

© 2025 by the author(s). Articles are published as open access articles under the Creative Commons Attribution-Non-Commercial-NoDerivs License [<http://creativecommons.org/licenses/by-nc-nd/4.0/>].

pages: 1 -10

METHODS OF TEACHING TECHNICAL ASPECTS AND CONCEPT DESIGNING IN ARCHITECTURAL EDUCATION

Waclaw Celadyn

Cracow University of Technology, Faculty of Architecture, ul. Podchorążych 1, 30-084 Cracow, Poland
e-mail: wceladyn@pk.edu.pl, ORCID: 0000-0003-0948-2475

DOI: 10.24427/aea-2025-vol17-02

Abstract:

Teaching architectural design is related to some substantial educational problems in many respects. Among them is the issue of mutual relations between concept design and technical aspects in architecture. The student's attitude in this regard is strongly differentiated. Some of them deny the significance of technical aspects and focus only on the conceptual vision, while others acknowledge the importance of a technical approach to their projects at an early stage of development. Inconsistent is also the position of the teaching staff in this regard. This is a well-known issue among the educators in the discipline of architecture. Some of them propose and insist on some method of integration between the modules of concept and technical designing, which they consider a better and more efficient way of teaching students. This issue is analysed in the paper, and some proposed methods to resolve this problem are specified. They are confronted with the opinions expressed by undergraduate Ph.D. students, given their differentiated experience concerning the analyzed relations and their effect on the methods of their activities.

Keywords: architectural design; technical design in architecture; education in architecture

INTRODUCTION

Building construction is the knowledge in the profession of architecture, which is crucial for architects, however, the technical approach to architect education peaked with the establishment of the Bauhaus school in Weimar in 1919 [R. Spacek et al. 2020]. In recent decades, its importance has substantially increased as novel technologies appear systematically on the building market almost day by day. Some authors even claim that contemporary architecture is actually characterized not so much by unusual forms, new functions, and breath-taking spectacular structural systems but by novel technologies introducing new building materials. If so, these technologies should gain a proper place in architecture offices, and also in the curricula of architectural studies. Analysing these technologies, it has been usually revealed that they are largely based on traditional or conventionally well known methods of construction, but with modifications in terms of so far unknown materials or methods of

their implementation. These new technologies, along with ever-changing building standards and building codes, indicate and force new ways of architectural designing as well as improvements in the organization of work in architecture offices. It stands to reason that these developments bear on the ways the schools of architecture teach students.

We live in a time when the teaching methods in the discipline of architecture are subjected to pressure exerted by professional architectural circles, especially the employers in architecture offices, as well as professional organizations like chambers of architects. They expect the schools to graduate students capable of performing basic architectural jobs professionally while being employed in architecture offices. Unfortunately, they usually are confronted with problems to find the new adepts of architecture capable of meeting the requirements set for them at the beginning of their professional career. Bearing that in mind, they occasion-

ally report their grievances to the faculty staff [W. Celadyn 2023]. Their complaints regard mainly the reported poor knowledge of technical aspects of architecture by the graduates. Because of this, the issue of effective methods of education regarding the technical subjects in academic curricula becomes a crucial problem.

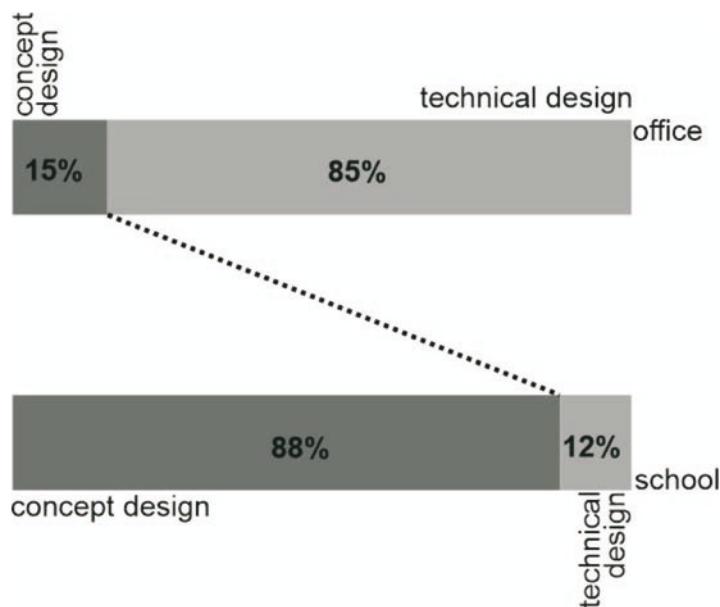
The present paper considers this question and proposes a few different systems of teaching related to building construction and concept designing. This research aims at a contribution to the debate on integrity in the architect's education.

1. METHODS

There are multiple subjects in the curricula of architecture schools for the Bachelor or Master programs that are part of technical education. The most important ones usually comprise: building construction, structures, building services, and building physics. Depending on the school of architecture, they are either separate courses or are embedded in the modules composed usually of technical subjects. The latter system is used at the Faculty of Architecture, Cracow University of Technology, and is the subject of this research.

We can consider building construction as the basic subject because it mostly impacts the formal and technical solutions to buildings, the remaining ones usually being classified as complementary. Building construction is a technical area that is under the heavy influence of the sustainability paradigm requirement in architecture and interior design [Celadyn 2019]. The relations between this subject taught at architecture schools and the work carried out at architecture studios define the problems we are considering in this paper. Analysing them, we can assume that there are different possibilities in this regard. In many discussions among the relevant faculty members teaching technical subjects, especially building construction, a few different approaches have been put forth. They should be properly formulated and then discussed. There are two aspects of this problem taken into account in this research: one considers a faculty's opinions and approaches, and the other evaluates it from the student's perspective. As expected, they differ, and in some cases substantially.

To compare them, and to draw conclusions, an anonymous survey for students was put together and administered. It concerned two groups of students with different experiences: active students in the 6th semester who major in architecture, and students of the Doctoral School at the Cracow University of Technology, Faculty of Architecture, who are postgraduate students after earning a Master's degree. The method

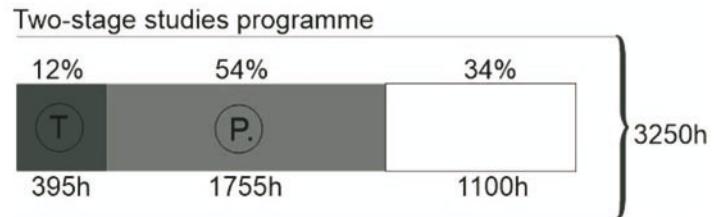
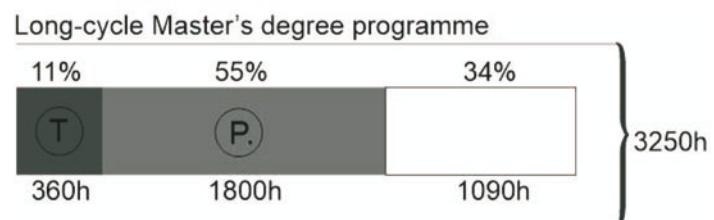

of inviting students of both education levels to participate in this research is sensible because both groups have differing knowledge and experience in the field of architecture. The Ph.D. students were working as architects in architecture offices in addition to their studies. This allowed them to assess reliably the teaching program they had gone through a few years before. For this reason, their opinion expressed in the survey can be considered interesting, especially in the context of student's approach and relevant impressions.

2. RELATIONS BETWEEN ARCHITECTURAL EDUCATION AND PROFESSIONAL EXPERIENCE

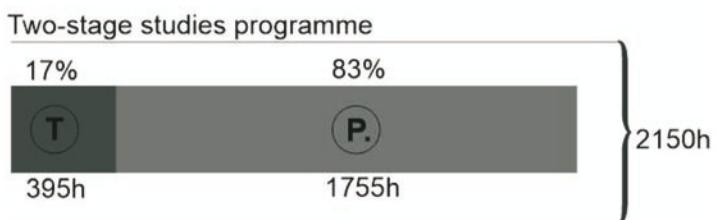
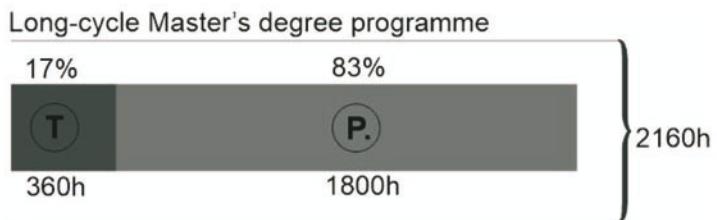
Architectural design is a process based on deeply rooted and effectively realized procedures that allow the development of projects that are based on established principles concerning functional, structural, and aesthetic aspects of designed buildings. This corresponds to the classic Vitruvian Triade: *utilitas* (convenience – function), *firmitas* (durability – structure), and *venustas* (beauty – aesthetics) [Witruwiusz, 1956]. Another shaping factor is legal guidelines, which must be respected. Therefore, the architectural design is a complex process. It has a multi-professional character and requires cooperation with other specialized contributors, mainly in technical domains. A typical architect's activity can comprise the following: preparatory works, definition of functional program, concept design, and a multistage technical project. The latter typically has two stages, defined depending on the country. In Poland, they are referred to as building projects and technical projects, but in reality, they are both technical projects executed to different scales.

