Coproducts in Categories without Uniqueness of cod and dom

Maciej Golński
Institute of Informatics
University of Białystok
Sosnowa 64, 15-887 Białystok
Poland

Artur Korniłowicz
Institute of Informatics
University of Białystok
Sosnowa 64, 15-887 Białystok
Poland

Summary. The paper introduces coproducts in categories without uniqueness of cod and dom. It is proven that set-theoretical disjoint union is the coproduct in the category Ens [9].

MSC: 18A30 03B35

Keywords: coproducts; disjoined union

MML identifier: ALTCAT.6, version: 8.1.02 5.22.1191

The notation and terminology used in this paper have been introduced in the following articles: [10], [7], [6], [1], [11], [2], [3], [8], [4], [12], [14], and [5].

From now on \(I \) denotes a set and \(E \) denotes a non empty set.

Let \(I \) be a non empty set, \(A \) be a many sorted set indexed by \(I \), and \(i \) be an element of \(I \). Let us observe that \(\text{coprod}(i, A) \) is relation-like and function-like.

Let \(C \) be a non empty category structure, \(o \) be an object of \(C \), \(I \) be a set, and \(f \) be an objects family of \(I \) and \(C \). A morphisms family of \(f \) and \(o \) is a many sorted set indexed by \(I \) and is defined by

(Def. 1) Let us consider an element \(i \). Suppose \(i \in I \). Then there exists an object \(o_1 \) of \(C \) such that

(i) \(o_1 = f(i) \), and

(ii) \(it(i) \) is a morphism from \(o_1 \) to \(o \).

Let \(I \) be a non empty set. Let us note that a morphisms family of \(f \) and \(o \) can equivalently be formulated as follows:

(Def. 2) Let us consider an element \(i \) of \(I \). Then \(it(i) \) is a morphism from \(f(i) \) to \(o \).
Let M be a morphisms family of f and o and i be an element of I. Note that the functor $M(i)$ yields a morphism from $f(i)$ to o. Let C be a functional non empty category structure. Let I be a set. Let us note that every morphisms family of f and o is function yielding.

Now we state the proposition:

(1) Let us consider a non empty category structure C, an object o of C, and an objects family f of \emptyset and C. Then \emptyset is a morphisms family of f and o.

Let C be a non empty category structure, I be a set, A be an objects family of I and C, B be an object of C, and P be a morphisms family of A and B. We say that P is feasible if and only if

(Def. 3) Let us consider a set i. Suppose $i \in I$. Then there exists an object o of C such that
(i) $o = A(i)$, and
(ii) $P(i) \in \langle o, B \rangle$.

Let I be a non empty set. Let us observe that P is feasible if and only if the condition (Def. 4) is satisfied.

(Def. 4) Let us consider an element i of I. Then $P(i) \in \langle A(i), B \rangle$.

Let C be a category and I be a set. We say that P is coprojection morphisms if and only if

(Def. 5) Let us consider an object X of C and a morphisms family F of A and X. Suppose F is feasible. Then there exists a morphism f from B to X such that
(i) $f \in \langle B, X \rangle$, and
(ii) for every set i such that $i \in I$ there exists an object s_i of C and there exists a morphism P_i from s_i to B such that $s_i = A(i)$ and $P_i = P(i)$ and $F(i) = f \cdot P_i$, and
(iii) for every morphism f_1 from B to X such that for every element i of I there exists an object s_i of C and there exists a morphism P_i from s_i to B such that $s_i = A(i)$ and $P_i = P(i)$ and $F(i) = f_1 \cdot P_i$ holds $f = f_1$.

Let I be a non empty set. Let us note that P is coprojection morphisms if and only if the condition (Def. 6) is satisfied.

(Def. 6) Let us consider an object X of C and a morphisms family F of A and X. Suppose F is feasible. Then there exists a morphism f from B to X such that
(i) $f \in \langle B, X \rangle$, and
(ii) for every element i of I, $F(i) = f \cdot P(i)$, and
(iii) for every morphism f_1 from B to X such that for every element i of I, $F(i) = f_1 \cdot P(i)$ holds $f = f_1$.
Let A be an objects family of \emptyset and C. Note that every morphisms family of A and B is feasible.

Now we state the propositions:

(2) Let us consider a category C, an objects family A of \emptyset and C, and an object B of C. Suppose B is initial. Then there exists a morphisms family P of A and B such that P is empty and coprojection morphisms. The theorem is a consequence of (1).

(3) Let us consider an objects family A of I and $\text{Ens}_{\{\emptyset\}}$ and an object o of $\text{Ens}_{\{\emptyset\}}$. Then $I \mapsto \emptyset$ is a morphisms family of A and o.

(4) Let us consider an objects family A of I and $\text{Ens}_{\{\emptyset\}}$, an object o of $\text{Ens}_{\{\emptyset\}}$, and a morphisms family P of A and o. If $P = I \mapsto \emptyset$, then P is feasible and coprojection morphisms. Proof: P is feasible by [11, (7)].

Reconsider $f = \emptyset$ as a morphism from o to Y. For every set i such that $i \in I$ there exists an object s_i of C and there exists a morphism P_i from s_i to o such that $s_i = A(i)$ and $P_i = P(i)$ and $F(i) = f \cdot P_i$ by [11, (7)]. □

Let C be a category. We say that C has coproducts if and only if

(Def. 7) Let us consider a set I and an objects family A of I and C. Then there exists an object B of C and there exists a morphisms family P of A and B such that P is feasible and coprojection morphisms.

Note that $\text{Ens}_{\{\emptyset\}}$ has coproducts and there exists a category which is strict and has products and coproducts.

Let C be a category, I be a set, A be an objects family of I and C, and B be an object of C. We say that B is A-category coproduct-like if and only if

(Def. 8) There exists a morphisms family P of A and B such that P is feasible and coprojection morphisms.

Let C be a category with coproducts. Let us observe that there exists an object of C which is A-category coproduct-like.

Let C be a category and A be an objects family of \emptyset and C. Note that every object of C which is A-category coproduct-like is also initial.

Now we state the propositions:

(5) Let us consider a category C, an objects family A of \emptyset and C, and an object B of C. If B is initial, then B is A-category coproduct-like. The theorem is a consequence of (2).

(6) Let us consider a category C, an objects family A of I and C, and objects C_1, C_2 of C. Suppose

(i) C_1 is A-category coproduct-like, and

(ii) C_2 is A-category coproduct-like.

Then C_1, C_2 are iso.

From now on A denotes an objects family of I and Ens_{E}.
Let us consider I, E, and A. Assume $\bigcup \text{coprod}(A) \in E$. The functor $\prod A$ yielding an object of Ens_E is defined by the term

(Def. 9) $\bigcup \text{coprod}(A)$.

The functor $\text{Coprod}(A)$ yielding a many sorted set indexed by I is defined by

(Def. 10) Let us consider an element i. Suppose $i \in I$. Then there exists a function F from $A(i)$ into $\bigcup \text{coprod}(A)$ such that

(i) $i(i) = F$, and

(ii) for every element x such that $x \in A(i)$ holds $F(x) = \langle x, i \rangle$.

Let us observe that $\text{Coprod}(A)$ is function yielding.

Assume $\bigcup \text{coprod}(A) \in E$. The functor $\prod A$ yielding a morphisms family of A and $\prod A$ is defined by the term

(Def. 11) $\text{Coprod}(A)$.

Now we state the propositions:

(7) If $\bigcup \text{coprod}(A) = \emptyset$, then $\text{Coprod}(A)$ is empty yielding.

(8) If $\bigcup \text{coprod}(A) = \emptyset$, then A is empty yielding.

(9) If $\bigcup \text{coprod}(A) \in E$ and $\bigcup \text{coprod}(A) = \emptyset$, then $\prod A = I \mapsto \emptyset$. The theorem is a consequence of (7).

(10) If $\bigcup \text{coprod}(A) \in E$, then $\prod A$ is feasible and coprojection morphisms.

The theorem is a consequence of (7) and (8).

(11) If $\bigcup \text{coprod}(A) \in E$, then $\prod A$ is A-category coproduct-like. The theorem is a consequence of (10).

(12) If for every I and A, $\bigcup \text{coprod}(A) \in E$, then Ens_E has coproducts. The theorem is a consequence of (10).

References

Coproducts in categories without uniqueness of cod

Received December 8, 2013
Formulation of Cell Petri Nets

Mitsuru Jitsukawa
Shinshu University
Nagano, Japan

Pauline N. Kawamoto
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. Based on the Petri net definitions and theorems already formalized in the Mizar article [10], in this article we were able to formalize the definition of Cell Petri nets. It is based on [?]. Colored Petri net is already have been defined in [9]. In addition the conditions of the firing-rule and ColoredSet to this definition, that defines the Cell Petri nets extended to CPNT.i further. Although it was synthesis of two Petri nets in [9], it is synthesis from the family of Colored Petri nets (?? Colored-PT-net-Family of I) of finite number of pieces. That is, extension to a CPNT family is performed by defining the output arc from the transition of a certain Colored Petri nets to Place of a certain another Colored Petri nets (definition of the neighborhood). Finally, activation of Colored Petri nets was formalized.

MSC: 68-04 03B35

Keywords: Petri net; system modelling

MML identifier: PETRI_3 version: 8.1.02 5.22.1191

The notation and terminology used in this paper have been introduced in the following articles: [?], [17], [18], [4], [19], [5], [2], [?], [15], [?], [10], [9], [1], [?], [7], [13], [8], [10], [?], [?], [12], [9], [14], [3], and [11].

1. Preliminaries

Let I be a non empty set and C_1 be a many sorted set indexed by I. We say that C_1 is colored-pt-net-family-like if and only if

(Def. 1) Let us consider an element i of I. Then $C_1(i)$ is a colored place/transition net.

Note that there exists a many sorted set indexed by I which is colored-pt-net-family-like.

A colored place/transition net family of I is a colored-pt-net-family-like many sorted set indexed by I. Let C_1 be a colored place/transition net family of I
and \(i \) be an element of \(I \). One can check that the functor \(C_1(i) \) yields a colored place/transition net. Let \(C_2 \) be a colored place/transition net family of \(I \). We say that \(C_2 \) is disjoint valued if and only if

(Def. 2) Let us consider elements \(i, j \) of \(I \). Suppose \(i \neq j \). Then

(i) the carrier of \(C_2(i) \) misses the carrier of \(C_2(j) \), and

(ii) the carrier’ of \(C_2(i) \) misses the carrier’ of \(C_2(j) \).

Now we state the propositions:

(1) Let us consider a set \(I \) and many sorted sets \(F, D, R \) indexed by \(I \).
Suppose

(i) for every element \(i \) such that \(i \in I \) there exists a function \(f \) such that
\(f = F(i) \) and \(\text{dom } f = D(i) \) and \(\text{rng } f = R(i) \), and

(ii) for every elements \(i, j \) and for every functions \(f, g \) such that \(i, j \in I \)
and \(i \neq j \) and \(f = F(i) \) and \(g = F(j) \) holds \(\text{dom } f \) misses \(\text{dom } g \).

Then there exists a function \(G \) such that

(iii) \(G = \bigcup \text{rng } F \), and

(iv) \(\text{dom } G = \bigcup \text{rng } D \), and

(v) \(\text{rng } G = \bigcup \text{rng } R \), and

(vi) for every elements \(i, x \) and for every function \(f \) such that \(i \in I \) and
\(f = F(i) \) and \(x \in \text{dom } f \) holds \(G(x) = f(x) \).

Proof: For every element \(z \) such that \(z \in \bigcup \text{rng } F \) there exist elements
\(x, y, i \) such that \(z = \langle x, y \rangle \) and \(z \in F(i) \) and \(i \in I \). For every element \(z \) such that \(z \in \bigcup \text{rng } F \) there exist elements \(x, y \) such that \(z = \langle x, y \rangle \). Reconsider \(G = \bigcup \text{rng } F \) as a binary relation. \(G \) is a function. For every element \(x, x \in \text{dom } G \) iff \(x \in \bigcup \text{rng } D \) by [4, (3)]. For every element \(x \), \(x \in \text{rng } G \) iff \(x \in \bigcup \text{rng } R \) by [4, (3)]. For every elements \(i, x \) and for every function \(f \) such that \(i \in I \) and \(f = F(i) \) and \(x \in \text{dom } f \) holds \(G(x) = f(x) \) by [4] (1), (3). \(\square \)

(2) Let us consider a set \(I \) and many sorted sets \(Y, Z \) indexed by \(I \). Suppose elements \(i, j \). If \(i, j \in I \) and \(i \neq j \), then \(Y(i) \cap Z(j) = \emptyset \). Then \(\bigcup(Y \setminus Z) = \bigcup Y \setminus \bigcup Z \). **Proof:** Set \(X = Y \setminus Z \). For every element \(x \), \(x \in \bigcup \text{rng } X \) iff \(x \in \bigcup \text{rng } Y \setminus \bigcup \text{rng } Z \) by [4] (3). \(\square \)

(3) Let us consider a set \(I \) and many sorted sets \(X, Y, Z \) indexed by \(I \).
Suppose

(i) \(X \subseteq Y \setminus Z \), and

(ii) for every elements \(i, j \) such that \(i, j \in I \) and \(i \neq j \) holds \(Y(i) \cap Z(j) = \emptyset \).

Then \(\bigcup X \subseteq \bigcup Y \setminus \bigcup Z \). The theorem is a consequence of (2).
2. Synthesis of CPNT and I

Let I be a non trivial set. The functor $\text{XorDelta} I$ yielding a non empty set is defined by the term

(Def. 3) $\{(i, j), \text{where } i, j \text{ are elements of } I : i \neq j\}$.

Now we state the proposition:

(4) Let us consider a non trivial finite set I and a colored place/transition net family C_2 of I. Then $\bigcup \{(\text{the carrier of } C_2(j))^{\text{Outbds}(C_2(i))}, \text{where } i, j \text{ are elements of } I : i \neq j\}$ is not empty.

Let I be a non trivial finite set and C_2 be a colored place/transition net family of I. A connecting mapping of C_2 is a many sorted set indexed by $\text{XorDelta} I$ and is defined by

(Def. 4) (i) $\text{rng } it \subseteq \bigcup \{(\text{the carrier of } C_2(j))^{\text{Outbds}(C_2(i))}, \text{where } i, j \text{ are elements of } I : i \neq j\}$, and

(ii) for every elements i, j of I such that $i \neq j$ holds $it((i, j))$ is a function from $\text{Outbds}(C_2(i))$ into the carrier of $C_2(j)$.

