �	 dimensional constant matrix����

� is invertible, 
i.e. there exists the inverse matrix (����

�) –1. 

4. EXAMPLE 

Let us consider the semilinear fractional discrete-time 
control system with constant coefficients of the form (3) 
for 0 ≤ � ≤ 1 with the following matrices and vectors 
in the difference state equation 
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Hence we have 
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Using formula (6) for k = 0 we obtain 
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Controllability matrix (10) for q = 2 has the form 
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Therefore, since rank H2 = 2 = n then taking into ac-
count Theorem 2 the fractional associated linear discrete-
time system with constant coefficients is globally controlla-
ble in two steps, hence by Theorem 1 the semilinear frac-
tional discrete-time system (12) is locally controllable 
in two steps. 

For comparison let us consider linear fractional discrete 
system (4) with the matrices A and B given equalities (12). 
In this case using formula (6) for k = 0 we have 
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Controllability matrix (10) for q = 2 has the form 
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Therefore, since rank H2 = 1 < n then taking into ac-
count Corollary 1 the fractional  linear discrete-time system 
with constant coefficients is not globally controllable in two 
steps and consequently in any number of steps. 

5. CONCLUDING REMARKS 

In the present paper unconstrained local controllability 
problem of finite-dimensional fractional discrete-time semi-
linear systems has been addressed. Using linearization 
method and solution formula for linear difference equation 
sufficient condition for unconstrained local controllability 
in q steps of the discrete-time fractional control system has 
been established as rank condition of suitably defined con-
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trollability matrix. In the proof of the main result certain 
theorem taken directly from nonlinear functional analysis 
has been used. Moreover, simple illustrative numerical 
example has been also presented. 

There are many possible extensions of the results given 
in the paper. First of all it is possible to consider semilinear 
infinite-dimensional fractional control systems. Moreover, 
it should be mentioned, that controllability considerations 
presented in the paper can be extended for fractional dis-
crete-time linear systems with multiple delays both in the 
controls and in the state variables. 
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Abstract: The article discusses main problems of implementing the PID control law in the FPGA integrated circuit. Con-
secutive steps of discretizing and choosing the fixed-point representation of the continuous, floating-point PID algorithm 
are described. The FPGA controller is going to be used in the active hetero-polar magnetic bearings system consisting of two 
radial and one axial bearings. The results of the experimental tests of the controller are presented. The dynamic performance 
of the controller is better when compared with the dSPACE controller, that was used so far. The designed hardware and soft-
ware, the developed implementation procedure and the experience acquired during this stage of the whole project are going to 
be used during the implementation of more sophisticated control laws (e.g. robust) in the FPGA for AMB controllers. 

 

1. INTRODUCTION  

Reconfigurable hardware is becoming a promising al-
ternative to both application specific integrated circuit 
(ASIC) and digital signal processors (DSP) for control 
applications (Chen and Lin, 2002; Krach et al., 2003; Osor-
nio-Rios et al., 2008). As a reconfigurable hardware, Field 
Programmable Gate Array, or FPGA, is gaining popularity. 
FPGA-based systems have been applied in applications 
ranging from signal processing, image processing, to net-
work processors and robotics, just to name a few. The 
speed and size of the FPGAs are comparable with the AS-
ICs, but FPGAs are more flexible and their design cycle is 
shorter because of their reconfigurability. FPGAs applica-
tions go beyond the simple implementation of digital logic. 
They can be used for implementations of specific architec-
tures for speeding up some algorithm. A given algorithm, 
implemented into FPGA could have 100-1000 times higher 
performance than its implementation on a DSP or micro-
processor. This is because FPGA has a natural parallel 
architecture for high-speed computation. 

Active magnetic bearing (AMB) is a collection of elec-
tromagnets used to levitate the object via feedback control 
(Chiba et al., 2005). The obvious feature of the AMB 
is a contact-free motion control, which leads to lower rotat-
ing losses, higher speeds, elimination of lubrication system, 
and long life. Since an active magnetic bearing is inherently 
nonlinear and unstable, feedback control is indispensable to 
stabilize the system. A conventional PID controller is often 
employed as a feedback compensator and this method often 
yields enough stability and performance. This technique 
works efficiently as long as the system remains in the vicin-
ity of the linearizing point and the uncertainties and distur-
bances are small. More sophisticated methods, including 
robust control, can improve the dynamic properties of the 
AMB system, especially in case of strong nonlinearities 
(Gosiewski and Mystkowski, 2008; Hung et al., 2003). 

The view of the examined hetero-polar AMB system 
(Gosiewski and Mystkowski, 2008)  is presented in Fig. 1. 
The rotor is supported by two radial and one axial magnetic 
bearings. The bearings include the necessary position sen-
sors and power amplifiers. The magnetic force along each 
axis is generated by a pair of opposing electromagnets. 
The displacements of the shaft along axes are measured 
by five eddy-current sensors. 

 
Fig. 1. View of the active magnetic bearing system 

The aim of this paper is to discuss the problems of im-
plementation of the PID algorithm for the AMB system 
in the FPGA. This task is a part of a bigger project concern-
ing the design of an electromechanical flywheel energy 
storage. The flywheel is going to levitate in active magnetic 
bearing system and one of the tasks here is to design 
a stand-alone, FPGA-based controller. The implementation 
of the PID algorithm is the first stage of the design of such 
controller. The next will be the implementation of more 
sophisticated control laws, �

�
 robust, for example.   
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2. REQUIREMENTS 

The controller should have five separate control cha
nels to control each axis of the whole AMB
the measured and control signals are analog, necessary A/D 
and D/A converters must be designed. The signals can 
change from -10 V to +10 V. The PID algorithm must be 
based on integer or fixed-point mathematics. This is b
cause the FPGA used in this project has 400,000 gates and 
no floating point unit. Certainly, it is also possible to i
plement the floating point mathematics in the FPGA but 
this would absorb almost all its resources. 

3. HARDWARE 

The PID controller for the AMB system is designed 
with the use of two Spartan-3 LC Development Boards 
from Memec (2004). Spartan-3 LC board is equipped with 
Xilinx Spartan-3 family, XC3S400-4 PQ208CES, FPGA 
chip (Spartan-3, 2006). The FPGA has 400,000 gates 
and this is quite enough to implement three PID 
algorithms. The chip has sixteen configurable, 18
bedded multipliers, sixteen, 18-kbit embedded RAM blocks 
and two hundred and sixty four user defined input/output 
signals. The Spartan-3 LC board utilizes the Xilinx 
XCF02S Platform Flash In-System Programmable (ISP) 
PROM, allowing designers to store an FPGA design in non
volatile memory. 

Fig. 2. Active magnetic bearings controller hardware

The board is also equipped with two push
and four slide switches, two LEDs, one seven
LED display, RS232 and USB ports and two P160 conne
tors. FPGA can be clocked with external 50 MHz clock. 
There are no A/D or D/A converters on the board so we 
were forced to design the external converters board and 
power supplies for them and the whole controller. We d
signed and made five A/D and D/A converters boards 
for each channel of the controller. This additional boards 
communicate with the Spartan-3 LC board through P160 
connectors and expansion boards. Each of the five bo
made of one AD976 analog to digital 16-bit converter and 
one two-channel AD5547 digital to analog 16
from Analog Devices (16-Bit, 100 kSPS/200 kSPS Bi
MOS A/D Converters AD976/AD976A, 1999
rent Output, Parallel Input, 16-/14-Bit Multiplying DACs 

The controller should have five separate control chan-
nels to control each axis of the whole AMB system. Since 
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no floating point unit. Certainly, it is also possible to im-
plement the floating point mathematics in the FPGA but 

The PID controller for the AMB system is designed 
evelopment Boards 

3 LC board is equipped with 
4 PQ208CES, FPGA 

. The FPGA has 400,000 gates 
this is quite enough to implement three PID controller 

algorithms. The chip has sixteen configurable, 18-bit em-
kbit embedded RAM blocks 

and two hundred and sixty four user defined input/output 
3 LC board utilizes the Xilinx 

System Programmable (ISP) 
PROM, allowing designers to store an FPGA design in non-

 
controller hardware 

The board is also equipped with two push-button 
, one seven-segment 

LED display, RS232 and USB ports and two P160 connec-
tors. FPGA can be clocked with external 50 MHz clock. 
There are no A/D or D/A converters on the board so we 
were forced to design the external converters board and 

hem and the whole controller. We de-
signed and made five A/D and D/A converters boards – one 
for each channel of the controller. This additional boards 

3 LC board through P160 
connectors and expansion boards. Each of the five boards is 

bit converter and 
channel AD5547 digital to analog 16-bit converter 

Bit, 100 kSPS/200 kSPS BiC-
1999; Dual Cur-

Bit Multiplying DACs 

with 4-Quadrant Resistors AD6647/AD5557, 
The sampling frequency of the converters is limited to 200 
kSPS. 

The view of the disassembled hardware of the AMB 
controller is shown in Fig. 2. 

4. CONTROLLER ALGORITHM 
IMPLEMENTATION 

4.1. Difference recurrence equation

The following transfer function of the PID controller 
has been adopted for the AMB controller:

( ) 1
( ) 1

( ) 1
d

p
i

T sY s
G s k

U s T s Ts

 
= = + + + 

where parameters ��, �� , ��, � 
ranges: 

0.1, ,10.0pk = … , 0.01, ,2.0iT = …
0.001, ,0.05dT = … , 0.00001, ,1.0T = …

For further calculations, we will assume, that 
�� � 0,1; �� � 0,001; and � �

(Eq. 1) can be transformed to the following form:

2
2 1 0

2
2 1 0

( )
( )

( )

a s a s aY s
G s

U s b s b s b

+ +
= =

+ +
, 

where: �� � ������� 	 �
, 
�� � ���, �� � �� , �� � 0. 

Transfer function (Eq. 2) can be also transformed to the 
following linear differential equation:

2 2

2 1 0 2 1 02 2

d y dy d u du
b b b y a a a u

dt dtdt dt
+ + = + +

In order to avoid hazards that could arise in the comb
natorial system, the controller algorithm should be realized 
as the synchronic digital system, this is the subsequent 
calculation steps should be taken in accordance with the 
clock signal. To realize this, Eq. (2) must be converted to 
the difference recurrence equation and discretized with the 
constant sample period �. The discretization process i
volves determining the difference representations of the 
subsequent differentials. Below are given the formul
for the first and second differentials of some continuous,
differentiable function 
��
. 

( ) ( 1)dx x i x i

dt h
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≈
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Quadrant Resistors AD6647/AD5557, 2004). 
sampling frequency of the converters is limited to 200 

The view of the disassembled hardware of the AMB 
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ifference recurrence equation 

The following transfer function of the PID controller 
has been adopted for the AMB controller: 

( ) 1
dT s

U s T s Ts

 
 + 

,    (1) 

 can change in the following 

0.01, ,2.0, 

0.00001, ,1.0= … . 

For further calculations, we will assume, that �� � 1,5; 
� 0,0001. Transfer function, 

(Eq. 1) can be transformed to the following form: 

     (2) 

, �� � ����� 	 �
, �� � ��, 

Transfer function (Eq. 2) can be also transformed to the 
following linear differential equation: 

2 1 0 2 1 0

d y dy d u du
b b b y a a a u

dt dt
+ + = + + .   (3) 

order to avoid hazards that could arise in the combi-
natorial system, the controller algorithm should be realized 
as the synchronic digital system, this is the subsequent 
calculation steps should be taken in accordance with the 

s, Eq. (2) must be converted to 
the difference recurrence equation and discretized with the 

. The discretization process in-
volves determining the difference representations of the 
subsequent differentials. Below are given the formulas 

the first and second differentials of some continuous, 

    (4) 

( ) ( 1) ( 1) ( 2)

( ) 2 ( 1) ( 2)

x i x i x i x i

h h

− − − − −

.   (5) 
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After using the above formulas (Eqs. 4 and 5) for the 
first and second differentials of functions �(�) and �(�), 
Eq. 3 can be written as follows: 

2 1 0

2 1 0

( 2) ( 1) ( )

( 2) ( 1) ( )

B y i B y i B y i

A u i A u i A u i

− + − +
= − + − +

,    (6) 

where: 
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hh
= + + , 2 1

1 2
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= − − , 2

2 2

a
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= , 

2 1
0 02

b b
B b

hh
= + + , 2 1

1 2
2

b b
B

hh
= − − , 2

2 2

b
B

h
= . 

In order to calculate the value of the output signal �(�)  
for the �-th time step, Eq. 6 should be written in the follow-
ing recurrence form: 

1 2 3

4 5
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y i c y i c y i c u i

c u i c u i

= − + − +
+ − + −

,    (7) 
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For the above given ��, �� , ��, � parameters, we obtain: 
�� = 1,952;  �� = −0,952; �� = 15,780; �� = −31,489; 
�� = 15,708. 

Equation 7 allows us to calculate the output signal �(�) 
on the basis of the actual values of the input signal �(�)   
and the previous values of the output �(� − 1), (� − 2),  
and the input �(� − 1), �	� − 2
 signals. 

In case of hetero-polar AMB system the output signal 
�(�) should be summed with the so called steady-state point 
signal �	(�) (Gosiewski and Mystkowski, 2008). This 
means that the PID controller should generate two output 
signals ��(�) and ��(�) (see Fig. 11) calculated in the fol-
lowing way: 

1 0 2 0( ) ( ) ( ), ( ) ( ) ( )y i y i y i y i y i y i= + = − ,   (8) 

where �	(�) is the steady-state point signal that is propor-
tional to the steady-state point current �	. 

4.2. Fixed-point representation  
       of the signals and parameters 

As was mentioned above, the controller algorithm (Eqs. 
7 and 8) should be calculated using the fixed-point num-
bers. To do this we should choose the fixed-point represen-
tation of input signal �(�), output signals �(�), ��(�),  ��(�) 
and parameters ��, … , ��. It is especially true for output �(�) 
and parameters ��, … , �� as the bit-widths of signals �(�) 

and ��(�), ��(�) are determined by the bit resolution of the 
A/D and D/A converters which are �
 = 16 and �� = 16 
in this case. By conducting many simulation experiments 
for the controller algorithms written in the floating- and 
fixed-point representations it was established that in order 
to achieve the satisfactory accuracy the following widths 
should be used: 

52cw = , 42fcw =  for parameters 1c , ..., 5c , 

16uw = , 0fuw =  for input signal ( )u i , 

52yw = , 35fyw =  for output signal ( )y i , 

1
16yw =  ,

1
0fyw =  and 

2
16yw = , 

2
0fyw =   

for output signals ��(�) and ��(�). 
In the above given formulas the notation �� = 52, 

�
� = 42 means for example that the width of the fraction-
al part of the parameter �� is 42 bits, the width of its 
integral part is 10 bits and the whole width (integral and 
fractional) is 52 bits. 

 
Fig. 3. Step response of the floating-point (continuous line)  

and the fixed-point (dashed line) representations of the PID 
AMB controller: a) simulation time � = 5 × 10�� s,  
b) simulation time � = 5 × 10�� s;  
sample periodℎ = 5,04 × 10��s 

As we can see the output signal �(�) is represented with 
the use of 52 bits from which 35 are used to represent its 
fractional part, but this is true only when calculating its 
value according to Eq. 7. When calculating outputs ��  
and �� according to Eq. 8, only 16-bit integral part of � 
is used. This signal is obtained by cutting off the fractional 
part of signal �. 

Input �(�) and output �(�), ��(�), ��(�) signals as well 
as controller parameters ��, … , �� can have negative values 
and they are coded using the two's complement notation 
in which the most significant bit is the sign bit. In the hex-
adecimal notation that is used during coding the controller 
algorithm in VHDL the calculated values of the parameters 
are as follows: 
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c1=x”007CEDDE131B8” , c2=x"FFC31221ECE48" ,  
c3=x"03F1F140357E2" , c4=x"F820B9FEC6256" ,  
c5=x"03ED54D03B45A" . 

Step responses of the PID controller in floating- and 
fixed-point representations for the above given bit-widths 
and various simulation times, obtained in Matlab with the 
use of the Fixed-Point Toolbox, are shown in Fig. 3. 

4.3. 52-bit fixed-point multiplier 

As we can see from Eq. 7 the calculations of the con-
troller algorithm involve 4 summations of 104-bit wide 
and 5 multiplications of 52-bit wide fixed-point numbers. 
The multiplication can be implemented in the FPGA 
in various ways. The simplest is by using the basic re-
sources, these are the so called Control Logic Blocks 
(CLBs). This method is also the most resource-consuming. 
The basic resources of the XC3S200 chip do not allow to 
realize even one such 52-bit operation. This is why it was 
decided to use the specialized 18-bit multiplication blocks 
embedded in the XC3S200 [8]. As we established the im-
plementation of the 52-bit multiplication requires nine 18-
bit wide embedded multiplication blocks. The whole opera-
tion is coded in VHDL using the MULT18x18 components 
and is placed in the mult03 entity.  

To illustrate the problem the subsequent operations 
of the exemplary 50-bit and 40-bit wide numbers multipli-
cation taken by 18-bit multipliers are shown in Fig. 4 (first 
bit is omitted as it is responsible for the sign only). 

 
Fig. 4. Subsequent operations of the 50-bit and 40-bit  

wide numbers multiplication 

4.4. Controller architecture 

Control system for two radial and one axial AMB bear-
ings consists of two Spartan-3 LC development boards. The 
first board is connected with three A/D and D/A converters 
boards and the second – with two A/D and D/A boards. The 
VHDL project for each XC3S400 FPGA consists of three 
PID controller cores divided into three separate channels. 
One of the channels is not used. That is why the whole 
control system for the AMBs consisits of five separate PID 
control channels. Although each controller runs the same 
PID algorithm (as of Eqs. 7, 8), the parameters ��, �� , ��, � 
can be quite different. 

Schematic diagram of the designed AMB control sys-
tem is shown in Fig. 5. 

 
Fig. 5. Schematic diagram of the AMB control system 

5. TEST RESULTS 

The designed hetero-polar AMB PID controller was 
tested using Agilent 33220A 20MHz signals generator and 
Agilent 54624A oscilloscope. The resulting step responses 
of the controller itself (with no control loop) are shown 
in Figs. 6 and 7. The parameters are:  �� = 2; �� = 0,02; 
�� = 0,001; and � = 1. 

The Bode plots for the first channel of the designed con-
troller are shown in Fig. 8. The experimental characteristic 
has been obtained with the use of Agilent 35670A dynamic 
signals analyzer and compared with the simulation charac-
teristic obtained in Matlab for the floating-point model  
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(Eq. 1). As we can see the magnitude plots coincide accu-
rately. The experimental phase plot drops almost to −90� 
for higher frequencies what means that there is some delay 
in the controller. This delay is caused by the low sampling 
frequency of the A/D converter. Nevertheless, the dynamic 
properties of the designed controller for the frequency 
range from 10 Hz to 1 kHz that is typical for AMB control, 
are very good. 

 
Fig. 6. Step responses �� and �� of the controller to the square 

input � of 1 Hz frequency and 50 mV amplitude 

 
Fig. 7. Step responses �� and �� of the controller to the square 

input � OF 500 Hz frequency and 2 V amplitude 

 
Fig. 8. Bode plots of the designed PID controller: simulation 

(continuous line) and experimental (dashed line) 

The next step of the experimental investigations was to 
test the designed controller in the closed-loop AMB control 
system. Fig. 9 presents displacements ��, �� and Fig. 10 
displacements ��, �� of the shaft in the left and the radial 
bearing at the moment of switching the controller on. The 
reference values for the displacements were as follows: 
���	
 = −0,28V, ���	
 = −0,25V, ���	
 = −0,78V, ���	
 =

−0,39V. As we can see, after a very short transient stage the 
controller levitates the shaft in bearings very well. 

 
Fig. 9. Displacements ��, �� of the shaft in the left radial bearing 

 
Fig. 10. Displacements ��, �� of the shaft  
              in the right radial bearing 
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Fig. 12 presents displacements ��  and �� of the shaft af-
ter summing output signals ��, �� of the controller with 
a pulse-like disturbance signal �� as it is shown in Fig. 11. 
We can see a good damping of the disturbances. 

 
Fig. 11. Control loop of the left bearing � axis with disturbances 

 
Fig. 12. Vertical displacements ��, ��  of the shaft  
              in both bearings with disturbance signal ��  

6. CONCLUSION 

The designed hetero-polar AMB PID controller com-
pletely fulfills the preliminary requirements. It implements 
the PID control law in five separate control loops realized 
in two XC3S400 FPGAs. The FPGA resources are utilized 
in less than 50 percents. The dynamic performance of the 
controller is very good. The controller is about 20 times 
quicker when compared with the dSPACE controller that 
was used in the AMB system so far. 

The main bottleneck of the controller is the low fre-
quency of the A/D and D/A converters. The FPGA can be 
clocked with the very high frequency of 50 MHz and the 
output signal of the controllers can be calculated with this 
frequency too. Unfortunately this signal is updated with the 
frequency of 200 kHz only. 

The controller can be improved by designing better A/D 
and D/A boards with quicker converters and by implement-
ing better control laws. 
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Abstract: In this paper we consider the solution of the fractional differential equations. In particular, we consider the numer-
ical solution of the fractional one dimensional diffusion-wave equation. Some improvements of computational algorithms 
are suggested. The considerations have been illustrated by examples. 

 

1. INTRODUCTION 

Development of fractional calculations have been done 
probably by Leibniz and Newton (in the years 1695-1822). 
Further mathematical fractional calculus and its applica-
tions have been formulated in the nineteenth century. Due 
to the development of IT tools in recent years, many au-
thors come back to the problems of fractional dynamic 
systems (e.g. Lubich, 1986; Weilbeer 2005; Kilbas et. al., 
2006; Sabatier et. al., 2007; Ostalczyk, 2008; Kaczorek, 
2009, 2011a,b,c; Busłowicz, 2010). For instance, interest-
ing results (important for applications) were obtained 
in Bialystok University of Technology (Busłowicz, 2008; 
Nartowicz, 2011; Ruszewski, 2009; Sobolewski and Ru-
szewski, 2011; also Kaczorek, 2011; Trzasko, 2011). Nu-
merical methods for fractional systems were developed 
(e.g. Lubich, 1986; Podlubny et al., 1995; Podlubny, 2000; 
Agrawal, 2002; Diethelm and Walz, 1997; Diethelm et al., 
2002; Weilbeer, 2005; Ciesielski and Leszczynski, 2006; 
Murillo and Yuste, 2009, 2011). 

The paper is organized as follows. In the sections 2 
and 3 we considered Caputo fractional differential equation 
and its approximation. Fractional diffusion-wave equation 
and its approximation is considered in the sections 4 and 5 
respectively. 

2. FRACTIONAL DIFFERENTIAL EQUATION 

Fractional order differential equations are associated 
with the following operators (Weilbeer, 2005; Kaczorek, 
2011): �� – Riemann-Liouville operator (~1837), ���

�  – 
Grünwald-Letnikov (~1867) operator and �∗

� – Caputo 
operator (1967). 

Dynamical systems are generated by differential equa-
tions. For example consider the initial value problem (frac-
tional differential equation of Caputo type): 

�∗
����� = �����, ��0� = 1, �(�)�0� = 0,    (1) 

� = 1, 2, … ,� − 1        
where 	 > 0, � ∈ 
, � = �	� = min	{� ∈ �:	� ≥ 	}, � is a set of natural numbers and �∗

� is the Caputo fractio-
nal differential operator.  

The solution of the initial value problem (1) is given 
by (Weilbeer, 2005) 

���� = �������, � ≥ 0                     (2) 

where 

����� = 1 +
�

�(���)
+

��

�(��	�)
… = ∑ ��

�(����)

��
�
�
�    (3) 

is the Mittag-Leffler function with one parameter 	. In 
eqaution (3) Γ(	) denote Euler's continuous gamma func-
tion 

Γ�	� = � ��
��
��� =
�

� � (�� ��

�
�)�
����

�
.   (4) 

General Euler's gamma function is defined in the whole 
complex plane except zero and negative integers (Weilbeer, 
2005). Formula (4) is true for  Re	 > 0 and the following 
limit holds 

Γ�α� = lim�→�
�!��

���������	�…(���)
.     (5) 

For natural arguments and for half-integer arguments 
Euler's gamma function has the special form 

Γ�n� = �n − 1�!,  Γ ��

	
� =

��
	�!!√�

	(���)/�
, � ∈ 
   (6) � ∈ � = {1, 2, 3, … } 

where �!! is the double factorial 

�!! = �� ∙ �� − 2�… 5 ∙ 3 ∙ 1� ∙ �� − 2�… 6 ∙ 4 ∙ 2

1

�   � > 0	���� > 0	����� = 0, −1

    (7) 

Example 1. Consider differential equation (1). From (1), 
(2) and (3), (6) for 	 = 1 and 	 = 2 we have respectively 

������ = ���, �	���	� = cos	(�|�|�), � < 0.   (8) 

3. CAPUTO FRACTIONAL DIFFERENTIAL 
EQUATION AND ITS APPROXIMATION 

The Caputo fractional differential operator of order 	 > 1  is defined by (e.g. Kaczorek 2011a, Weilbeer, 2005) 

�∗
����� =

�

�(�
�)
� (� − �)�
�
�����(�)���

�
,              (9) 

where � = �	� = min	{� ∈ �:	� ≥ 	}. 



Wojciech Mitkowski 
Approximation of Fractional Diffusion-Wave Equation 

66 
 

Now we consider fractional differential equation of or-
der 	 > 1  of Caputo type 

�∗
����� = �(����), ����0� =  �,           (10) 

� = 0, 1, … ,� − 1        
where  � ∈ 
 are given. We are interested in a numerical 
solution �(�) of equation (10) on a closed interval [0,!]   
for some ! > 1. Therefore, we assume that 

�� = "#, # > 0, " = 0, 1, 2, … ,�  
and �� = 0, �� = !, � =

�

�
.                                   (11) 

Furthermore we denote by  �� = �(��) and �� =�(��). Precisely �� is the approximation of �(��). From 
equality (10) for � = �� we obtain a discrete problem 
(Weilbeer, 2005; Murillo and Yuste, 2009, 2011) 

�

��
$�� − ∑ %����� − �#� + � ���

���
��
� ��

�
�
� − � 

�∑ ����
���

�(���
�)
�
�
�
� & = ��,             (12) 

" = 1, … ,�	 
Note that �� − �# = ��
�. Consistently with (12) 

we obtain 

�� = ∑ %���
� − � ���

���
��
− ∑ %�

�
�
� �	��	

�
�
�         (13) 

+ ∑ ����
���

�(���
�)

�
�
�
� +#	�", 

� = �,�, … ,�	 
where 

%� = (−1)� �	��,              (14) 

�	�� =
(−1)�
�Γ(� − 	)

Γ(1 − 	)Γ(� + 1)
=
	�	 − 1��	 − 2�… (	 − � + 1)�!