In the context of discussions concerning the inadequate preparation of graduates for relevant professional activities, architectural education is frequently considered imperfect and even flawed in this regard. Reservations about its insufficient quality are being raised by professional organizations and active architects in offices. These may result from strikingly imbalanced relations between the workload related to design subjects in educational programs and the actual demands of office work dedicated to particular stages of the development of projects. The comparisons in this regard can cast light on the situation we consider in this study (Figure 1).

There is a ministerial document that defines the range of workload assigned to particular architectural project stages [Rozporządzenie Ministra Infrastruktury]. It stipulates that a maximum of 15% of the work time is ascribed to concept designs, and the remaining 85% to technical design. The diagram in Figure 1 indicates



Fig. 1. Relations between the proportional workload of design stages in professional offices and relevant proportions in education curricula (in percent)
Source: author's drawing

these values in comparison to the average teaching hours assigned to technical subjects within the curricula for the Master's Degree and visualizes the reversed situation in terms of the structure of both areas considered in this research. It seems quite natural that educational systems in the architecture domain should correspond logically and effectively to the method of work used in architecture offices for producing building projects. It should be true not only if it comes to the substance of teaching but also to methods concerning the stages of designing. But as can be seen in Figure 1, the striking discrepancies between what is expected of students and what is expected of employees raise serious doubts about the adequacy of the teaching process. This requires deeper insights into this dilemma.



Figures 2 and 3 visualize the mutual relations of workloads between technical subjects and concept projects for both types of higher education in architecture, and in relation to the entire teaching programme.

These data are taken from the ministerial requirements for architectural studies, which are named architectural educational standards [Rozporządzenie Ministra Szkolnictwa Wyższego].

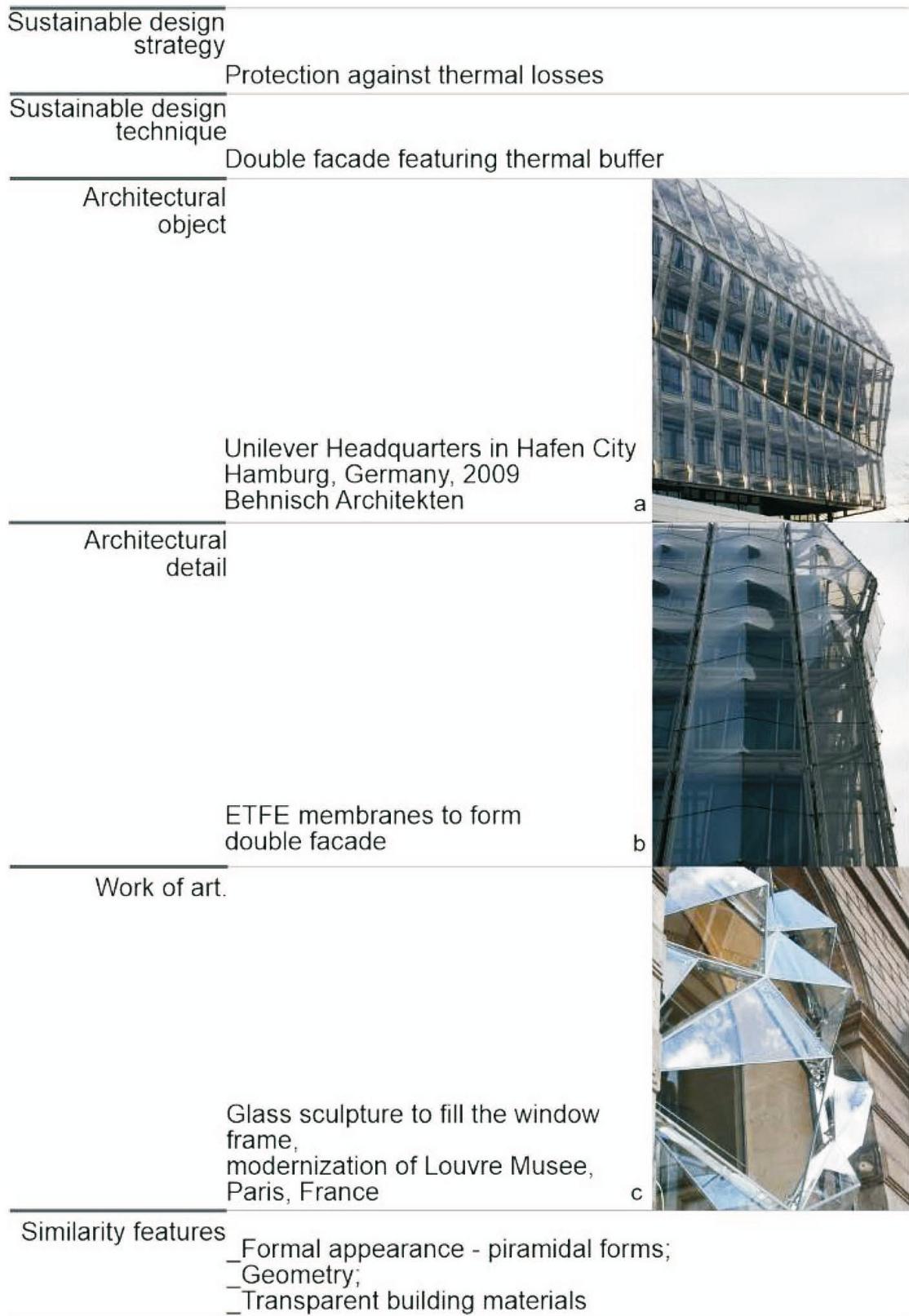
The position of technical subjects in relation to the concept design instruction workload depicted above confirms the previous concerns that there is a misalignment between what is demanded by the workplace and what students are being taught. We can analyze this phenomena further by exploring the role of technical subjects in architectural studies in other distinguished architecture schools (Table 1).

Fig. 2. The relations between technical subjects and concept design workload in the architecture studies curriculum specified in Polish ministerial standards
Source: author's drawing

Fig. 3. The relations between technical subjects and concept design workload specified in Polish ministerial standards for architecture studies
Source: author's drawing.

Table 1 shows a very differentiated approach to the issue of mutual relations of both analyzed elements of university architectural education expressed in the relevant workloads. They demonstrate the role of technical education depending on the country. The results of these comparisons suggest that architecture education in Poland compares with the medium attention assigned to the technical component of architectural studies.

Tab. 1. Architecture schools and the technical subjects related to the total amount of credit points in the curricula of the Bachelor's and Master's degree programmes jointly


	University	Faculty/Department	Final score		
			Technical subjects and assigned modules credits	Total subjects and assigned modules credits	Relation Technical / Total (%)
1.	Technical University of Berlin	Faculty VI Plannen, Bauen, Umwelt	114	258	44,2
2.	Vienna University of Technology	Faculty of Architecture and Planning	85	240	35,4
3.	Czech Technical University in Prague	Faculty of Architecture	69	249	27,7
4.	European University of Madrid	School of Engineering, Architecture & Design	80	318	25,1
5.	Politecnico di Milano	School of Architecture, Urban Planning, Construction, Engineering	52	270	19,3
6.	Technical University of Delft	Architecture and the Built Environment	50	270	18,5
7.	University College London	The Bartlett School of Architecture	75	480	15,6
8.	Cracow University of Technology	Faculty of Architecture	40	269	14,9
9.	Swiss Federal Institute of Technology Zurich	Department of Architecture and Civil Engineering	32	244	13,1
10.	UTH Royal Institute of Technology, Stockholm	School of Architecture and Built Environment	25,5	240	10,6
11.	Columbia University in New York	1/Bernard College, 2/School of Architecture, Planning and Preservation	22,5	127	17,7

Source: author's diagram

dies in European architectural schools and elsewhere. However, it does not significantly change the optics we consider the appropriate image of the analyzed issue.