Now we state the proposition:

(5) Let us consider colored place/transition nets C_4, C_5, a function O_{12} from $\text{Outbds} C_4$ into the carrier of C_5, and a function q_{12}. Suppose

(i) $\text{dom } q_{12} = \text{Outbds} C_4$, and

(ii) for every transition t_{01} of C_4 such that t_{01} is outbound holds $q_{12}(t_{01})$ is a function from the thin cylinders of the colored set of C_4 and $\ast\{t_{01}\}$ into the thin cylinders of the colored set of C_4 and $O_{12}\ast t_{01}$.

Then $q_{12} \in (\bigcup \{(\text{the thin cylinders of the colored set of } C_4 \text{ and } O_{12}\ast t_{01})^\alpha, \text{where } t_{01} \text{ is a transition of } C_4 : t_{01} \text{ is outbound}\})^{\text{Outbds} C_4}$, where α is the thin cylinders of the colored set of C_4 and $\ast\{t_{01}\}$.

Let I be a non trivial finite set, C_2 be a colored place/transition net family of I, and O be a connecting mapping of C_2. A connecting firing rule of O is a many sorted set indexed by $\text{XorDelta} I$ and is defined by

(Def. 5) Let us consider elements i, j of I. Suppose $i \neq j$. Then there exists a function O_6 from $\text{Outbds}(C_2(i))$ into the carrier of $C_2(j)$ and there exists a function q_8 such that $q_8 = it((i, j))$ and $O_6 = O((i, j))$ and $\text{dom } q_8 = \text{Outbds}(C_2(i))$ and for every transition t_{01} of $C_2(i)$ such that t_{01} is outbound holds $q_8(t_{01})$ is a function from the thin cylinders of the colored set of $C_2(i)$ and $\ast\{t_{01}\}$ into the thin cylinders of the colored set of $C_2(i)$ and $O_6\ast t_{01}$.
3. Extension to a Family of Colored Petri Nets

Let I be a non trivial finite set, C_2 be a colored place/transition net family of I, O be a connecting mapping of C_2, and q be a connecting firing rule of O. Assume C_2 is disjoint valued and for every elements i, j_1, j_2 of I such that $i \neq j_1$ and $i \neq j_2$ there exist elements x, y_1, y_2 such that $\langle x, y_1 \rangle \in q(\langle i, j_1 \rangle)$ and $\langle x, y_2 \rangle \in q(\langle i, j_2 \rangle)$ holds $j_1 = j_2$. The functor synthesis q yielding a strict colored place/transition net is defined by

(Def. 6) There exist many sorted sets P, T, S_9, T_8, C_3, F indexed by I and there exist functions U_9, U_8 such that for every element i of I, $P(i) = \text{the carrier of } C_2(i)$ and $T(i) = \text{the carrier' of } C_2(i)$ and $S_9(i) = \text{the S-T arcs of } C_2(i)$ and $T_8(i) = \text{the T-S arcs of } C_2(i)$ and $C_3(i) = \text{the colored set of } C_2(i)$ and $F(i) = \text{the firing-rule of } C_2(i)$ and $U_9 = \bigcup \text{rng } F$ and $U_8 = \bigcup \text{rng } q$ and the carrier of it = $\bigcup \text{rng } P$ and the carrier' of it = $\bigcup \text{rng } T$ and the S-T arcs of it = $\bigcup \text{rng } S_9$ and the T-S arcs of it = $\bigcup \text{rng } T_8 \cup \bigcup \text{rng } O$ and the colored set of it = $\bigcup \text{rng } C_3$ and the firing-rule of it = $U_9 + U_8$.

4. Definition of Cell Petri Nets

Let I be a non empty finite set and C_2 be a colored place/transition net family of I. We say that C_2 is cell Petri nets if and only if

(Def. 7) There exists a function N from I into $2^{\text{rng } C_2}$ such that for every element i of I, $N(i) = \{C_2(j) \mid j \in I \ \text{where } j \neq i\}$.

Let N be a function from I into $2^{\text{rng } C_2}$ and O be a connecting mapping of C_2. We say that (N, O) is cell Petri nets if and only if

(Def. 8) Let us consider an element i of I. Then $N(i) = \{C_2(j) \mid j \in I \ \text{where } j \neq i \}$ and there exists a transition t of $C_2(i)$ and there exists an element s such that $\langle t, s \rangle \in O(\langle i, j \rangle)$.

Now we state the proposition:

(6) Let us consider a non trivial finite set I, a colored place/transition net family C_2 of I, a function N from I into $2^{\text{rng } C_2}$, and a connecting mapping O of C_2. Suppose

(i) C_2 is one-to-one, and

(ii) (N, O) is cell Petri nets.

Let us consider an element i of I. Then $C_2(i) \notin N(i)$.
5. Activation of Petri Nets

Let \(C_6 \) be a colored place/transition net structure. We say that \(C_6 \) has nontrivial colored set if and only if

(Def. 9) The colored set of \(C_6 \) is not trivial.

One can verify that there exists a strict colored-PT-net-like colored Petri net which has nontrivial colored set.

Let \(C_2 \) be a colored place/transition net with nontrivial colored set. One can verify that the colored set of \(C_2 \) is non trivial.

Let \(C_6 \) be a colored place/transition net with nontrivial colored set, \(S \) be a subset of the carrier of \(C_6 \), and \(D \) be a thin cylinder of the colored set of \(C_6 \) and \(S \). A color threshold of \(D \) is a function from \(\text{loc} \ D \) into the colored set of \(C_6 \).

(Def. 10) the set of all \(e \) where \(e \) is a color count of \(C_6 \).

A colored state of \(C_6 \) is a function from \(C_6 \) into the colored states of \(C_6 \).

Now we state the proposition:

(7) Let us consider a thin cylinder \(D \) of the colored set of \(C_6 \) and \(\{t\} \), there exists a color threshold \(C_a \) of \(D \) such that \(t \) is firable on \(m \) and \(C_a \).

Now we state the proposition:

(7) Let us consider a thin cylinder \(D \) of the colored set of \(C_6 \) and \(\{t\} \). Then there exists a color threshold \(C_a \) of \(D \) such that \(t \) is firable on \(m \) and \(C_a \).

Let us consider \(C_6 \), \(m \) and \(t \). Let \(L \) be a thin cylinder of the colored set of \(C_6 \) and \(\{t\} \), \(C_a \) be a color threshold of \(D \), and \(p \) be an element of \(C_6 \). Assume \(t \) is firable on \(m \) and \(C_a \). The Petri subtraction \((C_a,m,p)\) yielding a function from the colored set of \(C_6 \) into \(\mathbb{N} \) is defined by

(Def. 13) Let us consider an element \(x \) of the colored set of \(C_6 \). Then
Let us consider an element x of the colored set of C_6. Then

(i) if $p \in \text{loc } D$ and $x = C_a(p)$, then $it(x) = m(p)(x) - 1$, and

(ii) if it is not true that $p \in \text{loc } D$ and $x = C_a(p)$, then $it(x) = m(p)(x)$.

Let D be a thin cylinder of the colored set of C_6 and $\{t\}$. The Petri addition(C_a,m,p) yielding a function from the colored set of C_6 into \mathbb{N} is defined by

(Def. 14) Let us consider an element x of the colored set of C_6. Then

(i) if $p \in \text{loc } D$ and $x = C_a(p)$, then $it(x) = m(p)(x) + 1$, and

(ii) if it is not true that $p \in \text{loc } D$ and $x = C_a(p)$, then $it(x) = m(p)(x)$.

Let D be a thin cylinder of the colored set of C_6 and $^*\{t\}$ and E be a thin cylinder of the colored set of C_6 and $\{t\}$. Let C_d be a color threshold of E. The firing result(C_a,C_d,m,p) yielding a function from the colored set of C_6 into \mathbb{N} is defined by the term

(Def. 15) \[
\begin{cases}
\text{the Petri subtraction}(C_a,m,p), & \text{if } t \text{ is firable on } m \text{ and } C_a \text{ and } p \in \text{loc } D \setminus \text{loc } E,
\text{the Petri addition}(C_d,m,p), & \text{if } t \text{ is firable on } m \text{ and } C_a \text{ and } p \in \text{loc } E \setminus \text{loc } D,
\text{otherwise}.
\end{cases}
\]

Let us consider a thin cylinder D_0 of the colored set of C_6 and $^*\{t\}$, a thin cylinder D_1 of the colored set of C_6 and $\{t\}$, a color threshold C_b of D_0, a color threshold C_c of D_1, an element x of the colored set of C_6, and an element p of C_6. Now we state the propositions:

(8) $m(p)(x) - 1 \leq (\text{the firing result}(C_b,C_c,m,p))(x) \leq m(p)(x) + 1$.

(9) If t is outbound, then $m(p)(x) - 1 \leq (\text{the firing result}(C_b,C_c,m,p))(x) \leq m(p)(x)$.

Acknowledgement: We are thankful to Dr. Yatsuka Nakamura. He is the former professor of Shinshu University. There was no completion of this article without the deep insight to the automatic proof verification system of Dr. Nakamura. Thank you.

References

Formulation of cell Petri nets

Received December 8, 2013
Isometric Differentiable Functions on Real Normed Space

Yuichi Futa
Japan Advanced Institute of Science and Technology
Ishikawa, Japan

Noboru Endou
Gifu National College of Technology
Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article, we formalize isometric differentiable functions on real normed space \(\mathbb{R}^n \), and their properties.

MSC: 03B35

Keywords:

MML identifier: \texttt{NDIFF-7}, version: 8.1.02 5.22.1191

The notation and terminology used in this paper have been introduced in the following articles: \[3, 2, 8, 4, 5, 17, 10, 11, 18, 14, 16, 1, 6, 9, 15, 22, 23, 20, 21, 13, 24, \] and \[7. \]

From now on, \(S, T, W \) denote real normed spaces, \(f, f_1, f_2 \) denote partial functions from \(S \) to \(T \), \(Z \) denotes a subset of \(S \), \(i, n \) denote natural numbers, and \(Y \) denotes a real normed space.

Let us consider a real norm space sequence \(G \), a real normed space \(F \), a set \(i \), partial functions \(f, g \) from \(\prod G \) to \(F \), and a subset \(X \) of \(\prod G \). Now we state the propositions:

(1) Suppose \(X \) is open and \(i \in \text{dom} G \) and \(f \) is partially differentiable on \(X \) w.r.t. \(i \) and \(g \) is partially differentiable on \(X \) w.r.t. \(i \). Then

(i) \(f + g \) is partially differentiable on \(X \) w.r.t. \(i \), and

(ii) \((f + g)^i X = (f^i X) + (g^i X). \)

\(^1\)This work was supported by JSPS KAKENHI 23500029 and 22300285.
(2) Suppose X is open and $i \in \text{dom} \ G$ and f is partially differentiable on X w.r.t. i and g is partially differentiable on X w.r.t. i. Then

(i) $f - g$ is partially differentiable on X w.r.t. i, and
(ii) $(f - g)^{\mid i}X = (f^{\mid i}X) - (g^{\mid i}X)$.

Now we state the propositions:

(3) Let us consider a real norm space sequence G, a real normed space F, a set i, a partial function f from $\prod G$ to F, a real number r, and a subset X of $\prod G$. Suppose

(i) X is open, and
(ii) $i \in \text{dom} \ G$, and
(iii) f is partially differentiable on X w.r.t. i.

Then

(iv) $r \cdot f$ is partially differentiable on X w.r.t. i, and
(v) $r \cdot f^{\mid i}X = r \cdot (f^{\mid i}X)$.

Proof: Set $h = r \cdot f$. For every point x of $\prod G$ such that $x \in X$ holds h is partially differentiable in x w.r.t. i and $\text{partdiff}(h, x, i) = r \cdot \text{partdiff}(f, x, i)$ by [18, (24), (30)]. Set $f_3 = f^{\mid i}X$. For every point x of $\prod G$ such that $x \in X$ holds $(r \cdot f_3)_x = \text{partdiff}(h, x, i)$.

(4) Let us consider sets X, Y, Z, functions I, f, and a set X. Then $(f^{\mid X}) \cdot I = (f \cdot I)^{\mid I^{-1}(X)}$.

Let us consider S and T. Let f be a function from S into T. We say that f is isometric if and only if

(Def. 1) Let us consider an element x of S. Then $\|f(x)\| = \|x\|$.

Now we state the propositions:

(5) Let us consider a linear operator I from S into T. If I is isometric, then for every point x of S, I is continuous in x.

(6) Let us consider a linear operator I from S into T and a subset Z of S. If I is isometric, then I is continuous on Z. The theorem is a consequence of (5).

(7) Let us consider a linear operator I from S into T. Suppose I is one-to-one, onto, and isometric. Then there exists a linear operator J from T into S such that

(i) $J = I^{-1}$, and
(ii) J is one-to-one, onto, and isometric.

Proof: Reconsider $J = I^{-1}$ as a function from T into S. For every points v, w of T, $J(v + w) = J(v) + J(w)$ by [5, (113)], [4, (34)]. For every point v of T and for every real number r, $J(r \cdot v) = r \cdot J(v)$ by [5, (113)], [4, (34)]. For every point v of T, $\|J(v)\| = \|v\|$ by [5, (113)], [4, (34)]. \□
Let us consider a linear operator I from S into T and a sequence s_1 of S. Now we state the propositions:

(8) If I is isometric and s_1 is convergent, then $I \cdot s_1$ is convergent and $\lim (I \cdot s_1) = I (\lim s_1)$.

(9) If I is one-to-one, onto, and isometric, then s_1 is convergent iff $I \cdot s_1$ is convergent.

Let us consider a linear operator I from S into T and a subset Z of S. Now we state the propositions:

(10) If I is one-to-one, onto, and isometric, then Z is closed iff $I \circ Z$ is closed.

(11) If I is one-to-one, onto, and isometric, then Z is open iff $I \circ Z$ is open.

(12) If I is one-to-one, onto, and isometric, then Z is compact iff $I \circ Z$ is compact.

Now we state the propositions:

(13) Let us consider a partial function f from T to W, a function g from S into T, and a point x of S. Suppose

(i) $x \in \text{dom } g$, and

(ii) $g(x) \in \text{dom } f$, and

(iii) g is continuous in x, and

(iv) f is continuous in $g(x)$.