 

	 ∈ 
, 	 ∈ �� = {0, 1, 2, … }. 
Example 2. We consider equation (1) with ��0� = ��. 
In this case �� = ���. Therefore from (13) we obtain 
the following discrete equation (numerical solution of equa-
tion (1)) 

�� =
�

�
���
'∑ %���
� 	�

�
�
�            (15) 

�− � ���

���
��
− ∑ %�

�
�
� � ��	 +

(��)��

���
��
��	(  

" = 1, 2, … ,�	 
In this case we can use the following formula for the 

Γ(	), 	 ∈ ){0, −1, −2, … }, ) is a set of complex numbers, 

 
�

����
= 	��� ∏ (1 +

�

�
)�
�/��

�
�             (16) 

where + is the Euler’s constant (Weilbeer, 2005) 

+ = lim�→�(∑ �

�
− ln	(�)	�

�
� ) ≈ 0,5772156649.       (17) 

4. FRACTIONAL DIFFUSION-WAVE EQUATION 

Let �(,, �) be a function, , ∈ [0, -] and � ∈ [0,!]. De-
note by ��,∗

�  the Caputo fractional differential operator 
at the variable � (see (9)). Consider the continuous-time 
fractional diffusion-wave system described by equation 

�∗
���,, �� =

��

���
�(,, �)             (18) 

with initial and boundary conditions 

��,, 0� = .(,), ���,, 0� = 0            (19) 

��0, �� = 0, ��-, �� = 0.             (20) 

The solution of the homogeneous boundary problem 
(18), 19), (20) is given by (Weilbeer, 2005) 

��,, �� =
	

�
∑ /���(−�

�
�
����

��
��)sin	(��

�
,),                (21) 

/� = � .(,)�0��

�
(
��

�
,)�,  

Equation (18) for 	 = 1 is the classical diffusion equa-
tion and for 	 = 2 is the classical wave equation. Thus (18) 
for 	 ∈ (0, 2] is the diffusion-wave eqution. The fractional 
diffusion-wave equation plays an intermediate role between 
classical wave and diffusion equations (Weilbeer, 2005; 
Jafari and Momani, 2007; Povstenko, 2011; Murillo 
and Yuste, 2009, 2011). 
Example 3. For 	 = 1  and 	 = 2  we obtain respectively 

�� �−
����

��
�� = exp	(−

����

��
�)            (22) 

�	 �−
����

��
�� = cos	(��

�
�)  

Therefore using (22) from (21) for 	 = 1 and 	 = 2  
we obtain the solution of classical diffusion equation 
and the solution of classical wave equation respectively.  

5. APPROXIMATION OF FRACTIONAL 
DIFFUSION-WAVE EQUATION 

Let ℎ = -/1 and # = !/� (see (19)) denote the step 
size of the discretization in the space and time axis respec-
tively. Next let  

 x = ih, i = 0, 1, … M                                        (23) 

and using the discretization on the space axis, the second 
derivative can be approximated by the central difference 
of second order  

��

���
�(x , �) ≈

�

!�
���x 
�, �� − 2��x , �� + �(x 
�, �)�    (24) 

0 = 1, 2, … ,1 − 1,   
where from (20) x� = x" = 0. From (18) for , = x  
and (24) we have 

��,∗
� ��x , �� =

�

!�
���x 
�, �� − 2��x , �� + �(x 
�, �)�    (25) 

0 = 1, 2, … ,1 − 1 
Let � = �� = "#, # > 0, " = 0, 1, 2, … ,�, where � = #/!. Thus from (25) and (13) we obtain 

���x � −
��

!�
����x 
�, �� − 2���x , �� + ��(x 
�, �)� =    �(��
��x ���
	�x �, … ,��(,#)), 

�(��
��x ���
	�x �, … ,��(,#)) = ∑ %���
�(x )	�
�
�   

− � ���

���
��
− ∑ %�

�
�
� � ��(,#) + ∑ ��($	)��

���

�(���
�)
�
�
�
� 	          (26) 

" = 1, 2, … ,�,  0 = 1, 2, … ,1 − 1 
where ���,#� = ��,# , ���. Let 2 = [��,#�] be vector 
(1 − 1) × 1. Let 3� = [���,#�] be vector (1 − 1) × 1, 0 = 1, 2, … ,1 − 1. Denote by 4 = [	�#] tridiagonal matrix 
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(1 − 1) × �1 − 1� with 	�� = −2, 	�,�
� = 1,	�,��� =

1. From (26) we have 

 3� = $5 −
��

!�
4&
� 2             (27) 

At the time-step ��, " = 1, 2, … ,�, the values  
for ���,#� = ��,# , ���, for 0 = 0, 1, … ,1 and � = 0, 1,

… ," − 1 are known (in (27) 2 is known).  

6. NUMERICAL EXAMPLES 

Example 4. A very simple approximation of the system 
(25) can be the equation (1) with suitably chosen parameter �. For fixed , = ,#  the nature of the function ��,�, �� will 
be similar to the solution ���� of the system (1). Thus, 
in this paper we will present only the simulation of solu-
tions of equation (1). In the calculations formula (3) and the 
Matlab Gamma function were used.  

Let us consider the system (1). Let �� = 20 (see (3)). 
In Fig. 1 trajectories ���� for � = −1 and 	 = 0,5 (solid 
line), 	 = 1 (dotted line) are shown. In Fig. 2 trajectories ����  for � = −10 and 	 = 1,5 (solid line), 	 = 2  (dotted 
line) are shown.  

 
Fig. 1. Trajectories of the system (1) for � = 0,5 (solid line), 

  � = 1 (dotted line) 

 
Fig. 2. Trajectories of the system (1) for � = 1,5 (solid line), 

  � = 1,2  (dotted line) 

Example 5. Consider the continuous-time fractional diffu-
sion-wave system (18) with initial and boundary conditions 
(19), (20). The solution of the homogeneous boundary 
problem (18), (19), (20) is given by (21). In the calculations 
the Matlab Gamma function and the Matlab Mittag-Leffler 
function (Podlubny and Kacenak 2001) were used. 

Let - = 6 and �� = 40, # = 0,1; ℎ = 0,0314. Let .�,� = sin	(2,). Solutions of the boundary problem (18), 
(19), (20) with 	 = 0,5; 1,0; 1,5; 1,8; 2,0 are shown in Fig. 
3, 4, 5, 6 and 7 respectively. 

 
Fig. 3. Solution of the boundary problem (18)-(20) for � = 0,5  

 
Fig. 4. Solution of the boundary problem (18)-(20) for � = 1,0  

 
Fig. 5. Solution of the boundary problem (18)-(20) for � = 1,5  

 
Fig. 6. Solution of the boundary problem (18)-(20) for � = 1,8  

The calculations were performed on a computer with 
dual-core processor Intel Core 2 Duo (T7500) 2.2 GHz / 
core, 3.5 GB memory. It took approximately 1 hour to ca-
luclate the data for each Figure. 
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Fig. 7. Solution of the boundary problem (18)-(20) for � = 2,0 . 

7. CONCLUDING REMARKS 

In this paper we consider the selection of the fractional 
differential equations. The considerations have been illus-
trated by a numerical examples. The effectiveness of com-
putational algorithms is dependent on the possibility 
of determining the Euler's continuous gamma function and 
depends on the possibility of calculating of the Mittag-
Leffler function ��(�). The function ��(�) was first intro-
duced in 1903 by Mittag-Leffler (Pillai, 1990).  

Some recent interesting results in fractional systems 
theory and its applications in automatic control can be 
found in (Liang et al., 2004; Buslowicz, 2008; Ostalczyk, 
2008; Ruszewski, 2009; Nartowicz, 2011; Sobolewski and 
Ruszewski, 2011). 
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Abstract: The formula for the solution to linear q-difference fractional-order control systems with finite memory is derived. 
New definitions of observability and controllability are proposed by using the concept of extended initial conditions. 
The rank condition for observability is established and the control law is stated.  

1. INTRODUCTION  

Recently the concept of fractional derivatives and dif-
ferences is under strong consideration as a tool in descrip-
tions of behaviors of real systems. In modeling the real 
phenomena authors emphatically use generalizations  
of �-th order differences to their fractional forms and con-
sider the state-space equations of control systems in dis-
crete-time, (e.g. Guermah, Djennoune and Bettayeb, 2008; 
Sierociuk and Dzieliński, 2006). Some problems and spe-
cial attempt to the fractional �-calculus was provided and 
presented in Atici and Eloe (2007). The possible application 
of fractional �-difference was proposed by Ortigueira 
(2008). 

In the generalization of classical discrete-case differ-
ences to fractional-order differences it is convenient to take 
finite summation (see: Kaczorek, 2007; Kaczorek, 2008; 
Guermah, Djennoune and Bettayeb, 2008; Sierociuk and 
Dzieliński, 2006). On the other hand there is no good rea-
son for that. The way we use the fractional difference does 
not introduce any doubt on the initial condition problems 
for fractional linear systems in discrete-case. Moreover, 
what seems to be one of the greatest phenomena in using 
fractional derivatives and differences in systems modeling 
real behaviors is the initialization of systems. In fact the 
initial value problem is an important task in daily applica-
tions. Recently we can find papers dealing with the problem 
how to impose initial conditions for fractional-order dy-
namics, (e. g. Ortigueira and Coito, 2007; Lorenzo and 
Hartley, 2009; Atici and Eloe, 2009). 

In this paper we deal with �-fractional difference con-
trol systems with the initialization by an additional function 
φ	that vanishes on a time interval with infinitely many 
points. In that way we get only finite number of values 
of initializing function � that can be nonzero. We call such 
set, stated as the extended vector, by �-memory. Hence 
a control system is defined together with initializing point 
of time and length of the memory. 

We present the construction of the solution to �-memory 
initial value problem and discuss the observability and 
controllability in s-steps conditions for such system. Some 

results concerning the autonomous linear �-difference frac-
tional-order system with �-memory were presented in Mo-
zyrska and Pawłuszewicz (2010). Although we take 
as initial states the extended vectors for the initial memory, 
we restrict definition of indistinguishability relation 
and observability to those defined for �-steps, similarly 
as it is proposed in Mozyrska and Bartosiewicz (2010). 
We state the problem in the classical way, using the rank of  
observability matrix. For controllability we formulate the 
control law using recursively defined Gramian. 

The paper is organized as follows. In Section 2 the 
foundation of fractional �-derivative is presented and it is 
showed that forward trajectory of linear �-difference frac-
tional order control system with �-memory is uniquely de-
fined. In Section 3 observability problem in finite memory 
domain is stated. Proposition 3.3 gives another, then 
in Mozyrska and Pawłuszewicz (2010), observability rank 
condition. Section 4 presents solution of controllability 
problem in finite memory domain. 

2. FRACTIONAL q-DERIVATIVE AND q-
DIFFERENCE SYSTEMS 

Firstly we recall some basic facts connected with  

q-difference systems. Let � ∈ (0, 1). By  q-difference  
of a function �: R → R we mean (see e.g. Jackson, 1910) 

,
)()(

=)(
tqt

tfqtf
tfq −

−∆  

where � is any nonzero real number.  

Then Δ��� =
����

���
���� and, if 	
�� = � 
����

���
, then 

Δ�	
�� = ∑ 
��� ������

���
�����

��� . In the natural way this leads 

to the problem of solving q-difference equation in � with 
known function �: Δ��
�� = �(�). Detailing with this, last 
equation gives �
�� = (1 − �)� ∑ �	�(


	�� �	�) under the 
assumption of the convergency of the series on the right 
side. 
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Let � ∈ (0, 1) and let α	be any nonzero rational number. 
We need the following �-analogue of �!, introduced in Kac 
and Cheung (2001):  

[ ] [ ] [ ]



⋅⋅−⋅ …⋯ 1,2,=,11

0,=1,
=]![

nifnn

nif
n  

Hence �� + 1�! = ���! [� + 1] for each � ∈ N. Also, 
following the notations in Kac and Cheung (2001), we 

write ��� =
����

���
 and for generalization of the q-binomial 

coefficients  
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Note that: 
1. �1� = 1 but �� + 1� = 1 + � + ⋯ + �� 

and	lim�→�
[�] =
�

���
; 

2. For � ∈ N: lim�→����! = �!; 
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Example 2.1. Let � = � = 0.5. Then the sequence 

(	 








j

α
, � = 1. .4) ≈ (0.586, −0.324, 0.676, −3.358),  

according to computations in Maple package.  
In Ortigueira (2008), the �-difference of fractional order 

is defined by  
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Let us denote �� = 








j

α
(−1)���(���)

� ���
.  Then  
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j
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 It is easy to check that �� = 1. The series on the right 
side of (1) needs the infinite values of the function x(∙). 
But if �(∙) is such that it vanishes besides finite number 
of points, then summation is finite. 

 If s is a natural number or � = 0, and � ∈ �� then let ��
���: = {����:� ∈ Z, � ≤ �}. 
 Let � ∈ ��. By �
:	R → {0, 1} we denote the Heaviside 

step function such that �

�� = 0	for � < α and �

�� =

1	for � ≥ α. Then we can easily deduce the following: 
Proposition 2.2. Let � > 0, � ∈ Z. Let �:	R → R� be any 
function and �
�� = �(�)�

��. Then, 
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where �
�,�� = �[
�� 
��� �

�� �
] and �[�] denotes the integer 

value of �.  

Let � ∈ N ∪ {0}, 	�� = ���, � = ����, �:	R → R�. The 
vector  
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of ordered values of function � on 

��(��), is called a finite �-memory at ��. Observe that  
if � ∈ N ∪ {0} and � ∈ N ∪ {0}, �:� → ��,  then 

 
− �(�, ��,�) ∈ �����	 
− if ��, �� ∈ N ∪ {0}, �� ≥ �� and �� > 0,  

then ���
(��) ⊂ ���

(��) and if ����  is a matrix of the form 
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with the first block of the dimension �� × 	 ��,  
then also .),,(=),,(]0,[ 0102)( 1211

ϕϕ tlMtlMI llnnlnl ⋅−×  

Definition 2.3. Let � ∈ N ∪ {0} and �� > 0, 
 = ���� ∈��(��), �:� → ��. A linear �-difference fractional-order 
time-varying control system with �-memory is a system 
given by the following set of equations, denoted by Σ(φ,l): 

0>),()()()(=)( ttqtuqtBqtxqtAtxq +∆α     (3) 

 ( ) ),(=)( tutx aϕ  0tt ≤      (4) 

 ),()(=)( txtCty          (5) 

where �(∙) ∈ ��×�, �(∙) ∈ ��×�,  (∙) ∈ ��×� are matri-
ces with elements depending on time, and �: �� ↦ �(��) ∈��, � ∈ Z, is any measurable function.  
Remark 2.4. If � → +∞  then ���� → 0 for any �� > 0 
and the vector �(�, ��,�) becomes infinite.  

From equation (1) and (3) we have  
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and �� = !�, while for � > 0: �� = −������, where �� 
is the � × � – identity matrix. Moreover, 
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The idea of the construction given in the next lines fol-
lows from Guermah, Djennoune and Bettayeb (2008). Here 
we extend the construction to �-difference with finite �-
memory. Let us define the following sequence of matrices 
from ��×(����):  
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 and for � ≥ 2:  
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With the sequence "Φ#(
��

��
)$

�∈�∪{�}
 we connect the sequence 

"Φ(
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�∈�∪{�}
 of their sub-matrices in ��×� that we sub-

tract from "Φ#(
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	by the following operation  
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Theorem 2.5. Let � ∈ � ∪ {0} and �� > 0; 
 = ���� ∈��(��), �:� → ��. The solution of the system Σ(φ,l) stated 
in Definition 2.3, corresponding to control � and a memory 
function � is given by values for � ≥ ��:  
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Proof. For the proof we use the mathematical induction 
with respect to � ∈ � ∪ {0}, where � = 	 ��/��. First 
we check steps for � ∈ {1,2}. For � = 1: 
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Similarly for � = 1 holds  
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Using the formula for �(��/�)  we get  
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 Now let us assume that the solution formula holds for 

all t	∈ ��(��), � ∈ %�. Let us take now � = 	 ��/����. 
Hence  
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Using the inductive assumption we get  
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We can also use again inductive assumption for each  
of �(��/��), � = 1, … , � − 1: 
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In the consequence  
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Hence from the mathematical induction the formula 
for solution holds for all � ∈ � ∪ {0}. 
Example 2.6. Let �� = 1, � = 1, � = � = 0,5  

and � = &0 −1

1 0
', � = 	 &1

0
' Let us take also the control �(�) ≡ 1. Then using Maple and formula given in Theorem 

2.5 we can do calculations recursively. In this case we get: 

 






 −
≈Φ

0.08100.4141

00.08110.414
)/(

~
0 qt ,  
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−−−
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0.0630.1141.1621

0.1140.06211.162
)/(

~ 2
0 qt .  

Moreover, as we take � = 1 we need to start memory in 

four dimensional space for �(
���. Let us take �(
��� = )00
1

1

*. 
Hence the initial state is in the origin, while from the mem-

ory we have (1,1). Then �(2) = 	 &1,081

0,081
',  

�(4) = 	 &1,777

1,592
', �(8) = 	 &−0,347

4,234
', �(16) = 	 &−9,109

0,0909
', 

�(32) = 	 & −3,367

−35,612
', �(64) = 	 +205,288

−33,612
,. 

 
 
3. OBSERVABILITY  

IN FINITE MEMORY DOMAIN  

 In this section we recall some facts related to the con-
cept of the observability of linear q-difference fractional 
system with �-memory given by Definition 2.3. The stan-
dard definition of observability says that a system is ob-
servable on time-interval if from the knowledge of the out-
put of a given system we can reconstruct uniquely the ini-
tial condition. As we consider here systems together with 
the extended initial conditions, called  �-memory, we want 
to determine the extended initial condition �(
��� from the 
knowledge of - ≔ {.(��/��), � = 0, … , �}. Hence we need 
to distinguish in our definitions the starting point ��, it is 
the similar situation as for time-varying systems (discrete or 
continuous). For that we use the definition of an �-event as 
a pair 
�, �(� ∈ {��:� ∈ %} × �����, as the idea comes from 
Sontag (1990). 

 Let us consider the linear �-difference fractional-order 
system Σ(φ,l). 
Definition 3.1. Let �, � be any natural number, �� = 	 ��� ∈	{��:� ∈ %} and let ��,�	be  maps from the set {��: � ∈%} ∪ {0} into ��. We say that two �-events (��, �(�), (��, �(�),  
where �(�=�(�, ��,��), �(�=�(�, ��,��), are indistinguish-
able with respect to Σ(φ,l) in �-steps if and only if there 
is a control � such that for all t	∈ ��(��), � ∈ %�,   

,)()(=)()( 21 txtCtxtC        (9) 

where functions ��(∙), ��(∙) are given by (8) and corre-
spond respectively to ��,��. Otherwise, the �-events 
(��,�(�), (��, �(�)  are distinguishable with respect to Σ(φ,l)  
in �-steps.  
Definition 3.2. Let �, � ∈ � ∪ {0}, ��,�:� → ��. We say 
that the system Σ(φ,l) is observable at �� in �-steps if any two �-events (��, �(�), (��, �(�), �(�=�(�, ��,��), �(�=�(�, ��,��),  
are distinguishable with respect to Σ(φ,l) in �-steps.  

Directly from Definition 3.2 follows that the system 
Σ(φ,l)  is observable at �� in �-memory domain in �-steps 
if and only if the initial extended state �(
��� = �(�, ��,�) 
can be uniquely determined from the knowledge  
of  - ≔ {.(��/��), � = 0, … , �}.  

Proposition 3.3. Let �, � ∈ � ∪ {0}. The system Σ(φ,l) 
is observable at �� in �-steps if and only if one of the fol-
lowing conditions holds  
1. the � × � real matrix:  
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2. the matrix Φ(��/��) has linearly independent columns 

for all k ∈ {0, … , s}; 
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Proof. Proof goes in the same manner as in the classical 
linear control theory, see for example Kaczorek (2007). 
Example 3.4. For the system in Example 2.6 we have  /(1, ��	) = & 0 0,414

0,414 1,172
'. Hence system Σ(φ,l=1) is ob-

servable in � = 1 steps, because rank /
1, ��� = 2.  

4. CONTROLLABILITY LAW  

 In the literature one can find many various concepts 
of controllability. In our case is that we start our system  
at �� ∈ ��, not exactly at a point from the set {��: � ∈ %}. 
Definition 4.1. The system Σ(φ,l) is said to be completely  �-memory controllable from �� ∈ �� in �-steps, if for any � = �(�), t	∈ ��(��), and any final value �� ∈ �� there is a 
control � = �(�), t	∈ �_�(��), such that  �(��/��) = ��. 
Definition 4.2. Let �� ∈ �� and � ∈ �. The (�,�) – me-
mory controllability Gramian for the system Σ(φ,l)  
on �_�(��) we define recursively in the sequel  
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Theorem 4.3. Let	�� ∈ �� and � ∈ �. If the matrix /(��/��) is nonsingular, then the control function given 
for � ∈ {1, … , �}   
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Proof. If /(��/��) is nonsingular, then the proof 
is by direct substitution the form of control �0(��/��)  
for � ∈ {1, … , �} to the formula of solution �(��/��).  
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Abstract: The ODS ferritic steel powder with chemical composition of Fe-14Cr-2W-0.3Ti-0.3Y2O3 was mechanically al-
loyed (MA) either from elemental or pre-alloyed powders in a planetary ball mill. Different milling parameters have been 
used to investigate their influence on the morphology and microstructure of the ODS ferritic steel powder. The time of MA 
was optimized by studying the structural evolution of the powder by means of X-ray diffractometry and TEM. In the case 
of elemental powder very small, about 10 µm in diameter, spherical particles with a large surface area have been obtained. 
Flakey-like particles with an average size of about 45 µm were obtained in the case of the pre-alloyed powder. The lattice 
strain calculated from XRD spectra of the elemental and pre-alloyed powders exhibits a value of about 0.51 % and 0.67, re-
spectively. The pre-alloyed powder after consolidation process showed the highest density and microhardness value. 

 

1. INTRODUCTION 

30 years have passed since Benjamin (1970) used a me-
chanical alloying (MA) technique for the first time to syn-
thesize different kinds of materials. The structural and 
chemical changes during MA in a solid state powder are so 
complex that it is difficult to predict particular reaction or 
time needed to obtain final product properties. The MA 
process is commonly used to obtain intermetallic powders 
starting from elemental powder particles and it is one of the 
most popular methods for the production of oxide disper-
sion strengthening (ODS) ferritic steel reinforced with yt-
trium oxide (Y2O3). ODS ferritic steel is candidate material 
for structural applications in future fusion reactors, due to 
their excellent high temperature properties, thermal stability 
and irradiation resistance. Such material can be produced 
using various initial powders, e.g., elemental and/or pre-
alloyed powders as well as milling devices and MA para-
meters (Suryanarayana, 2001). 

The physical and chemical features of the mechanically 
alloyed powders depend on the MA parameters, such as: 
type of ball milling device, linear velocity, type, size and 
number of the balls, the balls-to-powder weight ratio 
(BPR), the milling atmosphere, a process control agent 
(PCA), process temperature and many others (Suryanaraya-
na, 2001; Mukhopadhyay et al., 1998; Cayron et al., 2004;  
Chul-Jin, 2000; Ohtsuka et al., 2005; Patil et al., 2005). 
In spite of plenty of published articles there is still a lack 
of systematic studies comparing morphology, size distribu-
tion and other characteristics of ODS ferritic steel powders 
produced by ball milling method. 

In this paper the microstructural evolution of elemental 
and pre-alloyed ODS ferritic steel powders during MA 
in a planetary ball mill has been studied to obtain the de-
sired solid solution properties. Different ball milling condi-

tions were investigated to establish their influence on the 
morphology and microstructural changes of the ODS ferrit-
ic steel powders. 

2. EXPERIMENTAL PROCEDURE 

Selection of MA methods and conditions was done 
on the basis of a literature survey (Suryanarayana, 2001; 
Mukhopadhyay et al., 1998; Cayron et al., 2004). Commer-
cially pure elemental Fe, Cr, W, Ti and Y2O3 powders 
(more than 99.8% of purity) for the ODS ferritic steel with 
the composition of Fe-14Cr-2W-0.3Ti-0.3Y2O3 (in wt.%) 
were mechanically alloyed in a planetary ball mill equipped 
with stainless steel vials and balls, performed under argon 
or hydrogen atmosphere. Two different BPR’s of: 10:1 and 
20:1 (100 and 200 stainless steel balls with a diameter of 10 
mm) and two different rotation speeds (RS) of 250 rpm and 
350 rpm were used. At selected times a small amount of as-
milled powder was taken out from the milling jar for further 
morphology and microstructure analyses. To minimize air 
contamination of the powder loading and unloading of the 
powder was performed in an argon glove box. The time 
of MA was optimized by studying the structural evolution 
of the powder by means of X-ray diffractometry (XRD), 
in a Siemens D5000 device, using the Cu-Kα radiation 
(λ=0.15406 nm). The crystallite mean size and lattice strain 
were determined by the Williamson-Hall method (Bs cos θ 
= 2(ε)sin θ + kλ/D) [8], where Bs is the full-width at half-
maximum of the diffraction peak (FWHM), θ is the Bragg 
angle, ε is the internal lattice strain λ is the wavelength 
of the X-ray, D is the crystallite size and k is constant 
(k=0.9). Bs can be calculated from; B2

s = B2
m − B2

c, where 
Bs is the peak broadening due to instrumental effect meas-
ured using crystallized LaB6 standard and Bm is the eva-



 

luated width. MA process was conducted until the solute 
elements peaks in X-ray diffraction patterns 

The powders morphology and microstructure were st
died using scanning electron microscopy (SEM
mission electron microscopy (TEM). The etched micr
structure of the powder was observed by means of optical 
microscopy (OM). Chemical analysis of the powders was 
performed using wavelength dispersive X
spectroscopy (WD-XRF) as well as LECO TC
and LECO IR-412 analysers for measurements of O, N
and C contents, respectively. 

After MA the ODS powders were submitted to hot 
tatic pressing (HIP) at the temperature of 1150º C and pre
sure 200 MPa for 4 hours. Density of the specimens after 
compaction was measured by means of Archimedes m
thod. Microhardness measurements were performed 
by using a Vickers diamond pyramid and 
of 0.98N for 15s. Each result is the average of at least 
10 measurements. 