There are a few reasons that could be responsible for this imbalance. One of them is the unfavorable attitude of students regarding the technical aspects of architecture [J. Legeny et al., 2021]. One survey among students concerning the technical aspects of architectural design, particularly building construction, has proved that they are of minor interest in their projects [A. Taraszkiewicz & K. Taraszkiewicz p. 224]. However, other surveys indicated the high importance of technical subjects in the students' opinions [M. Muszyńska-Łanowy 2021]. Yet another study has found that students generally have

a positive attitude toward technology even though they have only a limited concept of technology [D. Rupnik & S. Avsec 2019]. These opinions expressed by students show serious differences among them in this regard. They can result from the specifics of teaching methods in various architectural schools or from the personal propensities of individual students in terms of the technical aspects of architecture and their role in professional practice. In the case of a negative attitude by students toward the technical aspects considered, later in their professional practice real problems can arise when theoretical considerations in architectural design need to be translated into specific engineering solutions [A. Taraszkiewicz & K. Taraszkiewicz, 2024 p. 12].

Fig. 4. Exemplary formal associations between thermal buffers on a contemporary office building and a sculpture for filling window framing in a historic building façade that underwent modernization.

Photos (a–c) by M. Celadyn (2015, 2017)

Source: author's drawing

Positive thinking about technical education in architecture studies allows the students to discover usually unperceived potential in building construction subjects. As some authors claim: *engineering thinking in design is close to creativity, and, it is of interest to find how engineering design ability develops during architecture education. Architecture creativity would overlap with engineering design creativity* [Avsec et al., 2018, p. 138]. The effects of these sometimes striking relations can be discovered in many contemporary objects where the novel technologies are the basis of architectural concepts at a very initial stage of designing (Figure 5). In such cases, knowledge and understanding of the newest technologies among architects is an indispensable requirement.

It is especially important and visible in sustainable architecture, not only in general spatial concepts but also in architectural detailing [M. Celadyn & W. Celadyn 2024]. Relevant examples should be deeply analysed and be used to encourage young architects, as well as architecture students, to appreciate, to a suitable measure, the instruction in technical subjects during their studies, and later during their professional career. As some authors say presently, *design success relies on cutting-edge technologies* [R. Damiani 2021, p. 13], therefore, such knowledge is of great importance for practicing architects and architecture students.

3. CONCEPTS FOR EDUCATIONAL INTEGRATIVE STRATEGY

The imbalanced relations in question can be assessed as disadvantageous, and they require in-depth analyses followed by the elaboration of ways to improve the situation. This would ensure a better quality of the graduates, given their future employment with architecture offices, and make them better prepared for competently undertaking a typical set of responsibilities. However, the modifications regarding this imbalance can be difficult given a standardized approach to the structure of the designing procedure respected in architecture offices. On the other hand, there is a ministerial directive compulsory for architecture schools, and it stipulates a workload structure corresponding to that of the realized therein. These contradicting attitudes practically make any substantial modifications to the educational program impossible. However, some changes within both modules (technical versus concept designing) in terms of methods of cooperation are quite possible. This idea is promoted by some professors and instructors at the Cracow University of Technology CUT. The present relations between the technical and concept designing courses resemble those convention-

nally seen in architectural programmes, with the precedence of the concept design followed by technical design. This reflects the curriculum in force at the Faculty of Architecture, Cracow University of Technology (CUT), however, it can be representative of other similar architectural schools in Poland and generally also in other countries.

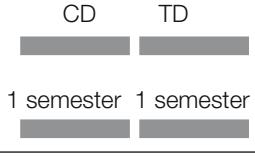
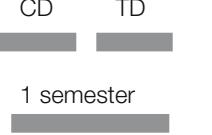
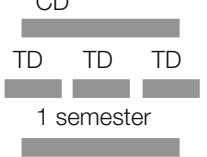
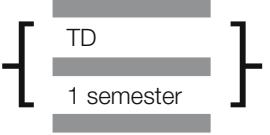
There are expectations of uniting the courses of concept designs with technical designs. Such a method is frequently termed integrated designing. Some authors define it as follows: *Integrity means proper multilateral relations between institutes or, more precisely, relations between independent teams of teachers. The term, integrity, became important in numerous discussions between university teachers. However, there is a serious problem with this approach. Many important issues of construction (structures, installations, and generally the technical aspects of design) are absent during the conceptual phase. As a result of that, most projects could alter as a result of late conceptual changes* [R.A. Marcinkowski 2018, p. 406]. *Students get the impression that specialist knowledge does not apply to current projects and therefore is useless. Unfortunately, with the non-integrated teaching process, this impression is difficult to avoid* [R.A. Marcinkowski 2018, p. 407].

This statement seems only partly true because the student's attitude in this regard depends largely on the position of their concept design tutors concerning the role of the technical approach. Integrative cooperation mode has been realized in the school for some time and it involves the instructors of the course *building mechanics and structures* who participate in the development of concept designs in the form of parallel consultations. A similar method is also expected by some in the case of the subject *building construction*. However, this proposal proves highly controversial as this procedure is usually not realized in architecture offices and therefore, should be considered impractical as an educational method defining the relations between both subjects.

Due to this discussion and related controversies, new proposals for shaping these relations have emerged. Such answers have been worked out as part of this research and are intended to encompass four options covering the most probable and feasible solutions to the analysed problem. They are as follows:

- Sequential method: technical design developed during one semester as a follow-up to the concept design developed in the previous semester;
- Intensified sequential method: technical design developed during the second half of the semes-

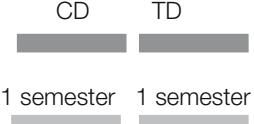
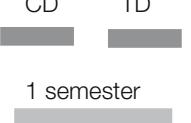
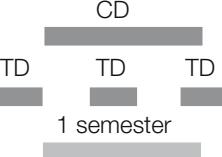
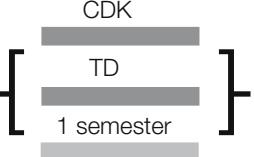
ter as a follow-up to the concept design developed in the first half semester;





- Fragmentary method: technical design developed partially (various fragments of concept design dependent on its advanced parts) parallel with concept design;
- Consultation method: one-stage concept and technical design consulted parallel with its development in the area of technical solutions.

The controversies among the teaching staff about the best method of discussed relations can be confronted with opinions expressed by students. A survey has been carried out among the students in the third

year of study. Their opinions can be considered valuable due to their experience, which had been acquired by having worked on both stages of designs in previous years. The outcomes of this survey show that the vast majority of them, with only one exception, indicated the sequential method as preferred (Table 2).

Another survey has been carried out among the doctoral candidates of CUT. They have acquired some professional experience because they work in architecture offices. Therefore, their opinions have a particular value as their retrospective views allow them to assess the educational process more objectively than current students (Table 3). They indicated the sequential method is as equally preferred as the intensified sequential.





Tab. 2. Undergraduate students' survey on the proposed integration methods and its outcomes

No.	Integration method	Temporal graphic diagram	Integration method's description	Number of respondents	Preferred choice
1	SEQUENTIAL		Technical design developed during one semester as the next stage of concept design from previous semester	14	X
2	INTENSIFIED SEQUENTIAL		Technical design developed during the second half of semester as the next stage of concept design developed in the first half of semester	1	X
3	FRAGMENTARY		Technical design developed partially (different fragments of concept design) parallel with concept design	0	-
4	CONSULTATION		One-stage concept and technical design consulted systematically relative to technical solutions	0	-

CD – concept design, TD – technical design

Source: author's drawing

Tab. 3. Doctoral study students' survey on the proposed integration methods and its outcomes

No.	Integration method	Temporal graphic diagram	Integration method's description	Number of respondents	Preferred choice
1	EQUENTIAL		Technical design developed during one semester as the next stage of concept design from previous semester	3	X
2	INTENSIFIED SEQUENTIAL		Technical design developed during the second half of semester as the next stage of concept design developed in the first half of semester	3	X
3	FRAGMENTARY		Technical design developed partially (different fragments of concept design) parallel with concept design	0	—
4	CONSULTATION		One-stage concept and technical design consulted systematically relative to technical solutions	0	—

CD – concept design, TD – technical design
Source: author's drawing

4. DISCUSSION

The outcomes of both surveys indicate that the sequential methods, although traditional, are considered by the responders to the survey adequate for the instruction method used in the educational system, assuring good quality of graduates. Especially the opinions of the doctoral candidates who should be capable of the objective assessment of the methods they have experienced are valuable. The consultation method, which is strongly advocated by some instructors, in their view, pretends to be more effective than traditional methods because it is supposed to help students better understand the project concept design during its development through the lens of related technical solutions. However, this method reveals some negative aspects, like the following:

- Incompatibility of design teaching with procedures in office work;
- Acquisition of habits that usually do not find practical application in the office;
- It dissuades students from the commitment to learn technical subjects by relying on the technical assistance of professionals in building construc-

tion, who are practically absent from professional spaces;

- Reassuring the false student's conviction about the technical knowledge in architectural practice not being their competence.