Then $f \cdot g$ is continuous in x. \textbf{Proof:} Set $h = f \cdot g$. For every real number r such that $0 < r$ there exists a real number s such that $0 < s$ and for every point x_1 of S such that $x_1 \in \text{dom } h$ and $\|x_1 - x\| < s$ holds $\|h(x_1) - h(x)\| < r$ by [14, (7)], [12, (3), (4)]. □

(14) Let us consider a partial function f from T to W and a linear operator I from S into T. Suppose I is one-to-one, onto, and isometric. Let us consider a point x of S. Suppose $I(x) \in \text{dom } f$. Then $f \cdot I$ is continuous in x if and only if f is continuous in $I(x)$. The theorem is a consequence of (7), (5), and (13).

(15) Let us consider a partial function f from T to W, a linear operator I from S into T, and a set X. Suppose

(i) $X \subseteq \text{the carrier of } T$, and

(ii) I is one-to-one, onto, and isometric.

Then f is continuous on X if and only if $f \cdot I$ is continuous on $I^{-1}(X)$. The theorem is a consequence of (14) and (4). \textbf{Proof:} For every point y of T such that $y \in X$ holds $f|X$ is continuous in y by [5, (113)], [22, (57)]. □

Let X, Y be real normed spaces. The functor $\text{IsoCPN rSP} (X, Y)$ yielding a linear operator from $X \times Y$ into $\prod \langle X, Y \rangle$ is defined by
(Def. 2) (i) it is one-to-one and onto, and
(ii) for every point x of X and for every point y of Y, $it(x, y) = \langle x, y \rangle$

(iii) $0 \prod_{\langle X, Y \rangle} = it(0_{X \times Y})$, and
(iv) it is isometric.

The functor $\text{IsoPCNrSP}(X, Y)$ yielding a linear operator from $\prod_{\langle X, Y \rangle}$ into $X \times Y$ is defined by

(Def. 3) (i) $it = (\text{IsoCPNrSP}(X, Y))^{-1}$, and
(ii) it is one-to-one and onto, and
(iii) for every point x of X and for every point y of Y, $it(\langle x, y \rangle) = \langle x, y \rangle$

(iv) $0_{X \times Y} = it(0 \prod_{\langle X, Y \rangle})$, and
(v) it is isometric.

Now we state the propositions:

(16) Let us consider real normed spaces X, Y and a point z of $X \times Y$. Then $\text{IsoCPNrSP}(X, Y)$ is continuous in z. The theorem is a consequence of (5).

(17) Let us consider real normed spaces X, Y and a point z of $\prod_{\langle X, Y \rangle}$. Then $\text{IsoPCNrSP}(X, Y)$ is continuous in z. The theorem is a consequence of (5).

(18) Let us consider real normed spaces X, Y and a subset Z of $X \times Y$. Then

(i) $\text{IsoCPNrSP}(X, Y)$ is continuous on Z, and
(ii) Z is closed iff $(\text{IsoCPNrSP}(X, Y))^\circ Z$ is closed, and
(iii) Z is open iff $(\text{IsoCPNrSP}(X, Y))^\circ Z$ is open, and
(iv) Z is compact iff $(\text{IsoCPNrSP}(X, Y))^\circ Z$ is compact.

The theorem is a consequence of (6), (10), (11), and (12).

(19) Let us consider real normed spaces X, Y and a subset Z of $\prod_{\langle X, Y \rangle}$. Then

(i) $\text{IsoPCNrSP}(X, Y)$ is continuous on Z, and
(ii) Z is closed iff $(\text{IsoPCNrSP}(X, Y))^\circ Z$ is closed, and
(iii) Z is open iff $(\text{IsoPCNrSP}(X, Y))^\circ Z$ is open, and
(iv) Z is compact iff $(\text{IsoPCNrSP}(X, Y))^\circ Z$ is compact.

The theorem is a consequence of (6), (10), (11), and (12).

(20) Let us consider real normed spaces S, T, W, a point f of the real norm space of bounded linear operators from S into W, a point g of the real norm space of bounded linear operators from T into W, and a linear operator I from S into T. Suppose

(i) I is one-to-one, onto, and isometric, and
(ii) \(f = g \cdot I. \)

Then \(\|f\| = \|g\|. \) The theorem is a consequence of (7). \textbf{Proof:} Consider \(J \) being a linear operator from \(T \) into \(S \) such that \(J = I^{-1} \) and \(J \) is one-to-one, onto, and isometric. Reconsider \(g_0 = g \) as a Lipschitzian linear operator from \(T \) into \(W. \) Reconsider \(g_4 = g \cdot I \) as a Lipschitzian linear operator from \(S \) into \(W. \) For every element \(x, x \in \{\|g_0(t)\|, \text{ where } t \text{ is a vector of } T : \|t\| \leq 1 \text{ iff } x \in \{\|g_4(w)\|, \text{ where } w \text{ is a vector of } S : \|w\| \leq 1 \} \text{ by } [13], (35). \) □

(21) Let us consider real normed spaces \(X, Y, \) a partial function \(f \) from \(\prod\langle X, Y \rangle \) to \(W, \) and a point \(z \) of \(X \times Y. \) Suppose \(\text{(IsoCPNrSP}(X, Y))(z) \in \text{dom } f. \) Then \(f \cdot \text{IsoCPNrSP}(X, Y) \) is continuous in \(z \) if and only if \(f \) is continuous in \(\text{(IsoCPNrSP}(X, Y))(z). \) The theorem is a consequence of (14).

(22) Let us consider real normed spaces \(X, Y, \) a partial function \(f \) from \(X \times Y \) to \(W, \) and a point \(z \) of \(\prod\langle X, Y \rangle. \) Suppose \(\text{(IsoCPNrSP}(X, Y))(z) \in \text{dom } f. \) Then \(f \cdot \text{IsoCPNrSP}(X, Y) \) is continuous in \(z \) if and only if \(f \) is continuous in \(\text{(IsoCPNrSP}(X, Y))(z). \) The theorem is a consequence of (14).

(23) Let us consider real normed spaces \(X, Y, \) a partial function \(f \) from \(\prod\langle X, Y \rangle \) to \(W, \) and a set \(D. \) Suppose \(D \subseteq \text{carrier of } \prod\langle X, Y \rangle. \) Then \(f \cdot \text{IsoCPNrSP}(X, Y) \) is continuous on \(\text{(IsoCPNrSP}(X, Y))^{-1}(D) \) if and only if \(f \) is continuous on \(D. \) The theorem is a consequence of (15).

(24) Let us consider real normed spaces \(X, Y, \) a partial function \(f \) from \(X \times Y \) to \(W, \) and a set \(D. \) Suppose \(D \subseteq \text{carrier of } X \times Y. \) Then \(f \cdot \text{IsoCPNrSP}(X, Y) \) is continuous on \(\text{(IsoCPNrSP}(X, Y))^{-1}(D) \) if and only if \(f \) is continuous on \(D. \) The theorem is a consequence of (15).

(25) Let us consider a linear operator \(I \) from \(S \) into \(T. \) If \(I \) is isometric, then \(I \) is a Lipschitzian linear operator from \(S \) into \(T. \)

Let us consider real normed spaces \(X, Y. \) Now we state the propositions:

(26) \(\text{IsoCPNrSP}(X, Y) \) is a Lipschitzian linear operator from \(X \times Y \) into \(\prod\langle X, Y \rangle. \)

(27) \(\text{IsoPCNrSP}(X, Y) \) is a Lipschitzian linear operator from \(\prod\langle X, Y \rangle \) into \(X \times Y. \)

Let \(X, Y \) be real normed spaces. Note that the functor \(\text{IsoCPNrSP}(X, Y) \) yields a Lipschitzian linear operator from \(X \times Y \) into \(\prod\langle X, Y \rangle. \) Let us observe that the functor \(\text{IsoCPNrSP}(X, Y) \) yields a Lipschitzian linear operator from \(\prod\langle X, Y \rangle \) into \(X \times Y. \)

Let us consider real normed spaces \(X, Y, W, \) a point \(f \) of the real norm space of bounded linear operators from \(X \times Y \) into \(W, \) and a point \(g \) of the real norm space of bounded linear operators from \(\prod\langle X, Y \rangle \) into \(W. \) Now we state the propositions:

(28) \(f = g \cdot \text{IsoCPNrSP}(X, Y), \) then \(\|f\| = \|g\|. \)
(29) If \(g = f \cdot \text{IsoPCNrSP}(X, Y) \), then \(\|g\| = \|f\| \).

Now we state the propositions:

(30) Let us consider real normed spaces \(S, T \), a Lipschitzian linear operator \(L \) from \(S \) into \(T \), and a point \(x_0 \) of \(S \). Then

 (i) \(L \) is differentiable in \(x_0 \), and
 (ii) \(L'(x_0) = L \).

Proof: Reconsider \(L = L_0 \) as a point of the real norm space of bounded linear operators from \(S \) into \(T \). Reconsider \(R = (\text{the carrier of } S) \mapsto 0_T \) as a partial function from \(S \) to \(T \). Set \(N = \) the neighbourhood of \(x_0 \). For every point \(x \) of \(S \) such that \(x \in N \) holds

 \[L_0x - L_0x_0 = L(x - x_0) + R_{x-x_0} \]

 by [19, (7)], [20, (4)]. □

(31) Let us consider real normed spaces \(X, Y \) and a point \(x_0 \) of \(X \times Y \). Then

 (i) \(\text{IsoPCNrSP}(X,Y) \) is differentiable in \(x_0 \), and
 (ii) \((\text{IsoPCNrSP}(X,Y))'(x_0) = \text{IsoPCNrSP}(X,Y) \).

(32) Let us consider real normed spaces \(X, Y \) and a point \(x_0 \) of \(\prod (X,Y) \). Then

 (i) \(\text{IsoPCNrSP}(X,Y) \) is differentiable in \(x_0 \), and
 (ii) \((\text{IsoPCNrSP}(X,Y))'(x_0) = \text{IsoPCNrSP}(X,Y) \).

(33) Let us consider a partial function \(f \) from \(T \) to \(W \), a Lipschitzian linear operator \(I \) from \(S \) into \(T \), and a point \(I_0 \) of the real norm space of bounded linear operators from \(S \) into \(T \). Suppose \(I_0 = I \). Let us consider a point \(x \) of \(S \). Suppose \(f \) is differentiable in \(I(x) \). Then

 (i) \(f \cdot I \) is differentiable in \(x \), and
 (ii) \((f \cdot I)'(x) = f'(I(x)) \cdot I_0 \).

The theorem is a consequence of (30).

(34) Let us consider real normed spaces \(X, Y \), a partial function \(f \) from \(\prod (X, Y) \) to \(W \), and a point \(I \) of the real norm space of bounded linear operators from \(X \times Y \) into \(\prod (X,Y) \). Suppose \(I = \text{IsoPCNrSP}(X,Y) \). Let us consider a point \(z \) of \(X \times Y \). Suppose \(f \) is differentiable in \((\text{IsoPCNrSP}(X,Y))(z) \). Then

 (i) \(f \cdot \text{IsoPCNrSP}(X,Y) \) is differentiable in \(z \), and
 (ii) \((f \cdot \text{IsoPCNrSP}(X,Y))'(z) = f'((\text{IsoPCNrSP}(X,Y))(z)) \cdot I \).

(35) Let us consider real normed spaces \(X, Y \), a partial function \(f \) from \(X \times Y \) to \(W \), and a point \(I \) of the real norm space of bounded linear operators from \(\prod (X,Y) \) into \(X \times Y \). Suppose \(I = \text{IsoPCNrSP}(X,Y) \). Let us consider a point \(z \) of \(\prod (X,Y) \). Suppose \(f \) is differentiable in \((\text{IsoPCNrSP}(X,Y))(z) \). Then
Let us consider a partial function \(f \) from \(T \) to \(W \) and a linear operator \(I \) from \(S \) into \(T \). Suppose \(I \) is one-to-one, onto, and isometric. Let us consider a point \(x \) of \(S \). Then \(f \cdot I \) is differentiable in \(x \) if and only if \(f \) is differentiable in \(I(x) \). The theorem is a consequence of (7), (25), (30), and (33).

Let us consider real normed spaces \(X, Y \), a partial function \(f \) from \(\prod \langle X, Y \rangle \) to \(W \), and a point \(z \) of \(X \times Y \). Then \(f \cdot \operatorname{IsoCPNrSP}(X, Y) \) is differentiable in \(z \) if and only if \(f \) is differentiable in \(\operatorname{IsoCPNrSP}(X, Y)(z) \). The theorem is a consequence of (36).

Let us consider a partial function \(f \) from \(T \) to \(W \), a linear operator \(I \) from \(S \) into \(T \), and a set \(X \). Suppose

(i) \(X \subseteq \) the carrier of \(T \), and

(ii) \(I \) is one-to-one, onto, and isometric.

Then \(f \) is differentiable on \(X \) if and only if \(f \cdot I \) is differentiable on \(I^{-1}(X) \). The theorem is a consequence of (36) and (4). \(\square \)

Let us consider real normed spaces \(X, Y \), a partial function \(f \) from \(X \times Y \) to \(W \), and a point \(z \) of \(\prod \langle X, Y \rangle \). Then \(f \cdot \operatorname{IsoCPNrSP}(X, Y) \) is differentiable in \(z \) if and only if \(f \) is differentiable in \(\operatorname{IsoCPNrSP}(X, Y)(z) \). The theorem is a consequence of (36).

Let us consider real normed spaces \(X, Y \), a partial function \(f \) from \(\prod \langle X, Y \rangle \) to \(W \), and a set \(D \). Suppose \(D \subseteq \) the carrier of \(\prod \langle X, Y \rangle \). Then \(f \cdot \operatorname{IsoCPNrSP}(X, Y) \) is differentiable on \(\operatorname{IsoCPNrSP}(X, Y)^{-1}(D) \) if and only if \(f \) is differentiable on \(D \). The theorem is a consequence of (38).

Let us consider real normed spaces \(X, Y \), a partial function \(f \) from \(X \times Y \) to \(W \), and a set \(D \). Suppose \(D \subseteq \) the carrier of \(X \times Y \). Then \(f \cdot \operatorname{IsoCPNrSP}(X, Y) \) is differentiable on \(\operatorname{IsoCPNrSP}(X, Y)^{-1}(D) \) if and only if \(f \) is differentiable on \(D \). The theorem is a consequence of (38).