3. RESULTS AND DISCUSSION 

3.1. Morphology and microstructure  
of the ODS powders after MA 

The particles of the as-received elemental ODS ferritic
steel powders appear mostly round in shape, with an ave
age size of about 10 µm (see Fig. 1a). SEM micrographs 
of the particles after MA for 50 h in a planetary ball mill 
with a BPR of 10:1 and RS of 250 rpm are sho
1a. Fig 2 shows changes of the particles size during MA
the early stage of ball milling fast increase in the particle 
size up to 150 µm were observed (see Fig. 2). Further mi
ling, up to 8 h, leads to a significant decreas
size and uniform size distribution. In pr
of MA up to 12 h agglomeration process takes place again
increasing the size of the particles from 10 to 80 µm. 
ever, further prolongation of the milling time
hardening and fracturing of the particles due to fatigue 
failure mechanism. This trend, gradual refining of the 
powder, was observed up to 40 h of MA. From 40 to 50 h 
of MA a small variation of particle size can be observed 
probably due to the equilibrium state between frac
and welding of the particles. Finally, after 50 h of MA, 
about 10 µm in diameter and homogenous particles were 
obtained. 

It was also observed that by increasing the rotation 
speed from 250 to 350 rpm the milling time was
from 50 up to 42 h. When a BPR of 20:1 and a RS
were applied the time of formation of a solid solution d
creases up to 22 h. SEM observations of the elemental ODS 
powders (see Fig. 1) revealed that varying the milling
rameters: BPR, RS or milling atmosphere (arg
gen), no significant changes in the morphology of the ODS 
powders were achieved and about 10 µm in diameter pa
ticles were produced. However, a higher C content (about 
20%) was detected in the powder using higher BPR of 20:1 
and about 20% of oxygen content was reduced after using 
hydrogen atmosphere (see Table 1). 
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Fig. 1. Morphology of the ODS powder particles: a) as

elemental powder, b) elemental powder MA for 50 h 
in argon, BPR 10:1, c) elemental powder MA for 22 h 
in argon, BPR 20:1, and d) pre
for 20 h in hydrogen, BPR 10:1
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Fig. 2. Particle size distribution of the elemental ODS powder 
during MA in the planetary ball mill for 50 h

Table 1. Chemical composition (in wt
2W-0.3Ti-0.3Y2O3 elemental and pre
after MA in the planetary ball mill

Chemical content, wt.%
Conditions C Cr 

As-
received  

0.078 14.1 

Elemental, 
MA in Ar 
for 50 h 

0.088 13.7 

Elemental, 
MA in H2 
for 42 h 

0.067 13.7 

Pre-
alloyed, 
H2, 20 h 

0.043 13.5 

It is well known that the MA technique yields contam
nation of the milled powder, which substantially alters 
the nature of the particles and therefore cha

10µ  
 

acta mechanica et automatica, vol.5 no.2(2011) 

75 

 b  

 d  
Morphology of the ODS powder particles: a) as-received 
elemental powder, b) elemental powder MA for 50 h  

10:1, c) elemental powder MA for 22 h  
in argon, BPR 20:1, and d) pre-alloyed powder MA  
for 20 h in hydrogen, BPR 10:1 

20 30 40 50

Time of MA, h

 Elemental ODS powder

 
Particle size distribution of the elemental ODS powder 
during MA in the planetary ball mill for 50 h in argon 

Chemical composition (in wt.%) of the ODS Fe-14Cr-
elemental and pre-alloyed powders  

r MA in the planetary ball mill 

ontent, wt.% 
W Ti Y O 

1.96 0.31 0.23 0.338 

1.84 0.26 0.21 0.482 

1.80 0.25 0.28 0.372 

1.92 0.33 0.25 0.175 

It is well known that the MA technique yields contami-
powder, which substantially alters 

nature of the particles and therefore changes the final 
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properties of a bulk material (Mukhopadhyay et al., 1998; 
Ohtsuka et al., 2005). The data in Table 1 show
un-milled ODS powder contains a high oxygen c
(0.338 wt.%) and after MA in a high purity argon atmo
phere (99.9999 wt.%) an oxygen content of 0.482 wt.% 
measured. The amounts of such elements 
and Si also increased due to the contamination coming from 
the grinding media. 

To reduce oxygen and carbon content MA
with application of a pre-alloyed, gas-atomised
2W powder with 0.3%Y2O3 and 0.3%Ti was performed
The MA process was carried out up to 20 h under
hydrogen atmosphere using BPR 10:1 and rotation sp
350 rpm. Fig. 1d shows SEM image of the pre
powder after ball milling. According to the SEM observ
tions the pre-alloyed powder, in comparison with the el
mental one, exhibits more than 4 times larger 
an average size of about 45µm, however, C and O content 
is significantly lower. 

Optical micrographs of the etched elemental powder a
ter MA for different milling times revealed that during 
the initial stage of milling (up to 10 hrs) a typical lamellar 
microstructure was observed (Fig 3a). Prolongation of the 
MA time caused refinement of the lamellas. F
contrasts as well as cracks that initiate break down of the 
particles are observed. After MA (Fig. 3b), the powder 
consists of a huge number of an agglomerated 
which form featureless image what may suggest that the 
particles exhibit nano-sized grains. 

a b
Fig. 3. Microstructure of the elemental powder MA in

a) 10 h and b) 50 h 

a b
Fig. 4. Bright-field TEM images of: a) elemental ODS powder 

MA in argon, and b) pre-alloyed ODS powder MA 
in hydrogen 

Figs. 4a and 4b show TEM images of elemental 
and pre-alloyed ODS powders after mechanical alloying 
under argon and hydrogen atmosphere and using the same 

10 µ 
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alloyed ODS powder MA  

Figs. 4a and 4b show TEM images of elemental 
ers after mechanical alloying 

using the same 

milling conditions (BPR=10:1, RS=
vations indicate that both powders have a strongly d
formed and nano-sized microstructure and no yttria pa
ticles. However, some differences of the mi
also observed. The elemental powder has equiaxed nano
sized grains whereas elongated (textured) in
parallel to the surface of the particle grains are observed in 
the case of pre-alloyed powder. It can also be notice
was difficult to estimate the nano
of clearly visible grain boundaries. Thus
ray diffraction tests of the powders will be
next section 3.2. 

3.2. XRD analysis of the ODS powders

X-ray diffraction patterns of the ODS elemental and 
pre-alloyed powders MA in the planetary ball mill are 
shown in Figs. 5 and 6, respectively
of MA (2 h), in the case of elemental powder, the peaks 
of Y2O3 and the other solute 
pletely and XRD pattern exhibits major
(see Fig. 5). With increasing the milling time the intensity 
of Fe and W peaks decreases and its width increases due to 
a reduction of the crystallite size and increase in the defo
mation level of the particles. Aft
of the W peak disappears completely suggesting that MA 
process is accomplished. 

Fig. 5. XRD plots of the elemental powder MA 
in the planetary ball mill up to 50 h in argon

Fig. 6. XRD plots of the pre-alloyed powder MA 
in planetary ball mill up to 20 h in hydrogen

♦ 

° ° 

(BPR=10:1, RS=350 rpm). TEM obser-
powders have a strongly de-

sized microstructure and no yttria par-
. However, some differences of the microstructure are 

mental powder has equiaxed nano-
sized grains whereas elongated (textured) in the direction 
parallel to the surface of the particle grains are observed in 

alloyed powder. It can also be noticed that it 
the nano-grain size, due to the lack 

visible grain boundaries. Thus, results of the X-
the powders will be presented in the 

3.2. XRD analysis of the ODS powders 

ray diffraction patterns of the ODS elemental and 
alloyed powders MA in the planetary ball mill are 

, respectively. After very short time 
of MA (2 h), in the case of elemental powder, the peaks 

solute elements disappeared com-
pattern exhibits major α-Fe and W peaks 

(see Fig. 5). With increasing the milling time the intensity 
of Fe and W peaks decreases and its width increases due to 
a reduction of the crystallite size and increase in the defor-
mation level of the particles. After 50 h of ball milling 

the W peak disappears completely suggesting that MA 

 
XRD plots of the elemental powder MA  
in the planetary ball mill up to 50 h in argon 

 
alloyed powder MA  

in planetary ball mill up to 20 h in hydrogen 

*  *  *  
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Also XRD examinations of the pre-alloyed powder (see 
Fig. 6) revealed that after 1 h of MA the peaks of Y2O3 
and Ti disappeared what suggests that Y2O3 particles were 
completely dissolved in the ODS steel matrix. It seems 
highly probable, however, that yttria could still remain 
as a small particles incorporated deeper into the steel ma-
trix, and as a consequence, could give a weaker X-ray sig-
nal than from the yttria particles lying on the surface of the 
ODS powder. This is due to the limited penetration depth 
of the X-rays into the material described in literature (Culli-
ty, 1965). Hence, MA process of the pre-alloyed powder 
was continued up to 20 h to ensure homogenous incorpora-
tion of the Y2O3 particles in the ODS steel powder. 

Detailed analysis of the XRD spectra indicates that dur-
ing MA the main [110] α-Fe peak is gradually broadened  
and shifted towards lower 2θ angle values. This indicates an 
increase in solid solubility of the solute elements in the α-
Fe matrix, an increase in the lattice strain as well as the 
gradual reduction of the crystallite size as it was confirmed 
in Figs. 7 and 8. In the early stage of MA a rapid decrease 
in the crystallite size to about 40 nm was observed (Fig. 7). 
Further ball milling proceeds relatively slowly and finally 
elemental and pre-alloyed powders reach an average crys-
tallite size about 35 and 32 nm, respectively. These results 
are not consistent with TEM observations presented in Fig. 
4. However, it is well known (Suryanarayana, 2001) that 
TEM reveals grain size images, whereas the X-ray tech-
nique gives information about an average crystallite size 
defined as coherently diffracted domain. 

 
Fig. 7. Crystallite size plotted as a function of the milling time 

 
Fig. 8. Lattice strain vs. MA time of elemental  

and pre-alloyed powders 

Fig. 8 shows the lattice strain value of the ODS powd-
ers, calculated from XRD data, and both milled using the 
same milling conditions. These results indicate that a higher 

about 30% lattice strain exhibits pre-alloyed powder. 
This is probably due to an initial solid solution streng-

thening effect of the pre-alloyed powder. On the contrary, 
smaller and more reactive elemental powder particles may 
undergo faster recovery process, and as a consequence, 
a lower internal strain can be measured (Hwang, 2001). 
Nevertheless, both powders demonstrate similar trends, 
the lattice strain increase and crystallite size decrease with 
the milling time prolonging and after a certain period 
of milling a steady state is reached. 

3.3. HIPping of the ODS powders 

Following MA, the consolidation process was carried 
out under a pressure of 200 MPa at a temperature of 1150° 
C for 4 h. The results of microhardness and apparent densi-
ty of the specimens after HIPping are summarized  
in Tab. 2. 

The obtained in Table 2 results indicate that the highest 
density and microhardness value has the pre-alloyed powd-
er mechanically alloyed in hydrogen. On the contrary, 
the lowest density has the material consolidated from ele-
mental powder MA in argon. This is a consequence of the 
highest impurities content measured in the elemental powd-
er after milling which can not be reduced during further 
degassing and HIPping process. 

Tab. 2. Microhardness and density results of the ODS ferritic steel 
specimens after MA in different atmospheres and HIPped 
under a pressure of 200 MPa at 1150° C for 4 h 

As-HIPped 
Elemental, MA  

42 h, argon 
Elemental, MA 

42 h, H2 
Pre-alloyed, 
MA 20 h, H2  

µHV0.1 410±21 345±14 425±17 
Apparent den-

sity, % 
99.20*  99.52*  99.78* 

* Apparent density=specimen density/theoretical density of an ODS ferrit-
ic steel (theoretical density=7.84 g/cm3) 

These results also reveal that the parameters of HIPping 
process were suitable to produce almost fully dense ODS 
ferritic steel material. 

4. CONCLUSIONS 

On the basis of the results the following conclusions can 
be drawn: 
1. There are significant differences in the morphology 

of the elemental and pre-alloyed powders after MA. 
About four times smaller particle were obtained after 
ball milling of the elemental powder whereas, larger 
and flakey-like particles were observed in the case 
of pre-alloyed powder. 

2. An increase in the parameters of MA process yields 
a decrease in the time of milling, however, no signifi-
cant changes in the morphology of particles have been 
observed. 

3. The average crystallite size of about 35 nm, estimated 
from XRD spectra, was found comparable for both 
powders. However, in the case of pre-alloyed powder 
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TEM observations revealed elongated up to 100 nm 
nano-grains what is not in a good accordance with XRD 
results. 

4. MA under argon atmosphere resulted in an increase  
of the O content which had detrimental influence  
on the density of the bulk material after HIPping. 

5. It was found that the highest density and microhardness 
value was achieved when pre-alloyed powder was 
consolidated. 
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Abstract: This paper presents methods of calculating fractional differ-integrals numerically. We discuss extensively the pros 
and cons of applying the Riemann-Liouville formula, as well as direct approach in form of The Grünwald-Letnikov method. 
We take closer look at the singularity, which appears when using classical form of Riemann-Liouville formula. To calculate 
Riemann-Liouville differ-integral we use very well-known techniques like The Newton-Cotes Midpoint Rule. We also use 
two Gauss formulas. By implementing transformation of the core integrand of Riemann-Liouville formula (we called it “the 
inverse transformation”), we would like to point the possible way of reducing errors when calculating it. The core of this pa-
per is the subject of reducing the absolute error when calculating Riemann-Liouville differ-integrals of some elementary 
functions; we use our own C++ programs to calculate them and compare obtained results of all methods with, where possible, 
exact values, where not – with values obtained using excellent method of integration incorporated in Mathematica. We will 
not discuss complexity of numerical calculations. We will focus solely on minimization of the absolute errors. 

1. INTRODUCTION 

Fractional calculus is playing recently a major role 
in many scientific areas. The fractional-order derivative 
(FOD) or integral (FOI) are natural extensions of the well-
known derivatives and integrals. This generalisation ena-
bles better physical phenomena identification (Oustaloup 
et al., 2005; Sabatier et al., 2007), analysis (Carpinteri and 
Mainardi, 1997; Chen et al., 2004; Kilbas et al., 2006; 
Michalski, 1993; Miller and Ross, 1993; Nishimoto, 1984, 
1989, 1991, 1996; Oldham and Spanier, 1974; Oustaloup, 
1995; Samko et al., 1993) and control (Machado, 2001, 
Ostalczyk, 2000, 2003a, b; Oustaloup, 1984). But there are 
still problems in numerical evaluation of the fractional-
order derivatives or integrals (Deng, 2007; Diethelm, 1997; 
Gorenflo, 2001; Lubich, 1986; Mayoral, 2006; Podlubny, 
1999; Schmidt and Amsler, 1999; Tuan and Gorenflo, 
1995). In this paper several numerical methods applied 
to FOD/FOI calculation are compared, due to its accuracy. 
Appropriate conclusions and remarks are derived. 

The paper is organised as follows. Firstly basic defini-
tions of FOD and FOI are given. In Section 3 short review 
of numerical methods used in calculation of the improper 
integrals is given. Section 4 presents functions subjected 
to the fractional differentiation and integration. In Section 5 
main results are presented. Finally, the conclusions 
are given. 

2. MATHEMATICAL PRELIMINARIES 

There are several formulas, which can be used to calcu-
late differ-integrals numerically. One of them is Grünwald-
Letnikov and second one Riemann-Liouville, formula (Os-
talczyk, 2000; Podlubny, 1999; Samko et al., 1993). They 

distinct from each other in one main way: Grünwald-
Letnikov formula derives from differential quotient 
and Riemann-Liouville from multiple integrals. 

This paper shows the pros and cons of applying the 
Riemann-Liouville formula. Also, the ideas how to reduce 
absolute errors when calculating it numerically. The Grün-
wald-Letnikov formula is used for comparing purposes 
only. The accuracy reached by this method as reference.   

2.1. The Grünwald-Letnikov formula  
of a fractional-order differ-integral (GrLet) 

The derivative of a real order � > 0 (for the integral we 
use order -� < 0 ) of a continuous bounded function �(�)  
is defined as follows 
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2.2. The Riemann-Liouville formula  
of a fractional-order differ-integral (RL) 

The definite Riemann-Liouville integral of the real 
function �(�)  of the � > 0 order is defined as follows: 
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where:	��, � −	integration range, which comply with the 
condition −∞ < �� < � < ∞, Γ(�) −	Euler’s Gamma fun-
ction. 

Before we define the Riemann-Liouville derivative, we 
have to describe natural number �, which comply with the 
condition:  

 

[ ] .1+= νn  (4) 
 

� also denotes an order of classical derivative. 
The Riemann-Liouville derivative of the real function 

�(�) of the � > 0 order is defined as follows: 
 

( ) ( ) ( )( )
( )

( ) ( ) ( )( )∫

∑

−−

−

=

−

−
−Γ

+

+
−+Γ

−
=

t

t

nn

n

i

ii

tt

dft
n

i

tftt
tfD

0

0

1

1

0

00

1

1

τττ
ν

ν

ν

ν
ν

 (5) 

3. SHORT REVIEW OF FUNDAMENTAL 
METHODS OF NUMERICAL INTEGRATION 
AND TESTED FUNCTIONS 

In the process of calculating differ-integrals it is neces-
sary to calculate a value of the definite integral over the 
range [��, �]. Usually it is interpolated with the following 
formula 
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The right side of the equation is called quadrature, 
in which �� −	denotes quadrature nodes, �� −	quadrature 
coefficients (weights), � −	number of intervals in interpola-
tion and � −	the remainder.  

The above formula is shared by all quadratures. The dif-
ference lies in the algorithms of calculating their nodes and 
coefficients. 

We used following formulas to calculate differ-
integrals: 
− Riemann-Liouville differ-integral (RL); 
− Modified Riemann-Liouville differ-integral via men-

tioned at the beginning – inverse transformation (mRL). 
Additionally we use Grünwald-Letnikov differ-integral 

formula (GrLET). 
Our C++ programs which were developed especially 

for the purpose of this experiment used following methods 
of numerical integration while applying formulas (RL, 
mRL): 
− Newton-Cotes quadrature, Midpoint Rule (NCM); 
− Gauss-Legendre quadrature (GaLEG); 
− Gauss-Laguerre quadrature (GaLAG). 

We have chosen three basic functions 
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is the Heaviside function. For functions (7) we calculate 
two types of expressions: 	�� �

��(�) and 
�� �
��(�). In Tab. 1 

different methods specifications are collected. 

Tab. 1. Important parameters used in integration rules 

Method 
/weight 
function 
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Our goal was to figure out how the methods will per-
form when using the smallest, arbitral chosen, number 
of sample points: 

For the method GrLET and NCM we used 
L=4,8,16,24,32,100,300 and 600 intervals.  

For both Gauss methods – L=4,8,16,24 and 32 intervals 
only.  

It is widely known, that number of L greater than 30-40 
for the Gauss methods often causes the error rise rapidly. 
Sometimes 100% and more! That’s why you will encounter 
empty fields in all tables with results for these methods.  

4. THE INVERSE TRANSFORMATION (mRL) 
EXPLAINED 

As we remember the Riemann-Liouville differ-integral 
formula includes improper integral which has singularity 
at end of the integration range. For example for t=1: 

� (1 − �)���������
�

�
. The variable changes 1 − � = 1/��, 

� = 1, 2, 3, … and � − 1 = 	 convert the improper integral 
into one, that, after extracting weight function 
��� = ��� 
can then be calculated by the Gauss-Laguerre quadrature 
formula � ���������

�

�
, which were developed to deal with 

such problems.  
Yet more: with the parameter �	we can control the con-

vergence of the integrand, which plays major role when 
obtaining best results while the order of differ-integral 
changes. As you will notice further, there exists very close 
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relation between order of differ-integral and the value 
of parameter �. We will use it to our advantage. 

5. THE TEST RESULTS 

First 
�� �

��(�) of function ���� = ��1��� = 1(�),  
for  � ∈ �1, 1�, � = 0.2, 0.5, 0.8 using modified Riemann-
Liouville differ-integral formula via mRL  
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was evaluated. The results are presented in Tab. 2a – 2c. 
Related absolute errors are plotted in Figs. 1a – 1c 

Tab. 2a. Obtained values of absolute error for  � = 0.2 

L RL NCM RL GaLEG GrLET mRL GaLAG 

4 5.427e-01 4.587e-01 2.206e-02 4.822e-02 

8 4.725e-01 3.557e-01 1.097e-02 4.529e-03 

16 4.114e-01 2.729e-01 5.465e-03 1.297e-04 

24 3.794e-01 2.330e-01 3.639e-03 1.417e-05 

32 3.582e-01 2.081e-01 2.728e-03 1.076e-10 
100 2.852e-01 - 8.718e-03 - 

300 2.289e-01 - 2.905e-04 - 

600 1.993e-01 - 1.452e-04 - 

Tab. 2b. Obtained values of absolute error for � = 0.5 

L RL NCM RL GaLEG GrLET mRL GaLAG 

4 1.699e-01 1.039e-01 3.463e-02 6.951e-02 

8 1.205e-01 5.781e-02 1.748e-02 7.111e-03 

16 8.527e-02 2.977e-02 8.780e-03 1.909e-04 

24 6.964e-02 2.005e-02 5.861e-03 1.096e-05 

32 6.032e-02 1.511e-02 4.399e-03 9.725e-10 
100 3.413e-02 - 1.410e-03 - 

300 1.970e-02 - 4.701e-04 - 

600 1.393e02 - 2.351e-04 - 

Tab. 2c. Obtained values of absolute error for �=0.8 

L RL NCM RL GaLEG GrLET mRL GaLAG 

4 3.048e-02 1.439e-02 2.070e-02 6.501e-02 

8 1.765e-02 5.183e-03 1.055e-02 6.162e-03 

16 1.017e-02 1.792e-03 5.321e-03 1.771e-04 

24 7.362e-03 9.516e-04 3.558e-03 1.033e-05 

32 5.852e-03 6.054e-04 2.672e-03 2.545e-10 
100 2.354e-03 - 8.577e-03 - 

300 9.777e-04 - 2.862e-04 - 

600 5.615e-04 - 1.431e-04 - 

In Tab. 3 optimal values of �	as functions of orders 
are presented. Convergence of modified integrands – Fig. 2. 
 

 
Fig. 1a. Values of absolute error for � = 0.2 

 
Fig. 1b. Values of absolute error for � = 0.5 

 
Fig. 1c. Values of absolute error for �=0.8 

Tab. 3. Lowest values of absolute error obtained for optimal 
values of � depending on �	(mRL GaLAG) 

� � = 0.2 � = 0.5 �=0.8 

12.95 1.076e-08 4.591e-05 6.842e-04 

5.97 3.171e-03 9.725e-10 7.705e-06 

3.71 2.975e-02 1.020e-04 2.545e-09 
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Fig. 2. Convergence of integrand (9) for optimal values  
of � depending on �	(mRL GaLAG) 

Next similar integrals are obtained for function 
 ���� = ��1��� for  � ∈ �0, 1�, � = 0.2, 0.5, 0.8. This time 
a modified Riemann-Liouville differ-integral formula via 
mRL assumes the form 
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The results are presented in Tabs. 4a – 4c and related 
plots are included in Figs. 3a – 3c. 

Tab. 4a. Obtained values of absolute error for � = 0.2 

L RL NCM RL GaLEG GrLET mRL GaLAG 

4 5.442e-01 4.592e-01 2.608e-02 6.521e-02 

8 7.339e-01 3.558e-01 1.332e-02 1.380e-02 

16 4.118e-01 2.729e-01 6.734e-02 6.505e-04 

24 3.796e-01 2.330e-01 4.505e-02 2.389e-05 

32 3.583e-01 2.081e-01 3.385e-03 9.019e-07 
100 2.852e-01 - 1.087e-03 - 

300 2.289e-01 - 3.628e-04 - 

600 1.993e-01 - 1.815e-04 - 

Tab. 4b. Obtained values of absolute error for � = 0.5 

L RL NCM RL GaLEG GrLET mRL GaLAG 

4 1.735e-01 6.806e-02 6.806e-02 8.860e-02 

8 1.218e-01 5.790e-02 3.463e-02 2.299e-03 

16 8.576e-01 2.972e-02 1.747e-02 1.406e-03 

24 6.991e-01 2.005e-02 1.168e-02 7.497e-04 

32 6.050e-01 1.512e-02 8.775e-03 8.816e-07 
100 3.416e-01 - 2.816e-03 - 

300 1.971e-01 - 9.399e-04 - 

600 1.393e-01 - 4.700e-04 - 

 

Tab. 4c. Obtained values of absolute error for � = 0.8 

L RL NCM RL GaLEG GrLET mRL GaLAG 

4 3.237e-02 1.459e-02 1.055e-01 9.402e-02 

8 1.826e-02 5.203e-03 5.320e-02 4.341e-02 

16 1.036e-02 1.793e-03 1.036e-02 5.540e-03 

24 7.459e-03 9.521e-04 1.784e-02 5.880e-04 

32 5.911e-03 6.056e-04 1.339e-02 1.202e-06 
100 2.362e-03 - 4.292e-03 - 

300 9.789e-04 - 1.431e-03 - 

600 5.619e-04 - 7.157e-04 - 

 
Fig. 3a. Values of absolute error for � = 0.2 

 
Fig. 3b. Values of absolute error for � = 0.5 

 
Fig. 3c. Values of absolute error for � = 0.8 
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In Tab. 5 optimal values of �	as functions of orders are 
presented. Convergence of modified integrands – Fig. 4. 