One of the major problems in architectural education is the disinterest in the legal aspects of architecture among the teachers of concept design, who are convinced that it is the competence of the teachers of building construction, and not theirs to consider, despite a number of building regulations that should be applied at the stage of concept design. This makes their cooperation somewhat difficult. In the case of some trials to introduce this method into the educational process, the modifications to concept designs recommended by the participating instructors of building construction revealed errors and negligence concerning building regulations committed by students under the tutelage of concept teachers. This illustrates the potential and already proven problems with the full introduction of the aforementioned methods. Theoretically, it is not a problem as proper corrections can

be made early in the project. However, knowledge of such a possibility may prove disappointing when working in architecture offices. The results of this research indicate that the presented methods of teaching architecture are disputable. However, they testify to the need for further analyses and surveys to be conducted, and a higher number of participating professionals who know best the shortcomings of the teaching systems. This would be beneficial for gaining better insights into the analysed issue and would make it possible to better compare the educational outcomes of the models presented above. The research concerned the mutual relations between concept design and building construction design as a further stage of the design procedure. Another problem refers to the structural design, which was not considered in this research. The reason is that in every method, it is embedded in the concept design, which seems advantageous and does not raise doubts. A structural approach to concept design at the preliminary stage, in a proper measure, could certainly bring positive results.

CONCLUSIONS

It has been proven that there are significant discrepancies between the architectural practice and the educational systems in the field of architecture in terms of the technical knowledge required from professional practitioners and the students of architecture studies. These should not be accepted for the reasons of the creation of high-quality contemporary architecture, which is presently associated with the implementation of novel, demanding technologies. The relations analysed in this paper are also meaningful from the viewpoint of the necessary collaboration of architects with other interdisciplinary professionals forming design teams. A suitable body of technical knowledge possessed by architects always makes this collaboration possible and effective.

The study gave a general overview of the students' attitude toward the meaning of technical subjects in the architecture education curricula. It should be said that the integrity issue within architecture studies emerges frequently. However, it is comprehended in somewhat different ways.

The differing views concerning the undoubtedly important problem of integration of subjects in the curricula of architecture schools prove the difficulties in taking a unified, definitive stand on this issue. The research has focused on only one of the set of related questions. The analysed opinions of various teachers and specialists involved in this area should be confronted with those of students on different levels of educa-

tion, as they see these problems from a different perspective, as do the doctoral candidates. Their opinions turned out to be somewhat unexpectedly conservative but realistic and worthy of taking account of in the discussion about the teaching methods in the discipline of architectural design.

LITERATURE

1. **Avsec, S., Jagiełło-Kowalczyk, M., Markiewicz, P. (2018).** Engineering thinking to enhance the architectural design. *World Transactions on Engineering and Technology Education*, 16(2), 134–139.
2. **Celadyn, M. (2019).** Resource-efficient sustainable design as a leading interior design guideline. *Global Journal of Engineering Education*, 21(2), 103–108.
3. **Celadyn, W. (2023).** The role of technical education in architectural studies. *Global Journal of Engineering Education*, 25(1), 76–82.
4. **Celadyn, M., Celadyn, W. (2024).** Architectural detail in sustainable architecture: formal and aesthetic connotations. *Sustainability*, 16(11). DOI: 10.3390/su16114502.
5. **Damiani, R. (2021).** On buildings, ethics, and architectural education. *Journal of Architectural Education*, 75(1), 133–136.
6. **Legény, J., Špaček, R., Gregor, P. (2021).** Marginal and neglected topics in architectural education. *Global Journal of Engineering Education*, 23(1), 6–12.
7. **Marcinkowski, R. A. (2018).** Integrity in architects' education. *World Transactions on Engineering and Technology Education*, 16(4), 404–409.
8. **Muszyńska-Łanowy, M. (2021).** Technical and soft competencies in teaching architecture in the context of Industry 4.0. *World Transactions on Engineering and Technology Education*, 19(2), 203–208.
9. **Rozporządzenie Ministra Infrastruktury (Polish Ministry of Infrastructure). (2004).** Rozporządzenie Ministra Infrastruktury z dnia 18 maja 2004 r. w sprawie określenia metod i podstaw sporządzania kosztorysu inwestorskiego, obliczania planowanych kosztów prac projektowych oraz planowanych kosztów robót budowlanych określonych w programie funkcjonalno-użytkowym. Dz.U. 2004, nr 130, poz. 1389.
10. **Rozporządzenie Ministra Szkolnictwa Wyższego (Polish Ministry of Higher Education). (2019).** Rozporządzenie Ministra Nauki i Szkolnictwa Wyższego z dnia 18 lipca 2019 r. w sprawie standardu kształcenia przygotowującego do wykonywania zawodu architekta. Dz.U. 2019, poz. 1359.
11. **Rupnik, D., Avsec, S. (2019).** The relationship between student attitudes towards technology and technological literacy. *World Transactions on Engineering and Technology Education*, 17(1), 48–53.
12. **Špaček, R., Uhrík, M., Hajtmanek, R. (2020).** Architectural education: a reflection of three generations. *Global Journal of Engineering Education*, 22(3), 142–148.

13. **Taraszkiewicz, A., Taraszkiewicz, K. (2022).** Design of residential buildings in architecture education. *World Transaction on Engineering and Technology Education*, 20(3), 220–225.
14. **Taraszkiewicz, A., Taraszkiewicz, K. (2024).** Ideas of the New European Bauhaus (NEB) in architec-tural education. *World Transactions on Engineering and Technology Education*, 22(1), 12–17.
15. **Witruwiusz. (1956).** *O architekturze ksiąg dziesięć* (trans. K. Kumaniecki) PWN.

© 2025 by the author(s). Articles are published as open access articles under the Creative Commons Attribution-Non-Commercial-NoDerivs License [<http://creativecommons.org/licenses/by-nc-nd/4.0/>].

pages: 11 -31

CARVED DOORS IN WOODEN ARCHITECTURE OF THE LATE 19TH – MID 20TH CENTURIES. CITY OF MOHILEU (EASTERN BELARUS)

Yauhen Malikau

Independent researcher, scholarship holder of the program "Support for Advanced Learning and Training – EU4Belarus-SALT" (2023–2025).

e-mail: malikau2017@gmail.com, ORCID: 0009-0009-1177-0899

DOI: [10.24427/aea-2025-vol17-03](https://doi.org/10.24427/aea-2025-vol17-03)

Abstract

On the basis of a large number of collected photo materials on the wooden construction of the Belarusian city of Mohileu in the late 19th – mid-20th centuries, a description and characteristics of the method of carving doors of buildings located in this city is given, and connections with monuments of professional stone architecture of the 18th century are traced.

Keywords: architectural carved décor; door; entrance; artistic and decorative image

INTRODUCTION

From ancient times and actually until the second half of the 20th century, Eastern Europe was a region where traditions of wooden folk architecture live. First of all, this was due to the cheapness and wide availability of wood as the main building material in this area, as well as the lack of natural stone for stone construction and expensive brick production. On the other hand, the widespread use of wood for construction led to the emergence of local traditions of carved architectural decoration in these territories, which flourished in the second half of the 19th and the first half of the 20th centuries.

The appearance of these local traditions of architectural decoration was influenced by many different factors, including professional stone architecture. The topic of wooden architectural decoration of Eastern Europe only became of interest to researchers of ethnography and history of architecture late, most of the main works on this topic appeared only in the 1970s and 1980s, primarily based on traditions in the territory of Russia – Tyumen, Tomsk, Volga region and others.

The situation is much worse with the research of this topic on the materials of Belarus, where research-

ers turned to the study of local traditions only in the 1980s and 1990s. According to these studies, the intensity of the spread of carved architectural decor in folk architecture on the territory of Belarus increases as you move from the west of the country to the east, while its greatest concentration occurs in the southeast [A.I. Лакотка 1995 p. 276].

The east of Belarus is the historical and ethnographic region of Dniepr, the largest center of which was the city of Mohileu in the 16th–19th centuries. It was one of the largest and richest cities in the eastern part of the Polish-Lithuanian Commonwealth, which developed its own bright tradition of artistic culture, including a peculiar school of stone baroque architecture of the 17–18th centuries, book graphics, etc.