Let us consider real normed spaces \(X, Y \), a partial function \(f \) from \(\prod \langle X, Y \rangle \) to \(W \), and a subset \(D \) of \(\prod \langle X, Y \rangle \). Suppose \(f \) is differentiable on \(D \). Let us consider a point \(z \) of \(\prod \langle X, Y \rangle \). Suppose \(z \in \operatorname{dom} f_{\mid D} \). Then \(f_{\mid D}(z) = \left((f \cdot \operatorname{IsoCPNrSP}(X, Y))_{\mid \operatorname{IsoCPNrSP}(X, Y)^{-1}(D)} \cdot \operatorname{IsoCPNrSP}(X, Y)^{-1}\right)(z) \). The theorem is a consequence of (40) and (33). \(\square \)

Let us consider real normed spaces \(X, Y \), a partial function \(f \) from \(X \times Y \) to \(W \), and a subset \(D \) of \(X \times Y \). Suppose \(f \) is differentiable on
Let us consider a point z of $X \times Y$. Suppose $z \in \dom f'_{(D)}$. Then $f'_{(D)}(z) = ((f \cdot \text{IsoPCNrSP}(X, Y))'_{(\text{IsoPCNrSP}(X, Y)^{-1}(D))})(\text{IsoPCNrSP}(X, Y))^{-1}(z) \cdot (\text{IsoPCNrSP}(X, Y))^{-1}$. The theorem is a consequence of (41) and (33).

Proof: Set $I = \text{IsoPCNrSP}(X, Y)$. Set $J = \text{IsoPCNrSP}(X, Y)$. Set $g = f \cdot I$. Set $E = I^{-1}(D)$. For every point z of $X \times Y$ such that $z \in \dom f'_{(D)}$ holds $f'_{(D)}(z) = (g'_{(E)})(I(z)) \cdot I^{-1}$ by [10 (31)], [5 (113)], [22 (36)]. □

Let X, Y be real normed spaces and x be an element of $X \times Y$. The functor $\text{reproj1} \, x$ yielding a function from X into $X \times Y$ is defined by

(Def. 4) Let us consider an element r of X. Then $it(r) = \langle r, x_2 \rangle$.

The functor $\text{reproj2} \, x$ yielding a function from Y into $X \times Y$ is defined by

(Def. 5) Let us consider an element r of Y. Then $it(r) = \langle x_1, r \rangle$.

Now we state the proposition:

(44) Let us consider real normed spaces X, Y and a point z of $X \times Y$. Then

(i) $\text{reproj1} \, z = \text{IsoPCNrSP}(X, Y) \cdot \text{reproj}(1(\in \dom(\langle X, Y \rangle)), (\text{IsoPCNrSP}(X, Y))(z))$, and

(ii) $\text{reproj2} \, z = \text{IsoPCNrSP}(X, Y) \cdot \text{reproj}(2(\in \dom(\langle X, Y \rangle)), (\text{IsoPCNrSP}(X, Y))(z))$.

Let X, Y be real normed spaces and z be a point of $X \times Y$. Observe that the functor z_1 yields a point of X. Let us note that the functor z_2 yields a point of Y. Let X, Y, W be real normed spaces. Let f be a partial function from $X \times Y$ to W. We say that f is partial differentiable in'1 z if and only if

(Def. 6) $f \cdot \text{reproj1} \, z$ is differentiable in z_1.

We say that f is partial differentiable in'2 z if and only if

(Def. 7) $f \cdot \text{reproj2} \, z$ is differentiable in z_2.

Now we state the propositions:

(45) Let us consider real normed spaces X, Y and a point z of $X \times Y$. Then

(i) $z_1 = \text{the projection onto } 1(\in \dom(\langle X, Y \rangle))(\text{IsoPCNrSP}(X, Y))(z))$, and

(ii) $z_2 = \text{the projection onto } 2(\in \dom(\langle X, Y \rangle))(\text{IsoPCNrSP}(X, Y))(z))$.

(46) Let us consider real normed spaces X, Y, W, a point z of $X \times Y$, and a partial function f from $X \times Y$ to W. Then

(i) f is partial differentiable in'1 z iff $f \cdot \text{IsoPCNrSP}(X, Y)$ is partially differentiable in $(\text{IsoPCNrSP}(X, Y))(z)$ w.r.t. 1, and

(ii) f is partial differentiable in'2 z iff $f \cdot \text{IsoPCNrSP}(X, Y)$ is partially differentiable in $(\text{IsoPCNrSP}(X, Y))(z)$ w.r.t. 2.

The theorem is a consequence of (44) and (45).

Let X, Y, W be real normed spaces, z be a point of $X \times Y$, and f be a partial function from $X \times Y$ to W. The functor $\text{partdiff1}(f, z)$ yielding a point of the
real norm space of bounded linear operators from X into W is defined by the term

(Def. 8) $(f \cdot \text{reproj}_1 z)'(z_1)$.

The functor partdiff$^2(f, z)$ yielding a point of the real norm space of bounded linear operators from Y into W is defined by the term

(Def. 9) $(f \cdot \text{reproj}_2 z)'(z_2)$.

Now we state the propositions:

(47) Let us consider real normed spaces X, Y, W, a point z of $X \times Y$, and a partial function f from $X \times Y$ to W. Then

(i) $\text{partdiff}^1(f, z) = \text{partdiff}(f \cdot \text{IsoPCNrSP}(X, Y), (\text{IsoPCNrSP}(X, Y))(z), 1)$, and

(ii) $\text{partdiff}^2(f, z) = \text{partdiff}(f \cdot \text{IsoPCNrSP}(X, Y), (\text{IsoPCNrSP}(X, Y))(z), 2)$.

The theorem is a consequence of (44) and (45).

(48) Let us consider real normed spaces X, Y, W, a function I from X into Y, and partial functions f_1, f_2 from Y to W. Then

(i) $(f_1 + f_2) \cdot I = f_1 \cdot I + f_2 \cdot I$, and

(ii) $(f_1 - f_2) \cdot I = f_1 \cdot I - f_2 \cdot I$.

Proof: Set $D_1 = \text{the carrier of } X$. For every element s of D_1, $s \in \text{dom}((f_1 + f_2) \cdot I)$ iff $s \in \text{dom}(f_1 \cdot I + f_2 \cdot I)$ by [4] (11). For every element z of D_1 such that $z \in \text{dom}((f_1 + f_2) \cdot I)$ holds $((f_1 + f_2) \cdot I)(z) = (f_1 \cdot I + f_2 \cdot I)(z)$ by [4] (11), (12)]. For every element s of D_1, $s \in \text{dom}((f_1 - f_2) \cdot I)$ iff $s \in \text{dom}(f_1 \cdot I - f_2 \cdot I)$ by [4] (11)]. For every element z of D_1 such that $z \in \text{dom}((f_1 - f_2) \cdot I)$ holds $((f_1 - f_2) \cdot I)(z) = (f_1 \cdot I - f_2 \cdot I)(z)$ by [4] (11), (12)]. □

(49) Let us consider real normed spaces X, Y, W, a function I from X into Y, a partial function f from Y to W, and a real number r. Then $r \cdot (f \cdot I) = (r \cdot f) \cdot I$. **Proof:** Set $D_1 = \text{the carrier of } X$. For every element s of D_1, $s \in \text{dom}(r \cdot (f \cdot I))$ iff $s \in \text{dom}(f \cdot I)$ by [4] (11)]. For every element s of D_1, $s \in \text{dom}(r \cdot (f \cdot I))$ iff $I(s) \in \text{dom}(r \cdot f)$ by [4] (11)]. For every element z of D_1 such that $z \in \text{dom}(r \cdot (f \cdot I))$ holds $(r \cdot (f \cdot I))(z) = (r \cdot f)(z)$ by [4] (12)]. □

Let us consider real normed spaces X, Y, W, a point z of $X \times Y$, and partial functions f_1, f_2 from $X \times Y$ to W. Now we state the propositions:

(50) Suppose f_1 is partial differentiable in'1 z and f_2 is partial differentiable in'1 z. Then

(i) $f_1 + f_2$ is partial differentiable in'1 z, and

(ii) $\text{partdiff}^1((f_1 + f_2), z) = \text{partdiff}^1(f_1, z) + \text{partdiff}^1(f_2, z)$, and

(iii) $f_1 - f_2$ is partial differentiable in'1 z, and
(iv) \(\text{partdiff}^1((f_1 - f_2), z) = \text{partdiff}^1(f_1, z) - \text{partdiff}^1(f_2, z) \).

(51) Suppose \(f_1 \) is partial differentiable in \('2 z\) and \(f_2 \) is partial differentiable in \('2 z\). Then

(i) \(f_1 + f_2 \) is partial differentiable in \('2 z\), and

(ii) \(\text{partdiff}^2((f_1 + f_2), z) = \text{partdiff}^2(f_1, z) + \text{partdiff}^2(f_2, z) \), and

(iii) \(f_1 - f_2 \) is partial differentiable in \('2 z\), and

(iv) \(\text{partdiff}^2((f_1 - f_2), z) = \text{partdiff}^2(f_1, z) - \text{partdiff}^2(f_2, z) \).

Let us consider real normed spaces \(X, Y, W \), a point \(z \) of \(X \times Y \), a real number \(r \), and a partial function \(f \) from \(X \times Y \) to \(W \). Now we state the propositions:

(52) If \(f \) is partial differentiable in \('1 z\), then \(r \cdot f \) is partial differentiable in \('1 z\) and \(\text{partdiff}^1((r \cdot f), z) = r \cdot \text{partdiff}^1(f, z) \).

(53) If \(f \) is partial differentiable in \('2 z\), then \(r \cdot f \) is partial differentiable in \('2 z\) and \(\text{partdiff}^2((r \cdot f), z) = r \cdot \text{partdiff}^2(f, z) \).

Let \(X, Y, W \) be real normed spaces, \(Z \) be a set, and \(f \) be a partial function from \(X \times Y \) to \(W \). We say that \(f \) is partial differentiable on \('1 Z\) if and only if

(Def. 10) (i) \(Z \subseteq \text{dom} f \), and

(ii) for every point \(z \) of \(X \times Y \) such that \(z \in Z \) holds \(f|Z \) is partially differentiable in \('1 z\).

We say that \(f \) is partial differentiable on \('2 Z\) if and only if

(Def. 11) (i) \(Z \subseteq \text{dom} f \), and

(ii) for every point \(z \) of \(X \times Y \) such that \(z \in Z \) holds \(f|Z \) is partially differentiable in \('2 z\).

Now we state the proposition:

(54) Let us consider real normed spaces \(X, Y, W \), a subset \(Z \) of \(X \times Y \), and a partial function \(f \) from \(X \times Y \) to \(W \). Then

(i) \(f \) is partial differentiable on \('1 Z\) iff \(f \cdot \text{IsoPCNrSP}(X, Y) \) is partially differentiable on \((\text{IsoPCNrSP}(X, Y))^{-1}(Z)\) w.r.t. 1, and

(ii) \(f \) is partial differentiable on \('2 Z\) iff \(f \cdot \text{IsoPCNrSP}(X, Y) \) is partially differentiable on \((\text{IsoPCNrSP}(X, Y))^{-1}(Z)\) w.r.t. 2.

The theorem is a consequence of (46) and (4). PROOF: Set \(I = \text{IsoPCNrSP}(X, Y) \).

Set \(g = f \cdot I \). Set \(E = I^{-1}(Z) \). \(f \) is partial differentiable on \('1 Z\) iff \(g \) is partially differentiable on \(E \) w.r.t. 1 by [5] (113), [4] (34), [5] (38)]. \(f \) is partial differentiable on \('2 Z\) iff \(g \) is partially differentiable on \(E \) w.r.t. 2 by [5] (113), [4] (34), [5] (38)]. □

Let \(X, Y, W \) be real normed spaces, \(Z \) be a set, and \(f \) be a partial function from \(X \times Y \) to \(W \). Assume \(f \) is partial differentiable on \('1 Z\). The functor \(f \cdot \text{partial'}1|Z \) yielding a partial function from \(X \times Y \) to the real norm space of bounded linear operators from \(X \) into \(W \) is defined by
(Def. 12) (i) \(\text{dom } it = Z \), and
 (ii) for every point \(z \) of \(X \times Y \) such that \(z \in Z \) holds \(it_z = \text{partdiff}'1(f, z) \).

Assume \(f \) is partial differentiable on'2 \(Z \). The functor \(f \text{’partial’2} | Z \) yielding a partial function from \(X \times Y \) to the real norm space of bounded linear operators from \(Y \) into \(W \) is defined by

(Def. 13) (i) \(\text{dom } it = Z \), and
 (ii) for every point \(z \) of \(X \times Y \) such that \(z \in Z \) holds \(it_z = \text{partdiff}'2(f, z) \).

Let us consider real normed spaces \(X, Y, W \), a subset \(Z \) of \(X \times Y \), and a partial function \(f \) from \(X \times Y \) to \(W \). Now we state the propositions:

(55) Suppose \(f \) is partial differentiable on'1 \(Z \). Then \(f \text{’partial’1} | Z = (f \cdot \text{IsoPCNrSP}(X, Y)^1(\text{IsoPCNrSP}(X, Y))^{-1}(Z)) \cdot \text{IsoCPNrSP}(X, Y) \).

(56) Suppose \(f \) is partial differentiable on'2 \(Z \). Then \(f \text{’partial’2} | Z = (f \cdot \text{IsoPCNrSP}(X, Y)^2(\text{IsoPCNrSP}(X, Y))^{-1}(Z)) \cdot \text{IsoCPNrSP}(X, Y) \).

(57) Suppose \(Z \) is open. Then \(f \) is partial differentiable on'1 \(Z \) if and only if \(Z \subseteq \text{dom } f \) and for every point \(x \) of \(X \times Y \) such that \(x \in Z \) holds \(f \) is partial differentiable in'1 \(x \).

(58) Suppose \(Z \) is open. Then \(f \) is partial differentiable on'2 \(Z \) if and only if \(Z \subseteq \text{dom } f \) and for every point \(x \) of \(X \times Y \) such that \(x \in Z \) holds \(f \) is partial differentiable in'2 \(x \).