Tab. 5. Lowest values of absolute error obtained for optimal 
values of � depending on �	(mRL GaLAG) 

α  2.0=ν  5.0=ν  8.0=ν  

9.090 1.202e-06 1.112e-03 3.591e-03 

4.341 1.604e-02 8.816e-07 5.725e-05 

2.900 6.567e-02 8.919e-04 9.019e-07 

 
Fig. 4. Convergence of integrand (10) for optimal values   

  of � depending on �	(mRL GaLAG) 

Tab. 6a. Obtained values of absolute error for � = 0.2 

L RL NCM RL GaLEG GrLET mRL GaLAG 

4 5.463e-01 4.579e-01 4.493e-02 8.935e-02 

8 4.742e-01 5.222e-01 2.258e-02 5.645e-03 

16 4.121e-01 1.795e-01 1.132e-02 9.926e-03 

24 3.798e-01 9.529e-01 7.551e-03 3.905e-03 

32 3.585e-01 6.057e-01 1.088e-03 1.330e-03 
100 2.853e-01 - 1.814e-03 - 

300 2.290e-01 - 6.050e-04 - 

600 1.993e-01 - 3.025e-04 - 

Tab. 6b. Obtained values of absolute error for � = 0.5 

L RL NCM RL GaLEG GrLET mRL GaLAG 

4 1.789e-01 1.106e-01 9.550e-02 9.566e-02 

8 1.236e-01 5.800e-02 4.740e-02 3.233e-03 

16 8.638e-01 2.980e-02 2.360e-02 6.917e-03 

24 7.024e-01 2.006e-02 1.571e-02 1.623e-03 

32 6.071e-01 1.512e-02 1.178e-02 3.450e-04 
100 3.420e-01 - 3.764e-03 - 

300 1.972e-01 - 1.254e-03 - 

600 1.394e-01 - 6.269e-04 - 

Finally we calculate 
�� �

��(�) of function ���� = �	1��� 
for  � ∈ �0, 1�, � = 0.2, 0.5, 0.8. The modified Riemann-
Liouville differ-integral formula via mRL assumes the form 
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The results are presented in Tab. 6a – 6c and related 
plots are included in Figs. 5a – 5c. In Tab. 7 optimal values 
of �	as functions of orders are presented. Convergence 
of modified integrands – Fig. 10. 

Tab. 6c. Obtained values of absolute error for � = 0.8 

L RL NCM RL GaLEG GrLET mRL GaLAG 

4 3.819e-02 1.480e-02 1.255e-01 2.393e-02 

8 1.986e-02 5.222e-03 6.121e-02 8.463e-03 

16 1.081e-02 1.795e-03 3.021e-02 1.875e-03 

24 7.667e-03 9.529e-04 2.006e-02 2.769e-04 

32 6.033e-03 6.057e-04 1.501e-02 4.059e-05 
100 2.377e-03 - 4.782e-03 - 

300 9.808e-04 - 1.592e-03 - 

600 5.624e-04 - 7.956e-04 - 

 
Fig. 5a. Values of absolute error for � = 0.2 

 
Fig. 5b. Values of absolute error for � = 0.5 
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Fig. 5c. Values of absolute error for � = 0.8 

Tab. 7. Lowest values of absolute error obtained for optimal 
values of � depending on �(mRL GaLAG) 

να /  0.2 0.5 0.8 

7.91 1.330e-03 3.238e-03 6.127e-03 

5.05 8.027e-03 3.640e-04 8.272e-04 

2.90 6.564e-02 9.081e-04 4.059e-05 

 
Fig. 6. Convergence of integrand (11) for optimal values  

  of � depending on �	(mRL GaLAG) 

Now a problem of the fractional derivative ��� �

��(�) 
of function ���� = ��1��� for  � ∈ �0, 1�, � = 0.2, 0.5, 0.8 
is considered. We assume ��0� = 1 and calculate 
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Then the modified Riemann-Liouville differ-integral 
formula via mRL takes the form 
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One can realize that the above value depends, in this 
case solely on accuracy of the inverse gamma function. The 
obtained results are presented in Tabs. 8a – 8c and related 
plots are included in Figs. 7a – 7c. 

Tab. 8a. Obtained values of absolute error for � = 0.2 

L RL NCM RL GaLEG GrLET mRL GaLAG 

4 0.0 0.0 2.777e-02 0.0 
8 0.0 0.0 1.377e-02 0.0 
16 0.0 0.0 6.562e-03 0.0 
24 0.0 0.0 4.348e-03 0.0 
32 0.0 0.0 3.251e-03 0.0 
100 0.0 - 1.034e-03 - 

300 0.0 - 3.439e-04 - 

600 0.0 - 1.718e-04 - 

Tab. 8b. Obtained values of absolute error for � = 0.5 

L RL NCM RL GaLEG GrLET mRL GaLAG 

4 0.0 0.0 6.081e-02 0.0 
8 0.0 0.0 2.829e-02 0.0 
16 0.0 0.0 1.376e-02 0.0 

24 0.0 0.0 9.011e-03 0.0 
32 0.0 0.0 6.721e-03 0.0 
100 0.0 - 2.127e-03 - 

300 0.0 - 7.065e-04 - 

600 0.0 - 3.529e-04 - 

Tab. 8c. Obtained values of absolute error for � = 0.8 

L RL NCM RL GaLEG GrLET mRL GaLAG 

4 0.0 0.0 4.894e-02 0.0 
8 0.0 0.0 2.177e-02 0.0 
16 0.0 0.0 1.031e-02 0.0 
24 0.0 0.0 6.758e-03 0.0 
32 0.0 0.0 5.026e-03 0.0 
100 0.0 - 1.581e-03 - 

300 0.0 - 5.242e-04 - 

600 0.0 - 2.617e-04 - 

 

 
Fig. 7a. Values of absolute error for � = 0.2 
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Fig. 7b. Values of absolute error for � = 0.5 

 
Fig. 7c. Values of absolute error for � = 0.8 

Tab. 9a. Obtained values of absolute error for � = 0.2 

L RL NCM RL GaLEG GrLET mRL GaLAG 

4 3.048e-02 1.439e-02 2.070e-02 6.501e-02 

8 1.765e-02 5.183e-03 1.055e-02 6.616e-03 

16 1.017e-02 1.792e-03 5.321e-03 1.771e-04 

24 7.362e-03 9.516e-04 3.558e-03 1.033e-05 

32 5.852e-03 6.054e-04 2.672e-03 2.545e-09 
100 2.354e-03 - 8.577e-04 - 

300 9.776e-04 - 2.862e-04 - 

600 5.615e-04 - 1.431e-04 - 

Tab. 9b. Obtained values of absolute error for � = 0.5 

L RL NCM RL GaLEG GrLET mRL GaLAG 

4 1.699e-01 1.093e-02 3.463e-02 7.006e-02 

8 1.205e-01 5.781e-02 1.748e-02 7.148e-03 

16 8.527e-02 2.977e-02 8.780e-03 1.932e-04 

24 6.964e-02 2.005e-02 5.861e-03 1.103e-05 

32 6.032e-02 1.511e-02 4.399e-03 3.353e-08 
100 3.413e-02 - 1.410e-03 - 

300 1.970e-02 - 4.700e-04 - 

600 1.393e-02 - 2.350e-04 - 

Tab. 9c. Obtained values of absolute error for � = 0.8 

L RL NCM RL GaLEG GrLET mRL GaLAG 

4 5.424e-01 4.587e-01 2.206e-02 4.781e-02 

8 4.725e-01 3.557e-01 1.097e-02 4.483e-03 

16 4.114e-01 2.729e-01 5.465e-03 1.293e-04 

24 3.794e-01 2.330e-01 3.639e-03 1.452e-05 

32 3.582e-01 2.081e-01 2.728e-03 4.105e-08 
100 2.852e-01 - 8.718e-04 - 

300 2.289e-01 - 2.905e-04 - 

600 1.993e-01 - 1.452e-04 - 

Next similar derivative is obtained for function  
���� = ��1��� for  � ∈ �0, 1�, � = 0.2, 0.5, 0.8. Under 
a condition (12) modified Riemann-Liouville differ-integral 
formula via mRL assumes the form 
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The obtained results are presented in Tabs. 9a – 9c and 
related plots are included in Figs. 8a – 8c. In table 10 opti-
mal values of �	as functions of orders are presented. Con-
vergence of modified integrands – Fig. 9. 

 
Fig. 8a. Values of absolute error for � = 0.2 

 
Fig. 8b. Values of absolute error for � = 0.5 
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Fig. 8c. Values of absolute error for � = 0.8 

Tab. 10. Lowest values of absolute error obtained for optimal  
  values of � depending on �		(mRL GaLAG) 

α  2.0=ν  5.0=ν  8.0=ν  

12.90 6.691e-04 4.489e-05 4.101e-08 
6.000 7.922e-06 3.353e-08 3.077e-03 

3.710 2.545e-09 1.020e-04 2.975e-02 

 
Fig. 9. Convergence of integrand (14) for optimal  

 values of � depending on �		(mRL GaLAG) 

  Finally we calculate ��� �

��(�) of function ���� = �	1��� 
for  � ∈ �0, 1�, � = 0.2, 0.5, 0.8.	Then under the condition 
(12) modified Riemann-Liouville differ-integral formula 
via mRL assumes the form 
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The obtained results are presented in Tabs. 11a – 11c 
and related plots are included in Figs. 10a – 10c. In Tab. 12 
optimal values of �	as functions of orders are presented. 

Convergence of modified integrands – Fig. 11. 

Tab. 11a. Obtained values of absolute error for � = 0.2 

L RL NCM RL GaLEG GrLET mRL GaLAG 

4 6.473e-02 2.918e-02 5.225e-02 1.804e-01 

8 3.651e-02 1.041e-02 2.648e-02 2.759e-02 

16 2.073e-02 3.587e-03 1.133e-02 1.031e-03 

24 1.492e-02 1.094e-03 8.907e-03 4.778e-05 

32 1.182e-02 1.211e-03 6.688e-03 1.844e-06 
100 4.724e-03 - 2.145e-03 - 

300 1.958e-03 - 7.155e-04 - 

600 1.124e-03 - 3.578e-04 - 

Tab. 11b. Obtained values of absolute error for � = 0.5 

L RL NCM RL GaLEG GrLET mRL GaLAG 

4 3.469e-01 2.198e-01 1.373e-01 1.772e-01 

8 2.436e-01 1.158e-02 6.960e-02 4.600e-02 

16 1.715e-01 5.957e-02 3.503e-02 2.813e-03 

24 1.398e-01 4.011e-02 2.341e-02 1.502e-04 

32 1.210e-01 3.023e-02 1.757e-02 1.736e-06 
100 6.832e-02 - 5.363e-03 - 

300 3.942e-02 - 1.880e-03 - 

600 2.787e-02 - 9.402e-04 - 

Tab. 11c. Obtained values of absolute error for � = 0.8 

L RL NCM RL GaLEG GrLET mRL GaLAG 

4 1.880e-00 9.183e-01 2.146e-01 1.833e-01 

8 9.466e-01 7.117e-01 1.081e-01 8.234e-02 

16 8.235e-01 5.458e-01 5.426e-02 1.002e-02 

24 7.592e-01 4.659e-01 3.622e-02 9.573e-04 

32 7.166e-01 4.161e-01 2.718e-02 1.573e-06 
100 5.704e-01 - 8.708e-03 - 

300 4.579e-01 - 2.904e-03 - 

600 3.968e-01 - 1.453e-03 - 

 
Fig. 10a. Values of absolute error for � = 0.2 
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Tab. 12. Lowest values of absolute error obtained for optimal  
  values of � depending on �		(mRL GaLAG) 

α  2.0=ν  5.0=ν  8.0=ν  

8.905 6.643e-03 2.044e-03 1.573e-06 
4.341 1.145e-04 1.763e-06 3.201e-02 

2.900 1.804e-06 1.784e-03 1.313e-01 

 
Fig. 10b. Values of absolute error for � = 0.5 

 
Fig. 10c. Values of absolute error for � = 0.8 

 
Fig. 11. Convergence of integrand (15) for optimal values  

 of � depending on �		(mRL GaLAG) 

6. FINAL CONCLUSIONS 

The results presented in Section 5 enable us to formulate 
the following conclusions: 
1. The shape of the integrand does not influence accuracy 

of the calculations when using Grünwald-Letnikov 
method. The number of coefficients used – does. Using 
maximum number of 600 of coefficients we were able 
to obtain values with maximum 10� − 04 accuracy. 

2. The shape of integrand does influence accuracy of the 
calculations when applying advanced methods of inte-
gration to calculate differ-integrals using Riemann-
Liouville formula. 

3. The values of the integrand obtained using “pure” Rie-
mann-Liouville formula are charged with great absolute 
error. This makes the formula often unsuitable in practi-
cal, technical applications.  

4. This level of errors appeared because off the fact that 
the “core” integrand of the formula has “fast-changing” 
character and singularity at the end point of the integra-
tion range. 

5. Applying inverse transformation of the integrand 
to “smash” the singularity allowed not only obtain much 
better results than by using Grünwald-Letnikov method, 
but often using radical reduced number of sampling 
points. This lowers the level of calculation complexity. 

6. Applied transformation of variables and special substi-
tute expression mentioned earlier to the “core” inte-
grand allowed to lower the values of absolute errors 
about 2-6 times.  

7. The values of absolute errors increased proportionally 
to the order of “complexity” (parameter 
) of the func-
tion tested: for increasing values of 
, absolute errors 
also increased proportionally.  

8. Heaviside function – due to its character is the “do-
main” of Grünwald-Letnikov formula, but as the “com-
plexity” of the function (other two functions tested) 
rises, if the integrand is modified, Newton-Cotes and 
Gauss-Laguerre rules seems to be appropriate to apply. 

9. The Newton-Cotes Midpoint Rule is universal tool. Not 
only it does not depend so strongly as the Gauss-
Legendre rule, on shape and changeability of the inte-
grand, but also can be applied to integrands which have 
singularities at the both and/or end of the integration 
range. 

10. Gauss-Laguerre rule, when applied to transformed inte-
grand, seems to be the better way, not only because 
of the low values of absolute error, but also because 
of the fact, that these low values are obtained with only 
5% sample points used by Grünwald-Letnikov method 
and Newton-Cotes Rule. This can dramatically reduce 
the complexity of the calculations. 

11. Manipulation of the � variable in the inverse transfor-
mation allows to speed up the convergence of the inte-
grand and lower the absolute error (notice figures: Con-
vergence of integrand for optimal values of � depending 
on �	(mRL GaLAG)). We noticed close relation be-
tween the values of �	and �, when minimising the abso-
lute error in calculations: for integrals – � should be re-
duced when � increases; for the derivatives – the other 
way round.  
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12. The logic of our programs needed only the degree of the 
desired polynomial as a input data. All other data were 
calculated “on the fly” (the polynomial itself, its deriva-
tive, abscissas and weights). In practical applications 
we can and should use tabulated values of abscissas 
and weights which were the subject of standardization 
all over the world. This can reduce more the complexity 
of calculations which then can make the method become 
yet more suitable in practical applications. 
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Abstract: In this paper we explore the linear difference equations with fractional orders, which are functions of time. A de-
scription of closed-loop dynamical systems described by such equations is proposed. In a numerical example a simple control 
strategy based on time-varying fractional orders is presented. 

 

1. INTRODUCTION 

Over the last few decades a growing interest in a frac-
tional calculus (Carpinteri and Mainardi, 1997; Lubich, 
1986; Miller and Ross, 1993; Oustaloup, 1995; Podlubny, 
1999) has been observed.  Its technical application effected 
in new fractional-order models of physical processes and 
materials behaviour (Oustaloup, 1995; Podlubny, 1999). 
Extensive possibilities of modern digital processors to ana-
lyse, modify or extract information from measured signals 
require describing signals by discrete-time functions (Os-
talczyk, 2001).  In practical applications the use of a back-
ward difference is necessary. 

A variable- (V), fractional order (FO) backward differ-
ence (BD) of a discrete-time bounded function �� is defined 
as follows (Ostalczyk, 2000, 2003, Ostalczyk and Derkacz, 
2003). 
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where a difference order �� ∈ �
 
and discrete time instants 

� ∈ � ∪ {0}
 
(R and N denote sets of real and natural num-

bers, respectively). Coefficients ��
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For discrete-time functions �� satisfying �� = 0 for k<0 
we can write  
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Realize that in the formula given above the constant or-
der �� is independent of the time-variable k. Next we define 
a discrete variable function 

 

{ } RN ∈→∋∪ jnj0 . (4) 
 

The VFOBD defined by formula (3) is a function of two 
discrete variables k and j 
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For a special assignment of �� and k we define a new 
one discrete variable function  
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For 0=kf  for 0<k  we obtain 
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It should be noted that the VFOBD is related to a vari-
able-order fractional operator defined as (Coimbra, 2003; 
Lorenzo and Hartley, 2002) 
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It can be proved (Oustaloup, 1995) that for every � ≥ 0  
the formula given above is equivalent to the following limit 
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where [.] denotes a function rounding towards the nearest 
integer, ℎ > 0  is an integration step. Substituting � = �ℎ   
with ℎ = 1 we immediately obtain a VFOBD defined 
by formula (9) 

In this paper we focus our attention on linear systems 
described by VFOBD equations with time-invariant coeffi-
cients. Next we explore an adequate description of a closed-
loop system with a controller and plant modelled by a FO 
difference equation. In the second numerical example 
we show that even though the physical processes described 
by VFOBD equations are yet unknown, they are useful 
in a control strategies design. 

2. LINEAR VFO DISCRETE-TIME SYSTEMS 

Now we consider a linear VFO difference equation (DE) 
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Here we admit a case when some ��,� = ��,�, ��,� =

��,� or even ��,� = ��,� = 0 for � ≠ � (a subscript k denotes 
an appropriate discrete time instant). 

 
 

From this point on we will make use of a permanent as-
sumption that �� = 0 for � < 0. Hence difference Equation 
(12) can be expressed in the following form 
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Substituting the column vectors in difference equation 
(15) by formulae (1) and (3) yields 
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Multiplications of the row-vectors by appropriate matri-
ces in Equation (16) yield 
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Further we assume that ��,� ≠ 0 for all k. It should be 
noted that practical realisations of the discrete-time systems 
impose an additional condition max	{��,� , … ,��,�} ≥

max	{��,� , … ,��,�} on all non-negative k. Equation (17) 
is valid for every positive integer. Thus for � − 1 we have 
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while 
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This can be further transformed into an equivalent form 
 

[ ] [ ] =


















+


















−

−

−

−+−
−

−−−

⋮

⋯
⋮

⋯

3

2

1

1,11,

0

1
1,11,00

y

y

y

aa

y

y

y

aa kkkk
k

k

kkk
  

 

[ ]























=
−

−−−−−

0

1

1

1,11,21,00

u

u

u

u

bbb
k

k

kkkkk ⋮⋯ . (21) 

 

Repeating this notation for � − 1, � − 2,… , 1, 0 and put-
ting them together in the matrix-vector form we get 
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is ( ) ( )11 +×+ kk  output matrix,  
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is ( ) ( )∞×+1k  initial conditions matrix, 
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is ( ) ( )11 +×+ kk  input matrix, 
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are (� + 1) × 1	output, ∞× 1	 initial conditions, and 
(� + 1) × 1	 input vectors, respectively. Square matrix (24) 
is always non-singular. Hence Equation (23) can be always 
rearranged into the form 

 

Ikkkkkk yIDuNDy 11 −− −= , (28) 
 

where the first right-hand side term denotes a forced part 
of the response, the second a homogenous one. The above 
investigations are illustrated by following numerical exam-
ple. 

2.1. Numerical example 

Consider the VFODE of the form 
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For a given external function �� = 1���	(discrete unit 
step function) and the assumed zero initial conditions 
0 = ���, 	���, ��� = ⋯ one should find an order function 
��,� for which the solution has the form  
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where � and �� mean undetermined yet: the response slope 
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parameter and the switch time instant, respectively. Substi-
tuting (3) into (29) we get (15) and further (17). For 
� − 1, � − 2,… , 1, 0 we obtain (23) with 
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Now we evaluate the consecutive values of an order 
function	��,�. For � = 0	and any ��,� the unique solution 
of equation (29) is �� = 0. For � = 1 and any ��,� one 
possible solution is �� = 1/3. Hence we must put � = 1/3. 
This implies that �� = 2/3 and 1=iy  for � = 3, 4,⋯. Fur-

ther, for � = 2, from formulae (28) and (31) – (36) we 
obtain 
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Fig. 1. Plot of an order function ��,� 

Substituting appropriate values, after elementary opera-
tions, we get ��,� = 1,5. For � = 3 we get equation 
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From two possible solutions ��,� = 2 and ��,� = 3 we 
take the first one. Continuing this procedure as an order 
function we take 
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Its plot is presented in Fig. 1 .  
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Fig. 2. Plot of the VFODE and classical first-order DE solutions 

The solution to difference equation (29) with order func-
tion (37) is plotted in Fig. 2. Here, for the sake 
of comparison, the solution to a classical fist-order differ-
ence equation (��,� = 1 = const) is also plotted. 
     The numerical example considered above shows that 
it is possible to reshape the solution to a VFODE. It should 
be noted that although ��, �� do not depend on ��,�,��,� 
for � ≥ 2 we have 
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3. DESCRIPTION OF A CLOSED - LOOP 
DYNAMICAL SYSTEM 

Next we consider a unity-feedback system with a linear 
discrete-time plant and a discrete-time controller. In gen-
eral, we assume that a time-invariant coefficients plant 
is described by the (time-invariant or time-variant) frac-
tional order difference equation. A block diagram  
of a closed-loop system is presented in Fig. 3. 

A plant is described by an equation similar  
to Equation (28) 
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IkPkPkkPkPk pIDuNDp ,
1
,,

1
,

−− −=  (39) 
 

where �� ,	� are the plant input and output signals, respec-
tively. The vectors 	�	and 
� denote the plant and regulator 
initial conditions, respectively. The plant is controlled by 
the controller output signal 
� 	and subjected to a plant dis-
turbance signal �	,� vector. A controller algorithm is de-
scribed by VFODE (12) or equivalently by the matrix-
vector Eq. (28) 
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1
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where �� denotes the controller input (a closed-loop system 
error). Column vectors 
� ,��, �� denote: a system com-
mand, a plant output disturbance and the sensor noise sig-
nals, respectively. The vector �� is a system output signal. 
Additional four equations describe the closed-loop system 
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Fig. 3. Block diagram of the closed-loop system 

Combining Equations (39)-(41) we get an input/output 
description of the closed-loop system 

 

( ) ( )
( )
( ) [ ] 








+−

−++

++−+=

−−−

−−

−

I

I
kPkRkRkPkPkOk

kikPkPkOk

kkkOkkOkOkk

p

v
IIDNDG1

dNDG1

dnGrGG1y

,,
1
,,

1
,

1
,

,,
1
,

1
,

,,
1

,

 (42) 

 

where �
,� = ��,�
����,���,�

����,� is an open loop system 
description, the matrix ��  is �� + 1� × (� + 1)  unit ma-
trix.  

4. VFOs  ��(
�,�)�(
�,�) CONTROLLER 
DESCRIPTION 

Linear control strategies in the form of PID algorithms 
are still basic in digital control since they give satisfactory 
solutions to different control problems. In such controllers 
control strategies are implemented by software thus a reali-
sation may be restricted mainly by a micro-controller mem-
ory and speed.  

The constant fractional-order discrete-time PID control-
lers have been the subject of investigations for many years 
(Machado, 2001; Podlubny, 1999). Here we define a VFOs 
discrete-time PI(��,�)D(��,�) 	controller. Its algorithm is de-
scribed by a special case of Equation (12) where we put 
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In general, to preserve the PID strategy, in general, we 
assume that ��,� = 0 and ��,� > 0,��,� > 0. According 

to Fig.3, the controller input is denoted by	�� and the output 
by ��. Hence the PI(��,�)D(��,�) controller is described 
by the following difference equation 
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where �� = ��, �� = ��, �� = �� denote proportional,  
integral and  derivative gain, respectively. It is assumed that 
�� + �� + �� ≠ 0. Equation (44) implies that kkR ID =, , 

hence from (40) we get  
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where the matrix ��,� 	is defined by equation (26) with 
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The possible use of such a controller will be presented 
in the following numerical example. 

4.1. Closed-loop system with VFO PID controller  
transient response numerical evaluation 

Consider a closed-loop system with a plant described 
by difference Equation (12) with the following coefficients 
(Günther, 1986) 
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The controller is described by a VFODE of the form 
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We assume that the following constraint  
 

2020 ≤≤− kv , (49) 
 

is imposed on the controlling signal.  
To preserve the maximum value of the controlling 

signal for � = 0, the coefficients ��,�� ,�� must satisfy the 
equality  �� + �� + �� = 20 The controller gains chosen 
are �� = 16,375, �� = 3,125 and �� = 0,5 and the orders 
��,� = −1 and ��,� = 1 can be chosen freely. The VFOs 
are selected and plotted in Fig.4 
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It should observed that the exponential order functions 
in formulae (50) and (51) are non-unique. There is a wide 
choice of other functions. It seems important to preserve the 
condition ��,� = −1 and ��,� = 1 for all � ≥ �� (when the 
system achieves its steady-state). Over mentioned interval 
the closed-loop system can be described by classical (inte-
ger order) DE. This requirement eliminates real-time calcu-
lation problems. 
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Fig. 4. VFOs ���−	���	trajectory 
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Fig. 5.  The closed-loop system-controlling signal ��	 
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Fig. 6. The closed-loop system outputs with different controllers 

    In Fig. 3 the VFO satisfying Equations (50) and (51) 
are presented in  orders plane  ����. It should be noted 

that after a finite number of time instants, the VFODE 
based control algorithm becomes a simple integer-order 
one, and as a result, a linear increase of samples considered 
in a calculation process (growing “calculation tail” or “fi-
nite memory problem”) can be avoided. Thus, it is not nec-
essary to simplify an algorithm by cutting the “calculation 
tail”. 

The control algorithm has PID controller properties 
(Günther, 1986; Ifeachor and Jervis, 1993; Isermann, 1988; 
Ogata, 1987). To avoid a growing number of samples (so 
called “calculation tail” (Podlubny, 1999)), after a finite 
number of a control algorithm steps the orders ��� 	 
and 	���	become integers. Thus, the “calculation tail” 
has automatically been cut off. This should be achieved  
in a quasi-steady-state of the closed-loop system response. 
We assume zero initial conditions of the plant and the con-
troller. In Fig. 5 we show the controlling signal ��. 

Fig. 6 presents the plant output ��(.) for the case when 
�� = ��� = �� = 0 and the reference signal is the unit dis-
crete-time step function �� = �� = [1			1			1			⋯ 			1](���)×�

� . 
In the same Figure we also show the system responses with 
classical PI and PID controllers (Günther, 1986; Ifeachor 
and Jervis, 1993; Isermann, 1988) described by the discrete 
transfer functions 
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where: 200 =r , 171 −=r , 11 −=p  and 
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where: 200 =q , 572.161 −=q , 4337.02 −=q , 11 −=p . 
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Fig. 7. The closed-loop system outputs with different controllers 

   restricted to k ∈ 	3			25
 

The PI and PID controller parameters were obtained to 
preserve the minimum value of the performance criterion 
on the assumption of a bounded controlling signal (49).  
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Assumption (49), required by practical applications, is so 
strong that for PI, PID and proposed PI(��,�)D(��,�) control 
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strategy, �� = �� = 20. This causes that the closed-loop 
system responses for k = 0, 1, 2 to be the same for all 
strategies. Owing to this, the PI and PID controllers pro-
duce very similar responses.  