No less interesting is the Mohileu tradition of carved decoration of wooden architecture of the end of the 19th – middle of the 20th century, which, unfortunately, has not yet been described anywhere in science. This article is one of the first attempts to provide a scientific description of this bright and peculiar, but very local tradition (which actually covers only the city of Mohileu itself), and more precisely, such a phenomenon as the decoration of the front door. It can

be assumed that the methodology of analysis of this phenomenon on the materials of Mohileu will become an example for the appearance of similar works on the materials of other cities.

In the spring of 2019 the author of this article made 10 expedition trips to Mohileu for the purpose of photographing preserved examples of local wooden architecture and its carved decor. As a result, a photo database was collected, which includes photos with images of 464 buildings of the city of Mohileu (4062 digital photos), of which 366 buildings are decorated with wooden architectural decor. The total for Mohileu region as of 2020 was 11265 photos, where images of 1808 buildings from Mohileu, Bobruisk and 11 other settlements of the region were collected, which made it possible to draw some general conclusions. Unfortunately, at the time of collecting real-time photo materials, a significant number of buildings had already partially lost their decorative elements or had been rebuilt. This did not give an opportunity to get a complete picture of the original appearance of such buildings and the compositional intention of their builders, but a statistical comparison of preserved fragments from different houses, including those that have preserved their original appearance, gave a general idea of the patterns and properties of the architectural decor common in the studied city and region.

The dates of the construction of the investigated houses were obtained from the archive of the Republican Unitary Enterprise «Mohileu State Registration and Land Cadastre», however, they are characterized by incompleteness (exact dates are not available for all buildings), the absolute majority of the received dates refer to the construction of the recorded houses no earlier than the beginning of the 20th century, and only a few houses date back to the 1890s. But a comparison of these materials from the Mohileu agency with the dates obtained from the materials from the archive of a similar Homel agency shows that the Mohileu materials are not complete and contain approximate information. For example, in Homel, the information is much more complete, containing dates even from 1860. Buildings (1 house) and stable information about buildings show 1870–1940 as the dates of construction, which made it possible to reliably correlate the decor common in Homel and the dates of construction of the houses. However, it was almost impossible to do this on the materials of Mohileu, so in this analysis we had to use a comparison with Homel materials and stylistic analysis. A small number of dates on the photographed buildings were presented by their inhabitants themselves during the expedition research, they are generally almost identical to the dates from the archive

of the RUE «Mohileu Society for State Registration and Land Cadastre».

Additional important sources of information about the development of wooden architectural decor in Mohileu came from a number of visual materials of different nature:

- drawings and engravings of the 18th – end of the 19th centuries. (authorship of Nikolai Lvov, Yuzef Peshka – beginning of the 19th century, 10 pieces in total), mid-second half of the 19th century. (authorship of Alexander Busyrskyi in 1850, Napoleon Orda in 1876), which gave a certain idea of the wooden architecture of Mohileu in this period;
- pictures with views of Mohileu and its architecture, published in various printed editions of the 19th and 20th centuries.
- images from the Lithuanian National Historical Archive, namely 63 cases of obtaining a bank loan against the property of residents of various places, including Mohileu, which included detailed plans, sections, measurements and images of facades – a set of documents submitted to Vilnius land bank have survived to our time (LVIA, F. 544);
- photographs of the beginning of the 20th century with views of the city (about three dozen);
- a collection of postcards of the early 20th century with views of Mohileu (about four dozen);
- photos of Mohileu from 1941 to 1944, taken by German soldiers during the occupation of the city during the Second World War (about six dozen);
- a small number of photos with views of wooden buildings in Mohileu, taken by its residents in the period 1950–2010s. (about three dozen).

This group of visual materials is less informative about wooden architectural decoration compared to the photographic materials collected during the author's field expeditions in 2019, but it contains a number of important examples of buildings and their decorative finishes that have long since disappeared and were not recorded in 2019. Also, the mass of wooden buildings recorded on visual materials of the beginning of the 20th century – 1944 allowed for some approximate statistical studies, which were additionally verified on the materials of 2019 (for example, the predominant form of roofs, gable designs, window moldings, etc.).

The majority of postcards and photographs of the first half of the 20th century was presented to the author for research by local historians, in particular A-D. Lisovsky, A. Balakis and others.

As a result of the collection of materials, information was obtained about approximately 45 Mohileu

buildings from the end of the 19th – mid-20th centuries, decorated with wooden carved doors. Information on several examples of carved doors belonging to various city buildings from the 17th–18th centuries was also revealed, including information concerning four houses of prayer, not all of which have been preserved.

1. RESULTS

The entrance is an important element of creating an attractive image of the whole building, because it, unlike the rest of the house, is always directly connected to the physical level of the person and direct contact with him. This applies primarily to doors. In Mohileu, at the time of the researched period, decorated front doors were usually located on the main facade of the building, while doors from the side of the yard were usually not decorated and had only a functional design.

In the wooden buildings recorded during the research, in Mohileu, the location of the main entrance usually corresponded to one of three options:

- the entrance door is located on the main facade – in the center or at the edges of the street facade, the entrance to the house was directly from the street (Fig. 1, 2);
- the entrance to the house took place through a separate extension-verandah (entrance room) located on the side of the main facade, which led directly from the street, sometimes directly to the upper floor of the building (Fig. 3);
- the entrance is located in the side wall of the house from the yard and you can get to it only by passing the gate from the side of the street facade.

Initially, the front door from the street was always decorated with a front porch (not always preserved until the beginning of the 21st century).

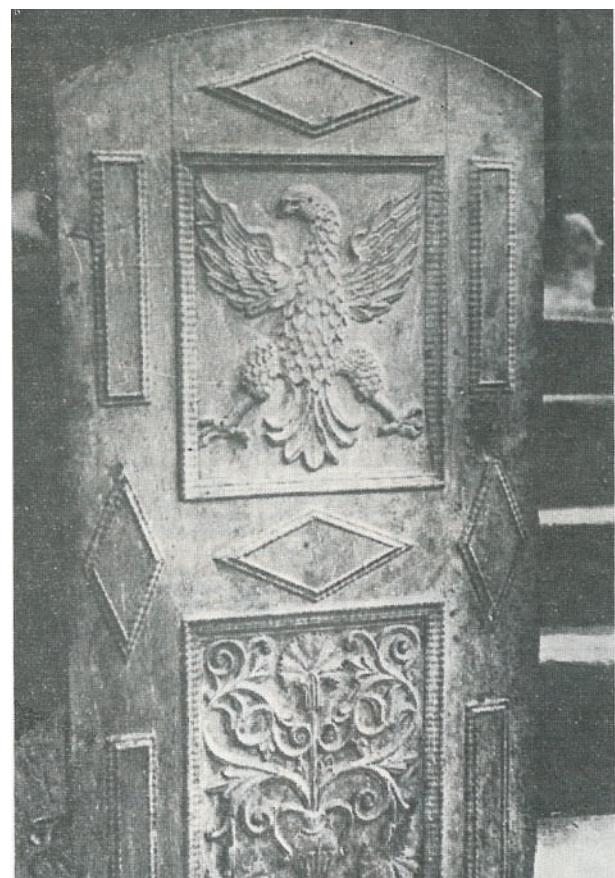

Fig. 1. Mohileu. Alkhouskaya str. 3. Before 1917; photo by the author

Fig. 2. Mohileu, Bykhauskaya str. 22. Before 1917; photo by the author

Fig. 3. Mohileu, Zawadskaya str. 23. Before 1917; photo by the author

Fig. 4. Doors of the 17th century from Mohileu. Photo of the late 1940s. [O.A. Tpycob 1988, p. 35]

The oldest wooden doors recorded by researchers date back to the 17th century and are known only from a photograph from the late 1940s. (Fig. 4) [O.A. Trycub 1988, p. 35].

This door is single-leaf, it is a solid wooden canvas, rounded at the top. The door is very richly decorated: two large rectangular frames of almost the same size with relief images – a single-headed eagle in the upper one and a vase with a lush plant bouquet in the lower one. It is obvious that the single-headed eagle is the Polish coat of arms, which was adopted from the coat of arms of the Polish-Lithuanian Commonwealth, a vase with a magnificent bouquet, from which two S-shaped plant-floral scrolls depart – a typical baroque motif, which is recorded many times in the art culture of Mohileu of the 17–18th centuries: in crown tiles for 17th century stoves [B.E. Собаль et. al. 1989, p. 80 a.o.], in the carved baroque iconostasis of the Mykola church (made by local craftsmen around 1672), window frames of the burgher's house of the 17th century [Д. Струков 2011, p. 127, 248; B.A. Чантурія 1977, p. 127; Т.І. Чарпяуская 1973, p. 14-15], in book engravings of the late 17th and early 18th centuries from the printing house of the Mohileu Bopayavlensky brotherhood [Б.А. Лазука 2007, p. 59], in the upper parts of local icons from the beginning of the 18th century [сакральна...2007, Fig. 89], in the decoration of the upper part of the window molding of the brick farm building at the end of the 18th century in the estate of the Kniazhycy near Mohileu [B.A. Чантурія 1977, p. 246] and in the tops of carved window frames on city houses from the late 19th and mid – 20th centuries.