Let us consider real normed spaces \(X, Y, W \), a subset \(Z \) of \(X \times Y \), and partial functions \(f, g \) from \(X \times Y \) to \(W \). Now we state the propositions:

(59) Suppose \(Z \) is open and \(f \) is partial differentiable on'1 \(Z \) and \(g \) is partial differentiable on'1 \(Z \). Then
 (i) \(f + g \) is partial differentiable on'1 \(Z \), and
 (ii) \((f + g) \text{’partial’1} | Z = (f \text{’partial’1} | Z) + (g \text{’partial’1} | Z) \).

(60) Suppose \(Z \) is open and \(f \) is partial differentiable on'1 \(Z \) and \(g \) is partial differentiable on'1 \(Z \). Then
 (i) \(f - g \) is partial differentiable on'1 \(Z \), and
 (ii) \((f - g) \text{’partial’1} | Z = (f \text{’partial’1} | Z) - (g \text{’partial’1} | Z) \).

(61) Suppose \(Z \) is open and \(f \) is partial differentiable on'2 \(Z \) and \(g \) is partial differentiable on'2 \(Z \). Then
 (i) \(f + g \) is partial differentiable on'2 \(Z \), and
 (ii) \((f + g) \text{’partial’2} | Z = (f \text{’partial’2} | Z) + (g \text{’partial’2} | Z) \).

(62) Suppose \(Z \) is open and \(f \) is partial differentiable on'2 \(Z \) and \(g \) is partial differentiable on'2 \(Z \). Then
 (i) \(f - g \) is partial differentiable on'2 \(Z \), and
 (ii) \((f - g) \text{’partial’2} | Z = (f \text{’partial’2} | Z) - (g \text{’partial’2} | Z) \).
Let us consider real normed spaces X, Y, W, a subset Z of $X \times Y$, a real number r, and a partial function f from $X \times Y$ to W. Now we state the propositions:

(63) Suppose Z is open and f is partial differentiable on $1Z$. Then

(i) $r \cdot f$ is partial differentiable on $1Z$, and

(ii) $r \cdot f \mid_{1Z} = r \cdot (f \mid_{1Z})$.

(64) Suppose Z is open and f is partial differentiable on $2Z$. Then

(i) $r \cdot f$ is partial differentiable on $2Z$, and

(ii) $r \cdot f \mid_{2Z} = r \cdot (f \mid_{2Z})$.

Let us consider real normed spaces X, Y, W, a subset Z of $X \times Y$, and a partial function f from $X \times Y$ to W. Now we state the propositions:

(65) Suppose f is differentiable on Z. Then $f' \mid_Z$ is continuous on Z if and only if $(f \mid_{\text{IsoPCNrSP}(X,Y)})' \mid_{(\text{IsoPCNrSP}(X,Y))^{-1}(Z)}$ is continuous on $(\text{IsoPCNrSP}(X,Y))^{-1}(Z)$.

(66) Suppose Z is open. Then f is partial differentiable on $1Z$ and f is partial differentiable on $2Z$ and $f \mid_{1Z}$ is continuous on Z and $f \mid_{2Z}$ is continuous on Z if and only if f is differentiable on Z and $f' \mid_Z$ is continuous on Z.

REFERENCES

Received December 31, 2013
Differential Equations on Functions from \mathbb{R} into Real Banach Space

Keiko Narita
Hirosaki-city
Aomori, Japan

Noboru Endou
Gifu National College of Technology
Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article, we described the differential equations on functions from \mathbb{R} into real Banach space. The descriptions were based on the article [20]. As preliminary to prove these theorems, we proved some properties of differentiable functions on real normed space. For the proof we referred to descriptions and theorems in the article [21] and the article [31]. And applying the theorems of Riemann integral introduced in the article [22], we proved the ordinary differential equations on real Banach space. We referred to the methods of proof in [?].

MSC: 03B35

Keywords:

MML identifier: ORDEQ_02, version: 8.1.02 5.22.1191

The notation and terminology used in this paper have been introduced in the following articles: [29], [5], [11], [3], [6], [7], [19], [13], [33], [30], [32], [11], [15], [25], [31], [18], [24], [23], [26], [27], [20], [2], [8], [14], [16], [28], [12], [36], [37], [9], [34], [35], [17], and [10].

1. Some Properties of Differentiable Functions on Real Normed Space

From now on Y denotes a real normed space.

Now we state the propositions:

\footnotetext[1]{This work was supported by JSPS KAKENHI 22300285, 23500029.}
(1) Let us consider a real normed space Y, a function J from $\langle E^1, \| \cdot \| \rangle$ into \mathbb{R}, a point x_0 of $\langle E^1, \| \cdot \| \rangle$, an element y_0 of \mathbb{R}, a partial function g from \mathbb{R} to Y, and a partial function f from $\langle E^1, \| \cdot \| \rangle$ to Y. Suppose

(i) $J = \text{proj}(1, 1)$, and
(ii) $x_0 \in \text{dom } f$, and
(iii) $y_0 \in \text{dom } g$, and
(iv) $x_0 = \langle y_0 \rangle$, and
(v) $f = g \cdot J$.

Then f is continuous in x_0 if and only if g is continuous in y_0. Proof: If f is continuous in x_0, then g is continuous in y_0 by [14, (2)], [6, (39)], [36, (36)]. □

(2) Let us consider a real normed space Y, a function I from \mathbb{R} into $\langle E^1, \| \cdot \| \rangle$, a point x_0 of $\langle E^1, \| \cdot \| \rangle$, an element y_0 of \mathbb{R}, a partial function g from \mathbb{R} to Y, and a partial function f from $\langle E^1, \| \cdot \| \rangle$ to Y. Suppose

(i) $I = (\text{proj}(1, 1) \text{ qua function})^{-1}$, and
(ii) $x_0 \in \text{dom } f$, and
(iii) $y_0 \in \text{dom } g$, and
(iv) $x_0 = \langle y_0 \rangle$, and
(v) $f \cdot I = g$.

Then f is continuous in x_0 if and only if g is continuous in y_0. Proof: If f is continuous in x_0, then g is continuous in y_0 by [14, (1)], [21, (33)], [26, (15)]. □

(3) Let us consider a function I from \mathbb{R} into $\langle E^1, \| \cdot \| \rangle$. Suppose $I = (\text{proj}(1, 1) \text{ qua function})^{-1}$. Then

(i) for every rest R of $\langle E^1, \| \cdot \| \rangle$, Y, $R \cdot I$ is a rest of $\langle E^1, \| \cdot \| \rangle$, Y, and
(ii) for every linear operator L from $\langle E^1, \| \cdot \| \rangle$ into Y, $L \cdot I$ is a linear of Y.

Proof: For every rest R of $\langle E^1, \| \cdot \| \rangle$, Y, $R \cdot I$ is a rest of Y by [15, (23)], [5, (47)], [14, (3)]. Reconsider $L_0 = L$ as a function from \mathcal{R}^1 into Y. Reconsider $L_1 = L_0 \cdot I$ as a partial function from \mathbb{R} to Y. Reconsider $j_0 = 1$ as an element of \mathbb{R}. Reconsider $r = L_1(j_0)$ as a point of Y. For every real number p, $L_{1p} = p \cdot r$ by [6, (13)], [14, (3)], [6, (12)]. □

(4) Let us consider a function J from $\langle E^1, \| \cdot \| \rangle$ into \mathbb{R}. Suppose $J = \text{proj}(1, 1)$. Then

(i) for every rest R of Y, $R \cdot J$ is a rest of $\langle E^1, \| \cdot \| \rangle$, Y, and
(ii) for every linear L of Y, $L \cdot J$ is a Lipschitzian linear operator from $\langle E^1, \| \cdot \| \rangle$ into Y.

Proof: For every rest R of Y, $R \cdot J$ is a rest of $\langle \mathcal{E}^1, \| \cdot \| \rangle$, Y by [14] (4), [15] (6), [3] (47). Consider r being a point of Y such that for every real number p, $L_p = p \cdot r$. □

(5) Let us consider a function I from \mathbb{R} into $\langle \mathcal{E}^1, \| \cdot \| \rangle$, a point x_0 of $\langle \mathcal{E}^1, \| \cdot \| \rangle$, an element y_0 of \mathbb{R}, a partial function g from \mathbb{R} to Y, and a partial function f from $\langle \mathcal{E}^1, \| \cdot \| \rangle$ to Y. Suppose

(i) $I = (\text{proj}(1, 1) \text{ qua function})^{-1}$, and
(ii) $x_0 \in \text{dom } f$, and
(iii) $y_0 \in \text{dom } g$, and
(iv) $x_0 = \langle y_0 \rangle$, and
(v) $f \cdot I = g$, and
(vi) f is differentiable in x_0.

Then

(vii) g is differentiable in y_0, and
(viii) $g'(y_0) = f'(x_0)(\langle 1 \rangle)$, and
(ix) for every element r of \mathbb{R}, $f'(x_0)(\langle r \rangle) = r \cdot g'(y_0)$.

The theorem is a consequence of (3). Proof: Consider N_1 being a neighbourhood of x_0 such that $N_1 \subseteq \text{dom } f$ and there exists a point L of the real norm space of bounded linear operators from $\langle \mathcal{E}^1, \| \cdot \| \rangle$ into Y and there exists a rest R of $\langle \mathcal{E}^1, \| \cdot \| \rangle$, Y such that for every point x of $\langle \mathcal{E}^1, \| \cdot \| \rangle$ such that $x \in N_1$ holds $f_x - f_{x_0} = L(x - x_0) + R_{x - x_0}$. Consider e being a real number such that $0 < e$ and $\{ z \in \langle \mathcal{E}^1, \| \cdot \| \rangle : \| z - x_0 \| < e \} \subseteq N_1$. Consider L being a point of the real norm space of bounded linear operators from $\langle \mathcal{E}^1, \| \cdot \| \rangle$ into Y, R being a rest of $\langle \mathcal{E}^1, \| \cdot \| \rangle$, Y such that for every point x_3 of $\langle \mathcal{E}^1, \| \cdot \| \rangle$ such that $x_3 \in N_1$ holds $f_{x_3} - f_{x_0} = L(x_3 - x_0) + R_{x_3 - x_0}$. Reconsider $R_0 = R \cdot I$ as a rest of Y. Reconsider $L_0 = L \cdot I$ as a linear of Y. Set $N = \{ z \in \langle \mathcal{E}^1, \| \cdot \| \rangle : \| z - x_0 \| < e \}$. $N \subseteq \text{carrier of } \langle \mathcal{E}^1, \| \cdot \| \rangle$. Set $N_0 = \{ z \in \langle \mathcal{E}^1, \| \cdot \| \rangle : \| z - y_0 \| < e \}$. $N_0 \subseteq \text{carrier of } \langle \mathcal{E}^1, \| \cdot \| \rangle$. Set $\mathbb{R}_0 = \{ z \in \langle \mathcal{E}^1, \| \cdot \| \rangle : \| z - y_0 \| < e \}$. $\mathbb{R}_0 \subseteq \text{carrier of } \langle \mathcal{E}^1, \| \cdot \| \rangle$. For every real number y_1 such that $y_1 \in N_0$ holds $(f \cdot I)_{y_1} - (f \cdot I)_{y_0} = L_{y_1 - y_0} + R_{y_1 - y_0}$. □

(6) Let us consider a function I from \mathbb{R} into $\langle \mathcal{E}^1, \| \cdot \| \rangle$, a point x_0 of $\langle \mathcal{E}^1, \| \cdot \| \rangle$, a real number y_0, a partial function g from \mathbb{R} to Y, and a partial function f from $\langle \mathcal{E}^1, \| \cdot \| \rangle$ to Y. Suppose

(i) $I = (\text{proj}(1, 1) \text{ qua function})^{-1}$, and
(ii) $x_0 \in \text{dom } f$, and
(iii) $y_0 \in \text{dom } g$, and
(iv) \(x_0 = \langle y_0 \rangle \), and
(v) \(f \cdot I = g \).

Then \(f \) is differentiable in \(x_0 \) if and only if \(g \) is differentiable in \(y_0 \). The theorem is a consequence of (5) and (4). **Proof:** Reconsider \(J = \text{proj}(1, 1) \) as a function from \(\langle \mathcal{E}^1, \| \cdot \| \rangle \) into \(\mathbb{R} \). Consider \(N_0 \) being a neighbourhood of \(y_0 \) such that \(N_0 \subseteq \text{dom}(f \cdot I) \) and there exists a linear \(L \) of \(Y \) and there exists a rest \(R \) of \(Y \) such that for every real number \(y \) such that \(y \in N_0 \) holds \((f \cdot I)y - (f \cdot I)y_0 = L_{y-y_0} + R_{y-y_0} \). Consider \(e_0 \) being a real number such that \(0 < e_0 \) and \(N_0 = \|y_0 - e_0, y_0 + e_0\| \). Reconsider \(e = e_0 \) as an element of \(\mathbb{R} \). Set \(N = \{z, \text{ where } z \text{ is a point of } \langle \mathcal{E}^1, \| \cdot \| \rangle : \|z - x_0\| < e\} \). Consider \(L \) being a linear of \(Y \), \(R \) being a rest of \(Y \) such that for every real number \(y_1 \) such that \(y_1 \in N_0 \) holds \((f \cdot I)y_1 - (f \cdot I)y_0 = L_{y_1-y_0} + R_{y_1-y_0} \). Reconsider \(R_0 = R \cdot J \) as a rest of \(\langle \mathcal{E}^1, \| \cdot \| \rangle \), \(Y \). Reconsider \(L_0 = L \cdot J \) as a Lipschitzian linear operator from \(\langle \mathcal{E}^1, \| \cdot \| \rangle \) into \(Y \). Then \(N \subseteq \text{the carrier of } \langle \mathcal{E}^1, \| \cdot \| \rangle \). For every point \(y \) of \(\langle \mathcal{E}^1, \| \cdot \| \rangle \) such that \(y \in N \) holds \(f_y - f_{x_0} = L_0(y - x_0) + R_{0y-x_0} \) by [6] (13), [7] (35), [14] (4). □

(7) Let us consider a function \(J \) from \(\langle \mathcal{E}^1, \| \cdot \| \rangle \) into \(\mathbb{R} \), a point \(x_0 \) of \(\langle \mathcal{E}^1, \| \cdot \| \rangle \), an element \(y_0 \) of \(\mathbb{R} \), a partial function \(g \) from \(\mathbb{R} \) to \(Y \), and a partial function \(f \) from \(\langle \mathcal{E}^1, \| \cdot \| \rangle \) to \(Y \). Suppose
(i) \(J = \text{proj}(1, 1) \), and
(ii) \(x_0 \in \text{dom } f \), and
(iii) \(y_0 \in \text{dom } g \), and
(iv) \(x_0 = \langle y_0 \rangle \), and
(v) \(f = g \cdot J \).