In Fig. 7 the same responses are presented over the time 
interval � ∈ �3,			25�. 
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become significant when the following performance criteria 
are evaluated 
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Its values are presented in Fig. 8. 

5. FINAL CONCLUSIONS 

The notion of the linear, time-invariant (with respect to 
coefficients), VFOs difference equations is applied to the 
discrete-time closed-loop system synthesis. A new descrip-
tion of linear time-invariant fractional-order closed-loop 
dynamical systems is investigated. As a practical applica-
tion, a simple control strategy has been applied to a linear 
plant. It is non-unique. It appears that a large variety 
of advanced control strategies may effectively be applied 
in a real-time control. An open problem is how to design 
the VFOs depending on the closed-loop system error 
��,	(�	) and �
,	(�	). An appropriate choice of order 
functions seems to be a fruitful task in further investigations 
in the case of plant parameters variations or uncertainties.   

It is important to point out that applying fractional-order 
control strategies a linearly growing number of samples 
should be taken into calculations (linearly growing “calcu-
lation tail”). This can be avoided by introducing an assump-
tion that for a quasi steady-state, the control strategy 
is described by an integer-orders difference equation. 
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Abstract: This paper deals with the control of the fractional-order nonlinear systems. A list of the control strategies as well 
as synchronization of the chaotic systems is presented. An illustrative example of sliding mode control (SMC) of the frac-
tional-order (commensurate and incommensurate) financial system is described and commented together with the simulation 
results. 

 

1. INTRODUCTION  

Control of nonlinear systems, especially chaotic sys-
tems, was the subject of intensive studies in the last few 
decades. As noted (Andrievskii and Fradkov, 2003, 2004), 
several thousand publications have appeared over the recent 
decade. It is due to the fact that chaotic behavior was dis-
covered in numerous systems in mechanics, laser and radio 
physics, hydrodynamics, chemistry, biology and medicine, 
electronic circuits, economical systems, etc. (see (Petráš, 
2011)). For this reason a natural question arises: “How can 
we control chaotic systems?” 

The first important thing is that we need the mathemati-
cal formulation of chaotic processes by the basic models 
of the chaotic systems that are used. The most popular ma-
thematical models used in the literature on control of chaos 
are represented by the systems of ordinary differential equa-
tions. In some works we can also find discrete models de-
fined by difference state equations. The second important 
thing is the formulation of the problems of control of chao-
tic processes. An important type of problems of control 
of chaotic processes is represented by the modification 
of the attractors, for example, transformation of chaotic 
oscillations into periodic and so on. 

2. FRACTIONAL-ORDER NONLINEAR SYSTEMS 

In this paper, we will consider the general incommensu-
rate fractional-order nonlinear system represented as fol-
lows:  

 0 1 2( ) = ( ( ), ( ), , ( ), )

(0) = ,   =1,2, , ,

qi
t i i n

i i

D x t f x t x t x t t

x c i n

…

…

 (1) 

where ci are initial conditions. The vector form of (1) is: 

= ( ),qD x f x   (2) 

where q = [q1, q2, …, qn]
T for 0 < < 2iq , (i = 1, 2, …, n) 

and nx R∈ , and where 
0

q
tD  is the Caputo's derivative. 

The Caputo's definition of fractional derivatives can be 
written as (Podlubny, 1999): 

 
( )

1

1 ( )
( ) = ,   ( 1< < )

( ) ( )

m
tq

a t q ma

f
D f t d m q m

m q t

τ τ
τ − + −

Γ − −∫  (3) 

 

In Eq. (3) we assume boundary a = 0. Other definitions 
of the fractional derivative can be found in (Podlubny, 
1999).  

3. SYNCHRONIZATION OF CHAOTIC SYSTEMS 

The important class of the control objectives corres-
ponds to the problems of synchronization or, more pre-
cisely, controllable synchronization as opposed to the 
autosynchronization. Numerous publications on control 
of synchronization of chaotic processes and its application 
in the data transmission systems appeared in the 1990's. 
In the general case, by the synchronization is meant 
the coordinated variation of the states of two or more 
systems or, possibly, coordinated variation of some 
of their characteristics such as oscillation frequencies. 

Let us take a look at the synchronization more closely. 
Several methods can be used for synchronization of chao-
tic systems. In this paragraph we will mention three well-
known methods. If chaos synchronization is achieved by 
drive-response systems, the instability measure is nega-
tive. That means the system is not chaotic. 

The first method is the Master-Slave (or drive-
response) configuration scheme of two autonomous-
dimensional fractional-order chaotic systems (Lu, 2005; 
Peng, 2007): 

: = ( ),

: = ( ) ( ),

d x
M f x

dt

d x
S f x C x x

dt

α

α

α

α




 + −


ɶ
ɶ ɶ

 (4) 
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where 
1 2= ( , , , ) n

n Rα α α α ∈…
, > 0iα , is the fractional 

order and the systems are chaotic. C is a coupling matrix. 
For simplicity, let C have the form: 

1 2= ( , , , )nC diag d d d…
, 

where 0id ≥ . The error is =e x x− ɶ  and the aim of the 

synchroniziation is to design the coupling matrix such that 
|| ( ) || 0e t →  as t → +∞ . 

The second method is the method for constructing 
the drive-response configuration, which was introduced 
by Pecora and Carroll in 1990, known as a (PC). Let us 
build a PC drive-response configuration in which a drive 
system is given by the fractional-order system (with three 
state variables: x, y, z) and a response system is given by the 
subspace containing the (x, y) variables. Then we can use 
the chaotic signal z to drive the response subsystem. 

The third method is the synchronization via active-
passive decomposition method (APD). Let us build an APD 
drive-response configuration with a drive system given by 
the chaotic system and with a response system given by its 
replica. Then we can take s(t) as a drive signal (Li et al., 
2006). 

Chaos synchronization and its potential application 
to secure communications have attracted much attention 
from various disciplines in science and engineering since 
the pioneering work of (Pecora and Carroll, 1990). In this 
section, we briefly discuss the chaos synchronization me-
thods between the chaotic fractional-order systems and we 
can also mention method via master-slave configuration 
with linear coupling (Zhu et al., 2009). 

4. CONTROL OF CHAOTIC SYSTEMS 

In (Andrievskii and Fradkov, 2003, 2004) were col-
lected and presented several methods used for the control 
of chaotic processes. The authors considered the classical 
integer-order chaotic systems but in general we can use 
those methods for the fractional-order chaotic systems 
as well. In addition some other methods have been proposed 
for control of such systems and they can be summarized 
as follows (Petráš, 2011):   
1. Open loop (feed-forward) control is based on varying 

behavior of the nonlinear system under the action 
of predetermined external input. This approach is simple 
because it does without any measurements or sensors. 
This is especially important for the control of superfast 
processes.  

2. Linear and nonlinear (feed-back) control deals with the 
possibilities of using the traditional approaches, and me-
thods of automatic control to the problems of chaos con-
trol are discussed in numerous papers. The desired aim 
can be reached sometimes even by means of the simple 
proportional law of control and feedback. The potential-
ities of the dynamic feedbacks can be better realized by 
using the observers. Other methods of the modern theory 
of nonlinear control such as the theory of center mani-
fold, sliding mode control, the backstepping procedure, 
the reset control, the H∞-optimal design and so on can 
be used to solve the problems of stabilization about the 
given state.  

3. Adaptive control assumes the possibility of applying the 
methods of adaptation to the control of chaotic 
processes, where the parameters of the controlled plant 
are unknown and the information about the model struc-
ture more often than not is incomplete. A number of the 
existing methods of adaptation such as the methods 
of gradient and speed gradient, least squares, maximum 
likelihood, and so on can be used to develop algorithms 
of adaptive control and parametric identification. A con-
troller is usually designed using the reference model 
or the methods of linearization by feedback.  

4. Linearization of the Poincaré map method can be formu-
lated by the following two key ideas: (i) designing con-
troller by the discrete system model based on lineariza-
tion of the Poincaré map and (ii) using the property 
of recurrence of the chaotic trajectories and applying 
the control action only at the instants when the trajectory 
returns to some neighborhood of the desired state 
or given orbit.  

5. Time-delayed feedback method considers the problem 
of stabilizing an unstable periodic orbit of a nonlinear 
system by a simple feedback law with time delay. Sensi-
tivity to the parameter, especially to the delay time, 
is a disadvantage of the control law.  

6. Neural network-based control deals with the ability 
of neural networks to control and predict behavior 
of nonlinear systems. The various structures of neural 
networks for control and prediction of the processes 
in nonlinear chaotic systems can be found in literature.  

7. Fuzzy control uses a description of system indetermina-
cy in terms of fuzzy models, provides specific versions 
of the control algorithms, which consists of four blocks: 
knowledge base, fuzzification, inference and defuzzifi-
cation. 

5. NEW CHAOS CONTROL STRATEGY 

The fractional calculus techniques as for example a frac-
tional differentiator based controller of a fractional integra-
tor based controller can also be used (Tavazoei et al., 
2009). Both of them are particular cases of the fractional-
order controllers described as (Podlubny, 1999):  

0 0( ) = ( ) ( ) ( ),   ( , > 0),p i t d tu t K e t T D e t T D e tλ δ λ δ−+ +  (5) 

where Kp is the proportional constant, Ti is the integration 
constant and Td is the differentiation constant. Controller (5) 
is more flexible than classical one and gives better results 
of the control performances (Monje et al., 2010).  

6. EXAMPLE: SLIDING MODE CONTROL OF THE 
FRACTIONAL-ORDER ECONOMICAL SYSTEM 

A sliding model control (SMC) strategy is also applica-
ble for the fractional-order chaotic systems. It is a form 
of variable structure control method that alters the dynamics 
of a nonlinear system by application of a high-frequency 
switching control. The state feedback control law is not 
a continuous function of time. It switches from one conti-
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nuous structure to another based on the current position 
in the state space. Trajectories always move toward 
a switching condition. The motion of the system as it slides 
along these boundaries is called a sliding mode. The sliding 
mode control scheme involves: (i) selection of the sliding 
surface that represents a desirable system dynamic behavior, 
(ii) finding a switching control law that a sliding mode ex-
ists on every point of the sliding surface. 

Consider the following general structure of the fraction-
al-order nonlinear system under control  
 

0 ( ) = ( ( )) ( ),q
tD x t f x t Bu t+  (6) 

 

where u(t) = [u1(t)u2(t)...um(t)]T is an m-dimensional input 
vector that will be used and the following control structure 
will be considered for state feedback:  
  

( ) = ( ) ( ),eq swu t u t u t+  (7) 
 

where ueq(t) is the equivalent control and usw(t) is the 
switching control of the system (6). A common task is to 
design a state feedback control law to stabilize the dynami-
cal system (6) around the origin x(t) = [0, 0, …, 0]T. In the 
sliding mode, the sliding surface and its derivative must 
satisfy σ(t) = 0 and ( ) = 0tσɺ . 

Let us use the controlled fractional-order financial sys-
tem in the form (Dadras and Momeni, 2010): 

 

1
0 1 3 2 1

22
0 2 2 1

3
0 3 1 3

( ) = ( ) ( ( ) ) ( ),

( ) = 1 ( ) ( ) ( ),

( ) = ( ) ( ),

q

t

q

t

q

t

D x t x t x t a x t

D x t bx t x t u t

D x t x t cx t

+ −

− − +

− −

 (8) 

  

where a is the saving amount, b is the cost per investment, 
and c is the elasticity of demand of commercial market, 
( , , )a b c R∈  and ( , , ) 0a b c > . The state variables x1(t), 

x2(t), and x3(t) are the interest rate, the investment demand, 
and the price index, respectively. 

The proposed fractional sliding surface is defined as  
 

12 2
1 2 0 20

( ) = ( ( ) ( )) ( ),
t q

tt x Kx d D x tσ τ τ τ −+ +∫  (9) 

 

where K is a positive constant, in addition K = Keq. The 
equivalent control ueq(t) is obtained by setting the derivative 
of sliding surface to zero and then solving the second equa-
tion of (8) for u(t). We obtain  
 

22
0 2 1 2( ) = ( ( ) ( ))

q

tD x t x t Kx t− +  
 

and then we get the relation 
 

22
0 2 2 1

2 2
1 2 2 1

2

( ) = ( ) 1 ( ) ( )

= ( ( ) ( ) 1 ( ) ( )

= ( ) ( ) 1,

q

eq t

eq

eq

u t D x t bx t x t

x t K x t bx t x t

b K x t
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− + − + +

− −
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where Keq is the constant of the controller. 
The switching control usw(t) law is chosen in order to sa-

tisfy the sliding condition  
 

( ) = ( ),sw swu t K signσ  (11) 

where  
 

1 : > 0,

( ) = 0 : = 0,

1 : < 0,

sign

σ
σ σ

σ

+


−

 

and Ksw is the gain of the controller (Ksw < 0). Finally, the 
total control law is defined as follows: 
 

2( ) = ( ) ( ) = ( ) ( ) 1 ( ).eq sw eq swu t u t u t b K x t K signσ+ − − + (12) 
 

We assume the following parameters of the chaotic sys-
tem (8): a = 1, b = 0.1, c = 1, and the controller (12) para-
meters, experimentally found: Keq = 1.5 and Ksw = -3.5. 
The controller will be applied at t = 30 s. In the first case we 
use a commensurate order of derivatives q1 = q2 = q3 = 0.9 
and in the second case we use an incommensurate order 
of the derivatives q1 = 1.0, q2 = 0.95, and q3 = 0.99 of the 
fractional-order chaotic system (8). The initial conditions 
for both cases are (x1(0), x2(0), x3(0)) = (2, -1, 1). 

 
Fig. 1. Controlled state variables x1(t), x2(t), and x3(t)  

of commensurate fractional-order financial system,  
where the SMC was activated at 30 s 

 
Fig. 2. Time response of control law u(t)  

for commensurate fractional-order system 
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Fig. 3. Controlled state variables x1(t), x2(t), and x3(t)  

of incommensurate fractional-order financial system, 
where the SMC was activated at 30 s 

 
Fig. 4. Time response of control law u(t)  

for incommensurate fractional-order system 

 
Fig.  5. Time responses of sliding surfaces σ(t) 

 
In Fig. 1 are depicted the controlled state variables 

of the commensurate fractional-order financial systems (8) 
with the parameters: a = 1, b = 0.1, c = 1, orders  
q1 = q2 = q3 = 0.9, controller (12) parameters: Keq = 1.5  
and Ksw = -3.5, initial conditions: (x1(0), x2(0),  
x3(0)) = (2, -1, 1) for simulation time Tsim = 90 s and time 
step h = 0.005. 

In Fig. 2 is shown the control law of commensurate frac-
tional-order financial system which drives the system states 
to the sliding surface. We can observe chattering in the 
sliding mode. 

In Fig. 3 are depicted the controlled state variables 
of the incommensurate fractional-order financial systems 
(8) with the parameters: a = 1, b = 0.1, c = 1, orders  
q1 = 1.0, q2 = 0.95, and q3 = 0.99, controller (12) parame-
ters: Keq = 1.5 and Ksw = -3.5, initial conditions: (x1(0), 
x2(0), x3(0)) = (2, -1, 1) for simulation time Tsim = 90 s 
and time step h = 0.005. 

In Fig. 4 is shown the control law of incommensurate 
fractional-order financial system which drives the system 
states to the sliding surface. We can again observe chatter-
ing in the sliding mode. 

In Fig. 5 are depicted the time responses of the sliding 
surface. We can observe that the controller kept the system 
states on the sliding surface for all subsequent time. 

Performed simulations show that system responses after 
applying the control law (12) are satisfactory for both cases. 
The results confirm that obtained control strategy is effi-
cient for controlling the fractional-order financial system (8) 
for various parameters (Petráš and Bednárová, 2010). 

7. CONCLUSIONS 

In this article is presented a review of the control strate-
gies for the fractional-order nonlinear systems. On illustra-
tive example is shown the SMC control method. This con-
trol method is simple and control law achieved asymptoti-
cally stabilized system if the controller is applied to the 
investment demand in order to control the whole economi-
cal system. This approach is applicable for different types 
of the fractional-order chaotic systems as well as the other 
control strategies (Monje et al., 2010). 
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Abstract: In this paper the problem of the influence of fixed point computation on numerical solutions of linear differential 
equations of fractional order is considered. It is a practically important problem, because of potential possibilities of using 
dynamical systems of fractional order in the tasks of control and filtering. Discussion includes numerical method is based 
on the Grünwald-Letnikov fractional derivative and how the application of fixed-point architecture influences its operation. 
Conclusions are illustrated with results of floating-point arithmetic with double precision and fixed point arithmetic with dif-
ferent word lengths. 

 

1. INTRODUCTION 

Dynamical system described by fractional differential 
equations take an increasing role in technical sciences. 
The initial concept dating to private correspondence 
of Leibnitz and L’Hospital from 1695, was systematically 
developed however outside the main stream. Currently 
we can say, that mathematical side of the problem is well 
rounded, what can be observed by presence of multiple 
monographs such as Miller and Ross (1993); Oldham 
and Spanier (1974); Podlubny (1999); Samko et al. (1993). 

In recent years especially interesting is the aspect of ap-
plications. They are found in modelling of supercapacitors, 
distributed parameter systems, problems of variational 
calculus or modelling of very complicated phenomena  
such as flame spreading Lederman et al. (2002); Weilbeer 
(2005). Besides modelling also fractional systems are used 
to influence reality as controllers Ortigueira (2008); 
Ruszewski (2008) or filters Magin et al. (2011). In the con-
text of fractional order systems also problems such as state 
estimation (Dzieliński and Sierociuk (2008)), controllability 
(Klamka (2009)) or stability (Kaczorek (2008a); Busłowicz 
(2008); Kalinowski and Busłowicz (2011)) are considered. 
A comprehensive survey of theory and applications of frac-
tional calculus in control engineering can be found in Os-
talczyk (2008). 

In this paper authors focus on the problem of actual im-
plementation of fractional order systems. Many works are 
devoted to the concept of approximation of fractional order 
systems with integer order systems (see for example 
Djouambi et al. (2007); Sobolewski and Ruszewski 
(2011)). This paper analyses the application of numerical 
methods for solving fractional order differential equations. 
Because the focus of this research is the implementation 
of fractional controllers and filters on commercially avail-
able hardware platforms special emphasis is placed 
on influence of fixed point computation. In the following 
parts of the paper considered class of systems is described, 

solution of differential equations on dedicated hardware 
platforms with individual section on problems quantisation. 
Then discretisation of fractional differential equations 
is analysed. Finally numerical experiments are conducted 
in both floating and fixed point arithmetic. 

2. CONSIDERED SYSTEMS 

In this paper linear fractional order dynamical system 
described by a following system of fractional order equa-
tions 
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� and �, � are constant matric-
es of appropriate dimensions. Fractional differentiation ope-
ration of order � is given by Caputo definition (see for 
example Kaczorek (2008b)). 
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where: Γ function is given by 
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Important fact is that in analogue to integer order 
equations one can express solution of (1) by variation of 
constants, that is 
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where: � is the Mittag-Leffler function (see for example 
Weilbeer (2006)) given by: 
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It should be noted that Mittag-Leffler function is the 
generalisation of e� and for α = 1 the following equality 
occurs 

zzE e=)(1  (8) 

In this paper only initial conditions equal to zero will be 
considered. It is justified by the fact that the main goal is 
to devise methods of effective filter and controller imple-
mentation. Moreover one can transform a fractional system 
into one with zero initial conditions through addition 
of additional inhomogeneity (see for example Podlubny 
(2000)). 

3. SOLVING DIFFERENTIAL EQUATIONS  
WITH DEDICATED CONTROL SYSTEMS 

In classical control systems that is those, which model 
of controller or system is described by integer order diffe-
rential equations the following hardware platforms 
are used:   
− universal platforms: 

− classical computer systems, 
− industrial PLC controllers, 
− universal microprocessor controllers, 

− dedicated platforms: 
− using general purpose processors, 
− using digital signal processors (DSP), 
− using FPGA circuits. 
 In case of fractional order differential equations this 

division stays correct. Because of possibility of obtaining 
very short computation times - dedicated systems are very 
promising. Among those especially systems using FPGA 
circuits raise interest. 

Using a dedicated control system for computation 
of both ordinary and fractional differential equations car-
ries many consequences. Substantial benefits are that one 
can achieve substantial increase in computation speed and 
keep the regimes of real time processing. On the other 
hand use of dedicated systems introduces multiple con-
straints associated with their construction and type 
of operation. The most serious limit introduced by dedi-
cated control systems is lack of support for floating-point 
arithmetic. Most microcontrollers designed for control 
systems do not have an integrated floating-point coproces-
sor. Similar situation occurs for DSPs. One can of course 
show solutions supporting floating-point formats but that 
is not the norm. Different case is for implementation 
of such formats in FPGA circuits. These circuits are rather 
freely configurable. One can also implement the support 
for writing of the floating-point data format. However 
because of needed amount of circuit's hardware resources 

it is not always possible or economically feasible. 
In this paper control systems with fixed-point data 

formats are considered. In case of the FPGA circuits these 
formats are supported by hardware description languages 
(e.g. VHDL) or are relatively easy to implement. 
The most substantial merit of using the fixed-point arith-
metic is the possibility of construction of parallel data 
processing structures, which can significantly accelerate 
computation (see Wiatr (2003)). Other important merit 
is the possibility of using computation words of desired 
length (see Piątek (2007)). When programming microcon-
trollers or DSP the programmer can use the data types 
available in the microprocessor architecture. Using of non 
standard data types is associated with need for additional 
operations, which can increase the computation time. 

When solving systems of differential equations 
in computer systems, so also in the control systems 
we have to deal with quantisation of signals and parame-
ters in time (discretisation) and in values (quantisation) 
caused by digital character of computation. Both these 
operations have their properties and can disrupt the results 
of computation - that is the solution of the system of diffe-
rential equations. 

4. QUANTISATION 

Application of digital systems, especially those which 
use a fixed-point data format causes introduction of nu-
merical errors to the computation. Sources of these errors 
are (see Gevers and Li (1993); Świder (2003, 2002)):  
− quantisation of analogue signals – for example by A/D 

converters in control systems; 
− computation result overflow errors caused by too short 

data word length; 
− round-off errors of arithmetic operations – multiplica-

tion, addition;  
− quantisation errors of model coefficients resulting 

from writing them on words with finite length. 
Converter quantisation errors are determined by reso-

lution of used A/D converter system. In the case of model-
ling the converter model by stochastic methods it is as-
sumed that the converter model consists of a sampling 
system and a quantiser. Quantiser is modelled as a sum-
mation node introducing a random error to the signal.  
It is assumed that this error is a discrete white noise not 
correlated with the sampled signal and its variance is de-
pendent on the number of converter bits (see Świder 
(2003)). Quantisation noise created in the process of ana-
logue-digital conversion can be filtered in the control 
system by the usage of appropriate digital filters. 

Overflow errors are practically present only in the sys-
tems performing computations using fixed point arithme-
tic. They occur in the situations, when the result of arith-
metic operation requires writing in the registry of larger 
number of bits than it is available in the computation sys-
tem. In some situations (e.g. using notation in the two's 
complement code) it causes large relative errors (see 
Gevers and Li (1993)). Elimination of overflow errors 
relies on appropriate scaling of signals and coefficients 
of the model. Such operations unfortunately introduce 
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additional round-off errors associated with changing 
the signals and model coefficients ranges. In computation 
systems using floating-point arithmetic overflow errors 
are not present or occur rarely, because of the large ranges 
of such data storage. 

Other two kinds of errors - round off errors of arithme-
tic operations and parameter quantisation errors are al-
ways present during digital realisation of control algo-
rithms and it is not possible to completely eliminate their 
influence on the result of computation (see Gevers and Li 
(1993)). Arithmetic operation round off errors are intro-
duced during the computations connected to determination 
of system response and their level is dependent on the 
structure of algorithm and the data word length. Model 
coefficient quantisation errors are introduced by the finite 
data word length. Ideal values of parameters are rounded 
to the values that can be stored. Similar to the arithmetic 
operation errors, coefficient quantisation errors are de-
pendent on the structure of algorithm and the data word 
length. Effects connected with these two kinds of errors 
are called FWL (Finite Word Length) effects (see Gevers 
and Li (1993)). They can be limited by increasing 
the length of data words and by changing model structure. 
Length modification is not always possible. Usually 
in computer systems only two or three word lengths 
are available, and in simple microprocessor system even 
only one. Relatively simple increase of precision is possi-
ble only in the range of data types supported by the archi-
tecture and additional improvements (above the machine 
command precision) has a cost of a substantial increase 
in the number of commands required for determination 
of system response. In case of realisation of control sys-
tem with dedicated architecture for example with FPGA 
circuits, word length can be adjusted at will. Too long 
word lengths however cause substantial increase in the 
hardware resources usage, which can be interpreted as the 
increase in the computation cost. 

5. DISCRETISATION OF FRACTIONAL ORDER 
DIFFERENTIAL EQUATIONS 

There are different classes of numerical methods for 
solving fractional differential equations (see Weilbeer 
(2005)). One of them are linear multistep methods. Their 
construction relies on transformation of fractional differ-
ential equation to the equivalent Volterra integral equation 
and solving it through quadratures. It is similar to Adams 
methods for ODE (see Hairer et al. (2000)). Another 
group considers equivalent Abel-Volterra equation and 
solves it via power series - these are generalised Taylor 
expansion and Adomian decomposition method. One 
more group are collocation methods also popular for inte-
gral equations. For applications in the context of filter and 
controller implementations the most practical seem to be 
backward difference methods. This class includes Diet-
helm method and quadrature based Lubich method. 

In this paper third backward difference method is con-
sidered – that is the method based on the Grünwald-
Letnikov fractional derivative. By this definition the frac-
tional derivative takes form of a limit of fractional differ-
ence quotients 
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Generalised Newton symbol is given by  
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Fractional derivative takes form  
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It should be noted that definitions of Grünwald-
Letnikov and Caputo are not fully equivalent. It is espe-
cially important in the context of fractional differential 
equations, where initial conditions influence the solution 
in different way (see Weilbeer (2005)). If initial condi-
tions are zero, as in the considered case the solutions 
are however equal. 

As it can be seen in the fractional difference when ℎ 
decreases 	 increases, so in the limit sum is infinite. 
The idea of numerical solution on the interval � ∈ [0,
] 
relies on determining finite 	 and omitting the limit. 
In that way differential equation (1) becomes 
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 It should be noted that �(�) is present on both sides 
of equality. In case of nonlinear systems it would require 
iterational procedures, however because the considered 
system is linear so  
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Different approach can be seen in the work of Pod-
lubny (2000). Method presented there formulates 
the problem of numerical solution as a system of linear 
algebraic equations solving the fractional differential 
equations in all points of the interval simultaneously. 
That approach has many benefits, but is not adequate 
for series signal processing. 