Along the perimeter of the frames on these doors are placed overhead flat rectangles and rhombuses with relief carved edges, which form a certain symmetrical composition. It is difficult to understand the design of the rectangular compositions from the photo, but apparently they are made of one wide board, on which the images of an eagle and a vase with flowers are made in the technique of flat relief carving with background removal. The resulting rectangular compositions are inserted into the frame of the door panel (like a primitive door panel-filling), and the seams are covered with a carved overhead frame.

Examples from the 18th century include the doors of the main Mohileu churches, two Catholic and one Orthodox. Of them, only the oak door at the main entrance to the Mohileu Cathedral Church of St. Stanislau (The Catedral) (Fig. 5, 6) remain, the rest are known only from photographs from the beginning of the 20th century – 1944.

The doors of the church of St. Stanislau are placed at the front of the temple, which was erected in the 1780s. They are made of oak, have large dimen-

Fig. 5. Mohileu, entrance door of the church of St. Stanislau, 1780; photo by the author

Fig. 6. Mohileu, fragment of the entrance door of the church of St. Stanislau, 1780; photo by the author

Fig. 7. Mohileu, church of St. Francis Xavier; Photo from 1940 Wiener's expedition

sions, and are structurally divided into rectangular parts: a fixed upper part and a movable lower part, which is actually the door itself. Both the upper and lower parts of the door are structurally the same: four symmetrical rectangular vertical panels-filling (more elongated at the top), which are inserted into the frame. Overlay compositions are placed on the door panel: on the uppermost pair of panels are voluminous high-relief angels with wings above clouds, on the remaining six – an elongated plant rosette in the center and four smaller flower buds in the corners. At the very top of the entire composition of the door is a complex entablature, in the center of which is a wide frieze; below it is a row of voluminous currency curls; above it is a row of rectangular denticles.

Unpreserved door of the church of St. Francis Xavier is known from two photographs from 1940 and

Fig. 8. Mohileu, fragment of a 1941 photograph, with the facade of the church of St. Francis Xavier; Photo from the collection of A.-D. Lisovsky (Augsburg, Germany)

1941. (Fig. 7, 8). The stone temple was built between 1699–1720s. (the church was consecrated in 1725). The central entrance to the church was decorated with large two-leaf doors, rounded at the top under an arched opening. The photos show that each of the door leaves was divided vertically by slats with a figured carved edge into two uneven panels (fillings), the larger of which was at the bottom. From the photo, the construction of these slats along the perimeter of the panels is not quite visible, but judging by analogies, they were overhead slats. There were also other decorative elements that were additionally highlighted by color.

In the center of the upper pair of panels there is an overhead rhomboid composition. In the photo from 1941 also visible is a fragment of the lower enlarged part, which contains a more complex vertically elongated carved image. Despite the fact that in the photo less than half of the door is visible, it can be reconstructed quite accurately. It is widespread in the carved architectural decor of southeastern Belarus and its border in the second half of the 19th – 20th centuries. The

Fig. 9. Mohileu, Orthodox Cathedral of St. Joseph. 1780–1798; postcard from the beginning of the 20th century from the collection of A.-D. Lisovsky (Augsburg, Germany)

image of a vertical plant's «rhombus-arrow» is a persistent sign-element of decoration in the form of a rhombus or a rhombus-shaped plant composition derived from it, sprouting from the center in two (rarely four) directions with a large number of various sharp «arrow-sprouts». Such a sign is placed on the front boards of windows frame, cornices, corners, doors, shutters and other places of the house [Я. Р. Malikau 2016, p. 61, 117–118, 228]. In this case, the very fact of the presence of such a sign in the carved design of the wooden doors of the Baroque church in the region of eastern Belarus and Upper Dnieper is very important, as it significantly lowers the earliest date of the beginning of the use of this sign in the wooden architectural decor of this region to the first half of the 18th century.

This door was similar to the design of the entrance door in St. Joseph's Cathedral, built in 1780–1798 according to the project of the Russian architect Nikolai Lvov. The cathedral has not survived to our time, and its carved doors are known only from photographs from the beginning of the 20th century (Fig. 9, 10).

The rectangular two-leaf doors of this temple are clearly symmetrical: each of the leaves contains three panels-fillings – the upper and lower ones are close to squares and are identical, and the central one between them is twice as large. In the center of the smaller

panels there is a large three-dimensional overlay plant rosette, on the central one – a three-dimensional vertical faceted rhombus and plant motifs at the corners. Between the door leaves there is a massive carved bar in the form of a twisted rope.

The doors of the church of St. Francis Xavier were clearly designed in the Baroque style and were probably made in the first half of the 18th century. The doors of the church of St. Stanislau were executed together with the reconstruction of the entrance part of the temple in the 1780s. Despite the fact that the rebuilt entrance part of the church bears the features of the Baroque and Classicism styles at the same time, the tiered asymmetry of the design of the entrance door is clearly closer of Baroque aesthetics. The emphasized symmetry of the doors of the Cathedral of St. Joseph clearly refers them to the style of classicism.

Unfortunately, other early examples of carving doors in Mohileu are no longer recorded. All four examples given above clearly come from the most magnificent stone buildings not only of the city of Mohileu, but also to a large extent of the entire surrounding region of Upper Dnieper. They are clearly distinguished by certain common features associated with the use of three-dimensional (overlay and relief) carved decor and probably could have influenced the appearance of

Fig. 10. Mohileu, a fragment of a photograph of Nikolais Astankovich at the beginning of the 20th century from the collection of the Vilnius University library [Šv. Juozapo...]

Fig. 11. Mohileu, Mihaia Lane 9. 1904; photo by the author

similar decor on the doors of other buildings in Mohileu. Of course, here it is necessary to take into account that at the end of the 19th and the beginning of the 20th centuries, decoration with elements of overhead three-dimensional carving was widespread in construction in all European and American cities, even special advertising guides were published with examples of such doors. But specifically in Mohileu, the decorative carved composition of the entrance doors of the Cathedral of St. Joseph, created at the very end of the 18th century, was repeated exactly in the doors of an upperclass two-story brick building, which was built in 1904 and was preserved at Mihaia Lane 9 (Fig. 11, 12, 13). The door of this upperclass house is much smaller in size, but has all the same basic elements, albeit in a slightly simplified version.