Then \(f \) is differentiable in \(x_0 \) if and only if \(g \) is differentiable in \(y_0 \). The theorem is a consequence of (6).

(8) Let us consider a function \(I \) from \(\mathbb{R} \) into \(\langle \mathcal{E}^1, \| \cdot \| \rangle \), a point \(x_0 \) of \(\langle \mathcal{E}^1, \| \cdot \| \rangle \), an element \(y_0 \) of \(\mathbb{R} \), a partial function \(g \) from \(\mathbb{R} \) to \(Y \), and a partial function \(f \) from \(\langle \mathcal{E}^1, \| \cdot \| \rangle \) to \(Y \). Suppose
(i) \(I = \text{proj}(1, 1) \) qua function\(^{-1} \), and
(ii) \(x_0 \in \text{dom } f \), and
(iii) \(y_0 \in \text{dom } g \), and
(iv) \(x_0 = \langle y_0 \rangle \), and
(v) \(f \cdot I = g \), and
(vi) \(f \) is differentiable in \(x_0 \).

Then \(\|g'(y_0)\| = \|f'(x_0)\| \). The theorem is a consequence of (5). **Proof:** Reconsider \(d_1 = f'(x_0) \) as a Lipschitzian linear operator from \(\langle \mathcal{E}^1, \| \cdot \| \rangle \) into \(Y \). Set \(A = \text{PreNorms}(d_1) \). For every real number \(r \) such that \(r \in A \) holds \(r \leq \|g(y_0)\| \) by [14] (1), (4). □
Let us consider real numbers a, b, z and points p, q, x of $\langle \mathcal{E}^1, \| \cdot \| \rangle$. Now we state the propositions:

(9) Suppose $p = \langle a \rangle$ and $q = \langle b \rangle$ and $x = \langle z \rangle$. Then

(i) if $z \in]a, b[,$ then $x \in]p, q[,$ and

(ii) if $x \in]p, q[,$ then $a \neq b$ and if $a < b$, then $z \in]a, b[,$ and if $a > b$, then $z \in]b, a[.$

(10) Suppose $p = \langle a \rangle$ and $q = \langle b \rangle$ and $x = \langle z \rangle$. Then

(i) if $z \in [a, b]$, then $x \in [p, q]$, and

(ii) if $x \in [p, q]$, then if $a \leq b$, then $z \in [a, b]$ and if $a > b$, then $z \in [b, a]$.

Now we state the propositions:

(11) Let us consider real numbers a, b, points p, q of $\langle \mathcal{E}^1, \| \cdot \| \rangle$, and a function I from \mathbb{R} into $\langle \mathcal{E}^1, \| \cdot \| \rangle$. Suppose

(i) $p = \langle a \rangle$, and

(ii) $q = \langle b \rangle$, and

(iii) $I = (\text{proj}(1,1) \text{ qua function})^{-1}$.

Then

(iv) if $a \leq b$, then $I \circ [a, b] = [p, q]$, and

(v) if $a < b$, then $I \circ [a, b[=]p, q[.$

The theorem is a consequence of (10) and (9).

(12) Let us consider a real normed space Y, a partial function g from \mathbb{R} to the carrier of Y, and real numbers a, b, M. Suppose

(i) $a \leq b$, and

(ii) $[a, b] \subseteq \text{dom} \, g$, and

(iii) for every real number x such that $x \in [a, b]$ holds g is continuous in x, and

(iv) for every real number x such that $x \in]a, b[,$ holds g is differentiable in x, and

(v) for every real number x such that $x \in]a, b[,$ holds $\| g'(x) \| \leq M$.

Then $\| g_b - g_a \| \leq M \cdot |b - a|$. The theorem is a consequence of (11), (10), (1), (9), (7), and (8).
2. Differential Equations

In the sequel X, Y denote real Banach spaces, Z denotes an open subset of \mathbb{R}, a, b, c, d, e, r, x_0 denote real numbers, y_0 denotes a vector of X, and G denotes a function from X into X.

Now we state the propositions:

(13) Let us consider a real Banach space X, a partial function F from \mathbb{R} to the carrier of X, and a continuous partial function f from \mathbb{R} to the carrier of X. Suppose

(i) $[a, b] \subseteq \text{dom } f$, and

(ii) $]a, b[\subseteq \text{dom } F$, and

(iii) for every real number x such that $x \in]a, b[$ holds $F_x = \int_a^x f(x)dx$, and

(iv) $x_0 \in]a, b[$, and

(v) f is continuous in x_0.

Then

(iii) F is differentiable in x_0, and

(vii) $F'(x_0) = f_{x_0}$.

(14) Let us consider a partial function F from \mathbb{R} to the carrier of X and a continuous partial function f from \mathbb{R} to the carrier of X. Suppose

(i) $\text{dom } f = [a, b]$, and

(ii) $\text{dom } F = [a, b]$, and

(iii) for every real number t such that $t \in [a, b]$ holds $F_t = \int_a^t f(x)dx$.

Let us consider a real number x. If $x \in [a, b]$, then F is continuous in x.

(15) Let us consider a continuous partial function f from \mathbb{R} to the carrier of X. If $a \in \text{dom } f$, then $\int_a^a f(x)dx = 0_X$.

Let us consider a continuous partial function f from \mathbb{R} to the carrier of X and a partial function g from \mathbb{R} to the carrier of X. Now we state the propositions:

(16) Suppose $a \leq b$ and $\text{dom } f = [a, b]$ and for every real number t such that $t \in [a, b]$ holds $g_t = y_0 + \int_a^t f(x)dx$. Then $g_a = y_0$.
Suppose \(\text{dom } f = [a, b] \) and \(\text{dom } g = [a, b] \) and \(Z =]a, b[\) and for every real number \(t \) such that \(t \in [a, b] \) holds \(g_t = y_0 + \int_a^t f(x)dx \). Then

(i) \(g \) is continuous and differentiable on \(Z \), and
(ii) for every real number \(t \) such that \(t \in Z \) holds \(g'(t) = f_t \).

Let us consider a partial function \(f \) from \(\mathbb{R} \) to the carrier of \(X \). Now we state the propositions:

(18) Suppose \(a < b \) and \([a, b] \subset \text{dom } f \) and for every real number \(x \) such that \(x \in [a, b] \) holds \(f \) is continuous in \(x \) and \(f \) is differentiable on \(]a, b[\) and for every real number \(x \) such that \(x \in]a, b[\) holds \(f'(x) = 0_X \). Then \(f_b = f_a \).

(19) Suppose \([a, b] \subset \text{dom } f \) and for every real number \(x \) such that \(x \in]a, b[\) holds \(f \) is continuous in \(x \) and \(f \) is differentiable on \(]a, b[\) and for every real number \(x \) such that \(x \in]a, b[\) holds \(f'(x) = 0_X \). Then \(f|]a, b[\) is constant.

Now we state the propositions:

(20) Let us consider a continuous partial function \(f \) from \(\mathbb{R} \) to the carrier of \(X \). Suppose

(i) \([a, b] = \text{dom } f \), and
(ii) \(f|]a, b[\) is constant.

Let us consider a real number \(x \). If \(x \in [a, b] \), then \(f_x = f_a \).

(21) Let us consider continuous partial functions \(y, G_1 \) from \(\mathbb{R} \) to the carrier of \(X \) and a partial function \(g \) from \(\mathbb{R} \) to the carrier of \(X \). Suppose

(i) \(a \leq b \), and
(ii) \(Z =]a, b[\), and
(iii) \(\text{dom } y =]a, b[\), and
(iv) \(\text{dom } g = [a, b] \), and
(v) \(\text{dom } G_1 = [a, b] \), and
(vi) \(y \) is differentiable on \(Z \), and
(vii) \(y_a = y_0 \), and
(viii) for every real number \(t \) such that \(t \in Z \) holds \(y'(t) = G_{1t} \), and
(ix) for every real number \(t \) such that \(t \in]a, b[\) holds \(g_t = y_0 + \int_a^t G_1(x)dx \).

Then \(y = g \). The theorem is a consequence of (17), (16), (19), and (20).

Proof: Reconsider \(h = y - g \) as a continuous partial function from \(\mathbb{R} \) to the carrier of \(X \). For every real number \(x \) such that \(x \in \text{dom } h \) holds \(h_x = 0_X \) by [34, (15)]. For every element \(x \) of \(\mathbb{R} \) such that \(x \in \text{dom } y \) holds \(y(x) = g(x) \) by [34, (21)]. □
Let X be a real Banach space, y_0 be a vector of X, G be a function from X into X, and a, b be real numbers. Assume $a \leq b$ and G is continuous on $\text{dom} G$. The functor $\text{Fredholm}(G, a, b, y_0)$ yielding a function from the \mathbb{R}-norm space of continuous functions of $[a, b]$ and X into the \mathbb{R}-norm space of continuous functions of $[a, b]$ and X is defined by

(Def. 1) Let us consider a vector x of the \mathbb{R}-norm space of continuous functions of $[a, b]$ and X. Then there exist continuous partial functions f, g, G_1 from \mathbb{R} to the carrier of X such that

(i) $x = f$, and
(ii) $it(x) = g$, and
(iii) $\text{dom} f = [a, b]$, and
(iv) $\text{dom} g = [a, b]$, and
(v) $G_1 = G \cdot f$, and
(vi) for every real number t such that $t \in [a, b]$ holds $g_t = y_0 + \int_a^t G_1(x)dx$.

Now we state the propositions:

(22) Suppose $a \leq b$ and $0 < r$ and for every vectors y_1, y_2 of X, $\|G_{y_1} - G_{y_2}\| \leq r \cdot \|y_1 - y_2\|$. Let us consider vectors u, v of the \mathbb{R}-norm space of continuous functions of $[a, b]$ and X and continuous partial functions g, h from \mathbb{R} to the carrier of X. Suppose

(i) $g = (\text{Fredholm}(G, a, b, y_0))(u)$, and
(ii) $h = (\text{Fredholm}(G, a, b, y_0))(v)$.

Let us consider a real number t. Suppose $t \in [a, b]$. Then $\|g_t - h_t\| \leq (r \cdot (t - a)) \cdot \|u - v\|$. PROOF: Set $F = \text{Fredholm}(G, a, b, y_0)$. Consider f_1, g_1, G_3 being continuous partial functions from \mathbb{R} to the carrier of X such that $u = f_1$ and $F(u) = g_1$ and dom $f_1 = [a, b]$ and dom $g_1 = [a, b]$ and $G_3 = G \cdot f_1$ and for every real number t such that $t \in [a, b]$ holds $g_{1t} = y_0 + \int_a^t G_3(x)dx$. Consider f_2, g_2, G_5 being continuous partial functions from \mathbb{R} to the carrier of X such that $v = f_2$ and $F(v) = g_2$ and dom $f_2 = [a, b]$ and dom $g_2 = [a, b]$ and $G_5 = G \cdot f_2$ and for every real number t such that $t \in [a, b]$ holds $g_{2t} = y_0 + \int_a^t G_5(x)dx$. Set $G_4 = G_3 - G_5$.

For every real number t such that $t \in [a, b]$ holds $g_{4t} = y_0 + \int_a^t G_4(x)dx$. Set $G_4 = G_3 - G_5$.

For every real number x such that $x \in [a, t]$ holds $\|G_{4x}\| \leq r \cdot \|u - v\|$ by [20, (26)], [12, (12)]. □

(23) Suppose $a \leq b$ and $0 < r$ and for every vectors y_1, y_2 of X, $\|G_{y_1} - G_{y_2}\| \leq r \cdot \|y_1 - y_2\|$. Let us consider vectors u, v of the \mathbb{R}-norm space of
Differential equations on functions from \mathbb{R} to X, an element m of \mathbb{N}, and continuous partial functions g, h from \mathbb{R} to the carrier of X. Suppose

(i) $g = (\text{Fredholm}(G, a, b, y_0))^{m+1}(u)$, and

(ii) $h = (\text{Fredholm}(G, a, b, y_0))^{m+1}(v)$.

Let us consider a real number t. Suppose $t \in [a, b]$. Then $\|g_t - h_t\| \leq \frac{(r - (t - a))^{m+1}}{(m+1)!} \cdot \|u - v\|$. The theorem is a consequence of (22).

Proof: Set $F = \text{Fredholm}(G, a, b, y_0)$. Define $\mathcal{P}[\text{natural number}] \equiv$ for every continuous partial functions g, h from \mathbb{R} to the carrier of X such that $g = F^{s_1+1}(u_1)$ and $h = F^{s_1+1}(v_1)$ for every real number t such that $t \in [a, b]$ holds $\|g_t - h_t\| \leq \frac{(r - (t - a))^{s_1+1}}{(s_1+1)!} \cdot \|u_1 - v_1\|$. $\mathcal{P}[0]$ by [4, (70)], [18, (5), (13)]. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [4, (71)], [6, (13)], [36, (27)]. For every natural number k, $\mathcal{P}[k]$ from [1, Sch. 2]. □

(24) Let us consider a natural number m. Suppose

(i) $a \leq b$, and

(ii) $0 < r$, and

(iii) for every vectors y_1, y_2 of X, $\|Gy_1 - Gy_2\| \leq r \cdot \|y_1 - y_2\|$.

Let us consider vectors u, v of the \mathbb{R}-norm space of continuous functions of $[a, b]$ and X. Then $\|(\text{Fredholm}(G, a, b, y_0))^{m+1}(u) - (\text{Fredholm}(G, a, b, y_0))^{m+1}(v)\| \leq \frac{(r - (b - a))^{m+1}}{(m+1)!} \cdot \|u - v\|$. The theorem is a consequence of (23).

(25) If $a < b$ and G is Lipschitzian on the carrier of X, then there exists a natural number m such that $(\text{Fredholm}(G, a, b, y_0))^{m+1}$ is contraction. The theorem is a consequence of (24).

(26) If $a < b$ and G is Lipschitzian on the carrier of X, then Fredholm(G, a, b, y_0) has unique fixpoint. The theorem is a consequence of (25).