As it can be seen, when changing 	 also ℎ is changed 
which can cause FWL effects. In the next section the be-
haviour of numerical solution of fractional differential 
equation obtained with (16) behaves when changing pa-
rameters. 

6. FLOATING-POINT ARCHITECTURE 
SIMULATIONS 

In order to perform simulational analysis of the solu-
tion of fractional differential equation the following ex-
ample needs to be considered.   
Example 1. (Kaczorek (2008b)) The unit step response 
of the following system is considered  
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Fig. 1. Comparison of analytical and numerical solution  

of fractional differential equation (19) with α=3/2  
for m=10 

 
Fig. 2. Comparison of analytical and numerical solution  

   of fractional differential equation (19) with α=3/2  
   for m=100 

 
Fig. 3. Comparison of analytical and numerical solution  

  of fractional differential equation (19) with α=3/2  
  for m=500 

 The step response was expressed by Mittag-Leffler 
function (6) It should be noted that for � > 1 initial condi-
tions for all � < � need to be specified. 

Obtained analytical solution can be used for verifica-
tion of correctness of (16). System with � = 3/2 is con-
sidered. Comparisons are made for different 	. Computa-
tions were performed in Matlab in double precision. Ana-
lytical solution consisted of 100 first expression of power 
series form of Mittag-Leffler function (6). The analysis 
was performed on interval � ∈ [0, 10]. 

It should be noted that for � > 1 solutions have oscil-
latory character. Solution consisting of 10 points (Fig. 1) 
represents the oscillations but it happens in different mo-
ment and with much smaller amplitude. Increasing preci-
sion to 100 points the solution improves (Fig. 2), and for 
500 points (Fig. 3) numerical solution becomes truly close 
to an analytical one. It should be noted that increasing 
number of points in the interval the requirements toward 
solutions increase, as in every step of computation all the 
earlier ones are necessary. 
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7. FIXED POINT ARCHITECTURE SIMULATIONS 

For numerical experiments Matlab environment was 
used with the Fixed-Point Toolbox. With this software 
one can create and use variables with desired word lengths 
in bits. These simulations were performed for step re-
sponse of system (19). Numerical method (16) was used 
and number of steps per interval was set to 	 = 100. 
Compared are: 
− analytical solution; 
− numerical solution using method (16) operating with 

floating-point arithmetic;  
− numerical solution using method (16) operating with 

fixed-point arithmetic.  
In the last case a fixed point notation allowing opera-

tion on numbers with nonzero fractional part. These num-
bers are coded with use of two's complement code (see 
Biernat(2001); Pochopień(2004)). Thanks to using it scal-
ing could be avoided. Figure 4 presents the format of this 
fixed-point notation.  

 
Fig. 4. Fixed point notation during the experiments 

 
Fig. 5. System unit step response (FL=8) 

Corresponding to the Fig. 4 following quantities were 
introduced: 
− FL denotes number of bits devoted to the fractional 

part,  
− IL denotes number of bits devoted to the integer part,  
− total number of bits in the data word was  

WL = IL + FL .  
 It was decided to use a single word length for all ele-

ments of the algorithm. That means that both system coef-
ficients, constants associated with α and number of steps 
and system state were denoted in variables with the same 
word length and the same lengths of fractional and integer 

parts. Nine numerical experiments were performed, 
in which step response of system (19) was computed. 
In every experiment the word length for the fractional part 
was increased by one from 8 to 16 bits. The most repre-
sentative were the results obtained for fractional parts 
of 8, 9, 10, 12 and 16 bits. For all the experiments IL=2 
was set. 

 
Fig. 6. System unit step response (FL=9) 

 
Fig. 7. System unit step response (FL=10) 

 
Fig. 8. System unit step response (FL=14) 



Paweł Piątek, Jerzy Baranowski 
Investigation of Fixed-Point Computation Influence on Numerical Solutions of Fractional Differential Equations 

 106

 
Fig. 9. System unit step response (FL=16) 

Results of simulations are presented in Figs. 5, 6, 7, 8 
and 9. In the figures three responses are presented:  
analytical, computed numerically with floating-point 
and computed numerically with fixed point. 

 
Fig. 10. Coefficient values for WL=14 

 
Fig. 11. Coefficient values for WL=18 

Analysis of the figures, allows to observe, that reduc-
tion of fractional part word length increases the numerical 

error of such computed fractional part. For FL=8 (Fig. 5) 
the response differs so much that it loses its original char-
acter. 

Further study allowed to find one of the reasons 
for substantial differences between analytical, floating-
point and fixed-point solutions. It appears that it has 
a strong connection to the coefficients �� (18). In Fig. 10 
and 11 values of coefficients �� computed analytically and 
numerically with application of fixed point arithmetic 
with different word lengths. Vertical axes in those figures 
are in the logarithmic scale for easier observation of the 
effects. 

For word length WL=14 the effect of quantisation 
is evidently visible for coefficients with index greater than 
13. Moreover coefficients with index greater than 27 they 
become equivalent to zero, regardless that analytically 
they are different from zero. For word length WL=18 
the similar effect is visible, however quantisation is visi-
ble for indices greater than 34 and they become zero for 
indices greater than 80. Coefficients equal to zero are not 
visible in the plot, as 0 does not belong to the domain 
of algorithm. 

It should be noted, that this effect causes qualitative 
change in the system character. From the system 
with potentially infinite memory it becomes a system 
with finite memory. It should be compared with practi-
cally stable discrete fractional systems (see for example 
Kaczorek(2011)). 

8. CONCLUSIONS 

After analysis of results of numerical experiments 
it can be concluded, that main reasons for errors occurring 
when using fixed-point arithmetic are the quantisation and 
rounding of coefficients (18). In figures it can be ob-
served, that for analysed systems these coefficients are 
reduced along with index. For small values this effect 
is especially visible. Below certain value (certain index) 
quantisation reduces them to zero. Simulations illustrated, 
that the errors caused by using fixed-point arithmetic can 
significantly change the response of analysed system. 
Word length should be then chosen very carefully. 
In further works the possibility of using different word 
lengths for coefficients and state. Additional modification 
of numerical method should be considered in order to 
increase robustness to these errors. 

It should be also noted, that zeroing of coefficients due 
to fixed-point computation leads to system with finite 
memory. It is very similar to practically stable discrete 
fractional systems. It is interesting how other properties 
of these systems transfer to analysed systems. 
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Abstract: Solutions to time-fractional diffusion-wave equation with a source term in spherical coordinates are obtained for 
an infinite medium. The solutions are found using the Laplace transform with respect to time t, the finite Fourier transform 
with respect to the angular coordinate �, the Legendre transform with respect to the spatial coordinate �, and the Hankel 
transform of the order n+1/2 with respect to the radial coordinate �. In the central symmetric case with one spatial coordinate 
� the obtained results coincide with those studied earlier.  

 

1. INTRODUCTION  

The time-fractional diffusion-wave equation  

ca
t

c ∆=
∂
∂

α

α
         (1) 

is a mathematical model of important physical phenomena 
ranging from amorphous, colloid, glassy and porous mate-
rials through fractals, percolation clusters, random and dis-
ordered media to comb structures, dielectrics and semicon-
ductors, polymers and biological systems (see Metzler and 
Klafter, 2000, 2004; Povstenko, 2005; Magin, 2006; Uchai-
kin, 2008, among many others, and references therein). 

The fundamental solution for the time-fractional diffusion-
wave equation in one Cartesian space-dimension was obtained 
by Mainardi (1996). Wyss (1986) obtained the solutions to the 
Cauchy problem in terms of H-functions using the Mellin 
transform. Schneider and Wyss (1989) converted the diffu-
sion-wave equation with appropriate initial conditions into the 
integrodifferential equation and found the corresponding 
Green functions in terms of Fox functions. Fujita (1990) 
treated integrodifferential equation which interpolates the heat 
conduction equation and the wave equation. 

Previously, in studies concerning this equation in spherical 
coordinates only central symmetric case has been investigated 
(Povstenko, 2008a, 2008b, 2008c; Lenci et al., 2009, Qi and 
Liu, 2010). In this paper we investigate solutions to time-
fractional diffusion-wave equation in an infinite medium in 
spherical coordinate system in the case of three spatial coordi-
nates �, �, and �. 

Consider the time-fractional diffusion-wave equation with 
a source term 
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∞<≤ r0 , πθ ≤≤0 , πϕ 20 ≤≤ , ∞<< t0 , 20 ≤< α . 

Here we use the Caputo fractional derivative (see Gorenflo 
and Mainardi, 1997; Kilbas et al., 2006; Klimek, 2009) 
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where Γ(�) is the gamma function. 
For its Laplace transform rule the Caputo fractional deriva-

tive requires the knowledge of the initial values of the function 
�(	) and its integer derivatives of the order 1,...,2,1 −= nk : 
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,1 nn <<− α  

where � is the transform variable. 
Change of variable � = ���� in (2) leads to the follow-

ing equation 
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∞<≤ r0 , 11 ≤≤− µ , πϕ 20 ≤≤ , ∞<< t0 , 20 ≤< α . 

For simplicity, we have not introduced different letters 
for ( )trQ ,,, ϕθ  and ( )trQ ,,, ϕµ . For equation (5) the initial 

conditions are prescribed: 
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( )ϕµ ,,:0 rfct == , 20 ≤< α ,     (6) 

( )ϕµ,,:0 rF
t

c
t =

∂
∂= , 21 ≤< α .     (7) 

The solution to the initial value problem (5)-(7) can be 
written in the following form 
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In the subsequent text, we investigate the fundamental 
solutions for the first Cauchy problem ��(�, �,�,�, �,�, �), 
to the second Cauchy problem ��(�, �,�,�, �,�, �), and for 
the source problem ��(�, �,�,�, �,�, �).  

2. FUNDAMENTAL SOLUTION  
TO THE FIRST CAUCHY PROBLEM  

Let us examine the time-fractional diffusion-wave equa-
tion  
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∞<≤ r0 , 11 ≤≤− µ , πϕ 20 ≤≤ , ∞<< t0 , 20 ≤< α , 

with the prescribed initial value of a function 
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G
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f , 21 ≤< α .            (11) 

The three-dimensional Dirac delta function 
	
��	

�	(�) after passing to the spherical coordinates 

takes the form 
�

���
	�(�), but for the sake of simplicity we 

have omitted the factor 4� in the solution (8) as well as the 
factor (4�)��	in the initial condition (10).  

Now we introduce the new looked-for function � = √�� 
and use the Laplace transform with respect to time �, the finite 
Fourier transform with respect to the angular coordinate �, 
the Legendre transform with respect to the coordinate �, and 
the Hankel transform of the order � + 1/2 with respect to 
the radial coordinate �. The details of application the integral 
transform technique to the Laplace operator in spherical coor-
dinates can be found in the book of Özişik (1980). In the trans-
forms domain we obtain 
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where the asterisk indicates the transforms, �	��/
(�) is the 
Bessel function of the first kind of order � + 1/2,  �	

�(�) 
are the associated Legendre polynomials of degree � and order 
�, � is the Laplace transform variable, � is the Hankel trans-
form variable, the integer � is the Fourier transform variable, 
and the integers � and � are the Legendre transform variables. 

To invert the Laplace transform we use the following 
result (Gorenflo and Mainardi, 1997; Kilbas et al. , 2006)  
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where ( )zEα  is the Mittag-Leffler function  
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For large values of argument the Mittag-Leffler function 
is represented as 
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Inversion of all the integral transforms gives: 
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where the prime near the summation symbol denotes that 
the term corresponding to � = 0  in the sum should be 
multiplied by the factor 1/2 . 

In the central symmetric case (� = 0, � = 0), taking  
into account that the Bessel functions of the first kind of the 
order one half can be represented as  
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from (16) we get 
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Solution (18) was obtained earlier by Povstenko (2008c) 
using sin-Fourier transform with respect to the radial coor-
dinate �. The limiting case of (18) under � → 0, 
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 was also investigated earlier (Povstenko, 2008b).  
Asymptotic behavior of Mettag-Leffler function 

��

−������	(15) is responsible for appearance of singularity 

of the solution (16) at the point of applying the delta pulse: 
� = �, � = �, � = � also for � > 0. The sign of the singu-
larity depends on �: plus for 0 < � < 1 and minus for 
1 < � < 2. Only the solution to the classical diffusion equa-
tion (� = 1 and ��
−��

���� = exp
−������) has no sin-
gularity.  

3. FUNDAMENTAL SOLUTION  
TO THE SECOND CAUCHY PROBLEM 

In the case of the second Cauchy problem, which 
is considered for the order of time derivative 1 < � ≤ 2, 
the initial value of the time derivative of the sought-for 
function is prescribed, and for the corresponding fundamen-
tal solution we have 
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∞<≤ r0 , 11 ≤≤− µ , πϕ 20 ≤≤ , ∞<< t0 , 21 ≤< α , 

with the following initial conditions: 

0:0 == FGt , 21 ≤< α  ,            (21)  
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The integral transform technique allows us to remove the 
partial derivatives and to get the expression for the auxiliary 
function � in the transforms domain  
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After inversion of integral transforms we gain 
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where ��,�(�) is the generalized Mittag-Leffler function 
in two parameters � and � (Gorenflo and Mainardi, 1997; 
Kilbas et al., 2006) 
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We have used the following formula for the inverse 
Laplace transform  
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In the central symmetric case we have (Povstenko, 
2008c)  
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It should be noted that due to the behavior of the Mit-
tag-Leffler function ��,�
−��

���� for large values of ar-
gument 
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the fundamental solution (24) has the singularity with the 
positive sign at the point of applying the delta pulse for � > 0 
and all values of 1 < � < 2. 

4. FUNDAMENTAL SOLUTION  
TO THE SOURCE PROBLEM 

Consider the time-fractional diffusion equation with 
a source term being the time and space delta pulse applied 
at point with the spatial coordinates �, �	and �. 
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under zero initial conditions  

0:0 == QGt , 20 ≤< α ,           (30) 

0:0 =
∂

∂
=

t

G
t

Q , 21 ≤< α .           (31) 

Using integral transform, we arrive at 
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and after inversion of integral transforms  
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In the central symmetric case we have (Povstenko, 
2008c)  
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Due to the behavior of the Mittag-Leffler function  
��,�

�−������	for large values of argument 
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the solution (33) has no singularity at the point of applying 
the delta pulse for � > 0.  

5. CONCLUSIONS  

The new solutions to the Cauchy and source problems 
for time-fractional diffusive-wave equation have been ob-
tained for an infinite medium referred to spherical coordi-
nate system �,	,
. For the first time, the non-central-
symmetric case has been considered. The found solutions 
satisfy the appropriate initial conditions and reduce  
to the solutions of classical diffusion equation in the limit 
� = 1	and of the standard wave equation in the case  
of ballistic diffusion (� = 2). Our results provide a new 
analytical tool for studying anomalous diffusion. 
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Abstract: A new class of fractional two-dimensional (2D) continuous-time linear systems is introduced. The general re-
sponse formula for the system is derived using a 2D Laplace transform. It is shown that the classical Cayley-Hamilton theo-
rem is valid for such class of systems. Usefulness of the general response formula to obtain a solution of the system is dis-
cussed and illustrated by a numerical example. 

 

1. INTRODUCTION  

The most popular models of two-dimensional (2D) lin-
ear system are the ones introduced by Roesser (1975), For-
nasini and Marchesini (1976, 1978) and Kurek (1985). 
An overview of 2D linear systems theory is given in (Bose, 
1982, 1985; Kaczorek, 1985, 2001; Gałkowski, 2001, Fa-
rina and Rinaldi, 2000). 

Mathematical fundamentals of fractional calculus and 
its applications are given in the monographs (Oldham and 
Spanier, 1974; Nashimoto, 1984; Miller and Ross, 1993; 
Podlubny, 1999, Ostalczyk, 2008). 

The notion of fractional 2D discrete-time linear systems 
was introduced by Kaczorek (2008a) and extended  
in (Kaczorek, 2008b, 2009, Kaczorek and Rogowski, 2010, 
Rogowski, 2011). An overview in state of the art in 1D 
and 2D fractional systems is given in the monograph  
(Kaczorek, 2011). 

In this paper a new 2D continuous-time fractional 
Roesser type model will be introduced. The general re-
sponse formula for the system will be derived using the 2D 
Laplace transform method (Section 2). Moreover the classi-
cal Cayley-Hamilton theorem will be extended to fractional 
2D continuous-time systems in Section 3. In Section 4 
usefulness of the general response formula to obtaining 
the solution of the system will be discussed and illustrated 
by a numerical example. Concluding remarks are given 
in Section 5. 

To the best knowledge of the author 2D continuous-time 
fractional linear systems have not been considered yet. 

2. FRACTIONAL 2D STATE EQUATIONS  
AND THEIR SOLUTION 

Let ��×� be the set of � ×� real matrices and 
��: = ��×�. The set of nonnegative integers will be de-
noted by �� and the � × � identity matrix will be denoted 
by ��. 

We introduce the following definition of fractional par-
tial derivative of a 2D continuous function �(��, ��)  of two 
independent variables ��, �� ≥ 0. 

Definition 1. The �� order partial derivative of a 2D conti-
nuous function �(��, ��) is given by the formula 
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for � ≥ 0	is the gamma function and 
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Consider the fractional 2D continuous-time system de-
scribed by the state equations 
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where ��(��, ��) ∈ ���, ��(��, ��) ∈ ��� (� = �� + 	 ��) 
are the horizontal and vertical state vectors, respectively, 

(��, ��) ∈ �� is the input vector, �(��, ��) ∈ �	 is the out-
put vector and 	�
� ∈ ���×�, �
 ∈ ���×� for  �, � = 1,2; 
� ∈ �	×�; � ∈ �	×�. 
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The boundary conditions for (4) are given in the form 
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for  � = 0, 1, … ,
� − 1 and �� ≥ 0, 
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for  � = 0, 1, … ,
� − 1 and �� ≥ 0. 
In the following theorem the Riemman-Liouville formula 

of fractional integration of a function �(�) will be used (Pod-
lubny, 1999) 
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where � > 0 is the fractional (real) order of the integration. 
Similarly, we may define the 2D fractional integral of function 
�(��, ��)  
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where �,� > 0. 
Theorem 1. The solution to the equation (4a) with the boun-
dary conditions (5) is given by 
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where 
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Proof. Let �(�, ��) (����, ��) be the Laplace transform  
of a  2D continuous function �(��, ��)  with respect to ��		(��) 
defined by 
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The 2D Laplace transform of �(��, ��) will be denoted 
by �(�, �) and defined by 
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Applying (12) to (1) for 1i =  and taking into account that 
(Kaczorek, 2011) 
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for 0,1,...N = ; we obtain 
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Similarly, for 2i =  in (1) we have 
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for  � = 0, 1, … 
Taking into account (15) and (17) we obtain the 2D Lap-

lace transform of the state equation (4a) 
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Premultiplying (19) by the matrix  
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where 10T  and 01T  are defined by (10). 

Comparing the coefficients at the same powers of � and � 
we obtain (9). 

Substituting the expansion (22) into (20) we obtain  
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Taking into account (Kaczorek, 2011) 
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where � > 0 and ℒ�� denotes the inverse Laplace transform, 
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where ��,�� > 0. 
Applying the inverse 2D Laplace transform to (24) 

and taking into account (26) we obtain the formula (8). 

3. EXTENSION OF CAYLEY-HAMILTON 
THEOREM 

Theorem 2. Let 
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be the characteristic polynomial of the system (4). Then 
the transition matrices ���	satisfy the equality 
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where ( )Adj ,G p s  denotes the adjoint matrix of  �(�, �). 

Comparing the coefficients at the same powers of � and � 
for � ≥ 0 and � ≥ 0we obtain (28) since 	
��(�, �) is a poly-
nomial matrix of the form 
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where  ���	 ∈ ��×� are some real matrices.  
Theorem 2 is an extension of the well-known classical 

Cayley-Hamilton theorem to fractional 2D continuous-time 
systems. 

4. NUMERICAL EXAMPLE 

Example 1. Consider fractional 2D system (4) with �� = 0,7, 
�� = 0,9	and matrices 
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Fig. 1. State variable ��(��, ��) of the system 

Find a step response of the system (4) with the matrices 
(31), i.e. �(��, ��) for ��, �� ≥ 0	and 
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and zero boundary conditions 
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Using (8) for ��,�� = 1 and taking into account (31), 
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where transition matrices ijT are given by (9). 

 
 Fig. 2. State variable ��(��, ��)  of the system 

Formula (36) describes the step response of the system 
(4) with the matrices (31). It is easy to show that 
the coefficients 1/Γ(. ) strongly decrease when � and � 
increase. Therefore, in numerical analysis we may assume 
that � and � are bounded by some natural numbers �� 
and ��. 

The plots of the step response (36) where �� = 50 and 
�� = 50  are shown on Fig. 1 and 2. 
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5. CONCLUDING REMARKS 

A new class of fractional 2D continuous-time linear sys-
tems described by the Roesser model has been introduced. 
The general response formula for such systems has been 
derived (Theorem 1) using the 2D Laplace transform. 
The classical Cayley-Hamilton theorem has been extended 
to fractional 2D continuous-time systems (Theorem 2). 
It has been shown that using the general response formula 
we are able to obtain the step response of the fractional 2D 
continuous-time system. The considerations have been illu-
strated by a numerical example. 

The above considerations can be extended for general 
2D model (Kurek, 1985). An open problems are the positiv-
ity and stability of fractional 2D continuous-time systems.  
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Abstract: The paper presents the problem of designing of a fractional order controller satisfying  the conditions of gain and 
phase margins of the closed-loop system with time-delay inertial plant. The transfer function of the controller follows directly 
from the use of Bode's ideal transfer function as a reference transfer function for the open loop system. Using the classical D-
partition method and the gain-phase margin tester, a simple computational method for determining stability regions in the 
controller parameters plane is given. An efficient analytical procedure to obtain controller parameter values for specified gain 
and phase margin requirements is also given. The considerations are illustrated by numerical examples computed 
in MATLAB/Simulink. 

 

1. INTRODUCTION 

In recent years considerable attention has been paid 
to fractional calculus and its application in many areas 
in science and engineering (see, e.g. (Das, 2008; Kaczorek, 
2011; Kilbas et al., 2006; Ostalczyk, 2008)). 

In control system fractional order controllers are used to 
improve the performance of the feedback control loop. One 
of the most developed approaches to design robust 
and fractional order controllers is CRONE control metho-
dology, French acronym of ”Commande Robuste d’Ordre 
Non Entier” (non-integer order robust control) (Oustaloup 
1991, 1995, 1999). 

The fractional PID controllers, namely PIλDµ control-
lers, including an integrator of λ order and a differentiator 
of µ order were proposed in (Podlubny, 1994, 1999). Sev-
eral design methods of tuning the PIλDµ  controllers were 
presented in (Monje et al., 2004; Valerio, 2005; Valerio and 
Costa, 2006). These methods are based on the mathematical 
description of the process. The first order-plant with time 
delay is the most frequently used model for tuning fraction-
al and integral controllers (O’Dwyer, 2003). 

The asymptotic stability is the basic requirement 
of a closed-loop system. Some methods for determining the 
asymptotic stability regions in the controller parameter 
space were proposed in (Hamamci, 2007; Ruszewski, 
2008). Gain and phase margins are measures of relative 
stability for a feedback system, therefore the synthesis 
of control systems is very often based on them. In typical 
control systems the phase margin is from 30° to 60° whe-
reas the gain margin is from 5dB to 10dB. In paper (Rus-
zewski, 2010) a simple method of determining the stability 
region (satisfying the conditions of gain and phase margins) 
in the parameter space of a fractional-order inertial plant  
with time delay and a fractional-order PI controller 
was given. 

In this paper the methods for tuning a fractional order 
controller satisfying the conditions of gain and phase mar-
gins are given. The transfer function of the controller fol-
lows from the use of Bode's ideal transfer function 
as a reference transfer function for the open loop system 
(Barbosa et al., 2004; Boudjehem et al., 2008; Busłowicz 
and Nartowicz, 2009; Skogestad, 2001; Nartowicz, 2010). 
Using the D-partition method a simple and efficient compu-
tational method for determining stability regions in the 
controller parameters space is given. Moreover analytical 
forms directly expressing the controller parameters 
for specified gain and phase margin requirements are de-
termined. 

2. PROBLEM FORMULATION 

Consider the feedback control system shown in Fig. 1. 
The main path of the control system includes the gain-phase 
margin tester Aexp(−jφ), where A and φ are gain margin and 
phase margin respectively. This tester does not exist in the 
real control system, it is only used for tuning the controller. 

  

- 
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Fig. 1. Feedback control system structure  

The process to be controlled is described by an inertial 
plant with time delay 
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where k, T, h are positive real numbers. 
The transfer function of controller C(s) directly follows 

from the use of Bode's ideal transfer function 
 

,)(
βω







=
s

sK c  (2) 

 

as a reference transfer function of the open loop system, 
where �

�
 is the gain crossover frequency (|�(��

�
)| = 1)	 

and β is the fractional order. Transfer function (2) describes 
the fractional derivative plant for β < 0 and the fractional 
integral plant for β > 0. The open loop system with transfer 
function (2) has a constant phase margin of the value 
φm = (1 − 0.5β)π. Hence, such a system is insensitive 
to gain variation in the open loop system. Detailed analysis 
(including time domain) of the system considered is pre-
sented, for instance, in (Barbosa et al., 2004). 

In order to obtain the transfer function of the open loop 
system  in the form of transfer function (2), with expected 
time delay, we simplify the plant transfer function 
 

.
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k
e
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Then the transfer function of the controller must have 
the form 
 

,)( 1 α−= sksC c  (4) 
 

where α is a positive real number. We will assume α > 1. 
The characteristic function of the closed-loop system 

with simplified transfer function (3), transfer function 
of controller (4) and gain-phase tester is given by 
 

.)( 1 sTeesAkksw shj
c += −−− φα  (5) 

 

The closed-loop system in Fig. 1 is said to be bounded-
input bounded-output stable if and only if all the zeros 
o characteristic function (5) have negative real parts. 
It is noted that (5) is the fractional order quasi-polynomial 
which has an infinite number of zeros. This makes the prob-
lem of analysing the stability of the closed-loop system 
difficult. There is no general algebraic methods available 
in the literature for the stability test of fractional order qua-
si-polynomials. The next problem of closed-loop system 
synthesis is how to choose such a fractional order α of the 
controller that the closed-loop system will be stable 
and characterized by specified gain and phase margins. 