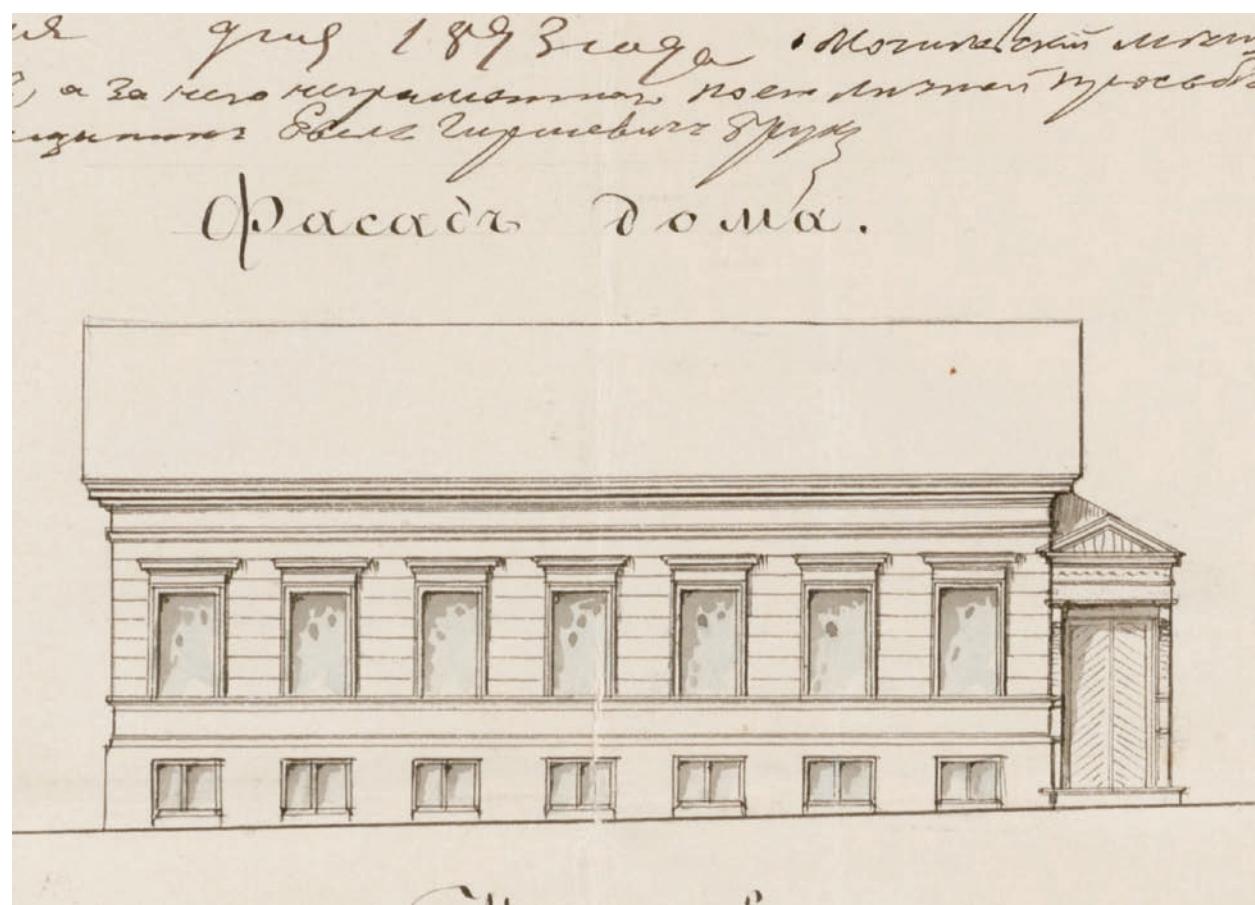

The early methods of decorating the entrance door should also include diagonal laying with short boards, which resulted in a rhythmic pattern in the form of a «herringbone tree» or a perspective rhombus. During the collection of in-situ materials in 2019 existing examples of such door design were not recorded, but they were found in photographs and dimensional drawings with types of residential buildings in Mohileu at the beginning of the 20th century (Fig. 14). The oldest examples of such doors are recorded at the entrance to the church of St. Nicholas on Padmikolie, built in 1669–1672 (Fig. 15) and on the side doors of the church of St. Francis Xavier (Fig. 8). It is not known for certain whether the entrance doors of the Mykola Church, recorded in the photographs from the beginning and middle of

Fig. 12. Mohileu, Mihai Lane 9. 1904 A fragment of a door; photo by the author

Fig. 13. Mohileu, Mihai Lane 9. 1904 A fragment of a door; photo by the author

Fig. 14. Mohileu, the facade of the Kudrytska house in the block of Bykhavska and Zavalska streets. Fragment of dimensional drawing from the end of the 19th century [LVIA. F. 544. Ap. 1. B. 12693]; photo by the author

Fig. 15. Mohileu, entrance to the church of St. Nicholas.
Photo from the beginning of the 20th century

the 20th century, are authentic, preserved from the end of the 17th century, but they are very close to the doors of the church of St. Francis Xavier, which indirectly indicates their considerable antiquity.

The carved doors in Mohileu that are most often recorded in all types of sources used (both in the photo materials of 2019 and in the photos from the end of the 19th and mid-20th centuries) are various versions of frame doors with filling (Fig. 16–37).

All recorded examples are two-leaf symmetrical doors, most of them having three rectangular filling on each door leaf, rarely two or four. A transom window is often placed above the door for natural lighting of the space behind it, or a large board decorative composition, sometimes two sheets of filling (Fig. 38, 39).

The elements that make up the decorative finish of a paneled door are the panels (fillings) themselves – their number, size, shape, overhead rails and belts

Fig. 16. Mohileu, Levaneuskaha 1st Lane. 10. 1940;
photo by the author

around them, voluminous overhead elements on the panels and the frame around them, and also a vertical strip between the doors, decorated with relief carving.

Certain regularities are recorded in the decoration of door panels (fillings). When using three fillings on one door leaf, the composition is formed with a large one in the center and two identical smaller ones at the edges, or a small one in the center and two identical large ones at the edges. But there are also versions of three different-sized panels. When using four panels on one leaf – they are all the same or the image and dimensions are duplicated in two of them.

The panels themselves could be decorated with relief parallel lines or have complex outlines (Fig. 40, 41). But the most widespread decoration is overlays in the form of low faceted pyramids or rhombuses. A number of identical houses on Chyunachna Street, built at the beginning of the 20th century, have almost identical

Fig. 17. Mohileu, Karpinskaha str. 22. Before 1917; photo by the author

Fig. 18. Mohileu, вул. Alkhouskaya str. 3. Before 1917; photo by the author

Fig. 19. Mohileu, Mashekauskaya Vialikaya str. 14. Before 1917; photo by the author

Fig. 20. Mohileu, Chyrvonaya Zorka Lane 10. Before 1917; photo by the author

Fig. 21. Mohileu, Sadovaya str. 25. Before 1917; photo by the author

Fig. 22. Mohileu, Sevastopalskaya str. 4. 1910; photo by the author

Fig. 23. Mohileu, 2nd str. Chyhunachnaya 8. Before 1917; photo by the author

Fig. 24. Mohileu, Yatsyny str. 13. 1922; photo by the author

Fig. 25. Mohileu, Padhornaya str. 22. 1946; photo by the author

Fig. 26. Mohileu, Shypouny Lane 10. 1952; photo by the author

Fig. 27. Mohileu, Shyrshova str. 13. 1948; photo by the author

Fig. 28. Mohileu, Karabanauski 4th Lane 11. 1970; photo by the author

Fig. 29. Mohileu, Karpinskaha str. 12. Before 1917; photo by the author

Fig. 30. Mohileu, Katouskaha str. 48. Before 1917; photo by the author

Fig. 31. Mohileu, Sviardlovast. 24. Before 1917; photo by the author

Fig. 32. Mohileu, Chyhunachnaya 1st str. 9. 1910; photo by the author

Fig. 33. Mohileu, Chyhunachnaya 1st str. 11. Around 1910; photo by the author

Fig. 34. Mohileu, Chyhunachnaya 1st str. 19. 1910; photo by the author

Fig. 35. Mohileu, Yatsyny, p. 13. 1922; photo by the author

Fig. 36. Mohileu, Ivanauski Lane 7. 1952; photo by the author

Fig. 37. Mohileu, Labacheuskaha str. 12. 1954. A similar design of the door was recorded on the building from the beginning of the 20th century [LVIA, Ap. 1, B. 21193]; photo by the author

Fig. 39. Mohileu, Sviardlova str. 24. Before 1917; photo by the author

Fig. 38. Mohileu, Pershamayskaya str. 60-. 1906. The house was demolished in 2023; photo by the author

Fig. 40. Mohileu, Alkhouskaya str. 3. Before 1917; photo by the author

CARVED DOORS IN WOODEN ARCHITECTURE OF THE LATE 19TH – MID 20TH CENTURIES. CITY OF MOHILEU...

Fig. 41. Mohileu, Sialianskaya str. 8. Photo from 1957, the house does not exist anymore. Photo from the personal archive of Yauhen Bulau (Mohileu)

Fig. 43. Mohileu, a fragment of the entrance door of the Hotel «France»; photo from the summer of 1941, from the personal collection of A.-D. Lisovsky (Augsburg, Germany)

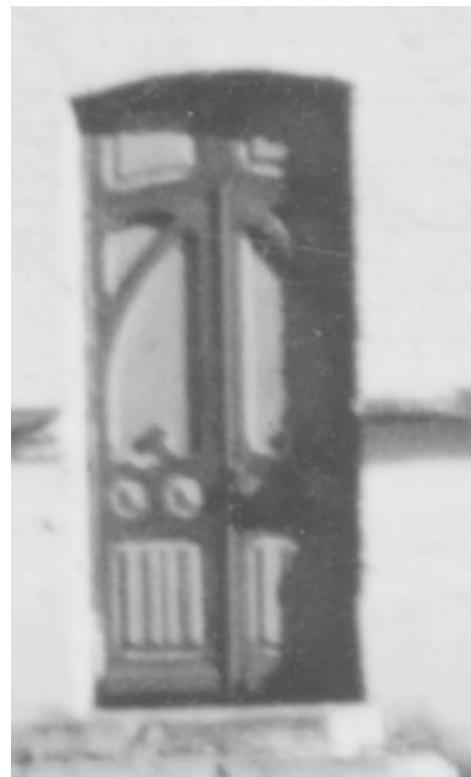
Fig. 42. Mohileu, Chyhunachnaya 1st str. 9. 1910; photo by the author

Fig. 44. Mohileu, str. Leninskaya, 1941–1944; a fragment of a building. Photo from the personal collection of A.-D. Lisovsky (Augsburg, Germany)

Fig. 45. Mohileu, Velikaya Sadovaya str., the former house of Bobovik. Fragment of an advertising publication from the beginning of the 20th century; from the personal collection of A.-D. Lisovsky (Augsburg, Germany)

doors decorated with small geometric rosettes turned on a lathe in the form of a disc (Fig. 42). Carved doors similar in composition, but much better in quality and larger in size, were recorded at the entrance to the «France» hotel, one of the best in Mohileu at the beginning of the 20th century (Fig. 43).