(27) Let us consider continuous partial functions f, g from \mathbb{R} to the carrier of X. Suppose

(i) $\text{dom } f = [a, b]$, and

(ii) $\text{dom } g = [a, b]$, and

(iii) $Z =]a, b[$, and

(iv) $a < b$, and

(v) G is Lipschitzian on the carrier of X, and

(vi) $g = (\text{Fredholm}(G, a, b, y_0))(f)$.

Then

(vii) $g_a = y_0$, and

(viii) g is differentiable on Z, and

(ix) for every real number t such that $t \in Z$ holds $g'(t) = (G \cdot f)_t$.

continuous functions of $[a, b]$ and X, an element m of \mathbb{N}, and continuous partial functions g, h from \mathbb{R} to the carrier of X. Suppose

(i) $g = (\text{Fredholm}(G, a, b, y_0))^{m+1}(u)$, and

(ii) $h = (\text{Fredholm}(G, a, b, y_0))^{m+1}(v)$.

The theorem is a consequence of (17) and (16).

(28) Let us consider a continuous partial function \(y \) from \(\mathbb{R} \) to the carrier of \(X \). Suppose

(i) \(a < b \), and

(ii) \(Z =]a, b[\), and

(iii) \(G \) is Lipschitzian on the carrier of \(X \), and

(iv) \(\text{dom} \, y = [a, b] \), and

(v) \(y \) is differentiable on \(Z \), and

(vi) \(y_a = y_0 \), and

(vii) for every real number \(t \) such that \(t \in Z \) holds \(y'(t) = G(y_t) \).

Then \(y \) is a fixpoint of Fredholm\((G, a, b, y_0)\). The theorem is a consequence of (21). \textbf{Proof}: Consider \(f, g, G_1 \) being continuous partial functions from \(\mathbb{R} \) to the carrier of \(X \) such that \(y = f \) and \((\text{Fredholm}(G, a, b, y_0))(y) = g \) and \(\text{dom} \, f = [a, b] \) and \(\text{dom} \, g = [a, b] \) and \(G_1 = G \cdot f \) and for every real number \(t \) such that \(t \in [a, b] \) holds \(g_t = y_0 + \int_a^t G_1(x)dx \). For every real number \(t \) such that \(t \in Z \) holds \(y'(t) = G_1(\alpha) \). \(\square \)

(29) Let us consider continuous partial functions \(y_1, y_2 \) from \(\mathbb{R} \) to the carrier of \(X \). Suppose

(i) \(a < b \), and

(ii) \(Z =]a, b[\), and

(iii) \(G \) is Lipschitzian on the carrier of \(X \), and

(iv) \(\text{dom} \, y_1 = [a, b] \), and

(v) \(y_1 \) is differentiable on \(Z \), and

(vi) \(y_{1a} = y_0 \), and

(vii) for every real number \(t \) such that \(t \in Z \) holds \(y'_1(t) = G(y_{1t}) \), and

(viii) \(\text{dom} \, y_2 = [a, b] \), and

(ix) \(y_2 \) is differentiable on \(Z \), and

(x) \(y_{2a} = y_0 \), and

(xi) for every real number \(t \) such that \(t \in Z \) holds \(y'_2(t) = G(y_{2t}) \).

Then \(y_1 = y_2 \). The theorem is a consequence of (26) and (28).

(30) Suppose \(a < b \) and \(Z =]a, b[\) and \(G \) is Lipschitzian on the carrier of \(X \). Then there exists a continuous partial function \(y \) from \(\mathbb{R} \) to the carrier of \(X \) such that

(i) \(\text{dom} \, y = [a, b] \), and
Differential equations on functions from \(\mathbb{R} \) …

(ii) \(y \) is differentiable on \(Z \), and

(iii) \(y_a = y_0 \), and

(iv) for every real number \(t \) such that \(t \in Z \) holds \(y'(t) = G(y_t) \).

The theorem is a consequence of (26) and (27).

References

Received December 31, 2013
Submodule of free \mathbb{Z}-module

Yuichi Futa
Japan Advanced Institute of Science and Technology
Ishikawa, Japan

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article, we formalize a free \mathbb{Z}-module and its property. Specially, we formalize a vector space of rational field corresponding to a free \mathbb{Z}-module and prove formally that submodules of a free \mathbb{Z}-module are free. \mathbb{Z}-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattice [20]. Some theorems in this article are described by translating theorems in [11] into theorems of \mathbb{Z}-module, however their proofs are different.

MSC: 03B35

Keywords:

MML identifier: ZMODUL04, version: 8.1.02 5.22.1191

The notation and terminology used in this paper have been introduced in the following articles: [6, 1, 24, 22, 5, 12, 7, 8, 16, 26, 19, 23, 21, 3, 4, 9, 17, 31, 33, 32, 27, 30, 18, 28, 29, 34, 10, 13, 14, and 15].

1. Vector Space of Rational Field Generated by a Free \mathbb{Z}-module

From now on V denotes a \mathbb{Z}-module and W, W_1, W_2 denote submodules of V.

Let us consider a \mathbb{Z}-module V, submodules W_1, W_2 of V, and submodules W_5, W_6 of $W_1 + W_2$. Now we state the propositions:

(1) If $W_5 = W_1$ and $W_6 = W_2$, then $W_1 + W_2 = W_5 + W_6$.

(2) If $W_5 = W_1$ and $W_6 = W_2$, then $W_1 \cap W_2 = W_5 \cap W_6$.

This work was supported by JSPS KAKENHI 21240001 and 22300285.
Let V be a \mathbb{Z}-module. Note that $(\text{the carrier of } V) \times (\mathbb{Z} \setminus \{0\})$ is non empty. Assume V is cancelable on multiplication. The functor EQRZM_V yielding an equivalence relation of $(\text{the carrier of } V) \times (\mathbb{Z} \setminus \{0\})$ is defined by

(Def. 1) Let us consider elements S, T. Then $(S, T) \in \text{it}$ if and only if $S, T \in (\text{the carrier of } V) \times (\mathbb{Z} \setminus \{0\})$ and there exist elements z_1, z_2 of V and there exist integers i_1, i_2 such that $S = \langle\langle z_1, i_1 \rangle\rangle$ and $T = \langle\langle z_2, i_2 \rangle\rangle$ and $i_1 \neq 0$ and $i_2 \neq 0$ and $i_2 \cdot z_1 = i_1 \cdot z_2$.

Now we state the proposition:

(3) Let us consider a \mathbb{Z}-module V, elements z_1, z_2 of V, and integers i_1, i_2. Suppose V is cancelable on multiplication. Then $\langle\langle \langle z_1, i_1 \rangle, \langle z_2, i_2 \rangle \rangle \rangle \in \text{EQRZM}_V$ if and only if $i_1 \neq 0$ and $i_2 \neq 0$ and $i_2 \cdot z_1 = i_1 \cdot z_2$.

Let V be a \mathbb{Z}-module. Assume V is cancelable on multiplication. The functor addCoset_V yielding a binary operation on Classes EQRZM_V is defined by

(Def. 2) Let us consider elements A, B. Suppose $A, B \in \text{Classes EQRZM}_V$. Let us consider elements z_1, z_2 of V and integers i_1, i_2. Suppose

(i) $i_1 \neq 0$, and
(ii) $i_2 \neq 0$, and
(iii) $A = \langle\langle z_1, i_1 \rangle\rangle_{\text{EQRZM}_V}$, and
(iv) $B = \langle\langle z_2, i_2 \rangle\rangle_{\text{EQRZM}_V}$.

Then $\text{it}(A, B) = \langle\langle i_2 \cdot z_1 + i_1 \cdot z_2, i_1 \cdot i_2 \rangle\rangle_{\text{EQRZM}_V}$.

Assume V is cancelable on multiplication. The functor zeroCoset_V yielding an element of Classes EQRZM_V is defined by

(Def. 3) Let us consider an integer i. Suppose $i \neq 0$. Then $it = \langle\langle 0_V, i \rangle\rangle_{\text{EQRZM}_V}$.

Assume V is cancelable on multiplication. The functor lmultCoset_V yielding a function from $(\text{the carrier of } \text{FRat}) \times \text{Classes EQRZM}_V$ into Classes EQRZM_V is defined by

(Def. 4) Let us consider an element q and an element A. Suppose

(i) $q \in \mathbb{Q}$, and
(ii) $A \in \text{Classes EQRZM}_V$.

Let us consider integers m, n, i and an element z of V. Suppose

(iii) $n \neq 0$, and
(iv) $q = \frac{m}{n}$, and
(v) $i \neq 0$, and
(vi) $A = \langle\langle z, i \rangle\rangle_{\text{EQRZM}_V}$.

Then $\text{it}(q, A) = \langle\langle m \cdot z, n \cdot i \rangle\rangle_{\text{EQRZM}_V}$.

Now we state the propositions:
(4) Let us consider a \(\mathbb{Z} \)-module \(V \), an element \(z \) of \(V \), and integers \(i, n \). Suppose
(i) \(i \neq 0 \), and
(ii) \(n \neq 0 \), and
(iii) \(V \) is cancelable on multiplication.
Then \([(z, i)]_{EQRZM_V} = [(n \cdot z, n \cdot i)]_{EQRZM_V} \). The theorem is a consequence of (3).

(5) Let us consider a \(\mathbb{Z} \)-module \(V \) and an element \(v \) of \(V \). Suppose \(V \) is cancelable on multiplication. Then there exists an integer \(i \) and there exists an element \(z \) of \(V \) such that \(i \neq 0 \) and \(v = [(z, i)]_{EQRZM_V} \).

Let \(V \) be a \(\mathbb{Z} \)-module. Assume \(V \) is cancelable on multiplication. The functor \(\text{ZMQVectSp}_V \) yielding a vector space over \(\text{FRat} \) is defined by the term
(Def. 5) \(\langle \text{Classes EQRZM}_V, \text{addCoset}_V, \text{zeroCoset}_V, \text{lmultCoset}_V \rangle \).

Now we state the propositions:

(6) Let us consider a \(\mathbb{Z} \)-module \(V \). Suppose \(V \) is cancelable on multiplication. Let us consider a finite sequence \(s \) of elements of \(V \) and a finite sequence \(t \) of elements of \(\text{ZMQVectSp}_V \). Suppose
(i) \(\text{len} \ s = \text{len} \ t \), and
(ii) for every element \(i \) of \(\mathbb{N} \) such that \(i \in \text{dom} \ s \) there exists a vector \(s_1 \) of \(V \) such that \(s_1 = s(i) \) and \(t(i) = (\text{MorphsZQ}_V)(s_1) \).
Then \(\sum t = (\text{MorphsZQ}_V)(\sum s) \).
Proof: Define \(\mathcal{P}[\text{natural number}] \equiv \) for every finite sequence \(s \) of elements of \(V \) for every finite sequence \(t \) of elements of \(\text{ZMQVectSp}_V \) such that \(\text{len} \ s = \mathcal{P}[0] \) and \(\text{len} \ s = \text{len} \ t \) and for every element \(i \) of \(\mathbb{N} \) such that \(i \in \text{dom} \ s \) there exists a vector \(s_1 \) of \(V \) such that \(s_1 = s(i) \) and \(t(i) = (\text{MorphsZQ}_V)(s_1) \) holds \(\sum t = (\text{MorphsZQ}_V)(\sum s) \).
\(\mathcal{P}[0] \) by \([27] \ (43)\). For every natural number \(k \) such that \(\mathcal{P}[k] \) holds \(\mathcal{P}[k+1] \) by \([3] \ (59)\), \([3] \ (11)\), \([5] \ (4)\). For every natural number \(k \), \(\mathcal{P}[k] \) from \([3] \ Sch. 2\). □

(7) Let us consider a \(\mathbb{Z} \)-module \(V \), a subset \(I \) of \(V \), a subset \(I_6 \) of \(\text{ZMQVectSp}_V \), a \(z \) linear combination \(l \) of \(I \), and a linear combination \(l_5 \) of \(I_6 \). Suppose
(i) V is cancelable on multiplication, and
(ii) $I_6 = (\text{MorphsZQ} V)^o I$, and
(iii) $l = l_5 \cdot \text{MorphsZQ} V$.

Then $\sum l_5 = (\text{MorphsZQ} V)(\sum l)$. The theorem is a consequence of (6).

(8) Let us consider a \mathbb{Z}-module V, a subset I_6 of $\text{ZMQVectSp} V$, and a linear combination l_5 of I_6. Then there exists an integer m and there exists an element a of FRat such that $m \neq 0$ and $m = a$ and $\text{rng}(a \cdot l_5) \subseteq \mathbb{Z}$. PROOF: Define $\mathcal{P}[$natural number$] \equiv$ for every linear combination l_5 of I_6 such that the support of $l_5 = \emptyset$ there exists an integer m and there exists an element a of FRat such that $m \neq 0$ and $m = a$ and $\text{rng}(a \cdot l_5) \subseteq \mathbb{Z}$. $\mathcal{P}[0]$ by [28, (28)], [8, (113)], [28, (3)]. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [2, (44)], [10, (31)], [2, (42)]. For every natural number n, $\mathcal{P}[n]$ from [3, Sch. 2]. \square

(9) Let us consider a \mathbb{Z}-module V, a subset I of V, a subset I_6 of $\text{ZMQVectSp} V$, and a linear combination l_5 of I_6. Suppose
(i) V is cancelable on multiplication, and
(ii) $I_6 = (\text{MorphsZQ} V)^o I$.

Then there exists an integer m and there exists an element a of FRat and there exists a z linear combination l of I such that

$$l = (a \cdot l_5) \cdot \text{MorphsZQ} V \quad \text{and} \quad (\text{MorphsZQ} V)^{-1}(\text{the support of } l_5) = \text{the support of } l.$$ The theorem is a consequence of (8). PROOF: Consider m being an integer, a being an element of FRat such that $m \neq 0$ and $m = a$ and $\text{rng}(a \cdot l_5) \subseteq \mathbb{Z}$. Reconsider $l = (a \cdot l_5) \cdot \text{MorphsZQ} V$ as an element of \mathbb{Z} the carrier of V. Set $T = \{v, \text{ where } v \text{ is an element of } V : l(v) \neq 0\}$. Set $F = \text{MorphsZQ} V$. $T \subseteq F^{-1}(\text{the support of } l_5)$ by [71, (13)], [8, (38)]. $F^{-1}(\text{the support of } l_5) \subseteq T$ by [8, (38)], [71, (13)]. \square

(10) Let us consider a \mathbb{Z}-module V, a subset I of V, a subset I_6 of $\text{ZMQVectSp} V$, a linear combination l_5 of I_6, an integer m, an element a of FRat, and a z linear combination l of I. Suppose

(i) V is cancelable on multiplication, and
(ii) $I_6 = (\text{MorphsZQ} V)^o I$, and
(iii) $m \neq 0$, and
(iv) $m = a$, and
(v) $l = (a \cdot l_5) \cdot \text{MorphsZQ} V$.