The aim of the paper is to propose tuning methods based 
on gain and phase margin specifications. The first one is to 
give the method for determining the stability region in the 
parameter plane (α, kc). The second is to give a simple 
analytical formula to obtain the controller parameter values 
for specified gain and phase margin requirements. 

3. MAIN RESULT 

By using the D-partition method (Gryazina, 2004) 
the stability region in the parameter plane (α, kc) can be 
determined and the parameters can be specified. The plane 
(α, kc) is decomposed by the boundaries of the D-partition 

into finite number regions D(k). Any point in D(k) corres-
ponds to such values of kc and α that quasi-polynomial (5) 
has exactly k zeros with positive real parts. The region 
D(0), if it exists, is the stability region of quasi-polynomial 
(5). The D-partition boundaries are curves on which each 
point corresponds to quasi-polynomial (5) having zeros 
on the imaginary axis. It may be the real zero boundary 
or the complex zero boundary. It is easy to see that quasi-
polynomial (5) has zero s = 0 if kc = 0 (the real zero boun-
dary). The complex zero boundary corresponds to the pure 
imaginary zeros of (5). We obtain this boundary by solving 
the equation 
 

( ) ,0)( 1 =+= −−− TjeejAkkjw hjj
c ωωω ωφα  (6) 

 

which we obtain by substituting s = jω in quasi-polynomial 
(5) and equating to 0. The term of jα which is required 
for equation (6) can be expressed by 
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Using (7) equation (6) takes the form 
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Complex equation (8) can be rewritten as a set of real 
equations in the form 
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Finally, by solving equations (9) and (10) we get 
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Equations (11) and (12) determine the complex zero 
boundary as a function of ω. The real zero boundary 
and the complex zero boundary for ω ≥ 0 decompose plane 
(α, kc) into regions D(k). The stability region D(0) is chosen 
by testing an arbitrary point from each region and checking 
the stability of quasi-polynomial (5) using the methods 
proposed in (Busłowicz, 2008). In this paper only the stabil-
ity region D(0) in the parameter plane of quasi-polynomial 
(5) is presented. 

For A = 1 and φ = 0 in (11) and (12) the stability boun-
daries are calculated. To determine the complex zero boun-
dary for a given value of gain margin A of the control sys-
tem we should set φ = 0 in (11) and (12). On the other hand 
by setting A = 1 in (12), we can obtain the boundary 
for a given phase margin φ. 

The complex zero boundary (11) and (12) is determined 
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for parameter ω ≥ 0. The complex zero boundary 
for a given value of gain margin A begins at the point α = 2, 
kc = 0 which we obtain by substituting ω = 0 in (11) 
and (12). However, the complex zero boundary for 
the given phase margin φ starts at the point α = 2(π − φ)/π, 
kc = 0. If ω →∞ plot of the complex zero boundary tends 
towards kc -axis. 
Example 1. Consider the feedback control system shown 
in Fig. 1. in which the process to be controlled is described 
by transfer function 
 

.
621

55.0
)( 10se

s
sG −

+
=  (13) 

 

On computing by the proposed method complex zero 
boundaries (11) and (12) we obtain the stability regions 
in controller parameter plane (α, kc). 

Fig. 2 shows boundaries in controller parameter plane 
(α, kc) for gain margin A = 1 and a few values of phase 
margin φ. The stability regions lie between line kc = 0 (the 
real zero boundary) and the curve assigned to specified 
phase margin φ (the complex zero boundary).  

 
Fig. 2. Stability regions of quasi-polynomial (5)  

  for A = 1 and different values of φ 

 
Fig. 3. Stability regions of quasi-polynomial (5)  

  for φ = 0 and different values of A 

On choosing any point from the stability region we ob-
tain the controller parameter values provided the phase 
margin of this system not less than specified for drawing 
the complex boundary. For example, any point from the 
region limited by the line kc = 0 and the curve correspond-

ing to φ = 60° provides a phase margin of this system not 
less than 60°. From Fig.2 we see that the increasing value 
of φ results in the disappearance of the stability region. 

The stability regions of quasi-polynomial (5) for phase 
margin φ = 0 and a few values of gain margin A are shown 
in Fig.3. We see that increasing value of A results in the 
disappearance of the stability region. On choosing any point 
from the stability region we obtain the controller parameter 
values provided that the gain margin of this system is not 
less than specified for drawing the complex boundary. For 
example a choosing point between kc = 0 and the complex 
boundary for A = 4 we obtain the controller parameters 
satisfying a gain margin of not less  than 4. 

The controller parameters and stability margins of the 
control system for all points marked in Fig. 2 and Fig. 3 
are listed in Tab. 1. It is shown that the stability margin 
values are larger than specified for drawing the complex 
boundaries of the stability regions. Gain and phase margins 
of the control system are calculated for transfer function 
(1). 

Tab. 1. Gain and phase margins 

Point Controller parameters Gain margin Phase margin 

a α = 1.1,  kc = 2 7.13 17.06 dB 107.36° 

b α = 1.1,  kc = 4 3.56 11.64 dB 74.38° 

c α = 1.1,  kc = 6 2.38 7.52 dB 55.51° 

d α = 1.1,  kc = 10 1.43 3.08 dB 26.64° 

Tab. 1 confirms the results received on the basis of the 
D-partition method showing that the points from the stabili-
ty regions satisfy the gain and phase margin requirements. 

The step responses of the control system are presented 
in Fig. 4. It can be seen that the increasing value of φ results 
in smaller oscillations. 

 
Fig. 4. Step responses of control system 

By using the stability regions we can obtain the control-
ler parameter values for specified gain and phase margins 
requirements simultaneously. For this purpose we draw 
in one plot the complex zero boundary for specified phase 
margin φ with A = 1 and the complex zero boundary 
for specified gain margin A with φ = 0. Intersection point 
of the complex zero boundaries determines the controller 
parameter values. 
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Example 2. Consider the feedback control system  
as in Example 1. Calculate the controller parameter values 
so that the control system has the gain margin A = 4 (about 
12 dB) and the phase margin φ = 55°. 

On computing the complex zero boundaries (11) 
and (12) for specified gain margin A = 4 with φ = 0 and for 
specified phase margin φ = 55° with A = 1 we obtain 
the stability regions which are shown in Fig. 5. The inter-
section point of  the complex zero boundaries is marked 
on Fig. 5 and has coordinates α = 1.1339, kc = 2.9358. 
On calculating the stability margins of control system 
for simplified transfer function (3) we obtain A = 4 
and φ = 55°. Whereas stability margins for model plant (1) 
are A = 4.4 and φ = 80° because of simplification (3). Fig. 6 
shows the Bode plot with the gain and phase margins 
marked for controller parameters α = 1.1339, kc = 2.9358. 

 
Fig. 5. Stability regions of quasi-polynomial (5)  

   for  A = 1, φ = 55° and A = 4, φ = 0 

 
Fig. 6. Bode plot with gain and phase margins 

By using expressions of the stability boundaries (11) 
and (12) we can determine analytical description for direct 
calculations of the controller parameter values for specified 
gain and phase margins requirements without drawing 
the stability region. 

To determine the complex zero boundary for a given 
value of gain margin A of the control system we set φ = 0 
in (11) and (12). On solving system of equations (11) 
and (12) for the unknown quantities of ω and kc with φ = 0 
we obtain 
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Expression (15) gives the relationship between kc and α 
for specified gain margin A. 

Similarly to determine the complex zero boundary 
for a given phase margin φ of the control system we set 
A = 1 in (12). On solving system of equations (11) and (12) 
for the unknown quantities of ω and kc with A = 1 we obtain 
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Expression (17) gives the relationship between kc and α 
for specified phase margin φ. 

Note from Fig.5 that for fixed value of α which guaran-
tees gain and phase margins requirements simultaneously 
the values of kc in the two complex boundaries are the same 
(the intersection point). Therefore the value of α which 
ensures gain and phase margins requirements can be calcu-
lated by solving following nonlinear equation 
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After simplifications equation (18) can be rewritten 
in the form 
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If we get the value of α from (19) we can calculate con-
troller gain kc from expression (15) or (17).  

From the above it can be seen that the procedure for cal-
culating parameters of controller (4) for specified gain 
and phase margins requirements is as follows: 
1. Solve the nonlinear equation (19) and determine α. 
2. Calculate controller gain kc from expression (15) or (17). 

Note that in the procedure proposed the calculation 
of the gain crossover frequency or the phase crossover fre-
quency is not necessary in contrast to methods presented 
in (Boudjehem et al., 2008; Busłowicz and Nartowicz, 
2009; Nartowicz, 2010). The advantage of the procedure 
proposed is that the controller settings are easily calculated. 
Example 3. Consider the feedback control system 
as in Example 2. Using the procedure presented calculate 
the controller parameters values so that the control system 
has gain margin A = 4 (about 12 dB) and phase margin 
φ = 55°. 
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On solving nonlinear equation (19) we have α = 1.1339. 
From (15) or (17) we calculate controller gain kc = 2.9358. 
Note that we obtain the same values of the controller para-
meter as in Example 2. 

Gain and phase margins are measures of relative stabil-
ity for a feedback system. Although the phase margin 
is used more frequently than both margins. The phase mar-
gin is closely related to transient response i.e. overshoot.  

From the above it can be seen that the procedure for cal-
culating parameters of controller (4) for specified phase 
margin requirement is as follows: 
1. Calculate the start point of the complex zero boundary 

α = 2(π − φ)/π. 
2. Choose any positive value smaller than determined α. 
3. Calculate controller gain kc from expression (17). 

In the above procedure solving nonlinear equation is not 
necessary. 

4. CONCLUSION 

In this paper the stability problem of control systems 
composed of the fractional-order controller and the inertial 
plant with time delay is examined. On the basis of the  
D-partition method analytical forms expressing the bounda-
ries of stability regions in the parameter space for specified 
gain and phase margin requirements were determined. 
When the  the stability regions are known  the tuning of the 
fractional controller can be carried out. Simple analytical 
formulas for obtaining the controller parameter values 
for specified gain and phase margins requirements were 
also given. In the method proposed the controller settings 
are easily calculated. 

The calculations and simulations were made using 
the Matlab/Simulink programme. 
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Abstract: The realization problem for single-input single-output 2D positive fractional systems with different orders is for-
mulated and a method based on the state variable diagram for finding a positive realization of a given proper transfer function 
is proposed. Sufficient conditions for the existence of a positive realization of this class of 2D linear systems are established. 
A procedure for computation of a positive realization is proposed and illustrated by a numerical example. 

 

1. INTRODUCTION 

In positive systems inputs, state variables and outputs 
take only non-negative values. Examples of positive sys-
tems are industrial processes involving chemical reactors, 
heat exchangers and distillation columns, storage systems, 
compartmental systems, water and atmospheric pollution 
models. A variety of models having positive linear systems 
behavior can be found in engineering, management science, 
economics, social sciences, biology and medicine, etc. 

Positive linear systems are defined on cones and not 
on linear spaces. Therefore, the theory of positive systems 
is more complicated and less advanced. An overview of 
state of art in positive systems theory is given in the mono-
graphs (Farina and Rinaldi, 2000; Kaczorek, 2002). The 
realization problem for positive discrete-time and conti-
nuous-time systems without and with delays was consi-
dered in Benvenuti and Farina (2004), Farina and Rinaldi 
(2000) and Kaczorek (2006a, 2006b, 2004, 2005). A new 
class of positive 2D hybrid linear system has been intro-
duced in Kaczorek (2007), and the realization problem for 
this class of systems has been considered in Kaczorek 
(2008c). 

The first definition of the fractional derivative was in-
troduced by Liouville and Riemann at the end of the 19th 
century (Nishimoto, 1984; Oldham and Spanier, 1974). 
This idea has been used by engineers for modeling different 
process (Engheta, 1997; Ferreira and Machado, 2003; 
Klamka, 2005; Ostalczyk, 2000; Oustaloup, 1993). Mathe-
matical fundamentals of fractional calculus are given in the 
monographs (Miller and Ross, 1993; Nishimoto, 1984; 
Oldham and Spanier, 1974; Ortigueira, 1997; Podlubny, 
1999). The fractional order controllers have been developed 
in (Ostalczyk, 2000; Podlubny et al., 1997). A generaliza-
tion of the Kalman filter for fractional order systems has 
been proposed in Zaborowsky and Meylaov (2001). A new 
class of positive fractional 2D hybrid linear system has 
been introduced in Kaczorek (2008e) and positive fractional 
2D linear systems described by the Roesser model in Ro-
gowski and Kaczorek (2010). The realization problem 
for positive fractional systems was considered in Kaczorek 
(2008b, 2008d, 2011) and Sajewski (2010). 

The main purpose of this paper is to present a method 
for computation of a positive realization of SISO 2D differ-
ent orders fractional systems with given proper transfer 
function using the state variable diagram method. Sufficient 
conditions for the existence of a positive realization of this 
class of systems will be established and a procedure for 
computation of a positive realization will be proposed. 

The paper is organized as follows. In section 2 basic de-
finition and theorem concerning positive 2D different or-
ders fractional systems are recalled. Also in this section 
using the zet transform the transfer matrix (function) of the 
different orders fractional systems is derived and the posi-
tive realization problem is formulated. Main result is given 
in section 3 where solution to the realization problem for 
given transfer function of the 2D different orders fractional 
discrete-time linear systems is given. In the same section 
the sufficient conditions for the positive realization are 
derived and the procedure for computation of the positive 
realization is proposed. Concluding remarks are given 
in section 4. 

The following notation will be used: ℜ – the set of real 
numbers, ℜ�×� – the set of � ×� real matrices, ℜ�

�×� – 
the set of � ×� matrices with nonnegative entries and 
ℜ�

� = ℜ�
�×�, �� – the � × � identity matrix, Z[����] – zet 

transform of the discrete-time function  �(�). 

2. PRELIMINARIES AND PROBLEM 
FORMULATION 

Consider a 2D system with different fractional orders 
described by the equations  

)()()()1( 12121111 kuBkxAkxAkx ++=+∆α                (2.1a) 

)()()()1( 22221212 kuBkxAkxAkx ++=+∆β              (2.1b) 

)()()()( 2211 kDukxCkxCky ++= , +∈Zk          (2.1c) 

where ��(�) ∈ ℜ��, ��(�) ∈ ℜ�� 	are state vectors 
and 
(�) ∈ ℜ� is input vector  �(�) ∈ ℜ� is output vector 
and ��� ∈ ℜ��×�� , 
� ∈ ℜ��×�, �� ∈ ℜ	×��, �, � = 1,2; 
� ∈ ℜ�×�. 
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The fractional difference of � ∈ ℜ order is defined by 
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Using (2.2a) we can write the equation (2.1a) and (2.1b) 
in the following form 
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Definition 2.1. The fractional system (2.1) is called positive 
if and only if ��(�) ∈ ℜ��, ��(�) ∈ ℜ�� and �(�) ∈ ℜ�

� ,  
� ∈ �� for any initial conditions ���0� = ��
 ∈ 	ℜ�

��, 
���0� = ��
 ∈ 	ℜ�

��, and all input sequences 
(�) ∈ ℜ�,  
� ∈ �� = �0, 1, … �. 
Theorem 2.1. (Kaczorek, 2011) The fractional discrete-
time linear system (2.1) with 0 < � < 1, 0 < � < 1 
is positive if and only if 
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Proof is given in Kaczorek (2011). 
Substituting (2.2a) into (2.1a) and (2.1b) we obtain  
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Performing the zet transform with zero initial conditions 
we have 
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(2.7) 
where ���� = �[����], ���� = Z [
���], ���� = Z [����]. 

The equations (2.7) can be written in the matrix form 
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The transfer matrix of the system (2.1) is given by  
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In this case the transfer matrix is the function of the op-

erators �� = � − ��, �� = � − �� and for single-input 
single-output (shortly SISO) systems it has the following 
form 
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for known �,�. 
Definition 2.2. The matrices (2.5) are called the positive 
realization of the transfer matrix �(�) if they satisfy the 
equality (2.10).  

The realization problem can be stated as follows. 
Given a proper rational matrix �(��,	��) ∈

ℜ�×�(��,	��)	and fractional orders �,�, find its positive 
realization (2.5), where ℜ�×�(��,	��)	 is the set of � ×� 
rational matrices in �� and ��. 

3. PROBLEM SOLUTION FOR SISO SYSTEMS 

The essence of proposed method for solving of the rea-
lization problem for positive linear systems with different 
fractional orders will be presented on single-input single-
output system. It will be shown that state variable diagram 
method previously used for standard discrete-time systems 
and 2D hybrid systems (Kaczorek, 2002, 2008c) is also 
valid for fractional order discrete-time systems. 

In standard (nonfractional) discrete-time systems  
it is well-known that 

)()]([)]1([ zzXkxzkx =⋅=+ ZZ                   (3.1a) 

and 

)]1([
1

)]([ +⋅= kx
z

kx ZZ                         (3.1b) 
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Fig. 3.1. State variable diagram for 2D fractional different orders system 

 
Fig. 3.2. State variable diagram for 2D fractional different orders transfer function (3.14) 

Therefore, to draw the state variable diagram for stan-
dard discrete-time linear systems (Kaczorek, 2002) we use 
the of delay element 1/�. 

By similarity, for the fractional discrete-time linear sys-
tems we have 
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and to draw the state variable diagram we have to use the 

fractional of delay elements 
�

��
= ��

�� and  
�

��
= ��

��. 

Consider a 2D different orders fractional discrete-time 
linear system described by the transfer function (2.11). 
Multiplying the numerator and denominator of transfer 
function (2.11) by ��

�����

��� we obtain 
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Following Kaczorek (2002, 2008c) we define 
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and from (3.3) we have 
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Using (3.5) we may draw the state variable diagram 
shown in Fig. 3.1. 

As a state variable we choose the outputs of fractional 
(order α) of delay elements (��,����, ��,	���, … , ��,�����) 
and fractional (order β) of delay elements 
(�	,����, �	,	���, … , �	,	�����). Using state variable dia-
gram (Fig. 3.1) we can write the following discrete-time 
different orders fractional equations 
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where  
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and substituting (3.7) into (3.6) we can write the equations 
(3.6) in the form 
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and 
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where 

jnnijiji aaaa ,,,, 12
+= , jnnijiji babb ,,,, 12

+=  for 

1,...,1,0 1 −= ni ; 1,...,1,0 2 −= nj .                (3.12) 

Taking under consideration that ���=��� + ����, 
���=��� + ���� the following theorem has been proved. 
Theorem 3.1. There exists a positive realization (2.5) of the 
2D different orders fractional system (2.1) with 0 < � < 1, 
0 < � < 1 if all coefficients of the numerator and denomi-
nator of the transfer function �(��,	��) are nonnegative. 

If the assumptions of Theorem 3.1 are satisfied then 
a positive realization (2.5) of (2.11) can be found by the use 
of the following procedure. 
Procedure 3.1.  
Step 1. Write the transfer function �(��,	��) in the 

form (3.3) and the equations (3.5). 
Step 2. Using (3.5) draw the state variable diagram 

shown in Fig. 3.1.  
Step 3. Choose the state variables and write equations 

(3.4). 
Step 4. Using (3.10) to (3.12) find the realization (3.10). 
Step 5. Knowing fractional orders �, � and using (2.4) 

to matrices (3.10) compute the desired positive 
realization of the transfer function (2.11). 

Example 3.1. Find a positive realization (2.5) of the proper 
transfer function where � = 	� = 0,5. 
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In this case �� = 2  and �� = 1  . 
Using Procedure 3.1 we obtain the following. 

Step 1. Multiplying the nominator and denominator 
of Transfer function (3.13) by ��

����
�� we obtain 
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Step 2. State variable diagram has the form shown  
in Fig. 3.2 

Step 3. Using state variable diagram we can write the fol-
lowing different orders fractional equations                         
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Step 4. Defining state vectors 
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we can write the equations (3.16) in the form 
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Step 5. Knowing that 5.0== βα  and using (2.4) we have 
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The conditions of Theorem 2.1 are satisfied and ob-
tained realization (3.19) with (3.20) is positive. 

4. CONCLUDING REMARKS 

A method for computation of a positive realization 
of a given proper transfer matrix of 2D different orders 
fractional discrete-time linear systems has been proposed. 
Sufficient conditions for the existence of a positive realiza-
tion of this class of systems have been established. A pro-
cedure for computation of a positive realization has been 
proposed. The effectiveness of the procedure has been illu-
strated by a numerical example. In  general  case  the  pro-
posed  procedure  does  not  provide a minimal  realization 
of a given  transfer  matrix. An open problem is formulation 
of the necessary and sufficient conditions for the existence 
of positive minimal realizations for 2D fractional systems 
in the general case as well as connection between minimal 
realization and controllability (observability) of this class 
of systems. 

REFERENCES 

1. Benvenuti L. Farina L. (2004), A tutorial on the positive 
realization problem, IEEE Trans. Autom. Control, vol. 49, no. 
5, 651-664. 

2. Engheta N. (1997), On the role of fractional calculus in elec-
tromagnetic theory, IEEE Trans. Atenn. Prop., vol. 39, No. 4, 
35-46.  

3. Farina L., Rinaldi S. (2000), Positive Linear Systems, Theory 
and Applications, J. Wiley, New York. 

4. Ferreira N.M.F, Machado J.A.T. (2003), Fractional-order 
hybrid control of robotic manipulators, Proc. 11th Int. Conf. 
Advanced Robotics, ICAR, Coimbra, Portugal, 393-398. 

5. Gałkowski K., Kummert A.  (2005), Fractional polynomials 
and nD systems, Proc IEEE Int. Symp. Circuits and Systems, 
ISCAS, Kobe, Japan, CD-ROM. 

6. Kaczorek T. (2002), Positive 1D and 2D Systems, Springer-
Verlag, London. 

7. Kaczorek T. (2004), Realization problem for positive dis-
crete-time systems with delay, System Science, vol. 30, no. 4, 
117-130. 

8. Kaczorek T. (2005), Positive minimal realizations for singu-
lar discrete-time systems with delays in state and delays in 
control, Bull. Pol. Acad. Sci. Techn., vol 53, no. 3, 293-298. 

9. Kaczorek T. (2006a), A realization problem for positive 
continues-time linear systems with reduced numbers of delay, 
Int. J. Appl. Math. Comp. Sci., Vol. 16, No. 3, pp. 325-331. 

10. Kaczorek T. (2006b), Computation of realizations of discrete-
time cone systems, Bull. Pol. Acad. Sci. Techn., vol. 54, no. 3, 
2006, 347-350. 

11. Kaczorek T. (2006c), Realization problem for positive multi-
variable discrete-time linear systems with delays in the state 
vector and inputs, Int. J. Appl. Math. Comp. Sci., vol. 16, no. 
2, 101-106. 

12. Kaczorek T. (2007), Positive 2D hybrid linear systems, Bull. 
Pol. Acad. Sci. Techn., vol 55, no. 4, 351-358. 

13. Kaczorek T. (2008a), Fractional positive continuous-time 
linear systems and their reachability, Int. J. Appl. Math. Com-
put. Sci., vol. 18, no. 2, 223-228. 

14. Kaczorek T. (2008b), Realization problem for fractional 
continuous-time systems, Archives of Control Sciences, vol. 
18, no. 1, 43-58. 

15. Kaczorek T. (2008c), Realization problem for positive 2D 
hybrid systems, COMPEL, vol. 27, no. 3, 613-623. 

16. Kaczorek T. (2008d), Realization problem for positive frac-
tional discrete-time linear systems, Pennacchio S. (Ed.): 
Emerging Technologies, Robotics and Control Systems, Int. 
Society for Advanced Research, 226-236. 

17. Kaczorek T. (2008e), Positive fractional 2D hybrid linear 
systems, Bull. Pol. Acad. Sci. Techn., vol 56, no. 3, 273-277. 

18. Kaczorek T. (2009a), Fractional positive linear systems, 
Kybernetes: The International Journal of Systems & Cybernet-
ics, vol. 38, no. 7/8, 1059–1078. 

19. Kaczorek T. (2009b), Wybrane zagadnienia teorii układów 
niecałkowitego rzędu. Oficyna Wydawnicza Politechniki Bia-
łostockiej, Rozprawy Naukowe Nr 174, Białystok. 

20. Kaczorek T. (2011), Selected Problems in Fractional Systems 
Theory, Springer-Verlag. 

21. Klamka J. (2002), Positive controllability of positive systems,  
Proc. of American Control Conference, ACC-2002, Anchor-
age, (CD-ROM). 

22. Klamka J. (2005), Approximate constrained controllability  
of mechanical systems, Journal of Theoretical and Applied 
Mechanics, vol. 43, no. 3, 539-554. 

23. Miller K.S.,  Ross B. (1993), An Introduction to the Fraction-
al Calculus and Fractional Differenctial Equations. Willey, 
New York. 

24. Nishimoto K. (1984), Fractional Calculus, Decartess Press, 
Koriama. 

25. Oldham K. B., Spanier J. (1974), The Fractional Calculus. 
Academmic Press, New York:. 

26. Ortigueira M. D.  (1997), Fractional discrete-time linear 
systems, Proc. of the IEE-ICASSP, Munich, Germany, IEEE, 
New York, vol. 3, 2241-2244.  

27. Ostalczyk P. (2000), The non-integer difference of the dis-
crete-time function and its application to the control system 
synthesis, Int. J. Syst, Sci., vol. 31, no. 12, 1551-1561. 

28. Oustaloup A. (1993), Commande CRONE, Hermés, Paris. 
29. Podlubny I. (1999), Fractional Differential Equations, Aca-

demic Press, San Diego. 
30. Podlubny I.,  Dorcak L., Kostial I. (1997), On fractional 

derivatives, fractional order systems and PIλDµ-controllers, 
Proc. 36th IEEE Conf. Decision and Control, San Diego, CA, 
4985-4990. 

31. Rogowski K., Kaczorek T. (2010), Positivity and stabiliza-
tion of fractional 2D linear systems described by the Roesser 
model, International Journal of Applied Mathematics and 
Computer Science, vol. 20, no. 1, 85-92. 

32. Sajewski Ł. (2010), Realizacje dodatnie dyskretnych linio-
wych układów niecałkowitego rzędu w oparciu o odpowiedź 
impulsową, Measurement Automation and Monitoring, vol. 
56, no. 5, 404-408. 

33. Zaborowsky V. Meylaov R. (2001), Informational network 
traffic model based on fractional calculus, Proc. Int. Conf. In-
fo-tech and Info-net, ICII, Beijing, China, vol. 1, 58-63. 

 
Acknowledgments: This work was supported by Ministry 
of Science and Higher Education in Poland under work  
No. N N514 6389 40. 