A variant of the development of paneled doors are examples in which the upper panels (fillinds) are replaced by glass. At the time of in-situ collections, such an entrance door on the main facade of the building was fixed only once (on a house that was already subject to demolition). However, such examples are not rarely recorded on photographs from the beginning – middle of the 20th century. (Fig. 44, 45).


Twice in the photographs from the beginning – the first half of the 20th century appeared a fixed entrance door designed in the Art Nouveau style. In both recorded cases, they were located at the entrances to the theaters – the city drama theater (built in 1886–1888 according to the project of the architect P. Kam-burov in the pseudo-Russian style, but its doors in the Art Nouveau style were clearly made in the 1900s) and the cinema Art Nouveau (built in the Art Nouveau style in 1909) (Fig. 46, 47).

It should be noted that, in contrast to the doors on the buildings of professional stone architecture of Mohileu, all recorded examples of carved doors used in the wooden architecture of this city show greater modesty – there are no or very rarely applied overhead volumetric elements, and such elements are clearly plain in their execution. In this modesty of door carving design, the wooden architecture of Mohileu is clearly different from similar architecture, for example, in Homel, where three-dimensional elements were much more actively used in decorating not only entrance doors, but also corners, windows, and sometimes even gates.

CONCLUSIONS

Despite the small number of preserved and recorded examples of Mohileu doors from the end of the 19th to the middle of the 20th century, the collected materials provided a sufficient amount of information to draw certain conclusions.

Recorded in the late 1940s, the door from the 17th century of an unknown building in Mohileu showed that the tradition of artistic decoration in this city exists at least since this time. The motif of a vase with a bouquet and S-shaped plant curls used in their design was widely used in the art culture of Mohileu in the 17–18th centuries and survived until the middle of the 20th century in the architectural carved window decoration of local wooden buildings. This indicates a certain continuity of the local artistic tradition.

Fig. 46. Mohileu, fragment of the facade of the city theater with doors in the Art Nouveau style at the beginning of the 20th century; photo from the personal collection of A.-D. Lisovsky (Augsburg, Germany)

Fig. 47. Mohileu, a fragment of a postcard with an image of the Modern (Art Nouveau) cinema (opened in 1909); postcard from the personal collection of A.-D. Lisovsky (Augsburg, Germany)

The tradition of carving front entrance doors, recorded on the above-mentioned doors in the 17th century, was continued on the carved doors of Mohileu temples in the 18th century, the decoration of which was made under the influence of baroque and classicism styles.

Comparison of wooden carved doors recorded on manor houses in the late 19th – mid 20th centuries with wooden carved doors on stone buildings of the same and earlier times, showed that the leaders in the development and distribution of the most solemn and modern in style were clearly the doors of wealthy, one might even say elite, stone buildings built according to the projects of professional architects. During the research, traces of obvious imitation of compositional decisions and sometimes decorative motifs from examples of doors of professional architecture (doors of Joseph's Cathedral, Hotel «France») were recorded in private urban construction (stone house on Mihaya Lane, wooden houses on Chyhunachnaya Street). At the same time, recorded replicas of professional examples bear traces of simplification of the adopted prototype.

The leading role in the decoration of the front door was played by fillings, whose very shape, rhythm and proportions created a solemn image of the entire entrance. An important role in this was also played by plastic means – decorating the panels with shallow grooves, voluminous overlapping figures in the form of various pyramids, rhombuses, rosettes, etc. However, comparisons with similar materials recorded in the neighboring, more southerly Homel show that the works of Mohileu masters are characterized by flatter solutions – overlapping figures are quite rare and they stand out due to their small overall height.

On the other hand, on the early examples of Mohileu front doors that have been discovered, decoration in the form of diagonal inlays with a pattern of «herringbone» or a perspective rhombus was actively used. This is a very cheap, simple and archaic way to add minimal aesthetics to a functional door surface. However such examples on the buildings of Mohileu during the field collection of materials in 2019 were not recorded (except for the gates at the entrance to the manor), but they are recorded in photographs from the first half of the 20th century, including at the entrance to the stone Mikolskaya church, built in the Baroque style by local architects in 1669–1672 and the side doors of the church of St. Francis Xavier, built in the first half of the 18th century. This recorded dynamics of the use of such door design indicates the gradual disappearance of the simplest and most archaic options in the construction of the 20th century.

At the beginning of the 20th century, doors appeared in the professional brick architecture of Mohileu, designed in accordance with the aesthetics of the Art Nouveau style prevailing at that time. However, no examples of the influence of this style on the carved decoration of doors in a series of wooden buildings have been found among the recorded materials. In terms of style, the aesthetics of the Baroque and Classicism styles, reinterpreted and reworked to suit the local tastes and financial capabilities of the inhabitants, continued to exert a dominant influence on the masters of the wooden doors of this period and the city.

It is obvious that the various and sometimes even elaborate decoration of the doors played an important role in the aesthetic design of the entrance to Mohileu buildings, both brick and wooden. Made of wood, decorated with various elements of three-dimensional carvings – relief edges, faceted rhombuses, pyramids, rosettes, etc., which were often highlighted with colorful paint, the doors visually contrasted with the flat surface of brick walls or the corrugated surface of unclad log wall buildings. But in both of these cases, the carved wooden door solemnly distinguished the front entrance to the building and, being at the level of direct physical contact with a person, set a general solemn mood for further perception of the interior of the building and its inhabitants.

LITERATURE

1. **Собаль В.Е. [і інш.] (1989).** Беларуская кафля. – Мінск : Беларусь, 160 с.
2. **Лазука, Б. А. (2007).** Гісторыя беларускага ма-стцтва: У 2 т. Т. II. XVIII – пачатак XXI стагоддзя, Б.А. Лазука. – Мінск: Беларусь, 354 с.
3. **Лакотка, А. І. (1995).** Пад стрэхамі прашчураў, А.І. Лакотка. – Мінск: Польмія, 384 с.
4. **Малікаў, Я. Р. (2016).** Традыцыі разьбяного дэкору ў народнай архітэктуре паўднёва-ўсходняй Беларусі: канец XIX – першая палова XX ст., Я. Р. Малікаў. – Мінск: Беларуская навука, 239 с.
5. **Сакральная живопись Беларуси. (2007).** XV–XVIII веков, сост. Н.Ф. Высоцкая – Минск: Беларусь, 220 с.
6. **Струков Д. (2011).** Альбом рисунков. 1864–1867, D.Stukov. Album of drawings. 1864–1867, Редкол.: Т.В. Белова (гл. ред.) [і др.]. – Минск : Беларус. Энцыкл. імя П. Броўкі, 2011308 с.
7. **Трусов, О. А. (1988).** Двери и их атрибуты на примере памятников белорусского зодчества. О. А. Трусов, Строительство и архитектура Белоруссии, № 1. с. 32–36.
8. **Чантурия, В. А. (1977).** История архитектуры Белоруссии, В.М. Чантурия. – Минск: Вышэйшая школа, 320 с.

9. Чарняўская, Т. І. (1973). Архітэктура Магілёва. З гісторыі планіроўкі і забудовы горада, Т.І. Чарняўская. – Мінск : Навука і тэхніка, 96 с.
10. Lietuvos valstybės istorijos archyvas (LVIA). F. 544, Ap. 1, B. 12693.
11. Šv. Juozapo SužieduotiniokatedrosMogiliavevaizdas, ŠIFRAS F46-257, Vilniaus universiteto biblioteka. Skaitmenines kolecijos. https://kolekcijos.biblioteka.vu.lt/search/detailed?term=VUB01_000602261

This publication is part of the project «Traditions of carved decoration of wooden architecture of the Mohileu region of Belarus», financed within the framework of the scholarship program «„Support for Advanced Learning and Training – EU4Belarus-SALT” Fellowships to Belarusian lecturers, scientist, and PhD students at EU higher education or research institutions» carried out within the external activities of the European Union (November 1, 2023 to April 30, 2024).