Then $a \cdot \sum l_5 = (\text{MorphsZQ} V)(\sum l)$. The theorem is a consequence of (7).

(11) Let us consider a \mathbb{Z}-module V, a subset I of V, and a subset I_6 of $\text{ZMQVectSp} V$. Suppose

(i) V is cancelable on multiplication, and
(ii) $I_6 = (\text{MorphsZQ} V)^o I$, and

(iii) I is linearly independent.

Then I_6 is linearly independent. The theorem is a consequence of (9) and (10).

(12) Let us consider a \mathbb{Z}-module V, a subset I of V, a \mathbb{Z} linear combination l of I, and a subset I_6 of $\text{ZMQVectSp} V$. Suppose

(i) V is cancelable on multiplication, and

(ii) $I_6 = (\text{MorphsZQ} V)^o I$.

Then there exists a linear combination l_5 of I_6 such that

(iii) $l = l_5 \cdot \text{MorphsZQ} V$, and

(iv) the support of $l_5 = (\text{MorphsZQ} V)^o$ the support of l.

Proof: Reconsider I_0 = the support of l as a finite subset of V. Reconsider $I_7 = (\text{MorphsZQ} V)^o I_0$ as a finite subset of $\text{ZMQVectSp} V$. Define $P[\text{element, element}] \equiv \$ \in I_7$ and there exists an element v of V such that $v \in I_0$ and $\$ = (\text{MorphsZQ} V)(v)$ and $\$ = l(v)$ or $\$ \in I_7$ and $\$ = 0_{\text{FRat}}$.

For every element x such that $x \in$ the carrier of $\text{ZMQVectSp} V$ there exists an element y such that $y \in \mathbb{Q}$ and $P[x, y]$ by [8, (64)], [25, (14)].

Consider l_5 being a function from the carrier of $\text{ZMQVectSp} V$ into \mathbb{Q} such that for every element x such that $x \in$ the carrier of $\text{ZMQVectSp} V$ holds $P[x, l_5(x)]$ from [3 Sch. 1]. The support of $l_5 \subseteq I_7$. For every element x such that $x \in \text{dom} l$ holds $l(x) = (l_5 \cdot \text{MorphsZQ} V)(x)$ by [8] (35), (19)], [7] (12]], $I_7 \subseteq$ the support of l_5 by [8] (64)], [7] (12)], [14] (8)]. □

(13) Let us consider a free \mathbb{Z}-module V, a subset I of V, a subset I_6 of $\text{ZMQVectSp} V$, a \mathbb{Z} linear combination l of I, and an integer i. Suppose

(i) $i \neq 0$, and

(ii) $I_6 = (\text{MorphsZQ} V)^o I$.

Then $\left\langle \sum l, i \right\rangle_{\text{EQRZM} V} \in \text{Lin}(I_6)$. The theorem is a consequence of (12) and (7).

Let us consider a free \mathbb{Z}-module V, a subset I of V, and a subset I_6 of $\text{ZMQVectSp} V$. Now we state the propositions:

(14) If $I_6 = (\text{MorphsZQ} V)^o I$, then $\overline{I} = \overline{I_6}$.

(15) If $I_6 = (\text{MorphsZQ} V)^o I$ and I is a basis of V, then I_6 is a basis of $\text{ZMQVectSp} V$.

Let V be a finite-rank free \mathbb{Z}-module. Note that $\text{ZMQVectSp} V$ is finite dimensional.

Now we state the propositions:

(16) Let us consider a finite-rank free \mathbb{Z}-module V. Then $\text{rank } V = \dim(\text{ZMQVectSp} V)$.

The theorem is a consequence of (15) and (14).
(17) Let us consider a free \mathbb{Z}-module V and finite subsets I, A of V. Suppose
 (i) I is a basis of V, and
 (ii) $\overline{I} + 1 = \overline{A}$.

 Then A is linearly dependent. The theorem is a consequence of (15), (11), and (14).

(18) Let us consider a free \mathbb{Z}-module V and subsets A, B of V. If A is linearly
 dependent and $A \subseteq B$, then B is linearly dependent.

(19) Let us consider a free \mathbb{Z}-module V and subsets D, A of V. Suppose
 (i) D is basis of V and finite, and
 (ii) $\overline{D} \subset \overline{A}$.

 Then A is linearly dependent. The theorem is a consequence of (17) and (18).

(20) Let us consider a free \mathbb{Z}-module V and subsets I, A of V. Suppose
 (i) I is basis of V and finite, and
 (ii) A is linearly independent.

 Then $\overline{A} \subseteq \overline{I}$.

2. Submodule of Free \mathbb{Z}-module

Now we state the proposition:

(21) Let us consider a \mathbb{Z}-module V. If Ω_V is free, then V is free.

Let us consider a \mathbb{Z}-module V, submodules W_1, W_2 of V, and strict submo-
 dules W_3, W_4 of V. Now we state the propositions:

(22) If $W_3 = \Omega_{W_1}$ and $W_4 = \Omega_{W_2}$, then $W_3 + W_4 = W_1 + W_2$.

(23) If $W_3 = \Omega_{W_1}$ and $W_4 = \Omega_{W_2}$, then $W_3 \cap W_4 = W_1 \cap W_2$.

Now we state the propositions:

(24) Let us consider a \mathbb{Z}-module V and a strict submodule W of V. Suppose
 $W \neq 0_V$. Then there exists a vector v of V such that
 (i) $v \in W$, and
 (ii) $v \neq 0_V$.

(25) Let us consider a subset A of V and z linear combinations l_1, l_2 of A.
 Suppose (the support of $l_1) \cap (the support of $l_2) = \emptyset$. Then the support
 of $l_1 + l_2 = (the support of $l_1) \cup (the support of $l_2)$. Proof: (The support
 of $l_1) \cup (the support of $l_2) \subseteq the support of $l_1 + l_2 by [14, (8)]. □
Let us consider subsets A_1, A_2 of V and a z linear combination l of $A_1 \cup A_2$. Suppose $A_1 \cap A_2 = \emptyset$. Then there exists a z linear combination l_1 of A_1 and there exists a z linear combination l_2 of A_2 such that $l = l_1 + l_2$.

Proof: Define $P[\text{element, element}] \equiv$ if S_1 is a vector of V, then $S_1 \in A_1$ and $S_2 = l(S_1)$ or $S_1 \notin A_1$ and $S_2 = 0$. For every element x such that $x \in$ the carrier of V there exists an element y such that $y \in \mathbb{Z}$ and $P[x, y]$. There exists a function l_1 from the carrier of V into \mathbb{Z} such that for every element x such that $x \in$ the carrier of V holds $P[x, l_1(x)]$ from [8, Sch. 1]. Consider l_1 being a function from the carrier of V into \mathbb{Z} such that for every element x such that $x \in$ the carrier of V holds $P[x, l_1(x)]$. For every element x such that $x \in$ the support of l_1 holds $\mathbb{Z} \equiv l_1 \in A_1$ by [14, (8)]. Define $Q[\text{element, element}] \equiv$ if S_1 is a vector of V, then $S_1 \in A_2$ and $S_2 = l(S_1)$ or $S_1 \notin A_2$ and $S_2 = 0$. For every element x such that $x \in$ the carrier of V there exists an element y such that $y \in \mathbb{Z}$ and $Q[x, y]$. There exists a function l_2 from the carrier of V into \mathbb{Z} such that for every element x such that $x \in$ the carrier of V holds $Q[x, l_2(x)]$ from [8, Sch. 1]. Consider l_2 being a function from the carrier of V into \mathbb{Z} such that for every element x such that $x \in$ the carrier of V holds $Q[x, l_2(x)]$. For every element x such that $x \in$ the support of l_2 holds $l(x) \in A_2$ by [13, (8)]. For every vector v of V, $l(v) = (l_1 + l_2)(v)$. □

Let us consider a \mathbb{Z}-module V, free submodules W_1, W_2 of V, a basis I_1 of W_1, and a basis I_2 of W_2. If V is the direct sum of W_1 and W_2, then $I_1 \cap I_2 = \emptyset$.

Let us consider a \mathbb{Z}-module V, free submodules W_1, W_2 of V, a basis I_1 of W_1, a basis I_2 of W_2, and a subset I of V. Now we state the propositions:

(28) If V is the direct sum of W_1 and W_2 and $I = I_1 \cup I_2$, then $\text{Lin}(I) =$ the \mathbb{Z}-module structure of V.

(29) If V is the direct sum of W_1 and W_2 and $I = I_1 \cup I_2$, then I is linearly independent.

Let us consider a \mathbb{Z}-module V and free submodules W_1, W_2 of V. Now we state the propositions:

(30) If V is the direct sum of W_1 and W_2, then V is free.

(31) If $W_1 \cap W_2 = 0_V$, then $W_1 + W_2$ is free.

Let us consider a free \mathbb{Z}-module V, a basis I of V, and a vector v of V. Now we state the propositions:

(32) If $v \in I$, then $\text{Lin}(I \setminus \{v\})$ is free and $\text{Lin}(\{v\})$ is free.

(33) If $v \in I$, then V is the direct sum of $\text{Lin}(I \setminus \{v\})$ and $\text{Lin}(\{v\})$.

Let V be a finite-rank free \mathbb{Z}-module. One can verify that every submodule of V is free.

Now we state the propositions:
(34) Let us consider a \(\mathbb{Z} \)-module \(V \), a submodule \(W \) of \(V \), and free submodules \(W_1, W_2 \) of \(V \). Suppose

(i) \(W_1 \cap W_2 = 0_V \), and

(ii) the \(\mathbb{Z} \)-module structure of \(W = W_1 + W_2 \).

Then \(W \) is free. The theorem is a consequence of (31).

(35) Let us consider a prime number \(p \) and a free \(\mathbb{Z} \)-module \(V \). If \(\mathbb{Z} \text{MtoMQV}(V, p) \) is finite dimensional, then \(V \) is finite-rank.

(36) Let us consider a prime number \(p \), a \(\mathbb{Z} \)-module \(V \), an element \(s \) of \(V \), an integer \(a \), and an element \(b \) of \(\text{GF}(p) \). Suppose \(b = a \mod p \). Then \(b \cdot \mathbb{Z} \text{MtoMQV}(V, p, s) = \mathbb{Z} \text{MtoMQV}(V, p, a \cdot s) \).

(37) Let us consider a prime number \(p \), a free \(\mathbb{Z} \)-module \(V \), a subset \(I \) of \(V \), a subset \(I_6 \) of \(\mathbb{Z} \text{MtoMQV}(V, p) \), and a \(\mathbb{Z} \)-linear combination \(l \) of \(I \). Suppose \(I_6 = \{ \mathbb{Z} \text{MtoMQV}(V, p, u), \text{ where } u \text{ is a vector of } V : u \in I \} \). Then \(\mathbb{Z} \text{MtoMQV}(V, p, \sum l) \in \text{Lin}(I_6) \).

(38) Let us consider a prime number \(p \), a free \(\mathbb{Z} \)-module \(V \), a subset \(I \) of \(V \), and a subset \(I_6 \) of \(\mathbb{Z} \text{MtoMQV}(V, p) \). Suppose

(i) \(\text{Lin}(I) \) is the \(\mathbb{Z} \)-module structure of \(V \), and

(ii) \(I_6 = \{ \mathbb{Z} \text{MtoMQV}(V, p, u), \text{ where } u \text{ is a vector of } V : u \in I \} \).

Then \(\text{Lin}(I_6) \) is the vector space structure of \(\mathbb{Z} \text{MtoMQV}(V, p) \). The theorem is a consequence of (37). PROOF: For every element \(v_3 \) of \(\mathbb{Z} \text{MtoMQV}(V, p) \), \(v_3 \in \text{Lin}(I_6) \) by [15 (22)], [14 (64)]. □

(39) Let us consider a finitely-generated free \(\mathbb{Z} \)-module \(V \). Then there exists a finite subset \(A \) of \(V \) such that \(A \) is a basis of \(V \). The theorem is a consequence of (38). PROOF: Set \(p = \) the prime number. Consider \(B \) being a finite subset of \(V \) such that \(\text{Lin}(B) \) is the \(\mathbb{Z} \)-module structure of \(V \). Set \(B_1 = \{ \mathbb{Z} \text{MtoMQV}(V, p, u), \text{ where } u \text{ is a vector of } V : u \in B \} \). Define \(\mathcal{F}(\text{element of } V) = \mathbb{Z} \text{MtoMQV}(V, p, x) \). Consider \(f \) being a function from the carrier of \(V \) into \(\mathbb{Z} \text{MtoMQV}(V, p) \) such that for every element \(x \) of \(V \), \(f(x) = \mathcal{F}(x) \) from [8 Sch. 4]. For every element \(y \) such that \(y \in B_1 \) there exists an element \(x \) such that \(x \in \text{dom}(f|B) \) and \(y = (f|B)(x) \) by [31 (62)], [7 (47)]. Consider \(I_6 \) being a basis of \(\mathbb{Z} \text{MtoMQV}(V, p) \) such that \(I_6 \subseteq B_1 \). □

One can verify that every finitely-generated free \(\mathbb{Z} \)-module is finite-rank and every finite-rank free \(\mathbb{Z} \)-module is finitely-generated.

Now we state the proposition:

(40) Let us consider a finite-rank free \(\mathbb{Z} \)-module \(V \) and a subset \(A \) of \(V \). If \(A \) is linearly independent, then \(A \) is finite. The theorem is a consequence of (19).
Let V be a \mathbb{Z}-module and W_1, W_2 be finite-rank free submodules of V. One can check that $W_1 \cap W_2$ is free. Note that $W_1 \cap W_2$ is finite-rank.

Let V be a finite-rank free \mathbb{Z}-module. Note that every submodule of V is finite-rank.

REFERENCES

[27] Wojciech A. Trybulec. Linear combinations in vector space. *Formalized Mathematics*, 1
Received December 31, 2013