Dominik Sierociuk, Grzegorz Sarwas, Andrzej Dzieliński 
Discrete Fractional Order Artificial Neural Network 

128 
 

DISCRETE FRACTIONAL ORDER ARTIFICIAL NEURAL NETWORK  

Dominik SIEROCIUK *, Grzegorz SARWAS*, Andrzej DZIELI ŃSKI *  

*Institute of Control and Industrial Electronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland 

dsieroci@isep.pw.edu.pl, sarwasg@isep.pw.edu.pl, adziel@isep.pw.edu.pl 

Abstract: In this paper the discrete time fractional order artificial neural network is presented. This structure is proposed 
for simulating the dynamics of non-linear fractional order systems. In the second part of this paper several numerical exam-
ples are shown. The final part of the paper presents the discussion on the use of fractional or integer discrete time neural net-
work for modelling and simulating fractional order non-linear systems. The simulation results show the advantages of the 
proposed solution over the classical (integer) neural network approach to modelling of non-linear fractional order systems.  

1. INTRODUCTION 

Extending a highly desirable genericity of linear dy-
namic systems models to non-linear systems has for quite 
some time occupied control theorist. The main reason of the 
problems with obtaining generic models for non-linear 
systems is the complex behaviour associated with nonlin-
earity and its intrinsic locality. Thus the search for a univer-
sal non-linear model is highly non-trivial, as is the underly-
ing problem of classification of non-linear systems. 
An important feature of a candidate for such a model is that 
it be parameterised to make finite-dimensional identifica-
tion techniques applicable. Moreover, the model should be 
tractable from the control point of view as it is only 
an auxiliary step in the overall closed-loop system design. 
In this context we attempt to analyse and extend the appli-
cation of neural networks for control. The neural networks 
can be treated as candidates for a generic, parametric, non-
linear model of a broad class of non-linear plants (see e.g. 
Hunt et al. (1995); Żbikowski and Hunt (1996); Kalkkuhl 
et al. (1997); Nørgaard et al. (2000)). Neural networks have 
modelling capabilities to a desired accuracy, however it is 
not entirely clear how they represent the plant’s system 
properties. A remarkable progress in the investigations 
on the representational capabilities of neural networks 
in recent years not only validate them as the models, 
but also give interesting and practical suggestions for fur-
ther research. Boroomand and Menhaj (2009); and Benoit-
Marand et al. (2006) present continuous time description of 
neural networks for modelling nonlinear fractional order 
systems. In this paper the discrete approach is considered. 

In many cases the use of feedforward neural networks 
for non-linear control is based on the input-output discrete-
time description of the systems ���� = �(�� , … , ������; �� , … , ������).         (1) 

However, this model has rather limited capabilities 
for modelling the fractional order systems. Thus, in this 
paper we suggest the use of the fractional order calculus 
to built a model of a non-linear system in the form 

∆������ = �(∆����	�������, … , ∆�����, �� , ��).        (2) 

The model proposed may turn out to be of lower order 
and may better reflect the dynamic properties of the frac-
tional order system modelled. 

2. DISCRETE FRACTIONAL ORDER  
NON-LINEAR SYSTEM 

To present fractional order discrete time neural network 
we have to introduce discrete fractional order non-linear 
system. In this paper the following definition of the frac-
tional order difference is used (see e.g. Oldham and Spanier 
(1974), Podlubny (1999)): 
Definition 1. Fractional order difference is given as follows: 

∆��� = ∑ (−1)
 ��


� ���
�


��           (3) 

where,� ∈ 	 is a fractional order and 
 ∈ � is a number 
of sample for which the difference is obtained. 

In our case the artificial neural network is used to model 
the fractional order non-linear systems. Using fractional 
order difference the following non-linear discrete fractional 
order system in the state-space description is defined: 
Definition 2. The non-linear discrete fractional order system 
in a state-space representation is given by the following set 
of equations: 

∆����� = ���� , ��
           (4) 
 ���� = ∆����� − ∑ �−1
���


�� 	
 ��


� �����
         (5) �� = ℎ(��)            (6) 

The system which we take into consideration is given 
as the following relation: 

∆������ = �(∆����	�������, … , ∆�����, �� , ��)            (7) 

which can be rewritten as: 

∆���,��� = �
,�  

∆��
,��� = ��,�             (8) 

⋮ 
∆���,��� = �(�� , �
,� , … , ��,� , ��) 

This system can be modelled using the artificial neural 
network presented in the next section. 
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3. DISCRETE TIME FRACTIONAL ORDER  
NEURAL NETWORKS 

Neural networks have good properties to model the dy-
namics of the non-linear systems. In fact they are treated 
as a candidate for a generic, parametric, non-linear model 
of a broad class of non-linear systems, because they have 
modelling capabilities to a desired accuracy. Irrespective 
of system order so far the system scientists have proposed 
the integer order neural network for modelling integer 
or non-integer order system. In case of using standard (in-
teger order) neural network for fractional systems model-
ling the network structure is complicated and the accuracy 
can be insufficient. Better solution can be achieved using 
fractional order neural network of the form. 

This structure is a combination of a standard neural 
network and a linear discrete fractional order state-space 
system (DFOSS) defined below. 
Definition 3. Linear discrete fractional order system in 
the state-space representation is given as follows (see e.g. 
Sierociuk and Dzieliński (2006)): 

∆����� = ��� + ���           (9) ���� = ∆����� − ∑ (−1)
 ��


� ���
�����


�� 				      (10) �� = ��� + ���					        (11) 

where, � ∈ 	 is a system order. 

 
Fig. 1. Discrete time fractional neural network 

Fig. 1 presents the architecture useful to simulate 
the fractional order neural network. It can be noticed, 
that the neural network is a traditional structure which 
choice is dependent on the modelled system. The neural 
network input signals are the system input and output data 
for the 
 sample (��, ��) and the vector differences be-
tween previous outputs from ∆(���)������� to ∆�����. 
In the output of the neural network we obtain the prediction 
of the next step difference ∆������. Using this value 
DFOSS calculates the value of the system output and a new 
vector of differences. DFOSS blocks’ sizes depend on the 
modelled system structure and the system matrices we can 
be obtained in the following way: 

� =

���
��0	1	0	0	 ⋯ 0

0	0	1	0	 ⋯ 0

⋮		⋮		⋮		⋮		⋱		⋮
0	0	0	0	 ⋯ 1

0	0	0	0	 ⋯ 0���
��
, B=�0

⋮

0

1

� , � = ���, � = �0�.      (12) 

The structure discussed in this section can be used 
for offline simulation of the modelled non-integer order 
dynamics. In order to apply it to an on-line application in 

control one needs to use ∆������ (output of the network) 
to calculate the system output using only previous signals 
samples which are available. 

In the next section we present the numerical example 
which illustrates the operation of the proposed structure. 

4. NUMERICAL EXAMPLE 

For all the simulations two groups of input signals were 
prepared. The first group of four signals was meant for 
learning process and the second group of two signals was 
used for testing process. The learning and testing signals 
are presented in Fig. 2 and Fig. 3 respectively. Final results 
of neural modelling were obtained by on-line simulations in 
Simulink using Neural Network Toolbox and Fractional 
State-Space Toolkit (FSST) (see e.g. Sierociuk (2005)). 

 
Fig. 2. Input learning signals ��,��,��,�� 

 

Fig. 3. Input testing signals  ���,��� 

Example 1. Modelling of the fractional system by a dis-
crete fractional order neural network 

The system is given by the following equation: 

∆�.����� = −0.1��
� + ��                           (13) 

For modelling the non-linear function in this system 
a two-layer neural network with two inputs and one output 
was used. The network consists of three neurons 
with nonlinear (tansign) activation function in the input 
layer and one linear neuron in the output layer. 

The input vector for the fractional neural network 
for this case has the following form: 

� =  �� ��	 ⋯ 	���� �� 	⋯ 	��!         (14) 

The output vector has the form: " = �∆�.���	∆�.��
 	⋯ ∆�.������        (15) 
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The DFOSS block has the following matrices: � = �0�, � = �1�, � = �1�, � = �0�.        (16) 

The order of this block is equal to � = 0.5 and is the 
same as the order of the given system equation. 

 
Fig. 4. Learning error for fractional and integer order  
            neural network 

 
Fig. 5. Output of the fractional neural network  
           for learning signal �� 

For training the neural network the Levenberg-
Marquardt and backpropagation algorithms (implemented 
in function TRAINLM in Neural Network Toolbox) 
were used for 400 epochs. The results of the performance 
of the network during learning process is presented in Fig. 4 
(together with results of integer order neural network). As it 
could be seen the final error is very small, about 10��.  
Fig. 5 presents a comparison between the responses of the 
fractional neural network with original output for input 
signal #1 from the group of learning signals. As it could be 
seen the accuracy of modelling is very high. Moreover, the 
Fig. 6 and Fig. 7 present analogical results for test signals #�1 and Ut2 respectively. This results prove very high accu-
racy of modelling and confirm that the neural network has 
been properly taught. This also shows that the network is 
able to properly generalize data, which is the main feature 
of neural networks. Fig. 8 and Fig. 9 present results of 
neural modelling of the non-linear function. Fig. 8 presents 
the original non-linear function of the system equation, 
whereas Fig. 9 presents the modelling error, the difference 
between original function and the one modelled by neural 
network.  
Example 2. Modelling of the same fractional system 
as in Example 1 by a discrete integer order neural network. 
In this example the traditional approach will be presented 
in which we try to model non-linear fractional order system 
by a non-linear integer order system with some (usually 
big) number of delays. Let us take into consideration the 

neural network with 5 inputs and one output. The neural 
network used has the following structure: input layer has 6 
tansign neurons, output layer has one linear neuron. In this 
case the modelled equation has the form: �� + 4	 = 	���� + 3, �� + 2, �� + 1, ��, ��
             (17) 

 
Fig. 6. Output of the fractional neural network  
           for testing signal ��� 

 
Fig. 7. Output of the fractional neural network  
           for testing signal ��� 

 
Fig. 8. Original non-linear function 

 
Fig. 9. Error of neural modelling 
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The results of the neural network performance during 
learning process are presented in Fig. 4. Fig. 10 presents 
results of simulation for one signal #�	from learning group. 
As it may be seen the accuracy is acceptable. Additionally, 
the Fig. 11 and Fig. 12 present analogical results for the 
test signals #�� and #�
 respectively. As it may be noticed, 
obtained results show unacceptable accuracy. In this case 
the integer order neural network is not able to properly 
generalize the data of the system, despite of the more com-
plicated structure of a neural network. This justifies the 
main advantage of the proposed algorithm. 

 
Fig. 10. Output of the integer order neural network  

for learning signal �� 

 
Fig. 11. Output of the integer order neural network  

for testing signal ��� 

 
Fig. 12. Output of the integer order neural network  

for testing signal ��� 

Example 3. Modelling of the fractional system with two 
state variables (one hidden) by the discrete fractional order 
neural network 

Let us assume the system is given by the following 
equation: 

∆���,��
 = −0.1�
,�� + ��                        (18) 

where �
,� = ∆�.���,��
                                 (19) 

In this case for modelling the non-linear function 
the two layer neural network with 3 inputs and one output 
was used. This network consisted of 3 neurons with non-
linear (tansign) activation function in input layer and one 
linear neuron in output layer. 

 
Fig. 13. Output of the fractional order neural network  

for learning signal �� 

 
Fig. 14. Output of the fractional order neural network  

for testing signal ��� 

 
Fig. 15. Output of the fractional order neural network  

for testing signal ��� 

The input vector for the fractional neural network 
has the following form: 

� = $ �� �� ⋯ ��

∆�.���		 ∆�.��
 ⋯	 ∆�.������� �� ⋯ �� %       (20) 

The output vector has the form: " = [∆��
	∆��� 	⋯ 	∆����
]        (21) 

The DFOSS block has the following matrices: 

� =  0 1

0 0
! , � =  0

1
! , � =  1 0

0 1
! , � =  0

0
!      (22) 

For training the neural network the same conditions 
as in previous examples were used. The results of an  
on-line simulation for one of the learning input signals 
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is presented in Fig. 13, while Fig. 14 and Fig. 15 present 
results for the testing input signals. As it may be seen the 
accuracy of neural modelling is very high. 

5. CONCLUSIONS 

In the paper we proposed a discrete time fractional order 
neural network. The structures given can be used to model 
the nonlinear fractional order dynamic systems. We have 
shown the appropriateness of the approach by the numerical 
examples. Also the advantages in modelling the fractional 
order discrete-time dynamic systems with the structure 
proposed over the traditional neural network coupled with 
the tapped-delay line have been shown in several example 
cases. Further research is needed to show the theoretical 
properties and advantages (and limitations) of the approach 
suggested. 
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ABSTRACTS 

Marek Błasik, Małgorzata Klimek 
On Application of the Contraction Principle to Solve the Two-Term Fractional Differential Equations 

We solve two-term fractional differential equations with left-sided Caputo derivatives. Existence-uniqueness theorems are proved using newly-
introduced equivalent norms/metric on the space of continuous functions. The metrics are modified in such a way that the space of continuous 
functions is complete and the Banach theorem on a fixed point can be applied. It appears that the general solution is generated by the stationary 
function of the highest order derivative and exists in an arbitrary interval [0,b] 

Tomasz Błaszczyk, Ewa Kotela, Matthew R. Hall, Jacek Leszczyński 
Analysis and Applications of Composed Forms of Caputo Fractional Derivatives  

In this paper we consider two ordinary fractional differential equations with composition of the left and the right Caputo derivatives. Analytical so-
lution of this type of equations is known for particular cases, having a complex form, and therefore is difficult in practical calculations. Here, 
we present two numerical schemes being dependent on a fractional order of equation. The results of numerical calculations are compared 
with analytical solutions and then we illustrate convergence of our schemes. Finally, we  show an application of the considered equation. 

Mikołaj Busłowicz 
Stability of State-Space Models of Linear Continuous-Time Fractional Order Systems  

The paper considers the stability problem of linear time-invariant continuous-time systems of fractional order, standard and positive, described 
by the state space model. Review of previous results is given and some new methods for stability checking are presented. Considerations 
are illustrated by numerical examples and results of computer simulations.  

Stefan Domek 
Fuzzy Predictive Control of Fractional-Order Nonlinear Discrete-Time Systems   

At the end of the 19th century Liouville and Riemann introduced the notion of a fractional-order derivative, and in the latter half of the 20th cen-
tury the concept of the so-called Grünewald-Letnikov fractional-order discrete difference has been put forward.  In the paper a predictive control-
ler for MIMO fractional-order discrete-time systems is proposed, and then the concept is extended to nonlinear processes that can be modelled 
by Takagi-Sugeno fuzzy models. At first nonlinear and linear fractional-order discrete-time dynamical models are described. Then a generalized 
nonlinear fractional-order TS fuzzy model is defined, for which equations of a predictive controller are derived. 

Marcin Graba 
The Influence of Geometry of the Specimen and Material Properties on the Q-Stress Value Near the Crack Tip for SEN(T) 
Specimen 

In the paper the short theoretical backgrounds about elastic-plastic fracture mechanics were presented and the O’Dowd-Shih theory was discussed. 
Using ADINA System program, the values of the Q-stress determined for various elastic-plastic materials for SEN(T) specimen – single edge 
notched plates in tension – were presented. The influence of kind of the specimen, crack length and material properties (work-hardening exponent 
and yield stress) on the Q-parameter were tested. The numerical results were approximated by the closed form formulas. Presented in the paper re-
sults are complementary of the two papers published in 2007 (Graba, 2007) and in 2010 (Graba, 2010), which show and describe influence 
of the material properties and crack length for the Q-stress value for SEN(B) and CC(T) specimens respectively. Presented and mentioned papers 
show such catalogue of the Q-stress value, which may be used in engineering analysis for calculation of the real fracture toughness. 

Piotr Grześ 
Partition of Heat in 2D Finite Element Model of a Disc Brake 

In this paper nine of formulas (theoretical and experimental) for the heat partition ratio were employed to study the temperature distributions 
of two different geometrical types of the solid disc brake during emergency brake application. A two-dimensional finite element analysis incorpo-
rating specific values of the heat partition ratios was carried out. The boundary heat flux uniformly distributed over the circumference of a rubbing 
path to simulate the heat generated at the pad/disc interface was applied to the model. A number of factors over the heat partition ratio that affects 
the temperature fields are included and their importance is discussed. 

Tadeusz Kaczorek 
Positivity and Reachability of Fractional Electrical Circuits 

Conditions for the positivity of  fractional linear electrical circuits composed of resistors, coils, condensators and voltage (current) sources are es-
tablished. It is shown that: 1) the fractional electrical circuit composed of resistors, coils and voltage source is positive for any values of their resis-
tances, inductances and source voltages if and only if the number of coils is less or equal to the number of its linearly independent meshes,  
2) the fractional electrical circuit is not positive for any values of its resistances, capacitances and source voltages if each its branch contains resis-
tor, capacitor and voltage source, It is also shown that the fractional positive electrical circuits of R, C, e type are reachable if and only if the con-
ductances between their nodes are zero and the fractional positive electrical circuits of R, L, e type are reachable if and only if the resistances be-
longing to two meshes are zero. 
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Tadeusz Kaczorek 
Necessary and Sufficient Stability Conditions of Fractional Positive Continuous-Time Linear Systems 

Necessary and sufficient conditions for the asymptotic stability of fractional positive continuous-time linear systems are established. It is shown 
that the matrix A of the stable fractional positive system has not eigenvalues in the part of stability region located in the right half of the complex 
plane. 

Jerzy Klamka 
Local Controllability of Fractional Discrete-Time Semilinear Systems 

In the paper unconstrained local controllability problem of finite-dimensional fractional discrete-time semilinear systems with constant coefficients 
is addressed. Using general formula of solution of difference state equation sufficient condition for local unconstrained controllability in a given 
number of steps is formulated and proved. Simple illustrative example is also presented.  

Zbigniew Kulesza 
FPGA Based Active Magnetic Bearings Controller 

The article discusses main problems of implementing the PID control law in the FPGA integrated circuit. Consecutive steps of discretizing 
and choosing the fixed-point representation of the continuous, floating-point PID algorithm are described. The FPGA controller is going to be used 
in the active hetero-polar magnetic bearings system consisting of two radial and one axial bearings. The results of the experimental tests 
of the controller are presented. The dynamic performance of the controller is better when compared with the dSPACE controller, that was used 
so far. The designed hardware and software, the developed implementation procedure and the experience acquired during this stage of the whole 
project are going to be used during the implementation of more sophisticated control laws (e.g. robust) in the FPGA for AMB controllers. 

Wojciech Mitkowski 
Approximation of Fractional Diffusion-Wave Equation 

In this paper we consider the solution of the fractional differential equations. In particular, we consider the numerical solution of the fractional one 
dimensional diffusion-wave equation. Some improvements of computational algorithms are suggested. The considerations have been illustrated 
by examples. 

Dorota Mozyrska, Ewa Pawłuszewicz  
Linear q-Difference Fractional-Order Control Systems with Finite Memory 

The formula for the solution to linear q-difference fractional-order control systems with finite memory is derived. New definitions of observability 
and controllability are proposed by using the concept of extended initial conditions. The rank condition for observability is established 
and the control law is stated.  

Zbigniew Oksiuta 
Microstructural Changes of Ods Ferritic Steel Powders During Mechanical Alloying   

The ODS ferritic steel powder with chemical composition of Fe-14Cr-2W-0.3Ti-0.3Y2O3 was mechanically alloyed (MA) either from elemental 
or pre-alloyed powders in a planetary ball mill. Different milling parameters have been used to investigate their influence on the morphology 
and microstructure of the ODS ferritic steel powder. The time of MA was optimized by studying the structural evolution of the powder by means 
of X-ray diffractometry and TEM. In the case of elemental powder very small, about 10 µm in diameter, spherical particles with a large surface 
area have been obtained. Flakey-like particles with an average size of about 45 µm were obtained in the case of the pre-alloyed powder. The lattice 
strain calculated from XRD spectra of the elemental and pre-alloyed powders exhibits a value of about 0.51 % and 0.67, respectively. The pre-
alloyed powder after consolidation process showed the highest density and microhardness value. 

Piotr Ostalczyk 
Variable-, Fractional-Orders Closed-Loop Systems Description 

In this paper we explore the linear difference equations with fractional orders, which are functions of time. A description of closed-loop dynamical 
systems described by such equations is proposed. In a numerical example a simple control strategy based on time-varying fractional orders is pre-
sented. 

Piotr Ostalczyk, Dariusz Brzeziński 
Numerical Evaluation of Fractional Differ-Integral of Some Elementary Functions via Inverse Transformation   

This paper presents methods of calculating fractional differ-integrals numerically. We discuss extensively the pros and cons of applying the Rie-
mann-Liouville formula, as well as direct approach in form of The Grünwald-Letnikov method. We take closer look at the singularity, which  
appears when using classical form of Riemann-Liouville formula. To calculate Riemann-Liouville differ-integral we use very well-known tech-
niques like The Newton-Cotes Midpoint Rule. We also use two Gauss formulas. By implementing transformation of the core integrand of Rie-
mann-Liouville formula (we called it “the inverse transformation”), we would like to point the possible way of reducing errors when calculating it. 
The core of this paper is the subject of reducing the absolute error when calculating Riemann-Liouville differ-integrals of some elementary func-
tions; we use our own C++ programs to calculate them and compare obtained results of all methods with, where possible, exact values,  
where not – with values obtained using excellent method of integration incorporated in Mathematica. We will not discuss complexity of numerical 
calculations. We will focus solely on minimization of the absolute errors. 
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Ivo Petráš, Dagmar Bednárová 
Control of Fractional-Order Nonlinear Systems: A Review 

This paper deals with the control of the fractional-order nonlinear systems. A list of the control strategies as well as synchronization of the chaotic 
systems is presented. An illustrative example of sliding mode control (SMC) of the fractional-order (commensurate and incommensurate) financial 
system is described and commented together with the simulation results. 

Paweł Piątek, Jerzy Baranowski 
Investigation of Fixed-Point Computation Influence on Numerical Solutions of Fractional Differential Equations 

In this paper the problem of the influence of fixed point computation on numerical solutions of linear differential equations of fractional order 
is considered. It is a practically important problem, because of potential possibilities of using dynamical systems of fractional order in the tasks 
of control and filtering. Discussion includes numerical method is based on the Grünwald-Letnikov fractional derivative and how the application 
of fixed-point architecture influences its operation. Conclusions are illustrated with results of floating-point arithmetic with double precision 
and fixed point arithmetic with different word lengths. 

Yuriy Povstenko 
Solutions to Time-Fractional Diffusion-Wave Equation in Spherical Coordinates 

Solutions to time-fractional diffusion-wave equation with a source term in spherical coordinates are obtained for an infinite medium. The solutions 
are found using the Laplace transform with respect to time t, the finite Fourier transform with respect to the angular coordinate φ, the Legendre 
transform with respect to the spatial coordinate µ, and the Hankel transform of the order n+1/2 with respect to the radial coordinate r. In the central 
symmetric case with one spatial coordinate r the obtained results coincide with those studied earlier.  

Krzysztof Rogowski 
General Response Formula for Fractional 2D Continuous-Time Linear Systems Described by the Roesser Model   

A new class of fractional two-dimensional (2D) continuous-time linear systems is introduced. The general response formula for the system  
is derived using a 2D Laplace transform. It is shown that the classical Cayley-Hamilton theorem is valid for such class of systems. Usefulness  
of the general response formula to obtain a solution of the system is discussed and illustrated by a numerical example. 

Andrzej Ruszewski, Tomasz Nartowicz 
Stabilization of Inertial Plant with Time Delay Using Fractional Order Controller  

The paper presents the problem of designing of a fractional order controller satisfying  the conditions of gain and phase margins of the closed-loop 
system with time-delay inertial plant. The transfer function of the controller follows directly from the use of Bode's ideal transfer function as a re-
ference transfer function for the open loop system. Using the classical D-partition method and the gain-phase margin tester, a simple computation-
al method for determining stability regions in the controller parameters plane is given. An efficient analytical procedure to obtain controller para-
meter values for specified gain and phase margin requirements is also given. The considerations are illustrated by numerical examples computed 
in MATLAB/Simulink. 

Łukasz Sajewski 
Positive Realization of SISO 2D Different Orders Fractional Discrete-Time Linear Systems 

The realization problem for single-input single-output 2D positive fractional systems with different orders is formulated and a method based  
on the state variable diagram for finding a positive realization of a given proper transfer function is proposed. Sufficient conditions for the exis-
tence of a positive realization of this class of 2D linear systems are established. A procedure for computation of a positive realization is proposed 
and illustrated by a numerical example. 

Dominik Sierociuk, Grzegorz Sarwas, Andrzej Dzieliński 
Discrete Fractional Order Artificial Neural Network 

In this paper the discrete time fractional order artificial neural network is presented. This structure is proposed for simulating the dynamics of non-
linear fractional order systems. In the second part of this paper several numerical examples are shown. The final part of the paper presents the dis-
cussion on the use of fractional or integer discrete time neural network for modelling and simulating fractional order non-linear systems. The simu-
lation results show the advantages of the proposed solution over the classical (integer) neural network approach to modelling of non-linear frac-
tional order systems.  

 


	CONTENTS.pdf
	BLASIK_KLIMEK__EN_2011_059.pdf
	BLASZCZYK_KOTELA_HALL_LESZCZYNSKI_EN_2011_062.pdf
	BUSLOWICZ_EN_2011_018.pdf
	DOMEK_EN_2011_016.pdf
	GRABA_EN_2010_094.pdf
	GRZES_EN_2011_002.pdf
	KACZOREK_EN_2011_013.pdf
	KACZOREK_EN_2011_014.pdf
	KLAMKA_EN_2011_033.pdf
	KULESZA_EN_2011_011.pdf
	MITKOWSKI_EN_2011_067.pdf
	MOZYRSKA_PAWLUSZEWICZ_EN_2011_032.pdf
	OKSIUTA_EN_2010_097.pdf
	OSTALCZYK_BRZEZINSKI_EN_2011_064.pdf
	OSTALCZYK_EN_2011_061.pdf
	PETRAS_BEDNAROVA_EN_2011_015.pdf
	PIATEK_BARANOWSKI_EN_2011_065.pdf
	POVSTENKO_EN_2011_060.pdf
	ROGOWSKI_EN_2011_063.pdf
	RUSZEWSKI_NARTOWICZ_EN_2011_066.pdf
	SAJEWSKI_EN_2011_017.pdf
	SIEROCIUK_SARWAS_DZIELINSKI_EN_2011_019.pdf
	ABSTRACTS.pdf

